Improving Test Coverage Measurement
for Reused Software

Breno Miranda
Universita di Pisa
Largo B. Pontecorvo, 3 - 56127
Pisa, Italy
breno.miranda@di.unipi.it

Abstract—Test coverage adequacy measures provide a widely
used stopping criterion. Engineering of modern software-intensive
systems emphasizes reuse. In the case that a program uses reused
code or third-party components in a context that is different from
the original one, some of their entities (e.g. branches) might
never be exercised, thus producing a code coverage level far
from full and not meaningful anymore as a stopping rule for
the program at hand. We introduce a new coverage criterion,
called “Relevant Coverage”, that in each testing context in which
a code is reused calculates coverage measures over the set of
relevant entities for that context. We provide an approach for
identifying relevant entities using dynamic symbolic execution.
The introduced coverage adequacy criterion is assessed in an
exploratory study against traditional coverage in terms of test
suite size reduction factor, cost-effectiveness ratio and rate of fault
detection. The results of our study showed that relevant coverage
can considerably reduce the test suite size while preserving a high
cost-effectiveness ratio with respect to the traditional approach.

I. INTRODUCTION

Test coverage measures are actively studied in academia,
and largely used in industrial software development. To date
many research and commercial tools exist for measuring code
coverage [1], and recent surveys (see, e.g.[2]) show that
coverage measures are increasingly used in several companies
as an adequacy criterion, i.e., to decide when to stop testing.
Moreover, when the measured coverage is not deemed suffi-
cient, coverage information can be useful for guiding testers
in enhancing their test suites so to exercise yet uncovered
parts of the program. Indeed, although the relationship between
code coverage of a given test suite and its ability to reveal
faults is still nowadays object of research, see e.g. [3], there is
consensus that having coverage information is still important
as it is evident that a test suite can hardly find bugs in code
that is never executed.

Even though they may target widely different entities, so
far the adequacy criteria proposed in the literature are all based
on the same underlying principle: a set of entities that must be
covered (they could be statements, branches, paths, functions,
and so on) is identified, and a program is not considered to
be adequately tested until all entities (or a given percentage
thereof) have been executed at least once. Coverage is then
measured as the percentage of covered entities with respect to
the total number of entities in the program under test. In this
work we use the term “Traditional Coverage” to refer to this
way of measuring coverage.

Antonia Bertolino
ISTI - CNR
Via Moruzzi 1 - 56124
Pisa, Italy
antonia.bertolino @isti.cnr.it

Engineering of modern software-intensive systems empha-
sizes reuse since it is generally recognized as a key technology
for improving software productivity and quality [4]. Large
complex systems may often include code parts reused in
different contexts from the original one in which they were
conceived. In such cases, traditional coverage measured as
above might not always provide meaningful information. In
fact, not all entities might be of interest in every context in
which a code is reused. Therefore, by testing such composite
systems from within a certain usage context might not achieve
100% coverage.

Note that we do not refer here to the well-known problem
of infeasible paths, to take into account which, as early as
1988, Frankl and Weyuker [5] proposed an applicable family of
data flow testing criteria. We speak of entities that are perfectly
feasible, i.e. there would exist test inputs that exercise them,
but such test inputs are not relevant in a usage context because
this user would never invoke such inputs in operation.

Our research in this paper addresses such situation and
aims at adapting test coverage measures to the specific testing
scope. More precisely, our proposal is to take into account
the way the main program in a complex system integrating
existing code and third-party components interacts with them
to identify the relevance of each entity to the new scope. We
use the term in-scope entities to refer to the entities from
the reused code that are exercised in the new context. The
remaining ones are referred to as out-of-scope entities. The
newly introduced coverage metric, that we call the “Relevant
Coverage”, measures the percentage of covered entities against
the total number of in-scope entities, thus returning to the tester
a more realistic information than the traditional one.

The paper is structured as follows: In Section II we
introduce a motivating example, which is then referred in
Section III to illustrate the approach. The rest of the paper
includes our empirical evaluation of the effectiveness of the
newly proposed coverage measure on the gzip case study
taken from the SIR repository: settings, results and threats
to validity of the study are presented in Sections IV, V
and VI, respectively. Finally, Related Work (Section VII) and
Conclusions (Section VIII) complete the paper.

II. MOTIVATING SCENARIO

To introduce the notion of relevant coverage, we will use
the example of the algorithm to determine the triangle type

based on its angles (see Listing 1). In this example, the function
get_triangle_type receives three integers (a, b and c)
and verifies if their sum is equal to 180 (because in a triangle,
the three interior angles always add to 180°). If so, the type of
the triangle is returned to the user; otherwise, an error message
is triggered stating that triangle formation is not possible.

char » get_triangle_type(int a, int b, int c) {

static char result[50];

if (a + b + ¢ == 180) {
if (a == b && b == ¢c) {
strcpy (result, "Equilateral Triangle");
}
else if (a ==Db || b ==c¢c || a == ¢c) {
strcpy (result, "Isosceles Triangle");
}
else {
strcpy (result, "Scalene Triangle");
}
}
else {
strcpy (result, "Triangle formation not
possible");

}

return result;

}
Listing 1: The triangle calculator.

Let us assume that the code from Listing 1 is being
reused in a different context from that for which it was
initially conceived: instead of returning a text message about
the triangle type in the terminal, it is now equipped with a
Graphical User Interface (GUI) that receives the triangle’s
angles values provided by the user and outputs the triangle
type. As in many cases, the GUI will validate the users’
inputs before calling the appropriate function/method and it
will allow them to get the triangle type only if the sum of
the values provided is equal to 180. Due to such restriction,
some entities of the above code will never be reached (i.e., the
else branch at line 14 and the statement at line 15). Hence,
any structural testing of the system including the GUI and
the code from Listing 1 would always return an incomplete
coverage measure.

In our approach, presented in the next section, we would
like to measure coverage over the set of in-scope entities (i.e.,
the ones that are relevant in this new context), and not over
the whole set of entities available in the code being reused.

III. RELEVANT COVERAGE

The rationale behind relevant coverage is that in each scope
in which a given system is being (re)used, the in-scope entities
are those that could be potentially exercised according to the
specific input domain restrictions. This coverage metric is
defined in Equation 1.

of covered entities

00(%) (1)

Relevant coverage = - —
& # of in-scope entities

A. Approach

As for any coverage criterion, relevant coverage measure-
ment presupposes that the code is instrumented so to allow the
identification of the entities exercised by the tester.

Relevant coverage measurement can then be summarized in
the following steps: 1) Data collection: information about pos-
sible input domain constraints is collected; 2) Identification
of in-scope entities: the entities (e.g., functions, statements,
branches, etc) that are relevant according to the input domain
constraints collected in the previous step are identified; 3)
Coverage measurement: relevant coverage is calculated over
the set of in-scope entities only, and the results are provided
to the tester; and 4) Coverage increase: the list of in-scope
entities that have not been tested is provided along with
suggestions of test cases that exercise those entities.

B. Illustration
1) Data collection:

As the first step of our approach, we collect information
about possible input domain constraints. The input domain
constraints provided could be coarse grained such as a list of
functions that are expected to be used in that specific context;
or fine grained such as the precise range of values expected to
be used by a given variable. The more information is provided,
the more precise is the calculation of relevant coverage. In the
triangle calculator example, one of the constraints the tester
would be aware of would be the fact that, passing through the
GUI control, a + b + c is always equal to 180. Other constraints
such as the range of values expected for the variables a, b and
¢, for example, could also be provided.

2) Identification of in-scope entities:

Different approaches could be adopted to identify the
entities that are relevant under the input domain constraints
collected in the first step of our approach. For example, one
could apply a reachability algorithm on the static call graph
of the given program. Even though this is an undecidable
problem [6], there exist algorithms capable of generating
approximated solutions. We resolved to use Dynamic Symbolic
Execution (DSE) since it has shown to be a powerful approach
to analyze the code dynamically and guide its exploration
based on the input domain constraints [7], [8]. Our decision
was influenced by the fact that DSE is very actively investi-
gated and several tools are available.

For this work, we adopted KLEE [9], a well-known
symbolic execution tool capable of automatically generat-
ing tests that achieve high coverage even for complex and
environmentally-intensive programs. First, we instrument the
code from Listing 1 to guide the DSE exploration based on
the input domain constraints collected in the first step of our
approach. Then, when KLEE is run with the instrumented
code, it tries to explore all paths, finding concrete test inputs
to exercise them. Thus actually this solution not only allows to
find in-scope entities, but also generates test cases that exercise
them.

The set of in-scope entities are those exercised by the DSE-
generated test cases!. Indeed, if some entities are not exercised
by the DSE-generated test cases it is because they are not
reachable under the input domain constraints provided.

3) Coverage measurement:

'Note that we “replay” the test cases generated using the original program
(not the instrumented one) and use gcov so to get accurate coverage achieved
by the DSE-generated test cases.

To continue with our stepwise example, let us assume that
the tester of the GUI-enhanced triangle calculator has created
the test suite displayed in Table I. It includes 3 test cases
covering the possible ways in which an isosceles triangle can
be defined and 1 test case covering the scalene type, but no
test cases to cover the equilateral type.

TABLE I: Tester’s test suite to assess the integration between
the GUI and the triangle calculator.

Test Case # | Input Values | Comments
1 a=20, b=80, c=80 Returns "Isosceles Triangle"
2 a=80, b=20, c=80 Returns "Isosceles Triangle"
3 a=80, b=80, c=20 Returns "Isosceles Triangle"
4 a=50, b=60, c=70 Returns "Scalene Triangle"

Traditional coverage would be calculated as the ratio be-
tween the number of entities exercised and the total amount
of entities available. For line coverage, for example, the
tester’s test suite would achieve a coverage of 77.77% (7
out of 9 executable lines, considering only the code of the
function get_triangle_type). Note that, even though the
statement at line 15 from Listing 1 can never be reached in the
context in which the code is going to be used, it would still be
considered when calculating coverage in the traditional way.

Using relevant coverage, the tester’s test suite would in-
stead achieve a line coverage of 87.50% (7 out 8 in-scope
lines exercised in the function get triangle type). As
expected, the line related to the scenario in which the triangle
formation is not possible is excluded from the coverage
computation as it can never be reached in that specific context.

In comparison with traditionally calculated coverage, rele-
vant coverage gives a more meaningful measure: the point is
not that the tester achieves a higher score, but that such score
provides a more realistic estimate of what could be further
achieved by augmenting the test suite.

4) Coverage increase:

Having a coverage measure that is more meaningful but
does not help testers to improve their test suite would be little
useful. As the last step of our approach, we help testers to
augment their test suites to exercise those in-scope entities
that had been left untested. Because we are using KLEE to
identify in-scope entities and as said it generates the test cases
that exercise all the paths explored, in this step we can simply
suggest among the DSE-generated test cases those ones that
can increase coverage when compared to the tester’s test suite.

IV. EXPLORATORY STUDY

The research objective of this exploratory study is to
analyze the usefulness of the proposed relevant coverage
adequacy criterion for the purpose of comparison with respect
to traditional coverage adequacy criterion from the point of
view of testers in the context of the testing of applications
that are reused in different contexts.

A. Research Questions

Having defined our general research objective, there are
many specific questions that could be targeted, depending on

how the generic term of “usefulness” in the above definition
is assessed. For this study we have defined the following goals
(following the Goal/Question/Metric method [10]):

Goals: given a specific test context (in which part of a program
under test is reused), evaluate the usefulness of relevant cover-
age adequacy criterion, when compared to traditional coverage
adequacy criterion, in terms of: test case selection (Gy), fault
detection ability (G2), and test case prioritization (Gs).

The assessment of goals G; to G3 is performed by the
following research questions and metrics:

Q. [test suite size]: Given a specific testing context, does
relevant coverage adequacy criterion reduce the test suite size
when compared to traditional coverage adequacy criterion?
Q- [cost-effectiveness]: Given a specific testing context, do
test suites selected according to relevant coverage adequacy
criterion yield better cost-effectiveness ratio than test suites
selected according to traditional coverage adequacy criterion?
Qs [prioritization]: Given a specific testing context, do test
suites prioritized according to relevant coverage adequacy
criterion reveal faults faster than test suites selected according
to traditional coverage adequacy criterion?

M, = |test suite| (2)

of faults revealed
M, = 3
2 # of test cases 3

M, = APFD 4)

Metric M; computes the size of the test suites obtained
when using both relevant coverage adequacy criterion and
traditional coverage adequacy criterion, respectively. The cost-
effectiveness metric My computes the proportion between the
number of faults revealed and the size of the test suites
respectively associated to each adequacy criterion. Finally,
metric M3 measures how rapidly a prioritized test suite detects
faults by computing a weighted Average of the Percentage of
Faults Detected (APFD) [11]. APFD values range from O to
100 and higher values mean faster (better) fault detection rates.

B. Study Subject

In order to carry out our exploratory study and to inves-
tigate our research questions in a realistic setting, we looked
for subjects in the Software-artifact Infrastructure Repository
(SIR) [12]. For selecting our subject, some prerequisites had
to be considered: first, the subject should be written in the C
language; second, it should contain faults (either real faults
or seeded ones) and a test suite associated with it; finally,
because our approach considers the need to target specific
testing contexts, we looked for a subject that would allow us
to convincingly define different testing scenarios.

For this study we selected the gzip subject: a software
application used for file compression and decompression. The
gzip subject is available from SIR with 6 sequential versions
(1 baseline version and 5 versions with seeded faults). Each
variant version contains a different number of seeded faults
ranging from 7 to 16. The test suite that comes with the subject

TABLE II: Test Suite Sizes for the Different Adequacy Criteria

Variant/ Line Branch Function
. Traditional Relevant Reduction Traditional Relevant Reduction Traditional Relevant Reduction
Scenario Suite Suite Factor Suite Suite Factor Suite Suite Factor
X TCov X TCov RCov X TCov X TCov RCov K TCov . TCov RCov
Size Size Size Size Size Size
V1/S1 21 747% 5 55.6% 95.4% 76.2% 25 59.1% 7 29.3% 92.5% 72.0% 11 87.7% 1 56.8% 97.7% 90.9%
V1/S2 21 74.7% 6 57.6% 86.1% 71.4% 25 59.1% 8 44.3% 80.8% 68.0% 11 87.7% 3 72.8% 93.9% 72.7%
V1/S3 21 74.7% 7 57.5% 94.6% 66.7% 25 59.1% 8 432% 90.5% 68.0% 11 87.7% 2 58.0% 97.7% 81.8%
V2/S1 21 65.6% 5 49.3% 95.6% 76.2% 26 52.5% 6 259% 93.1% 76.9% 11 73.5% 2 49.0% 97.7% 81.8%
V2/S2 21 65.6% 6 509% 87.9% 71.4% 26 52.5% 7 39.0% 82.2% 73.1% 11 73.5% 2 582% 93.8% 81.8%
V2/S3 21 65.6% 7 50.8% 94.8% 66.7% 26 52.5% 8 38.4% 91.2% 69.2% 11 73.5% 2 49.0% 97.8% 81.8%
V5/S1 21 67.1% 4 343% 100.0% 81.0% 24 52.6% 4 249% 99.0% 83.3% 12 753% 2 49.5% 100.0% 83.3%
V5/S2 21 67.1% 4 50.8% 88.5% 81.0% 24 52.6% 4 37.6% 82.7% 83.3% 12 753% 2 588% 91.2% 83.3%
V5/S3 21 67.1% 5 51.2% 94.6% 76.2% 24 52.6% 5 38.1% 91.8% 79.2% 12 753% 3 50.5% 95.7% 75.0%
Average: H 21 69.1%] 544 509% 93.1% [74.1% H 25 54.7%] 6.33 35.6% 89.3%] 74.8% H 11.33 78.8% [2.11 55.8% 96.2%] 81.4%

contains 214 test cases, which overall can reveal only a subset
of the seeded faults available on each version. We refer to this
test suite as the SIR test suite.

C. Tasks and Procedures

We defined three realistic scenarios in which our subject
could be reused: scenario #1 (gzip is reused, in a bigger
system, for compressing files only); scenario #2 (gzip is
used by an online service only for decompressing the files
submitted by the service’s users); and scenario #3 (gzip is
reused for compressing not only files but also whole directories
recursively). These scenarios are used to provide the input
domain constraints for our approach (step 1 of Section III-A).

In this study we considered three types of entity: line,
branch, and function, which correspondingly identify three
coverage criteria. Then, for each entity and for each variant
version of gzip available we performed the following tasks:

1) Collected the input domain constraints from the test-
ing scenarios previously defined (e.g., because the
scenario #1 is related to file compression, one of the
constraints collected is the fact that the parameter —d,
required for decompressing, will never be used).
Instrumented the code with KLEE methods reflect-
ing the input domain constraints to guide the DSE
exploration (as illustrated in the Section III-B).
Used the output from the previous step to identify
the set of in-scope entities (line, branch or function)
for that specific testing scenario (in the same way as
explained in the Section III-B).

Used a greedy algorithm for generating two test
suites. The first test suite is derived aiming at
achieving maximum coverage for a given adequacy
criterion. We refer to it as traditional test suite.
The second test suite is derived aiming at achieving
maximum coverage over the set of in-scope entities
only and we refer to it as relevant test suite.
Evaluated, for each possible combination of gzip
variant, test scenario and adequacy criteria, the per-
formance of the relevant test suite when compared to
the traditional one using the metrics My to Ms.

2)

3)

4)

5)

The greedy algorithm used for deriving the test suites in
Task 4 is very simple: given a set of entities that should be
covered (branches, for example), the algorithm selects, from
the SIR test suite, the test case that covers the highest number

of entities. When a test case is selected, the set of entities to
be covered is updated to remove the entities covered by the
chosen test case, and the algorithm keeps looking for the next
text case with the highest coverage for the remaining entities
until it is not possible to increase coverage anymore. In case of
a tie, the algorithm selects the test case that covers the lowest
number of out-of-scope entities (this step is applicable for the
relevant test suite only); if the tie persists, then the algorithm
orders the set of tied test cases alphabetically and picks the first
one (these steps allow us to have a deterministic algorithm for
deriving the test suites).

D. Execution

During our exploratory study we noticed that according to
the original fault-matrix provided by SIR along with the gzip
subject, none of the test cases available in the SIR test suite
would reveal the faults in variant 3. Besides that, for variant
4 there were no faults that could be revealed in 2 out of the 3
testing scenarios we had defined. For being able to apply all
the metrics defined for this study, we proceed with our study
considering only variants 1, 2, and 5.

V. ANALYSIS
A. Test Suite Size (M)

Table II shows the test suite sizes as well as the structural
coverage achieved by the traditional and the relevant test suites
generated by the greedy algorithm as explained in IV-C. Note
that for relevant coverage, information is provided in two
different columns; the “TCov” column reports the coverage
that would be achieved by the relevant test suite if it was
calculated in the traditional way, whereas “RCov” reports the
relevant coverage calculated according to Equation 1. The
column “Reduction Factor” shows, for each coverage criterion,
the reduction factor achieved by the relevant test suites when
compared to the traditional ones.

As expected the relevant test suites are much smaller as
they are derived aiming at achieving maximum coverage over
the set of targeted entities only. The average number of test
cases for the relevant test suite varied from 2.11 to 6.33
depending on the adequacy criterion chosen, while the average
reduction achieved varied from 74.1% (for line coverage) to
81.4% (for function coverage). Considering all the possible
combinations of variant, scenario, and adequacy criterion, the
reduction factor was never smaller than 66.7%.

Not surprisingly, the absolute coverage of traditional test
suites was bigger in all the cases varying from 52.5% to 87.7%.
The structural coverage of the relevant test suite varied from
24.9% to 72.8% (when measured in the traditional way) and
from 80.8% to 100% when measured in the relative (relevant)
way. 100% relevant coverage has been achieved only by V5/S1
(for line and function coverage), which means that for the vast
majority of the cases, in-scope entities for our testing scenarios
had been left untested.

B. Cost-effectiveness (M)

In the same manner that a specific test scenario would
restrict coverage to the in-scope entities, there may be faults
that are never triggered when the input domain is subject to
some constraints (because they are located in out-of-scope
entities). Hence to assess cost-effectiveness, we also needed
a procedure to distinguish between relevant and not relevant
faults within each test context. We proceeded as follows: first
we analyzed the SIR test suite manually and filtered the test
cases related to each given testing scenario (for the testing
scenario #2, for example, we pick only the test cases related
to decompression). Second, we used the SIR fault-matrix
associated to that specific variant to identify the faults that
are revealed by the selected test cases. The union of all the
faults revealed by the selected test cases gives the set of all
faults that could potentially be revealed in the testing scenario
being evaluated. We refer to these faults as the relevant faults.

Then we evaluated the cost-effectiveness of the relevant test
suite, on the one hand against the traditional one, and on the
other hand against an optimal test suite, which constituted the
baseline of the best possible performance for the given context.
The optimal test suite was derived as follows: we look into the
set of filtered test cases for the scenario at hand and select,
each time, the test case that exposes the highest number of
faults until all the relevant faults could be revealed.

Figures 1a, 1b, and 1c show the bar graphs comparing the
cost-effectiveness ratio achieved by the different test suites
for line, branch, and function coverage, respectively. In the
horizontal axis of each figure we have all the possible combi-
nations of variant and testing scenario, and in the vertical axis
we have the cost-effectiveness ratios. The measures related
to the relevant test suite are displayed by the black bars,
or the leftmost one of each group, while the measures for
the traditional test suite are displayed in the light grey bars,
or the rightmost one of each group (please ignore for the
moment the central bar, whose meaning is explained later
on). The cost-effectiveness values achieved by the optimal test
suite are identified by the short horizontal lines. For the cost-
effectiveness metric, the higher the bar, the better.

As expected, the optimal test suite achieved the highest
cost-effectiveness ratios in all cases, except one in which the
relevant test suite performed better (Fig. 1c, function coverage,
V1/S1), and another case in which the result obtained by the
optimal test suite tied with the relevant test suite (Fig. lc,
function coverage, V5/S2).

When compared against the traditional suite, the relevant
test suite performed better in all the cases. However, we
considered such comparison to be unfair because, as we saw in
the results reported for the previous metric M, the traditional

35

25

15

0.5 . - l . .
0

V1/S1 | V1/S2 | V1/S3 | V2/S1 | V2/S2 | V2/S3 | V5/S1 | V5/S2 | V5/S3

M Relevant test suite m Traditional Reduced test suite

Traditional test suite — Optimal test suite

(a) Line adequacy criterion

35
3
2.5
2
15
1
0.5 - . .
0

Vi/s1 | va/s2 | vi/s3 | v2/s1 | v2/s2 | V2/s3 | vs/s1 | V5/s2 | V5/s3

M Relevant test suite m Traditional Reduced test suite

Traditional test suite — Optimal test suite
(b) Branch adequacy criterion
3.5
3 | | | | I

2.5 - - | | |
1] .ll _ ___i__
0.5 - { { { { { { { {
CREE R _| . m bk

V1/s1 | v1/S2 | V1/S3 | V2/S1 | V2/S2 | V2/S3 | V5/S1 | V5/S2 | V5/S3
M Relevant test suite m Traditional Reduced test suite
Traditional test suite — Optimal test suite

(c) Function adequacy criterion

Fig. 1: Cost-effectiveness comparison

test suites were much bigger than the ones derived using
the relevant adequacy criterion and, of course, this would
impact negatively the cost-effectiveness ratio. To provide a
fair comparison we reduced the traditional test suite down to
the size of the relevant test suite (we took the first test cases
selected by the greedy algorithm) and applied the metric M,
again over the newly created suite (we refer to it as traditional-
reduced test suite). The measures related to the traditional-
reduced test suite are displayed in the central bars of each
group in the graphs.

Comparing the relevant test suite against the traditional-
reduced one, either the test suite derived by the relevant ad-
equacy criterion performed better than the traditional-reduced
test suite or they were tied. In no case the traditional-reduced
performed better than the relevant test suite.

C. Prioritization (M3)

Given a large test suite, test case prioritization aims at
identifying an ordering of its test cases according to some goal,
e.g. maximizing the rate of fault detection, and is more often
used for regression test purposes (see, e.g., [13]). Although
not originally conceived for prioritization purposes, as an
afterthought we saw that relevant coverage could also be used
as such. Hence in this study we also compared its rate of
fault detection against that of the traditional-reduced test suites,

TABLE III: APFD Values Achieved by “Traditional-reduced” and “Relevant” Test Suites

Variant/ Line Branch Function
Scenario # Faults Revealed APFD Values # Fauhs Revealed A_PFD Values # _F‘aults Revealed APFD Values
Traditional Relevant Traditional Relevant Traditional Relevant Traditional Relevant Traditional Relevant Traditional Relevant
Reduced Reduced Reduced Reduced Reduced Reduced
V1/S1 2 2 80.00 90.00 2 2 85.71 92.86 1 2 50.00 50.00
V1/S2 4 3 70.83 91.67 4 4 75.00 93.75 3 4 50.00 83.33
V1/S3 3 3 88.10 88.10 3 3 89.58 89.58 3 3 58.33 58.33
V2/S1 1 3 10.00 90.00 2 3 58.33 91.67 0 3 0 75.00
V2/S2 2 2 16.67 75.00 2 2 64.29 71.43 0 2 0 25.00
V2/S3 2 3 28.57 59.52 2 3 68.75 64.58 0 1 0 25.00
V5/S1 1 1 87.50 87.50 1 1 37.50 87.50 1 1 75.00 75.00
V5/S2 3 3 70.83 79.17 3 3 54.17 79.17 2 3 50.00 58.33
V5/S3 1 2 90.00 80.00 1 2 50.00 70.00 1 2 83.33 50.00
I Average: | 60.28 8233] Average: | 64.81 8228] Average: | 40.74 55.55

because the latter by construction gave the same test suite sizes
and, as shown in the previous section, in 14 out of 27 scenarios
presented the same cost-effectiveness ratio.

Table III shows the APFD values for relevant and
traditional-reduced test suites along with the number of rele-
vant faults revealed by each test suite. Recall that for the APFD
metric, higher values mean faster (better) fault detection rates.
As shown, the relevant test suite outperformed the traditional-
reduced one in 18 out of 27 cases and achieved the same APFD
value in other 6 cases with an overall average APFD of 73.4
against 55.3 for the traditional-reduced. APFD values achieved
by the relevant test suite were never smaller than 25 and they
were never bigger than 93.75. For the traditional-reduced test
suite, APFD values ranged from 10 to 90.

VI. DISCUSSION AND THREATS TO VALIDITY

A. Evaluation of the results and their implications

1) Test Suite Size (M1): The results show that our approach
can help to considerably reduce the number of test cases of a
given test suite if the target is to focus the testing on the areas
of code that are relevant in a given context. Clearly, this cannot
be an approach to advise for safety-critical systems, since we
are saying a tester to reduce the test coverage only on some
part of a program. Even though this should be safe, because we
know that the uncovered parts will not be used in operation,
with enough resources a more comprehensive testing would
never hurt.

2) Cost-effectiveness (M3): We see that, when considering
only the relevant faults, our approach does not lose in terms
of fault detection effectiveness. On average, a test case in
traditional coverage detects 0.13 faults; 0.45 faults are revealed
in traditional-reduced, whereas a test case in relevant coverage
reveals 0.68. Looking into the results per adequacy criterion,
for line coverage the number of faults detected by traditional,
traditional-reduced, and relevant are 0.13, 0.39, and 0.47,
respectively; for branch coverage the figures are (following the
same order) 0.11, 0.36, and 0.41; and for function coverage
the number of faults revealed are 0.17, 0.59, and 1.17.

In Section V-B we initially compared the cost-effectiveness
of our test suite against the traditional one, and then against a
reduced version of the traditional for the sake of providing a
fair comparison. If we had not considered the number of test
cases and had only looked at the absolute number of faults
detected (which would favor traditional coverage because the

test suites derived according to this adequacy criterion had on
average, at least 4 times more test cases than our test suites),
our approach would still outperform the traditional one with
a total of 67 faults revealed among all the variant/scenario
combinations, against 65 revealed by the traditional test suites.
The results were tied in 22 cases out of 27; the traditional
outperformed the relevant in two cases by revealing one extra
fault on each case; the relevant, on its turn, outperformed the
traditional in three cases: two times with one extra fault being
revealed, and one time detecting two extra faults.

3) Prioritization (M3): In our study the relevant test suite
achieved better APFD values in the majority of the cases,
being outperformed by the traditional-reduced test suite only
in three cases. The results achieved seem promising, but as we
said prioritization was not among the initial goals for relevant
coverage, and so far we analyzed only one possible heuristic
to derive the suites. More data is needed to investigate the
research question associated with this metric.

4) Overall: The original motivation behind relevant cov-
erage was to define a more meaningful notion of coverage
for a given tester, assuming that part of the program under
test is reusing components and code that were conceived for
different usage contexts. In the course of the exploratory study,
we realized that the approach seems indeed a novel promising
technique for test case reduction and prioritization that adapts
to a tester’s context. We intend to plan future studies both
to investigate deeper the potential of relevant coverage in
this respect, e.g. by comparing it against other reduction and
prioritization techniques, and to assess the usefulness of test
cases generated to augment coverage of in-scope entities.

B. Threats to Validity

1) Threats to internal validity: concern aspects of the study
settings that could bias the observed results.

In-scope entities identification: As stated, we used KLEE
for performing the symbolic execution of the subject’s code
and identifying the set of in-scope entities. Some of the
KLEE’s search heuristics for path-finding are random-based,
which means that the order in which the paths are explored
and, consequently, the order in which the test cases are
generated, may change. Because we used concrete files (e.g.:
real compressed files) and because the outputs of our study
subject depend on the environment in which it is executed,
we created a sandbox and executed KLEE 10 times, under
the same environment conditions to make sure that all the

possible test cases would be generated. The union of the unique
test cases generated after the 10 runs were “replayed” in the
original variant version to identify the set of in-scope entities.

SIR test suite coverage: The SIR test suite that accompanies
the subject of this study does not achieve full coverage in
any of the variants studied. Different results could had been
achieved if full coverage was provided, as the level of coverage
may affect effectiveness, see, e.g., [3]. One possible way of
controlling this threat would be adding more test cases to
achieve different levels of coverage up to full. We performed
a cost-benefit analysis and decided to use the subject as it
is provided (i.e., not to introduce other test cases) with all
of its artifacts, since it represents the golden standard for
benchmarking purposes.

Relevant faults identification: Because the SIR test suite
does not achieve full coverage, the set of relevant faults we
derived for computing cost-effectiveness may not contain all
the faults that could be possibly revealed in a given testing
scenario. However, since we use the same matrix associating
test cases to faults, we do not see how such threat could
produce different impacts on different test criteria in systematic
way, and thus influence the results on cost-effectiveness.

Testing costs approximation: As a measure of testing costs,
we took the number of test cases, which does not account
for many factors affecting the actual cost of executing and
analyzing those test cases. Although some factors are the same
for traditional and relevant coverage, we do not have estimates
of whether and to what extent the cost of the steps that are
different, e.g. the identification of in-scope entities, may impact
the cost-effectiveness ratio. To assess cost more realistically we
should perform studies involving human subjects.

Prioritization quality evaluation: In this study we used
APFD as the metric for evaluating the speed in which faults are
revealed by a given test suite. However, APFD is not the only
possible measure of rate of fault detection. Control for this
threat can be achieved only by conducting additional studies
using different metrics for evaluating the prioritization quality
of the test suites used in our study.

2) Threats to external validity: concern aspects of the study
that may impact the generalizability of results.

Subject representativeness: In this work we investigated the
variants of a single subject. As explained in Section IV-B the
study settings imposed a set of requirements on the subject that
made it not easy to identify good candidates. Control for this
threat can be achieved only by conducting additional studies.

Faults representativeness: The subject program chosen con-
tained seeded faults in all of the variants investigated. Subjects
with real faults might yield different results.

Heuristic representativeness: Both for relevant and for
traditional coverage we adopted a greedy heuristic to derive
an adequate test suite. Other heuristics and algorithms should
be investigated before more general conclusions can be drawn.

3) Threats to construct validity: concern confounding as-
pects by which what we observed is not truly due to the
supposed cause.

Experimental design: To fully evaluate our proposed ap-
proach the exploratory study should target all the steps de-

scribed in Section III-A. However, as already discussed, we
did not evaluate the approach in its capability to increase
coverage. Also we did not actually execute the test cases and
use an oracle for fault detection, but relied on the information
in the SIR repository. Overall, our exploratory study may be
quite distant from a real test context. However, we never
draw absolute conclusions about the properties of relevant
coverage per se, but always in comparison with traditional
(or traditional-reduced) coverage. Since most of the above
approximations seem to affect both approaches in similar way,
the effects of such threats should not be relevant.

VII. RELATED WORK

In this work we have introduced a novel family of structural
coverage measures, the relevant coverage. The topic of soft-
ware test adequacy criteria has been extensively investigated in
software testing research. Since the very notion of a test crite-
rion was formalized in the 70’s [14], [15], a lot of contributions
have been made on the definition of new coverage criteria [16]
that are effective in failure detection, and considerable research
effort has been devoted to the comparison of multiple criteria
to provide support for the use of one criterion or another [17].

Relative Coverage

In [18], Bartolini et al. argue that traditional test coverage
should be revised to deal with service-oriented systems, and
introduce a notion of relative coverage in which the set of
covered entities is measured against a customized set of entities
that can vary from a user to another. Relative coverage has later
been used also in [19]. In this work, the authors propose an
approach in which testable services (services instrumented to
provide their clients with coverage information) are provided
along with test metadata to help their testers to get a higher
coverage. In both [18] and [19] the list of relevant (in-scope)
entities is manually defined by the user, whereas here we
provide an approach for deriving them automatically.

We stated our intent to pursue the goal of providing
an approach to calculate relevant coverage measure in [20].
Besides, we proposed in [21] the “social coverage” measure,
in which the list of in-scope entities is derived in an automated
way based on historical coverage data collected from similar
users. Therefore the two criteria of social and relevant coverage
consider very different ways to characterize entity relevance.

Conceptually our notion of relevant coverage is close to
Rosemblum’s notion of “adequate testing” introduced in [22]
with regard to component-based software testing. In this work,
the author was in fact concerned with the scenario in which
a component needs to be tested when it is being used by a
possibly larger system. However, that paper only provided a
theoretical definition and did not provide an approach to assess
“adequate testing”.

Test Suite Reduction

Achieving adequate coverage may require a high number of
test cases, and researchers have proposed several approaches
for test suite reduction or minimization, e.g. [23], [24]. The
problem of test suite reduction consists of identifying a mini-
mal set of test cases that achieves a given coverage measure.
Test suite reduction is often applied in regression testing.

As we hint in our exploratory study, relevant coverage can
be seen as an approach for reducing the size of a test suite
based on a completely different premise, i.e., we only consider
the test cases covering the code entities that really matter,
and discard test cases covering entities that are outside scope.
Doing so, we do not maintain the same coverage measure,
but we accept that the reduced test suite can achieve a lower
coverage measure in absolute terms. We are not suggesting
however to deliberately shrink testing effort. Our argument
is rather opportunistic, we say that if only a limited number
of test cases can be executed, than these should target those
entities that will be executed in operation.

VIII. CONCLUSIONS AND FUTURE WORK

We have introduced a novel approach for measuring and
using coverage information, aimed at customizing traditional
coverage testing adequacy criteria to a constrained testing
context. We proposed the relevant coverage approach for
computing in-scope entities (in particular lines, branches and
functions) using dynamic symbolic execution constrained by
those conditions that would apply in a specific testing scope.
Such approach produces a more meaningful measure of cov-
erage and can also generate test cases to cover yet uncovered
in-scope entities. An exploratory study on the gzip benchmark
from the SIR repository showed that relevant coverage can
considerably reduce the test suite size while preserving a high
cost-effectiveness ratio (measured over the relevant faults) with
respect to a traditional approach that would address the whole
set of entities. We found that relevant coverage could provide
a novel approach to test suite reduction and prioritization.

However, this is a first study and many directions remain
open for future work. On the one side we certainly need
to perform further empirical studies, possibly also involving
human testers so to fully explore relevant coverage costs
and benefits. In such studies we would like to use other
heuristics and algorithms for test case selection, as well as
compare relevant coverage to most up-to-date reduction and
prioritization approaches. On the other side, we would like to
try other tools and approaches to compute in-scope entities.
For example, Conditioned-Slicing [25] could provide a static
and more comprehensive approach.

While in four decades of software testing literature tons
of proposals can be found of new coverage criteria aimed at
improving fault-finding effectiveness, the notion of relevant
coverage introduced here, which in a nutshell proposes not to
identify novel entities to be covered, but rather to change the
denominator of the coverage ratio formula depending on the
testing context, provides a completely new point of view. We
believe that such a novel perspective paves the way to many
new avenues for improving test cost-effectiveness, yet all to
be explored.

REFERENCES

[11 Q. Yang, J. J. Li, and D. Weiss, “A survey of coverage based testing
tools,” in Proc of the 2006 Int Workshop on Automation of Software
Test, ser. AST ’06. New York, NY, USA: ACM, 2006, pp. 99-103.

[2] V. Garousi and T. Varma, “A replicated survey of software testing
practices in the canadian province of alberta: What has changed from
2004 to 2009?” Journal of Systems and Software, vol. 83, no. 11, pp.
2251 - 2262, 2010.

(3]

(4]

(5]

(6]

(7]

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

L. Inozemtseva and R. Holmes, “Coverage is not strongly correlated
with test suite effectiveness,” in Proc. of the 36th Int. Conf. on Software
Engineering, ser. ICSE 2014. New York, NY, USA: ACM, 2014.

M. Morisio, M. Ezran, and C. Tully, “Success and failure factors in
software reuse,” Software Engineering, IEEE Transactions on, vol. 28,
no. 4, pp. 340-357, 2002.

P. G. Frankl and E. J. Weyuker, “An applicable family of data flow
testing criteria,” IEEE Trans. Softw. Eng., vol. 14, no. 10, pp. 1483—
1498, Oct. 1988.

G. C. Murphy, D. Notkin, W. G. Griswold, and E. S. Lan, “An empirical
study of static call graph extractors,” ACM Trans. Softw. Eng. Methodol.,
vol. 7, no. 2, pp. 158-191, Apr. 1998.

C. S. Pasareanu and W. Visser, “A survey of new trends in symbolic
execution for software testing and analysis,” Int. J. Softw. Tools Technol.
Transf., vol. 11, no. 4, pp. 339-353, Oct. 2009.

T. Chen, X. song Zhang, S. ze Guo, H. yuan Li, and Y. Wu, “State
of the art: Dynamic symbolic execution for automated test generation,”
Future Gen. Comp. Systems, vol. 29(7), pp. 1758 — 1773, 2013.

C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs,” in
Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation, ser. OSDI’08. Berkeley, CA, USA:
USENIX Association, 2008, pp. 209-224.

V. R. Basili, G. Caldiera, and H. D. Rombach, “Goal Question Metric
Paradigm,” in Encyclopedia of Software Engineering. John Wiley &
Sons, 1994, vol. 1, pp. 528-532.

G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Test case
prioritization: An empirical study,” in Proc. IEEE Int. Conf. on Software
Maintenance, 1999.(ICSM’99). 1EEE, 1999, pp. 179-188.

H. Do, S. G. Elbaum, and G. Rothermel, “Supporting controlled exper-
imentation with testing techniques: An infrastructure and its potential
impact.” Empirical Software Engineering: An International Journal,
vol. 10, no. 4, pp. 405-435, 2005.

S. G. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test case
prioritization: A family of empirical studies,” IEEE Trans. Software
Eng., vol. 28, no. 2, pp. 159-182, 2002.

J. Goodenough and S. Gerhart, “Toward a theory of test data selection,”
IEEE Trans. on Sw. Engineering, vol. SE-1, no. 2, pp. 156-173, 1975.
W. Howden, “Reliability of the path analysis testing strategy,” IEEE
Trans. on Sw Eng.,, vol. SE-2, no. 3, pp. 208-215, 1976.

H. Zhu, P. A. V. Hall, and J. H. R. May, “Software unit test coverage
and adequacy,” ACM Comput. Surv., vol. 29, no. 4, pp. 366-427, 1997.

N. Juristo, A. Moreno, and S. Vegas, “Reviewing 25 years of testing
technique experiments,” Emp. Sw Eng., vol. 9, no. 1-2, pp. 7-44, 2004.

C. Bartolini, A. Bertolino, S. Elbaum, and E. Marchetti, “Whitening
SOA testing,” in Proc. of the 7th joint European Sw. Eng. Conf. and
the ACM SIGSOFT symposium on The foundations of Sw. Eng., ser.
ESEC/FSE ’09. New York, NY, USA: ACM, 2009, pp. 161-170.

M. Eler, A. Bertolino, and P. Masiero, “More testable service composi-
tions by test metadata,” in Service Oriented System Engineering (SOSE),
2011 IEEE 6th International Symposium on, 2011, pp. 204-213.

B. Miranda, “A proposal for revisiting coverage testing metrics,” in
Proceedings of the 29th ACM/IEEE International Conference on Au-
tomated Software Engineering, ser. ASE *14. New York, NY, USA:
ACM, 2014, pp. 899-902.

B. Miranda and A. Bertolino, “Social coverage for customized test
adequacy and selection criteria,” in Proceedings of the 9th International
Workshop on Automation of Software Test, ser. AST 2014, 2014, pp.
22-28.

D. S. Rosenblum, “Adequate testing of component-based software,” Un.
of California, Irvine, CA, Tech. Rep. UCI-ICS-97-34, 1997.

J. Jones and M. Harrold, “Test-suite reduction and prioritization for
modified condition/decision coverage,” in Proc. IEEE Int. Conf. on Sw
Maintenance, 2001, pp. 92-101.

G. Fraser and F. Wotawa, “Redundancy based test-suite reduction,”
in Fundamental Approaches to Sw Eng., ser. LNCS, M. Dwyer and
A. Lopes, Eds. Springer, 2007, vol. 4422, pp. 291-305.

G. Canfora, A. Cimitile, and A. De Lucia, “Conditioned program
slicing,” Inf. and Sw Technology, vol. 40(11), pp. 595-607, 1998.

