
Future Generation Computer Systems 162 (2025) 107481

A
0
n

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Underwater Mediterranean image analysis based on the compute continuum
paradigm
Michele Ferrari a, Daniele D’Agostino a,∗, Jacopo Aguzzi c,d, Simone Marini b,d,e

a Department of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS), Università degli studi di Genova, Via Dodecaneso 35, Genoa, Italy
b National Research Council of Italy (CNR), Institute of Marine Sciences, Pozzuolo di Lerici, La Spezia, Italy
c Department of Renewable Marine Resources, Instituto de Ciencias del Mar (ICM-CSIC), Pg. Marítim de la Barceloneta 37, Barcelona, Spain
d Stazione Zoologica Anton Dohrn (SZN), Naples, Italy
e NBFC, National Biodiversity Future Center, Palermo, Italy

A R T I C L E I N F O

Keywords:
Compute continuum
Object detection

A B S T R A C T

Human activity depends on the oceans for food, transportation, leisure, and many more purposes. Oceans cover
70% of the Earth’s surface, but most of them are unknown to humankind. This is the reason why underwater
imaging is a valuable resource asset to Marine Science. Images are acquired with observing systems, e.g.
autonomous underwater vehicles or underwater observatories, that presently transmit all the raw data to land
stations. However, the transfer of such an amount of data could be challenging, considering the limited power
supply and transmission bandwidth of these systems. In this paper, we discuss these aspects, and in particular
how it is possible to couple Edge and Cloud computing for effective management of the full processing pipeline
according to the Compute Continuum paradigm.
1. Introduction

The total surface of the Earth covered by Oceans is more than
70% and international trades are run 90% by nautical transportation.
Human activity depends on the oceans for food, transportation, leisure
and, at the same time it mitigates the climate change by producing
oxygen, absorbing CO2 and balancing the heat exchange. Studying,
monitoring, and understanding the marine ecosystem with its biodiver-
sity, together with the human impact on it is therefore crucial as the
vast majority of the seas are unknown to humankind [1].

Biodiversity is defined as the variety of life ranging from genes
to entire ecosystems. It is also commonly referred as the richness of
species in a specific region or site [2]. Here we specifically focus on
monitoring biodiversity among fish that are found in the Mediter-
ranean Sea. In this case, by monitoring, we do not mean the verifi-
cation of a certain species living in an area. We rather focus on the
more challenging task of the quantitative analysis of the presence of
some selected species of interest, coupling this information together
with the environmental parameters driving the spatial/temporal species
dynamics.

This activity has several long-term goals. Especially for marine pro-
tected areas, keeping track of the presence in time of certain organisms
within its bounds, supporting the assessment of the health status of the
observed area. Monitoring life at sea is fundamental for environment

∗ Corresponding author.
E-mail addresses: daniele.dagostino@unige.it (D. D’Agostino), simone.marini@cnr.it (S. Marini).

conservation and sustainable economic growth, for communities living
on islands or along the shorelines [3]. Due to the vastity of this
environment, not only in terms of ground distance but of underwater
depth, it is essential to leverage observing systems that can operate in
remote or underwater locations.

Underwater imaging is a valuable resource asset to marine sci-
ences [4–6]. Researchers deploy cameras to extract visuals and support
their work in combination with other sensory. Images and biological
time data can reveal precious insights into behavioral patterns of
marine life [7].

Images can be acquired by underwater cabled observatories, which
are permanent installations on the seafloor that mount oceanographic
and biological sensory. These installations often have cameras to record
video footage or to take photos at regular intervals. Depending on the
available bandwidth, the acquired data can be transferred back to land,
using the cable to which the observatory is attached. It is the case of
the regional cable observatory NEPTUNE. It is a network of observa-
tories in the North East Pacific Sea, between USA and Canada [8].
Another fixed cabled observation point is the Observatory of The Sea
in the Western Mediterranean Sea [9]. Permanent marine observatories
cannot necessarily be cabled. In this case, they transmit data through
a radio connection to a land station as in the case of the Acqua Alta
Oceanographic Tower in the Adriatic Sea [10].
https://doi.org/10.1016/j.future.2024.107481
Received 28 November 2023; Received in revised form 2 August 2024; Accepted 1
vailable online 12 August 2024
167-739X/© 2024 The Author(s). Published by Elsevier B.V. This is an open access ar
c-nd/4.0/).
0 August 2024

ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://www.elsevier.com/locate/fgcs
https://www.elsevier.com/locate/fgcs
mailto:daniele.dagostino@unige.it
mailto:simone.marini@cnr.it
https://doi.org/10.1016/j.future.2024.107481
https://doi.org/10.1016/j.future.2024.107481
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2024.107481&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

M. Ferrari et al. Future Generation Computer Systems 162 (2025) 107481
Other sources of images can be underwater devices as Autonomous
Underwater Vehicles (AUV) and Remotely Operated Vehicles (ROV),
which are underwater tethered robots remotely controlled. Example of
AUV are the Autosub6000 AUV, which has been deployed to provide
biological and habitat insight by taking pictures of the seabed with a
high-resolution camera [11] or the ENDURUNS system, consisting of an
Unmanned Surface Vehicle (USV) and an AUV, the latter equipped with
camera echosounder sensors [12,13]. These devices can expand their
monitoring to different areas either operating autonomously, attached
to a boat, or to an underwater observatory.

Smaller autonomous apparatuses are also being used. These are
generally equipped with the bare minimum to operate a photo cam-
era, have battery power, and are relatively cheap, small, and flexible
enough to be deployed on already existing oceanographic sensory out
in the sea. An example is the macro gelatinous zooplankton monitor
device GUARD-1 [5,6,14] for monitoring the underwater macro and
mega fauna.

All these image capture devices, from the larger observatories to the
small and energy-efficient instruments, can be used to explore larger
areas of the oceans in combination with global networks like the drifter
buoy array or the Argo Float program [14–16]. The consequence is that
the amount of imagery is overwhelming and increases every year [17].
Elaborating those images by means of human domain knowledge is
challenging and time-consuming.

The first aspect to consider, most of the time, is represented by
properly managing the acquisition step in such constrained environ-
ments, where lack of transmission bandwidth and power supply are key
matters. The second aspect is related to the specific requirements for
the analysis flow, mostly based on Computer Vision (CV) and Artificial
Intelligence (AI) methods. Underwater scientific sensors and devices
operate in the constantly changing depths of the sea. Content-based
knowledge extraction of the environment is crucial for making valuable
scientific observations. For example, if the detection of worthy species
from imaging is available underwater, an AUV can act according to
what is the purpose of the exploration.

It is therefore clear that the traditional Cloud-centric model, where
all images are periodically transferred to a remote computing cen-
ter for full processing, is no longer feasible. There is the need to
design new systems capable to seamlessly execute and relocate the
component of the analysis pipeline along a continuum of resources
spanning from the image-capturing device to the Cloud. This approach
is widely used in many application contexts, e.g. industry 4.0 [18],
medicine [19], metagenomic analysis [20], smart agriculture [21] and
smart cities [22].

The resulting applications should optimize power and bandwidth
consumption, carefully balancing the energy required to complete a
specific task. Likewise, they should be able to manage data transmission
in a smart way, balancing pros and cons of preprocessing the images in
situ and transmitting only those with relevant content, avoiding battery
waste. This represents the goal of the paper, i.e. an image analysis
pipeline designed in accordance with the compute continuum paradigm
in the field of biodiversity monitoring.

In detail, we discuss an end-to-end pipeline to detect, classify, and
count fishes from underwater image acquisitions in the context of the
continuum between onboard edge devices and remote cloud resources
for storing, fusing, and analyzing the acquired data. In this pipeline the
Cloud gathers heterogeneous data from different sources at the edge of
the system (e.g. a network of underwater observatories). These data
are integrated and further analyzed to extract knowledge, otherwise
not accessible from a single sensor/observatory. The implementation
will focus on the pipeline’s edge side, as we are interested in a future
underwater deployment. Therefore, we will present an experimental
evaluation of the achievable performance in terms of execution time,
power consumption, and accuracy in order to select the best config-
uration on the basis of different operative conditions. This analysis

has a general value because the same approach should be applied to

2
scenarios with similar characteristics, i.e. many raw data, limited power
and bandwidth.

The paper is structured as follows. Section 2 presents related works.
Section 3 gives an overview of the analysis pipeline. Section 4 describes
the achieved experimental results, followed by a discussion of the
applicability in different operative conditions and the Cloud component
respectively in Sections 5 and 6. Conclusions and future directions are
outlined in Section 7.

2. Related works

The efficient and effective integration of Cloud, Edge, and IoT
technologies represents one of the key challenges of the next years in
different domains, both for scientific and industrial applications [23].
The main reason is the explosion of data volumes generated by an
increasing number of IoT devices, which requires an evolution of
distributed digital infrastructures for storing, managing, and processing
them.

Several review papers, books, and conference proceedings have
been recently published on this topic. For example [24] discusses the
differences between the definitions, while [25,26] analyses state-of-the-
art solutions in architectures and communication protocols. Other pa-
pers focus on specific aspects as resource management [27], workflow
management [28], available middleware [29], security and privacy
issues [30], and on distributing intelligence in these scenarios [31].

From the analysis of these papers, we agree on the fact that ‘‘The
compute continuum is an extension of the traditional Cloud towards
multiple entities that provide analysis, processing, storage, and data
generation capabilities’’ [24], and that edge computing lacks stan-
dardization of many aspects, and in particular of development guide-
lines [32].

While some domains are ahead in considering this paradigm for
real-world application, as industry 4.0 [18,33], for marine science
this represents a novel approach, as we will discuss in more detail
in Section 6. According to the classification provided in [34], the
compute continuum solution we are presenting belongs to the mobile
Cloud computing class. The edge component focuses on classifying the
elements of underwater images for monitoring purposes (e.g. to com-
municate early warnings) and to reduce network load by sending only
relevant images for further processing steps to the Cloud. The Cloud
component is responsible to store and analyze them in more details
by aggregating heterogeneous data from different sources and/or with
compute-intensive workloads.

For this reason, in the following, we focus on related works for
image analysis in the marine domain.

This field is highly related to the development of Convolutional
Neural Networks (CNN) [1,35]. We will focus on papers regarding fish
classification and detection from underwater imaging. Moreover, we
will distinguish between methods based on traditional CV algorithms
and Deep Learning-based approaches (DL).

One of the first works is represented by [36] and consists in a
texture-based classification. The goal was to distinguish between two
visually similar fish species characterized by a strong hue that domi-
nates the color information of images. The features used were built with
edge extraction, performed with the well-known Canny algorithm, and
Support Vector Machines (SVM) were used for specimen discrimination.

In [37] an automatic fish classification framework for underwater
species based on discriminant analysis has been proposed consisting of
two subtasks. The first one aims at extracting the organism trajectory
along the video frames, based on Gaussian Mixture Model (GMM),
Moving Average algorithm, and an Adaptive Mean Shift Algorithm.
The second task extracts feature from the gray level histogram, Gabor
filters, and gray level co-occurrence matrices for texture. Morphological
operations are used to extract the contour of each fish which are then
be used to compute a Curvature Scale Space (CSS). The CSS represents

the zero crossings of the fish’s evolution in the plane. A Principal

M. Ferrari et al.

s
s

u
A

d
u

F
s
w
t
I
i
i

F
i
s
A
o
2
S
C
a

l

Future Generation Computer Systems 162 (2025) 107481
Component Analysis is run among both texture and boundary features
before the Discriminant Analysis. The Discriminant Analysis consist of
assigning a query observation 𝑥 to a subset (class) of the whole feature
et 𝑋. A K-Fold cross validation is used in order to decide how many
ubsets leave for testing out of the training set.

In [38] several classifiers based on Haar Cascades features for
nderwater fish detection have been employed and trained with the
daBoost algorithm for classification.

The three previous works considered only a few images: the largest
ataset has been considered in [38] and consists of 921 annotated
nderwater images taken in the Southern California Bight.

More recently the use of DL and larger datasets, as the
ish4Knowledge dataset [39], have been considered by the marine
cience community. Methods based on DL have been employed in a
ider set of marine science applications, including harvested fish iden-

ification, fishery surveillance, and deep-sea mineral exploration [35].
n particular, Convolutional Neural Networks (CNN) have been adopted
n order to tackle CV problems like image segmentation, object local-
zation and counting.

In [40] a CNN network trained with large datasets extracted from
ish4Knowledge has been presented. In particular, the LifeCLEF 2014
mage dataset (www.imageclef.org/) contains roughly 20k fish targets
pread in about 1000 videos, counting a total of 10 observed species.

second set of images comes from LifeCLEF 2015, which raises the
bserved species to 15 while having a total target count larger than
0,000. A comparative study using other classic ML solutions like
VM and KNN have been performed by the authors, proving that the
NN approach as more stable and reliable in order to achieve a fully
utomated fish recognition process.

In [41] a 4 stage classifier based on 2 convolutional layers, a pooling
ayer for feature size reduction, a Spatial Pyramid Pooling (SPP) to ex-

tract information invariant to large poses has been proposed. The final
classification step of the framework is a SVM obtaining classification
performance higher than 90%.

Considering the high quality results obtained by CNNs in general
purpose datasets like ImageNet and VOC [42] developed a frame-
work specific for fish detection using a Fast Region based Convolutional
Neural Network (Fast R-CNN). Experimental results were assessed us-
ing mean Average Precision (mAP) on 30,000 images extracted from
Fish4Knowledge, with 12 species considered.

Another solution that leverages regions like CNN can be found
in [43]. Their proposal is a three-stage pipeline that takes as in-
put the combination of an underwater image, its Gaussian Mixture
Model, and its Optical Flow (OF). The authors reported an accuracy
of 87.44% claiming one of the best accuracies on LCF2015 at the time
of publication.

Beside these domain-specific works, we have to consider the single-
stage detector You Only Look Once (YOLO) [44], which rapidly gained
momentum in the Computer Vision and AI community including the
marine science community. The main advantage compared to RCNN is
that YOLO addresses detection as a single regression problem from the
input image to the predicted bounding box and class [44].

In [45] a modified version of YOLOv3 was exploited in order to
obtain good results in varying seabed scenarios and in presence of
crowded scenes. Its main contribution was to change the up-sample step
and the addition of a SPP module at the end of Darknet-52. The latter
is the backbone network of YOLOv3.

In [46] the authors worked on recognition of various seabed or-
ganisms like scallops, echinus, and starfish using a modified version
of YOLOv4. Their proposal was to remove the up-sampling part of the
network and replace it with a deconvolution in order to maintain the
ability to restore details of the features after the convolution operator.
The results are compared with other detector networks such as SDD
and other versions of YOLO. In particular, authors put emphasis on the
reduced parameters of their YOLOv4 variation from 64M to 16.7M.
A recent Biodiversity study of [17] leveraged YOLOv5.

3
Their work was carried out with manually tagged frames acquired
from the NEPTUNE cabled observatory out the coasts of Canada. The
overall annotated ground truth dataset is composed by 3647 images.
The work is focused at detecting sablefish on different sites of the un-
derwater cabled observatory and then estimate abundance. The YOLO
object detector is then trained on a single target class. A first training is
performed on the general purpose COCO dataset, and later a fine tuning
is carried out on the annotated sablefish images. The obtained average
precision on test data is reported to be 92%.

At last, we review some existing Edge Computing applications in
object detection at sea. It is worth to consider that at present there is
still a little number of these contributions, highlighting the relevance
of the results presented in the present paper.

An interesting, general purpose work, focusing on the detection
and classification of surface marine objects, such as passenger vessels,
commercial vessels, and other marine floating objects has been pub-
lished in [47]. They compared the use of YOLOv4 (64M parameters)
and its optimized tiny version on the Nvidia Jetson Xavier AGX Edge
Computing platform. The authors, although providing a few details
about execution time and images used during tests, report a substantial
increase of nearly 2x in inference speed when using YOLOv4 Tiny and
a displacement of .04 in Mean Average Precision (mAP) on the Jetson
Xavier AGX with respect to YOLOv4.

In [48] an application of CNNs with less than 20,000 parameters for
fish detection in underwater environments has been proposed. It con-
sists of a fixed, undersurface, observatory that leverages acoustic and
optical sensors to activate a camera that acquires photos within 10 m
field of view. This work focused on six different kinds of pelagic fishes,
observable in the Mediterranean Sea. These images are processed with
a multi-stage pipeline in order to give final predictions. As soon as
the image is acquired from the camera, it goes at the segmentation
stage which is performed by a specifically trained version of RetinaNET.
These areas of the acquired image are the inputs for the subsequent
stages. The object detection network has been designed with 4 blocks
made by a Convolution layer of 16 filters with a kernel size of 3 × 3
followed by a max pooling layer. Then two dense layers of either 8, 16,
or 32 units follow. The final dense layer outputs the binary choice. The
multi-class classifier follows the same skeleton but with a 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠 units
final dense layer. To boost performances both in binary and multiclass
classification, a tracking process between frames is added to follow the
trajectory of each possible target. The algorithm used is SORT which
has good performances in dealing with typical fish moving patterns.
Data was manually annotated from several sources of images, including
videos. The final count of segments of interest was 1.5M sparse in
51,000 images with which the classifiers were trained. The authors
compared their work with a baseline network, VGG16. The authors
reported comparable results with their baseline architecture, especially
when the tracking algorithm was used to support classification. The
deployment uses multiple digital cameras with one computing module
each. The Edge Computing platform is an Nvidia Jetson TX2.

In [49] an object detector specifically designed for mobile marine
platforms was presented. The authors proposed a modified version of
YOLONano, with two distinct architectures, namely ULO and ULO Tiny.
The main difference between ULO and ULO Tiny, is that the latter
has been stripped off the third detection head. Moreover, ULO has
an optional pre-processing module, to enhance the input image and
achieve better results. The authors trained the detector on URPC2019,
an underwater collection of seabed photos in the Chinese sea. In
particular, it contains seabed images of scallops, echinus, and starfish
acquired by human divers. The main goal of this tool is to support
aquaculture applications with the use of a fast and efficient object
detection architecture. They employ an optimized one-stage detector
based on YOLO that can predict the target type and position with
just one single architecture. The basic building block of ULO and
ULO Tiny is the Ghost Module, which computes pseudo feature maps

by employing cheap linear operations. The two architectures have

http://www.imageclef.org/

M. Ferrari et al.

E

Future Generation Computer Systems 162 (2025) 107481
Table 1
The most significant classes among the 30 of the OBSEA imagery.

Class #

Diplodus vulgaris 14 328
Oblada melanura 6 898
Diplodus sargus 2 772
Chromis chromis 2 762
Spicara maena 1 826
Coris julis 1 589

been directly mutated from YOLONano, substituting EP and PEP layers
with either Ghost Bottlenecks or Ghost Modules. Moreover, they use a
decoupled head design, splitting bounding box and class prediction into
two separate branches. The reduction in terms of trainable parameters
is considerable: YOLOv3 with image dimension of 512 × 512, counts up
to 61.5M parameters, YOLONano 6.3M. ULO and ULO Tiny respectively
3.9M and 3.4M. The authors report ULO to perform 1.3% less than
YOLOv3 in terms of mAP and outperforming other architectures like
YOLOv4 and YOLONano. ULO and ULO Tiny were tested on the Nvidia
Jetson Nano platform, showing promising runtime rates in terms of FPS,
respectively 5.11 and 6.73.

3. The image analysis pipeline

In this Section we describe the component of the pipeline for
underwater image analysis.1

At first, we describe the data selection and preparation we made
for training and testing. Then we present the object detection stage. All
the major numerical computations are implemented with the very well
established torch framework, while specific utilities for dealing with
image tensors are used from torchvision.

3.1. The dataset

The clearest trait that the related works had in common is the
type of fishes on which they focused. In fact, most methods in the
literature were trained, evaluated, and tested on datasets extracted
from Fish4Knowledge.

Nevertheless, Fish4Knowledge contains tropical fishes, while our
focus is on Mediterranean species listed in Table 1 and shown in
Figs. 1 and 2. Moreover, Fish4Knowledge contains images taken only
during daylight and in tropical waters totally different from what we
observe in the Mediterranean Sea. In fact, the Mediterranean sea is rich
in nutrients that actively influence the clarity and hue of the water
(e.g. phytoplankton). Oppositely tropical waters are oligotrophic and
hence clearer [50].

For these reasons, we used images produced with OBSEA, a cabled
seafloor observatory located 4 km off the Vilanova i la Geltru coast in
a fishing protected area [51]. The observatory is located at a depth of
20 m on a seabed composed of Posidonia oceanica in a fishing restricted
area. The Field of View is 3 × 3 for a total reported 10.5 m3 of imaged
volume. The images have a resolution of 640 × 480 and are all JPEG
encoded.

Across two full solar years, 2013 and 2014, a total number of 33,805
images have been captured. The total count of manually tagged fish
organisms is of nearly 70,000 [9]. Each tagged fish has a taxa and a
bounding box.

The data however is not immediately ready to be used in an object
detection task with the most common methods we reviewed before. The
abovementioned annotations of the bounding box come in the form of
rotated rectangles for most objects. All the common object detection
architectures work with bounding boxes that are parallel to the image
axis.

1 Code will be released via GitHub in case of acceptance.
4
This is the reason why a data preparation step is necessary in order
to convert the rotated figure using an enclosing rectangle. This proce-
dure, however, has the drawback of distorting the original dimension.

We addressed the matter by introducing a small translation for each
exceeding box. As we work with models of the YOLO family, we convert
these boxes in the format of 𝑥𝑐 , 𝑦𝑐 , 𝑤, ℎ. The first two terms represent
the center points for height and width of the box, while the last two
correspond to the normalized height and width with respect to the
image. The entire procedure is described in Algorithm 1, where 𝜆 is
the translation factor for each exceeding bounding box.

Algorithm 1 Bounding Box transformation from a rotated rectangle to
the standard normalized format of YOLO
Require: {(𝑥1, 𝑦1), ..., (𝑥4, 𝑦4)}, (𝑤, ℎ), 𝜆
nsure: R4

(𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛) ← min(𝑥𝑖, 𝑦𝑖)
(𝑥𝑚𝑎𝑥, 𝑦𝑚𝑎𝑥) ← max(𝑥𝑖, 𝑦𝑖)
if 𝑥𝑚𝑎𝑥 ≥ 𝑤 then

𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 ← 𝑥𝑚𝑖𝑛 − 𝜆, 𝑥𝑚𝑎𝑥 − 𝜆
end if
if 𝑦𝑚𝑎𝑥 ≥ ℎ then

𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥 ← 𝑦𝑚𝑖𝑛 − 𝜆, 𝑦𝑚𝑎𝑥 − 𝜆
end if
𝑐𝑥 ←

𝑥𝑚𝑎𝑥+𝑥𝑚𝑖𝑛
2𝑤

𝑐𝑦 ←
𝑦𝑚𝑎𝑥+𝑦𝑚𝑖𝑛

2ℎ
𝑏𝑤 ←

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
𝑤

𝑏ℎ ←
𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛

ℎ
return [𝑐𝑥, 𝑐𝑦, 𝑏𝑤, 𝑏ℎ]

Among the entire OBSEA data, we reduced the classes by selecting
the most relevant as in Table 1. We removed the data tagged with label
Unknown as not relevant with respect to our task. That resizes the data
to a total of 9613 images with a total of 30,130 fish annotations.

3.2. Training the object detectors

For the purpose of assessing the inference time and power consump-
tion performance of object detection on an edge computing device, we
trained a state-of-the-art YOLOv3 architecture alongside two compu-
tationally lighter models, ULO and ULO Tiny. The training phase has
been conducted on a commercial Cloud platform specifically designed
for Data Science purposes, leveraging an Nvidia GPU A100. It is well
assessed that training could not happen on the edge device due to its
computational resources which are not suitable for such task.

There are no pretrained checkpoints for either ULO nor ULO Tiny
available and, for time purposes, we did not pre-train any of them. On
OBSEA data a full training of ULO required less than 5 h, until early
stopping. The data is split into three folds for training and validating
the model during training epochs, leaving one out for the later testing
phase on the Edge Computing device. We set the image dimension to
512 × 512 and keep fixed the batch size, learning rate, and optimizer
for all the models.

Anchor selection. An improvement introduced in YOLOv2 is the bound-
ing box prediction as displacements from anchor boxes. The height
and width of each bounding box are computed as offsets from the
anchor centroid. These boxes represent an input parameter for YOLO-
like models. During the learning phase the network is able to adapt to
randomly selected anchor dimensions, but starting from better priors
leads to a smoother training phase [52]. We compute anchor centroids
looking at the dimensions of bounding boxes in the training data, by
selecting values that give a valuable representation of the objects that
we have to work with.

We compute anchor centroids by running a k-means algorithm on
all the bounding boxes within the training set. As we are interested

M. Ferrari et al. Future Generation Computer Systems 162 (2025) 107481
Fig. 1. The dataset contains a good amount of different capturing scenarios. We observe diverse water and light scenarios with varying capturing aspects and distances from the
camera.
Source: Images from [9].
Fig. 2. Crowded scenes are also contained in the dataset, in varying light conditions.
Source: Images from [9].
in obtaining anchors that lead to small errors, we run the clustering
using Eq. (1) where IoU is the Intersection Over Union, 𝑏 being the tuple
(𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡) and 𝑐 the centroid. IoU being independent of the size of
the box make it better approach compared with the Euclidean distance.

𝑑(𝑏, 𝑐) = 1 − 𝐼𝑜𝑈 (𝑏, 𝑐) (1)

Algorithm 2 K-Means Clustering Algorithm with Equation (1) as its
distance metric
Require: 𝑋 ← {𝑏1, 𝑏2, ..., 𝑏𝑛}, 𝐾
Ensure: 𝐶
𝐶 ← {𝑐1, ..., 𝑐𝐾} ⊳ randomly sample K centroids from X
repeat

for each 𝑏𝑖 ∈ 𝑋 do
𝐶𝑖 ← 𝐶𝑖 ∪ argmax𝑗 1 - IoU(𝑏𝑖, 𝑐𝑗) ⊳ cluster assignment

end for
for 𝑗 from 1 to 𝐾 do

𝑐𝑗 ←
1

|𝐶𝑗 |

∑

𝑏𝑖∈𝐶𝑗
𝑏𝑖 ⊳ cluster centroid update

end for
until when the centroids no longer change significantly
return 𝐶

Once Algorithm 2 is run, we distribute equally the anchors to the
3 predictors of each model, and the 𝐾 is set to 9. The centroids cor-
respond to (41, 33), (49, 41), (60, 46), (58, 63), (81, 64), (76, 88), (109, 100),
(151, 150), (283, 253).

Data augmentation. Early training attempts did have a very high val-
idation loss, leading to poor generalization of unseen data. We thus
adopted data augmentation as a regularization process during training.
Augmentation was applied on the training data split, representing 80%
of the whole data, i.e. 7695 images.

Due to the high volume of data and memory limitations of the
training environment, augmentation could not be performed on the fly.
Rather we built a second dataset that was merged with the original one
and sampled together at every batch during training. The merge was
performed with the data library of torch.
5
The augmentation process proportionally augments those classes
underrepresented among those considered from the OBSEA dataset. We
therefore set a limit of transformation each image can go through as
well as the already higher represented target types. We applied the
common image transforms:

• randomly performed horizontal flip;
• randomly performed vertical flip;
• affine transformation with an angle ranging from −25 to 25.

As the affine transforms rotates the image by an angle 𝜃, the corre-
sponding bounding boxes were adjusted as well. The new augmented
dataset brought the total available images to 36,670 with a total of
62,796 annotated fishes.

Fish detection pipeline. Here we detail the full object detection pipeline
that is going to be executed on the Edge Computing device. The
requirement is a procedure that reads an image file from the device
storage, runs a step of preparation, feeds the input through the object
detector, and then outputs a 𝑁 ×6 matrix where 𝑁 is the total number
of fishes detected and, for each of them, 6 values:

• the class;
• the confidence score;
• a vector of 4 elements containing a bounding box prediction in

the form of (𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥, 𝑦𝑚𝑎𝑥).

We use a Non Maximum Suppression (NMS) algorithm in order to
filter the object detector predictions. It is presented in Algorithm 3.
NMS selects the relevant region of interest by initially discarding all
the boxes associated with a score less than the threshold we set.
Then compare each and every box together, if a pair has an overlap
larger than a threshold we compare their confidence and proceed to
discard the less scoring bounding box. This is the same step used in
Section 3.2 to evaluate the models during training. We run NMS in
per-class batches of predictions. The final procedure:

• acquires the image in the input format;
• resizes to 512 × 512 pixels;

M. Ferrari et al.

t

Future Generation Computer Systems 162 (2025) 107481
• runs the object detector;
• filters the output with batched NMS;
• converts bounding box format from (𝑥𝑐 , 𝑦𝑐 , 𝑤, ℎ) to
(𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥, 𝑦𝑚𝑎𝑥);

• returns bounding boxes and fish type counts.

Algorithm 3 Non Maximum Suppression algorithm. 𝐵 is the bounding
box matrix, 𝑆 confidence scores, 𝜆 IoU threshold and 𝜎 confidence
hreshold
procedure nms(B, S, 𝜆, 𝜎)

𝐾 ← ∅ ⊳ indices to be kept
for 𝑖 from 1 to #𝐵 do ⊳ exclude boxes with confidence lower

than 𝜎
if 𝑠𝑖 ∈ 𝑆 ≥ 𝜎 then

𝐾 ← 𝑖
end if

end for
𝑇 ← 𝐾
for 𝑖 ∈ 𝑇 do

for 𝑗 ∈ 𝑇 do
if IoU(𝑏𝑖, 𝑏𝑗) > 𝜆 then

if 𝑠𝑗 > 𝑠𝑖 then
𝐾 ← 𝐾 − 𝑖 ⊳ discard box

end if
end if

end for
end for
return 𝐾

end procedure

3.3. Monitoring framework

We now describe the monitoring framework used during the train-
ing and testing steps. In order to complete what has been described so
far, we used three different computing environments: a development
laptop, where all the code was developed, a Cloud computing service
to train object detection models and collect the results, and the edge
computing device used for the experimental part.

Thus we developed a monitoring system that collected all the re-
quired data and synchronized to the development machine via a local
network. For such purpose, we used the mlflow [53] library that pro-
vides utilities to store machine learning experiments in a database and
later access the data either with a user interface or programmatically.

We dealt with three types of measurement scenarios:

• punctual measurements: these are fixed numbers that corre-
sponded to direct computations, for example, testing metrics;

• time variant measurements: these were measurements sampled
over time, for example, the model training history, evaluation
history, and energy consumptions;

• timers: these are values that are computed after a certain amount
of time, for example all system related metrics presented in the
experimental results Section.

We used an object we called Logger, that was passed around as a
parameter to where logging was needed. All the measures acquired
were then sent to the central mlflow repository via network with two
modalities. In scenarios where the network overhead did not impact the
monitoring, the values are immediately sent over to the central storage.
During benchmarking a memory cache stores data and later sends the
entire batch.

In the experimental results Section we will present costs in terms
of runtime of the whole object detector pipeline. We used a different
monitoring setup as the interest was even investigating how long the

startup time weighted the total execution time. Onboard the edge

6
computing device a thread runs a Logger object, with Python’s subpro-
cess module from the standard library, launches the object detection
pipeline as a septate process. From the monitoring thread, we used the
timer feature of Logger to compute the total runtime of the executable,
comprehensive of the Python interpreter start time. On the subprocess a
normal Logger runs and monitors metrics, logging also the metrics that
are due from timers. The monitor thread reads all the data logged inside
the subprocess from a file and then synchronizes back to the central
repository.

Monitoring power consumption. A substantial part of the monitoring
framework on the Edge computing device deals with power consump-
tion. The Nvidia Jetson Nano we used has an INA3221 chip that
provides voltage and current readings. Such a chip works on the
internal hardware bus, with the I2C protocol. The Python module
jetson-stats [54] provides the necessary functionalities to interact with
such the hardware consumption sensor, without the need to write raw
serial communication code.

Values from the voltage/current sensor are sampled on a separate
thread. We set the sampling frequency to be of 10 ms as it needs to be
faster than the average inference time of the models we are monitoring.
With such sampling speed, we are able to capture a clearer energy
consumption pattern. Each time an image is evaluated from the object
detector, we collect a reading. Finally, these values are stored as time
series by the monitoring framework.

3.4. Result management

The present work represents an evolution of current monitoring
devices, e.g., the one described in [55], based on the European patent
EP2863257 [56].

These and most of the existing underwater sensors are responsible
only for the image acquisition. Data are then sent, directly or via a base
station, to a remote infrastructure, responsible for the classification,
storage and provisioning of the most interesting images.

Our pipeline aims at moving part of the computation on the edge,
represented by the monitoring devices, of distributed marine research
infrastructures having the goal of integrating a variety of observ-
ing platforms and technologies to observe and monitor the marine
environment [3,57,58].

With this approach, according to the observed environmental con-
ditions, it will be possible to autonomously (a) identify, select, and
integrate relevant information from a heterogeneous set of acquired
data and, based on the results (b) activate/deactivate sensors, change
the sampling frequencies and configurations.

It is therefore clear how the compute continuum paradigm rep-
resents a key aspect of developing effective, intelligent services that
are not limited to image transmission. In this perspective, possible
security issues should be considered and tackled with proper security
mechanisms that handle the authentication of on-field devices and the
confidentiality of the transmitted data [59].

4. Experimental results

In this Section, we provide an overview of the results we obtained
from running an object detection pipeline on a Jetson Nano device.

In particular, we are going to present the results of three object de-
tection models, ULO, ULOTiny, and YOLOv3 not only in terms of their
achieved Mean Average Precision but also their runtime performance
and consumption. The latter represents one of the major interests of
this work.

4.1. The edge device

Nvidia Jetson boards have already been used for fish detection using
underwater imaging, because they represent a very suitable solution for

M. Ferrari et al.

B

S
(
T
J
t
A
N
l
p
s
a
f

p
f
b
t
c

e
o
b
t
h
c
m
C
s

P
t
t
c
T
w

p
T
m
i
M

Future Generation Computer Systems 162 (2025) 107481
edge computing considering all together its low price, limited power
consumption, and considerable compute capabilities provided by the
CUDA architecture. Here the focus is on investigating the achievable
performance of the previously described computer vision pipeline, with
the aim to deploy and operate it on underwater observatories, AUVs,
and ROVs in order to better support marine research.

Jetson Nano represents the entry level board in the Jetson Single
oard Computer (SBC) range. The relevant hardware specifications are:

• 128-core NVIDIA Maxwell GPU @ 922 MHz;
• quad-core ARM A57 CPU @ 1.43 GHz;
• 4 GB 64-bit LPDDR4;
• hardware interfaces such as GPIO and I2C2 and MIPI CSI-2.

oftware. It is shipped with a pre-built Ubuntu 18.04 Operating System
OS) image with the foundation needed to run AI-centric applications.
he system image is provided with Nvidia’s proprietary SDK called
etPack. Nvidia JetPack is a collection of tools, drivers, and libraries
hat make the foundation of the Jetson Nano computing environment.
mong the libraries, we find CUDA version 10.2. The Cuda Deep Neural
etwork Library provides optimized deep learning routines like convo-

utions, poolings, activation functions and more. Several CUDA-specific
rofilers and debuggers are given as well. The Jetson Nano image
hips with a comprehensive general purpose Computer Vision SDK
s well, including a pre-compiled version of the well-known OpenCV
ramework.

Each model of Jetson is either available as a development kit or as a
roduction module. The difference is in the form of the board, smaller
or production, and in the pre-installed software. The development
oard comes with several tweaking features, the most important being
he ability to enforce different power budgets. This ability will be
rucial for our evaluation.

The experiments described here have been implemented using sci-
ntific frameworks such as torch and torchvision. A note has to be made
n their version, however. The software environment has been different
etween the training and testing phases. The latter was basically due
o the intrinsic difference of the computing platforms. The inference
as been carried out in an embedded scenario with limitations mainly
oncerning the availability of the latest versions in the system’s package
anager or from external sources. The algorithm was trained on a
loud computing resource, with more powerful hardware and better
upport for the latest framework updates.

ower management. The power consumption of the board is given by
he sum of three components: the carrier board, which comprehends
he CPU and common interfaces such as the network; the hardware ac-
elerator module, hence the Maxwell GPU; the peripheral consumption.
he carrier module is rated to run between 0.5 W and 1.5 W of power
ith a maximum current absorption of 4 A [60].

The Jetson board comes with pre-defined power profiles. These
rofiles can be enabled programmatically without the need of a reboot.
he main power scenario is the default one and do not limit perfor-
ances, hence power consumption will be as defined by the board’s

nstruction manual. From now on we are going to refer to this profile as
AXN or nominal power setting. A second power model limits the overall

computing capacity and will be used to compare experimental results
and data. Power consumption is cut by 50%, hence reduced to 5 W, by
mainly switching offline two of the four available CPU cores. Moreover,
the GPU clock frequency is reduced by about 40%. We refer to this
profile 5 W or minimal power setting. As stated many times, restricting
power consumption is vital when considering long-lasting deployment
applications. Moreover, optimal power management is mandatory in
applicative contexts where a standalone device must run for a long
period of time.

2 The I2C hardware interface is used to measure power consumption.
7
More scenarios are technically supported when it comes to power
profiles. The Jetson boards can be overclocked, drastically modifying
the board behavior and power usage. Software procedure can bring the
CPU clock up to 2 MHz and the GPU to 1 MHz [61]. The consequence
is that power consumption can reach 20 W, which is the range of more
advanced Jetson models. We did not go further investigating such a
scenario as not relevant to our objectives.

Jetson Nano platform quirks. As mentioned above, the Jetson Nano
comes with a pre-defined, ready to use, OS image that can be burnt
into an SD card and directly booted. The supported OS is Ubuntu
in its 18.04 version, released in 2018 and decommissioned in 2022.
The current version of Python as of the time of writing is 3.11, while
the Jetson ships 3.6. The implementation of algorithms and training
tasks has been done using the latest version of Python, thus taking
advantage of new library functions and language features. The Jetson
Nano is tied to Python 3.6 because of the official Jetpack, that has
been decommissioned by Nvidia. Therefore no support for new Python
language versions or other software tools is given.

Interestingly enough Nvidia does not officially distribute pre-built
packages of major Deep Learning frameworks such as torch or tensor-
flow, leaving to the end user the job of compiling the whole package.
That is rather annoying and time consuming. As the Nano seems to
be widely adopted by both the scientific and industrial communities,
these packages can be found online as already built and ready to be
installed packages [61], together with a newer image based on Ubuntu
20.3 We therefore used this solution for performing our test. It is worth
noting that the evolution of this SBC, named Jetson Orin Nano, is more
powerful but also more power-hungry and costly. Nevertheless, the
analysis we are going to present remains valid.

4.2. The object detection stage

The object detection results achieved with the three models are
reported in Table 2. We can see that ULO and YOLOv3 present com-
parable detection capabilities on test data. The two architectures have
respectively 61.5M and 3.9M parameters. The tiny version of ULO is
displaced by 6% from its original version and by a 7% from YOLOv3.
ULO Tiny however achieves good detection figures, considering the fact
it reduces the total parameters of its network down to 3.4M.

We then analyzed the observed runtime performance of each model.
We present results by summing the total forward time for each test.
The forward time is defined as the time to process an input image
to produce the results, i.e. the bounding boxes, their classes, and
confidence values. Hence we are only considering the time spent in
computing class and bounding box predictions from an input image.
As discussed before, we consider the two different power models.

Nominal power setting. In Table 3 the obtained results are shown. We
can see that in terms of current absorption, the models present simi-
lar performance. ULO Tiny, being the computationally lighter model,
achieves a lower average forward time. That translates to a higher
Frame Per Second (FPS) ratio.

Fig. 3 presents the comparison between ULO, ULO Tiny, and
YOLOv3 in terms of forward time. We can see that ULO Tiny is the
fastest and has less variability. YOLOv3 even if it is far more complex
in terms of computations (49.47 GFlops), achieves faster results than
ULO (3.42 GFlops).

In Fig. 4 we can see that current absorption is higher when running
ULO. We also note a high count of outliers that might depend on
measurement error. We also note a negative skew for all three models.
This means that most values are under the median.

3 https://github.com/Qengineering/Jetson-Nano-Ubuntu-20-image.

https://github.com/Qengineering/Jetson-Nano-Ubuntu-20-image

M. Ferrari et al. Future Generation Computer Systems 162 (2025) 107481
Table 2
The obtained results in object detection, expressed by mAP with an IOU threshold of .5.

Model mAP Validation set mAP

Diplodus vulgaris Oblada melanura Chromis chromis Diplodus sargus Spicara maena Coris julis Mean Mean

ULO 0.674 0.654 0.555 0.551 0.550 0.581 0.594 0.621
ULO Tiny 0.596 0.607 0.448 0.458 0.517 0.571 0.533 0.575
YOLOv3 0.627 0.639 0.663 0.524 0.553 0.643 0.608 0.630
Table 3
Measured runtime performances with the nominal power setting of Jetson Nano.

Model Avg. current absorption Avg. forward time Total time FPS

ULO 1456 mA (±62.94) 0.23 s (±0.02) 231.09 s 4.3
ULO Tiny 1402 mA (±102.42) 0.19 s (±0.02) 186.88 s 5.2
YOLOv3 1411 mA (±99.96) 0.22 s (±0.04) 214.92 s 4.4

Fig. 3. The forward time distribution of the three models.

Fig. 4. An overview of the current consumption distributions for each model.

Minimal power setting. We run the same experiments by switching to
the 5 W power profile. Results are shown in Table 4, Figs. 5 and 6. We
can see that now absorption varies slightly more than what is observed
in Table 3. Moreover, YOLOv3 still absorbed on average over 1000 mA.
In general, with this power setting the models loose about 1 frame every
second compared to the previous scenario.

At this stage of tests, the ULO Tiny architecture has the highest
turnout. We observed a significantly lower average current absorption.
8
Table 4
Measured runtime performances with the minimal power setting of Jetson Nano.

Model Avg. current absorption Avg. forward time Total time FPS

ULO 915.28 mA (±135.91) 0.27 s (±0.05) 260.12 s 3.7
ULO Tiny 867.41 mA (±136.97) 0.24 s (±0.06) 231.12 s 4.1
YOLOv3 1102.15 mA (±244.34) 0.30 s (±0.05) 288.96 s 3.3

Fig. 5. The forward time distribution of the three models when running in the 5 W
power profile.

Fig. 6. The current absorption distribution of three models when running in the 5 W
power profile.

The time difference between ULO Tiny compared to ULO and YOLOv3
has shrunk, as also the FPS, compared to what was obtained previ-
ously. Such performance figures are as expected when running in a
constrained environment.

Moreover, when computational resources are limited, we observe a
distinct difference between YOLO and the two computationally smaller

M. Ferrari et al. Future Generation Computer Systems 162 (2025) 107481
Table 5
A tabular view of the profiles of ULO and ULO Tiny. Data corresponds to I/O and preparation times, st. means startup. The last column lists
the average time necessary to process each image considering all the steps performed on the edge device. Results are in seconds.
Model - #Images Data NMS Weights Load Python st. CUDA st. Inference Avg.per image

ULO - 1 8.43 0.25 1.66 20.71 12.38 0.23 43.66
ULO Tiny - 1 7.44 0.67 1.21 19.84 12.85 0.17 42.18
ULO - 100 14.97 11.79 1.88 20.00 13.56 15.40 0.77
ULO Tiny - 100 14.34 9.62 1.25 20.66 15.59 12.51 0.73
ULO - 500 35.68 65.11 1.47 20.69 18.30 80.03 0.44
ULO Tiny - 500 35.70 43.31 1.12 17.47 17.03 70.37 0.37
ULO - 1000 61.05 119.41 1.51 20.61 19.69 151.65 0.37
ULO Tiny - 1000 59.93 81.40 1.21 19.82 12.47 143.32 0.31
Fig. 7. The time profile of the complete ULO and ULO Tiny detection pipeline when
launched for 1 and 1000 images.

models. The displacement in current consumption is clearly noticeable,
suggesting that such a model would not be optimal for long-lasting
deployments with respect to ULO and ULO Tiny. Comparing Figs. 4
and 6 we notice an evident difference in the consumption variance for
ULO.

4.3. The full fish detection pipeline

Based on the previous results, we propose here a brief comparison
between ULO and ULO Tiny-based pipelines in terms of runtime, con-
sidering all the steps of the fish detection pipeline. We consider the
scenario of an underwater observatory with a limited power source,
a fixed camera, and the possibility of varying the frequency of the
image processing. In the case of AUV in fact the image analysis must
be activated nearly in real time, to determine the proper course.

In particular, the Jetson Nano can be activated following two dis-
tinct policies, i.e. on every new image acquisition or with a certain time
frame based on the image acquisition frequency.

The main purpose of such a scenario would be at first to optimize
the data transfer between the observatory and the ground-controlling
station and possibly to change the time frame on the basis of what is
present in the last image.

The expected behavior, in fact, is that the edge computing platform
is able to recognize valuable targets among the imagery and choose
which of them has to be sent. For example, in the selected dataset
described in Section 3.1, only 28% of the acquired images contain fishes
belonging to the classes of interest listed in Table 1. Our goal is to
evaluate a balance between the pipeline initialization time costs with
the amount of time spent doing inference on imaging.

In detail, we measured the time spent by program initialization,
reading and loading in memory the object detection architecture, pro-
cessing required on an image before the detection stage and other
overheads. We also give insights on the warmup time, and the initial
elaboration latency that the GPU experience when idle. Table 5 shows
the results.
9
We start by considering the case when each image acquired by the
camera triggers the execution of the pipeline. At this stage, we can
assess that there are no significant differences between the two runs.
The only noticeable difference is the time spent reading the weights file
of the architectures: ULO Tiny, having fewer parameters, has a smaller
weights file resulting in a saving of 1 s.

The initial delay due to the Python and CUDA runtime is consid-
erably high and dominates the processing time, as shown in Fig. 7 for
both models. During the experiments, we measured such delay by using
a randomly initialized image and passed it as input for the model. We
also note that the GPU latency time impacts the image resize. This is the
reason why, in our implementation, we decided to read the file image
and transfer it immediately to the GPU memory, in order to perform
the resize with the GPU.

We could balance the time spent on warm-up by increasing the
number of processed images. But this consideration is related to the
applicative context, as described above. For instance, if the observatory
needs to respond as soon as a certain type of fish is detected (for
example by taking more pictures or changing the direction in case of
AUV), activating the object detection pipeline further ahead in time
might not be of great interest. Instead, if the focus of the observatory
is just to report to shore interesting images, letting any update in the
frequency of the acquisition and processing to the Cloud component of
the system, the computations can be delayed when a sufficient amount
of images are acquired.

When we run the pipeline on a large image batch we can see that
the processing cost is very low, in the order of half a second per image,
and very close to the forward time of Table 4. The reason is clearly the
fact that the setup overhead is spread among many images and now the
inference time is the most important component, as shown in Fig. 7.
Furthermore, there is little difference between processing 500 or 1000
images, while the time to process only 100 images remains relevant.
These results show that more than 100 images are necessary to let the
system reach an effective operating regime.

5. Discussion

From the experimental results reported in Tables 2–5 we can con-
clude that, in general, ULO Tiny represents a power- and compute-
effective solution for moving the image processing on the underwater
monitoring system. But it does not represent always the best choice,
because we must take into considerations all the different operative
conditions characterizing underwater devices and observatories.

In particular, the three key factors are represented by the power
supply (i.e. battery operated or not), the available bandwidth (narrow
if based on a satellite link or wide through cable or GPRS connection),
and the need to process images in real time or just send periodic
reports. Table 6 presents the possible scenarios and the best model to
be selected.

The most demanding configuration is the first one, where the model
has to be selected in order to provide the best trade-off between power
consumption, execution time, and precision. The main goal in this
scenario is to limit the transmission of images without relevant subjects
– in our case fishes – followed by the need to classify them quickly

M. Ferrari et al. Future Generation Computer Systems 162 (2025) 107481
Fig. 8. The schema depicts (a) the logical functioning of the imaging device GUARD-1 equipped with onboard image processing capabilities and in (b) an example of data transfer
pipeline implemented in the H2020 ENDURUNS project (Courtesy of Sanchez et al. [13]), where the image data are acquired by a GUARD-1 device installed on board of an AUV
then transferred to a USV and finally transferred to a land station through satellite transmission.
Table 6
The guideline for selecting the most effective model on the basis of the different
operative conditions.

Power Transmission Bandwidth Model

Battery
Real time Narrow YOLOv3 @ 5 W

Wide ULO Tiny @ 5 W

Periodic Narrow ULO @ 5 W
Wide ULO Tiny @ 5W

Wired
Real time Narrow YOLOv3 @ MAXN

Wide ULO Tiny @ MAXN

Periodic Narrow YOLOv3 @ MAXN
Wide Execute in Cloud

without using too much power. YOLOv3 operated with the 5 W profile
represents the best choice because it is the most accurate one — thus
reducing the images to be transmitted, while its execution time and
power consumption values are between the other two models.

The less demanding configuration instead is the last one: in this case
the best solution could be to transfer each image directly to the Cloud,
for processing them with a more complex model running on high-end
servers. The other cases result in a change of relative importance among
the three key factors. For example, the battery-periodic-narrow configu-
ration requires to maximize the trade-off between power consumption
and accuracy, because a periodic transmission does not require the
fastest execution time. Instead the battery-periodic-wide configuration
focuses mainly on the battery consumption, because a slower and less
precise model is feasible if its power consumption is the minimum one.

It is worth noting that the presented analysis has a general value.
These guidelines hold true for scenarios with similar characteristics,
for example in environmental monitoring through images in remote
locations with a limited availability of power and/or bandwidth. This
is because the pipeline is based on general-purpose object detection
models that, with specific training, can be used in different applicative
domains.
10
6. From the Edge to the Cloud

A complete and detailed understanding of marine environments
requires large volumes of heterogeneous data acquired continuously
over extended periods of time, to capture daily, seasonal, annual, and
multi-year dynamics. It is therefore clear the importance of deploying
a network of spatially distributed autonomous and intelligent obser-
vatories, including underwater intelligent imaging devices, capable of
acquiring heterogeneous data for extended periods in time. However,
at present, they are responsible only of image acquisition, that are
transferred to Unmanned Surface Vehicles (USV) via cables or acoustic
devices and, when at the surface, via radio or satellite communication
to a base station or directly to a Cloud infrastructure.

In recent years, many international projects have been implemented
to create online archives for collecting and sharing scientific datasets
[62,63], with recent implementations focusing on image data [64].
Nevertheless, most of these Cloud infrastructures provides only data
download and visualizations services, without incorporating any sci-
ence discovery solution based on AI approaches [65].

Moreover, not enough efforts have been devoted to harvesting
the hitherto unexplored information buried in the serendipitous data
collected in these repositories, as in other research fields [66]. For
example, it is of particular interest the detection and tracking of alien
species [67,68] because of climate change. The key reason is the lack of
appropriate analysis methodologies and tools that support scientists in
generating new hypotheses, designing new experiments, and providing
new insights on their interpretation within the context of Science
Discovery [65].

This is also due to the fact that effective data processing tools need a
relevant amount of computational resources and can be executed only
on high performance infrastructures [69], as the Cloud. For example,
science discovery approaches need multiprocessing facilities [70–72]
and more advanced approaches based on pre-trained large linguistic
models cannot be executed on laboratory hardware resources [73].

M. Ferrari et al. Future Generation Computer Systems 162 (2025) 107481
Some ongoing projects aim to fill this gap by establishing the first
prototypes of Virtual Labs for complex marine data processing [74].
This represents the state-of-the-art approach for Marine science but suf-
fers the key issue of requiring a huge amount of data to be transmitted
from remote observatories, even if they do not contain any relevant
information. For example, in [75] the imaging device GUARD-1, in-
stalled on an autonomous drifting vehicle for deep sea observations,
acquired 4020 images and only eight of them had relevant content.
Since that kind of autonomous vehicles operates in the open sea, they
are equipped with an Iridium modem for SBD satellite communications,
capable of transmitting only small-size packages of data - i.e. 240 bytes
per package [76]. Similarly, in [77] the GUARD-1 acquired underwater
images every 10 min, continuously during the daylight and the night, in
the period February-May 2017, for a total of 12,331 images. The images
with relevant content increased as the summer period approached.

The Compute Continuum-based approach proposed in this arti-
cle represents a step forward in the direction of the data-driven un-
derstanding of the marine environment. It combines AI-based intelli-
gent observatories, Cloud services, and hardware/software solutions to
reduce energy consumption and transmitted data volume [78,79].

As part of this pipeline, the GUARD-1 imaging device equipped
with onboard processing capabilities could operate as described in
Fig. 8(a). Depending on the application context, the acquired images
can be stored onboard or processed by a classification algorithm in
order to extract and save the relevant image content (e.g. number and
organism species per image). After the image processing, the device
can produce and transmit to the Cloud periodic reports containing
the organisms’ abundance time series and/or (part of) the images
with relevant content. The Fig. 8(b) summarizes the communication
schema implemented in the H2020 ENDURUNS project [12,80], where
an AUV was equipped with the GUARD-1 camera whose images were
transferred to an USV, then to a remote land station through satellite
transmission.

The ENDURUNS system is the perfect example where the pro-
posed pipeline would have improved communication performance and,
consequently, AUV and USV autonomy.

Currently, an end-to-end solution including the imaging device
GUARD-1 is under development within the project Robotics and AI for
Socio-economic Enpowerment (RAISE) [81], where an observing system
based on a network of heterogeneous underwater sensors distributed
in a mussel-farm is going to acquire meteorological, biological, chem-
ical and physical data together with images of the macro and mega
fauna. The objective is the investigation of the ecological dynamics of
harmful species impacting mussel cultivation. We plan to perform real
experiments in this context.

7. Conclusions and future developments

This paper presented an Object Detection pipeline for Marine Sci-
ence. Specifically, the pipeline provides an end-to-end solution based
on the compute continuum paradigm from the acquisition of the un-
derwater images, their processing using an edge computing device
followed by the transmission of relevant results to a Cloud computing
infrastructure.

The key features we considered in the development are the mini-
mization of the execution and response time together with the mini-
mization of the power consumption, as part of the pipeline will run
in an underwater environment where severe power restrictions apply.
Both these goals allow a reduction in the amount of transferred data
using available networks.

Most of the available related works apply Deep Learning methods
that require complex computations not compatible with the above
scenario. Besides this, the widely used data source, Fish4Knowledge, is
not suitable for the Mediterranean sea, where the operating conditions

differ.

11
We presented performance figures using a state of the art YOLOv3
object detector with respect to ULO and its Tiny version. Results have
been collected using an Nvidia Jetson Nano, being a relatively cheap
option with a low power consumption that well suits our requirements.

We showed that, with the minimal power settings, the variance
between the three models is high. That might be a valuable decision
point if the observation mission needs to run for weeks, or even months
where preferring a low power footprint might be more adequate and
have a higher detection performance. This is the case of Autonomous
Underwater Devices, which need to sustain long-lasting missions under-
water without any human intervention. In these scenarios, any small
power difference can become a valuable matter.

Then we profiled how to configure the Edge computing part of the
pipeline considering the case of underwater observatories, investigating
how different choices impact the total execution times. In particular,
we investigated whether it is more convenient to launch the detection
pipeline once every image acquisition or elaborate larger batches.
Results demonstrate that devices like the Jetson Nano spend a lot of
time in setup steps, like the initialization of the Python interpreter and
the CUDA environment. These insights allow us to properly tune the
analysis frequency considering if the image elaboration is necessary to
react to immediate events or only to reduce the data that an underwater
object needs to transfer to shore.

The presented analysis has a general value in every scenario with
similar characteristics, for example in environmental monitoring
through images when limited power and/or bandwidth are available.
This is because we focused on object detection models that, with
specific training, can be used in different applicative domains.

The take away message of this work is that there is not a single
model that perfectly fits all the possible operative conditions. We
summarized in Table 6 a guideline for selecting the most effective
model, and we will exploit it for our in-situ experiments, that represent
the main future development of this work. In particular, the GUARD-1
imaging device equipped with the algorithms proposed in this work will
be implemented within the project RAISE [81].

Then we will focus on the further development of the Cloud com-
ponent for advanced analysis of the acquired data. The functionalities
of the Blue Cloud services [74] will be exploited for gathering and ana-
lyzing the images of underwater organisms together with the physical,
chemical, and biological data collected within the RAISE project, for
a better understanding of the behavior of Mediterranean commercial
species under varying environmental conditions.

CRediT authorship contribution statement

Michele Ferrari: Writing – original draft, Validation, Software,
Data curation. Daniele D’Agostino: Writing – review & editing, Super-
vision, Conceptualization. Jacopo Aguzzi: Writing – review & editing,
Resources, Data curation, Conceptualization. Simone Marini: Writing
– review & editing, Validation, Methodology, Investigation, Conceptu-
alization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability
Data will be made available on request.

M. Ferrari et al. Future Generation Computer Systems 162 (2025) 107481
Acknowledgments

This work was partially funded by the European Union - NextGen-
erationEU and by the Ministry of University and Research (MUR),
National Recovery and Resilience Plan (PNNR), Mission 4, Component
2, Investment 1.5, project ‘‘RAISE - Robotics and AI for Socio-economic
Empowerment’’ - (ECS00000035); The co-author Simone Marini is part
of the critical mass of the RAISE Innovation Ecosystem.

It is also funded by the Project ‘‘National Biodiversity Future Center
- NBFC’’ funded under the National Recovery and Resilience Plan
(PNNR), Mission 4 Component 2 Investment 1.4 - Call for tender No.
3138 of 16 December 2021, rectified by Decree n.3175 of 18 Decem-
ber 2021 of Italian Ministry of University and Research funded by
the European Union – NextGenerationEU; Project code CN_00000033,
Concession Decree No. 1034 of 17 June 2022 adopted by the Italian
Ministry of University and Research, CUP D33C22000960007.

The research was also supported by the ICM-CSIC ‘‘Severo Ochoa
Centre Excellence’’ (CEX2019-000928-S) and the Research Unit Tec-
noterra (ICM-CSIC/UPC). Funds were also from DIGI4ECO (grant num-
ber 101112883 - GAP-101112883).

References

[1] M. Jahanbakht, W. Xiang, L. Hanzo, M.R. Azghadi, Internet of underwater things
and big marine data analytics—a comprehensive survey, IEEE Commun. Surv.
Tutor. 23 (2) (2021) 904–956.

[2] C.N. Bianchi, A. Azzola, S. Cocito, C. Morri, A. Oprandi, A. Peirano, S. Sgorbini,
M. Montefalcone, Biodiversity monitoring in Mediterranean marine protected
areas: Scientific and methodological challenges, Diversity 14 (1) (2022) 43.

[3] J. Aguzzi, D. Chatzievangelou, J.B. Company, L. Thomsen, S. Marini, F.
Bonofiglio, F. Juanes, R. Rountree, A. Berry, R. Chumbinho, C. Lordan, J. Doyle,
J. del Rio, J. Navarro, F.C. De Leo, N. Bahamon, J.A. García, P.R. Danovaro, M.
Francescangeli, V. Lopez-Vazquez, P. Gaughan, The potential of video imagery
from worldwide cabled observatory networks to provide information supporting
fish-stock and biodiversity assessment, ICES J. Mar. Sci. 77 (7–8) (2020)
2396–2410, http://dx.doi.org/10.1093/icesjms/fsaa169.

[4] V. Lopez-Vazquez, J.M. Lopez-Guede, S. Marini, E. Fanelli, E. Johnsen, J. Aguzzi,
Video image enhancement and machine learning pipeline for underwater animal
detection and classification at cabled observatories, Sensors 20 (3) (2020) 726.

[5] S. Marini, F. Bonofiglio, L.P. Corgnati, A. Bordone, S. Schiaparelli, A. Peirano,
Long-term automated visual monitoring of Antarctic benthic fauna, Methods Ecol.
Evol. 13 (8) (2022) 1746–1764, http://dx.doi.org/10.1111/2041-210X.13898.

[6] S. Marini, F. Bonofiglio, L.P. Corgnati, A. Bordone, S. Schiaparelli, A. Peirano,
Long-term high resolution image dataset of Antarctic Coastal Benthic Fauna, Sci.
Data 9 (1) (2022) http://dx.doi.org/10.1038/s41597-022-01865-7.

[7] A. Peirano, A. Bordone, L.P. Corgnati, S. Marini, Time-lapse recording of yearly
activity of the sea star Odontaster validus and the sea urchin Sterechinus
neumayeri in Tethys Bay (Ross Sea, Antarctica), Antarct. Sci. 35 (1) (2023) 4–14.

[8] U. of Washington, The NEPTUNE concept: A regional cabled ocean observatory
in the Northeast Pacific ocean, 2000, https://tinyurl.com/53tc9s9e. (Accessed
August 2024).

[9] M. Francescangeli, S. Marini, E. Martínez, J. Del Río, D.M. Toma, M. Nogueras,
J. Aguzzi, Image dataset for benchmarking automated fish detection and
classification algorithms, Sci. Data 10 (1) (2023) 5.

[10] A. Benetazzo, F. Ardhuin, F. Bergamasco, L. Cavaleri, P.V. Guimarães, M.
Schwendeman, M. Sclavo, J. Thomson, A. Torsello, On the shape and likelihood
of oceanic rogue waves, Sci. Rep. 7 (1) (2017) http://dx.doi.org/10.1038/
s41598-017-07704-9.

[11] K.J. Morris, B.J. Bett, J.M. Durden, V.A. Huvenne, R. Milligan, D.O. Jones,
S. McPhail, K. Robert, D.M. Bailey, H.A. Ruhl, A new method for ecological
surveying of the abyss using autonomous underwater vehicle photography,
Limnol. Oceanogr.: Methods 12 (11) (2014) 795–809.

[12] S. Marini, N. Gjeci, S. Govindaraj, A. But, B. Sportich, E. Ottaviani, F.P.G.
Márquez, P.J. Bernalte Sanchez, J. Pedersen, C.V. Clausen, F. Madricardo, F.
Foglini, F. Bonofiglio, L. Barbieri, M. Antonini, Y.S. Montenegro Camacho, P.
Weiss, K. Nowak, M. Peer, T. Gobert, A. Turetta, E. Chatzidouros, D. Lee, D.
Zarras, T. Steriotis, G. Charalambopoulou, T. Yamas, M. Papaelias, ENDURUNS:
An integrated and flexible approach for Seabed survey through autonomous
mobile vehicles, J. Mar. Sci. Eng. 8 (9) (2020) http://dx.doi.org/10.3390/
jmse8090633.

[13] P.J.B. Sanchez, F.P.G. Márquez, S. Govindara, A. But, B. Sportich, S. Marini,
V. Jantara, M. Papaelias, Use of UIoT for offshore surveys through autonomous
vehicles, Pol. Marit. Res. 28 (3) (2021) 175–189, http://dx.doi.org/10.2478/

pomr-2021-0044.

12
[14] S. Marini, L. Corgnati, L. Mazzei, E. Ottaviano, B. Isoppo, S. Aliani, A. Con-
versi, A. Griffa, GUARD1: An autonomous system for gelatinous zooplankton
image-based recognition, in: OCEANS 2015-Genova, IEEE, 2015, pp. 1–7.

[15] R. Lumpkin, M. Pazos, Measuring Surface Currents with Surface Velocity Program
Drifters: the Instrument, Its Data, and Some Recent Results, Cambridge University
Press, 2007, pp. 39–67, http://dx.doi.org/10.1017/CBO9780511535901.003.

[16] C.I. Addey, Using biogeochemical argo floats to understand ocean carbon and
oxygen dynamics, Nat. Rev. Earth Environ. 3 (11) (2022) 739, http://dx.doi.org/
10.1038/s43017-022-00341-5.

[17] F. Bonofiglio, F.C. De Leo, C. Yee, D. Chatzievangelou, J. Aguzzi, S. Marini,
Machine learning applied to big data from marine cabled observatories: A case
study of sablefish monitoring in the NE Pacific, Front. Mar. Sci. 9 (2022) 842946.

[18] L. Bacchiani, G. De Palma, L. Sciullo, M. Bravetti, M. Di Felice, M. Gabbrielli,
G. Zavattaro, R. Della Penna, Low-latency anomaly detection on the edge-cloud
continuum for industry 4.0 applications: the SEAWALL case study, IEEE Internet
Things Mag. 5 (3) (2022) 32–37, http://dx.doi.org/10.1109/IOTM.001.2200120.

[19] L. Sun, X. Jiang, H. Ren, Y. Guo, Edge-cloud computing and artificial intel-
ligence in internet of medical things: Architecture, technology and application,
IEEE Access 8 (2020) 101079–101092, http://dx.doi.org/10.1109/ACCESS.2020.
2997831.

[20] D. D’Agostino, L. Morganti, E. Corni, D. Cesini, I. Merelli, Combining edge and
cloud computing for low-power, cost-effective metagenomics analysis, Future
Gener. Comput. Syst. 90 (2019) 79–85, http://dx.doi.org/10.1016/j.future.2018.
07.036.

[21] Y. Kalyani, R. Collier, A systematic survey on the role of cloud, fog, and
edge computing combination in smart agriculture, Sensors 21 (17) (2021) http:
//dx.doi.org/10.3390/s21175922.

[22] H. Wu, Z. Zhang, C. Guan, K. Wolter, M. Xu, Collaborate edge and cloud
computing with distributed deep learning for smart city internet of things, IEEE
Internet Things J. 7 (9) (2020) 8099–8110, http://dx.doi.org/10.1109/JIOT.
2020.2996784.

[23] EuCloudEdgeIoT.eu - the European cloud edge IoT continuum for business
and research, 2022, URL https://eucloudedgeiot.eu/wp-content/uploads/2022/
12/Joint-Press-Release-with-multipliers-_December-2022-1.pdf.

[24] S. Moreschini, F. Pecorelli, X. Li, S. Naz, D. Hästbacka, D. Taibi, Cloud
continuum: The definition, IEEE Access 10 (2022) 131876–131886, http://dx.
doi.org/10.1109/ACCESS.2022.3229185.

[25] L. Kong, J. Tan, J. Huang, G. Chen, S. Wang, X. Jin, P. Zeng, M. Khan, S.K. Das,
Edge-computing-driven internet of things: A survey, ACM Comput. Surv. 55 (8)
(2022) 1–41.

[26] C. Savaglio, G. Fortino, M. Zhou, J. Ma, Device-Edge-Cloud Continuum:
Paradigms, Architectures and Applications, Springer Nature, 2023.

[27] A. Mijuskovic, A. Chiumento, R. Bemthuis, A. Aldea, P. Havinga, Resource man-
agement techniques for cloud/fog and edge computing: An evaluation framework
and classification, Sensors 21 (5) (2021) http://dx.doi.org/10.3390/s21051832.

[28] M. Garofalo, G. Morabito, M. Fazio, A. Celesti, M. Villari, Workflow engines
in the compute continuum: a comparative analysis, in: Proceedings of the
IEEE/ACM 16th International Conference on Utility and Cloud Computing, UCC
’23, Association for Computing Machinery, New York, NY, USA, 2024, http:
//dx.doi.org/10.1145/3603166.3632148.

[29] Mid4CC ’23: Proceedings of the 1st International Workshop on Middleware for
the Computing Continuum, Association for Computing Machinery, New York,
NY, USA, 2023.

[30] E. Fazeldehkordi, T.-M. Grø nli, A survey of security architectures for edge
computing-based IoT, IoT 3 (3) (2022) 332–365.

[31] D. Rosendo, A. Costan, P. Valduriez, G. Antoniu, Distributed intelligence on
the edge-to-cloud continuum: A systematic literature review, J. Parallel Distrib.
Comput. 166 (2022) 71–94, http://dx.doi.org/10.1016/j.jpdc.2022.04.004.

[32] M. Aldinucci, R. Birke, A. Brogi, E. Carlini, M. Coppola, M. Danelutto, P. Dazzi,
L. Ferrucci, S. Forti, H. Kavalionak, G. Mencagli, M. Mordacchini, M. Pasin, F.
Paganelli, M. Torquati, A proposal for a continuum-aware programming model:
From workflows to services autonomously interacting in the compute continuum,
in: 2023 IEEE 47th Annual Computers, Software, and Applications Conference,
COMPSAC, 2023, pp. 1852–1857, http://dx.doi.org/10.1109/COMPSAC57700.
2023.00287.

[33] A. Costantini, G. Di Modica, J.C. Ahouangonou, D.C. Duma, B. Martelli, M.
Galletti, M. Antonacci, D. Nehls, P. Bellavista, C. Delamarre, D. Cesini, IoTwins:
Toward implementation of distributed digital twins in industry 4.0 settings,
Computers 11 (5) (2022) http://dx.doi.org/10.3390/computers11050067.

[34] M. Jansen, A. Al-Dulaimy, A.V. Papadopoulos, A. Trivedi, A. Iosup, The SPEC-
RG reference architecture for the compute continuum, in: 2023 IEEE/ACM 23rd
International Symposium on Cluster, Cloud and Internet Computing (CCGrid),
2023, pp. 469–484, http://dx.doi.org/10.1109/CCGrid57682.2023.00051.

[35] A. Saleh, M. Sheaves, M.R. Azghadi, Computer vision and deep learning for fish
classification in underwater habitats: A survey, Fish Fish. 23 (4) (2022) 977–999,
http://dx.doi.org/10.1111/faf.12666.

[36] A. Rova, G. Mori, L.M. Dill, One fish, two fish, butterfish, trumpeter: Recognizing
fish in underwater video, in: IAPR Conference on Machine Vision Applications,

2007.

http://refhub.elsevier.com/S0167-739X(24)00431-X/sb1
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb1
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb1
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb1
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb1
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb2
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb2
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb2
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb2
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb2
http://dx.doi.org/10.1093/icesjms/fsaa169
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb4
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb4
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb4
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb4
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb4
http://dx.doi.org/10.1111/2041-210X.13898
http://dx.doi.org/10.1038/s41597-022-01865-7
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb7
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb7
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb7
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb7
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb7
https://tinyurl.com/53tc9s9e
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb9
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb9
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb9
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb9
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb9
http://dx.doi.org/10.1038/s41598-017-07704-9
http://dx.doi.org/10.1038/s41598-017-07704-9
http://dx.doi.org/10.1038/s41598-017-07704-9
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb11
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb11
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb11
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb11
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb11
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb11
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb11
http://dx.doi.org/10.3390/jmse8090633
http://dx.doi.org/10.3390/jmse8090633
http://dx.doi.org/10.3390/jmse8090633
http://dx.doi.org/10.2478/pomr-2021-0044
http://dx.doi.org/10.2478/pomr-2021-0044
http://dx.doi.org/10.2478/pomr-2021-0044
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb14
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb14
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb14
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb14
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb14
http://dx.doi.org/10.1017/CBO9780511535901.003
http://dx.doi.org/10.1038/s43017-022-00341-5
http://dx.doi.org/10.1038/s43017-022-00341-5
http://dx.doi.org/10.1038/s43017-022-00341-5
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb17
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb17
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb17
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb17
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb17
http://dx.doi.org/10.1109/IOTM.001.2200120
http://dx.doi.org/10.1109/ACCESS.2020.2997831
http://dx.doi.org/10.1109/ACCESS.2020.2997831
http://dx.doi.org/10.1109/ACCESS.2020.2997831
http://dx.doi.org/10.1016/j.future.2018.07.036
http://dx.doi.org/10.1016/j.future.2018.07.036
http://dx.doi.org/10.1016/j.future.2018.07.036
http://dx.doi.org/10.3390/s21175922
http://dx.doi.org/10.3390/s21175922
http://dx.doi.org/10.3390/s21175922
http://dx.doi.org/10.1109/JIOT.2020.2996784
http://dx.doi.org/10.1109/JIOT.2020.2996784
http://dx.doi.org/10.1109/JIOT.2020.2996784
https://eucloudedgeiot.eu/wp-content/uploads/2022/12/Joint-Press-Release-with-multipliers-_December-2022-1.pdf
https://eucloudedgeiot.eu/wp-content/uploads/2022/12/Joint-Press-Release-with-multipliers-_December-2022-1.pdf
https://eucloudedgeiot.eu/wp-content/uploads/2022/12/Joint-Press-Release-with-multipliers-_December-2022-1.pdf
http://dx.doi.org/10.1109/ACCESS.2022.3229185
http://dx.doi.org/10.1109/ACCESS.2022.3229185
http://dx.doi.org/10.1109/ACCESS.2022.3229185
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb25
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb25
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb25
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb25
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb25
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb26
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb26
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb26
http://dx.doi.org/10.3390/s21051832
http://dx.doi.org/10.1145/3603166.3632148
http://dx.doi.org/10.1145/3603166.3632148
http://dx.doi.org/10.1145/3603166.3632148
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb29
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb29
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb29
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb29
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb29
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb30
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb30
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb30
http://dx.doi.org/10.1016/j.jpdc.2022.04.004
http://dx.doi.org/10.1109/COMPSAC57700.2023.00287
http://dx.doi.org/10.1109/COMPSAC57700.2023.00287
http://dx.doi.org/10.1109/COMPSAC57700.2023.00287
http://dx.doi.org/10.3390/computers11050067
http://dx.doi.org/10.1109/CCGrid57682.2023.00051
http://dx.doi.org/10.1111/faf.12666
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb36
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb36
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb36
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb36
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb36

M. Ferrari et al. Future Generation Computer Systems 162 (2025) 107481
[37] C. Spampinato, D. Giordano, R. Di Salvo, Y.-H.J. Chen-Burger, R.B. Fisher,
G. Nadarajan, Automatic fish classification for underwater species behavior
understanding, in: Proceedings of the First ACM International Workshop on
Analysis and Retrieval of Tracked Events and Motion in Imagery Streams, ACM,
2010, http://dx.doi.org/10.1145/1877868.1877881.

[38] G. Cutter, K. Stierhoff, J. Zeng, Automated detection of rockfish in unconstrained
underwater videos using haar cascades and a new image dataset: Labeled fishes
in the wild, in: 2015 IEEE Winter Applications and Computer Vision Workshops,
IEEE, 2015, pp. 57–62.

[39] T.U. of Edinburgh, Fish4Knowledge project, 2023, https://homepages.inf.ed.ac.
uk/rbf/Fish4Knowledge/. (Accessed August 2024).

[40] A. Salman, A. Jalal, F. Shafait, A. Mian, M. Shortis, J. Seager, E. Harvey, Fish
species classification in unconstrained underwater environments based on deep
learning, Limnol. Oceanogr.: Methods 14 (9) (2016) 570–585.

[41] H. Qin, X. Li, J. Liang, Y. Peng, C. Zhang, DeepFish: Accurate underwater live
fish recognition with a deep architecture, Neurocomputing 187 (2016) 49–58.

[42] X. Li, M. Shang, H. Qin, L. Chen, Fast accurate fish detection and recognition of
underwater images with fast R-CNN, in: OCEANS 2015 - MTS/IEEE Washington,
IEEE, 2015, http://dx.doi.org/10.23919/oceans.2015.7404464.

[43] A. Salman, S.A. Siddiqui, F. Shafait, A. Mian, M.R. Shortis, K. Khurshid, A. Ulges,
U. Schwanecke, Automatic fish detection in underwater videos by a deep neural
network-based hybrid motion learning system, ICES J. Mar. Sci. 77 (4) (2020)
1295–1307.

[44] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: Unified,
real-time object detection, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 779–788.

[45] A. Al Muksit, F. Hasan, M.F.H.B. Emon, M.R. Haque, A.R. Anwary, S. Shatabda,
YOLO-fish: A robust fish detection model to detect fish in realistic underwater
environment, Ecol. Inform. 72 (2022) 101847.

[46] L. Chen, M. Zheng, S. Duan, W. Luo, L. Yao, Underwater target recognition based
on improved YOLOv4 neural network, Electronics 10 (14) (2021) 1634.

[47] D. Heller, M. Rizk, R. Douguet, A. Baghdadi, J.-P. Diguet, Marine objects detec-
tion using deep learning on embedded edge devices, in: 2022 IEEE International
Workshop on Rapid System Prototyping, RSP, IEEE, 2022, pp. 1–7.

[48] M. Paraschiv, R. Padrino, P. Casari, E. Bigal, A. Scheinin, D. Tchernov, A.
Fernández Anta, Classification of underwater fish images and videos via very
small convolutional neural networks, J. Mar. Sci. Eng. 10 (6) (2022) 736.

[49] L. Wang, X. Ye, S. Wang, P. Li, ULO: An underwater light-weight object detector
for edge computing, Machines 10 (8) (2022) 629.

[50] S. Marini, E. Fanelli, V. Sbragaglia, E. Azzurro, J. Del Rio Fernandez, J. Aguzzi,
Tracking fish abundance by underwater image recognition, Sci. Rep. 8 (1) (2018)
13748.

[51] U.P. de Catalunya Barcelonatech, et al., Expandable seafloor observatory, 2023,
https://obsea.es/. (Accessed August 2024).

[52] J. Redmon, A. Farhadi, YOLO9000: better, faster, stronger, in: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp.
7263–7271.

[53] A. Chen, A. Chow, A. Davidson, A. DCunha, A. Ghodsi, S.A. Hong, A. Konwinski,
C. Mewald, S. Murching, T. Nykodym, et al., Developments in mlflow: A system
to accelerate the machine learning lifecycle, in: Proceedings of the Fourth
International Workshop on Data Management for End-To-End Machine Learning,
2020, pp. 1–4.

[54] R. Bonghi, Jetsonstats, 2023, https://github.com/rbonghi/jetson_stats. (Accessed
August 2024).

[55] S. Marini, F. Bonofiglio, L.P. Corgnati, A. Bordone, S. Schiaparelli, A. Peirano,
Long-term automated visual monitoring of Antarctic benthic fauna, Methods Ecol.
Evol. 13 (8) (2022) 1746–1764.

[56] S. Marini, A. Griffa, S. Aliani, A. Conversi, K. Schroeder, M. Borghini, Ep2863257
(a1) - underwater images acquisition and processing system, 2013, https://data.
epo.org/gpi/EP2863257B1.

[57] J. Aguzzi, D. Chatzievangelou, S. Marini, E. Fanelli, R. Danovaro, S. Flögel, N.
Lebris, F. Juanes, F.C. De Leo, J. Del Rio, L. Thomsen, C. Costa, G. Riccobene, C.
Tamburini, D. Lefevre, C. Gojak, P.-M. Poulain, P. Favali, A. Griffa, A. Purser, D.
Cline, D. Edgington, J. Navarro, S. Stefanni, S. D’Hondt, I.G. Priede, R. Rountree,
J.B. Company, New high-tech flexible networks for the monitoring of deep-sea
ecosystems, Environ. Sci. Technol. 53 (12) (2019) 6616–6631.

[58] J. Aguzzi, D. Chatzievangelou, M. Francescangeli, S. Marini, F. Bonofiglio, J.
del Rio, R. Danovaro, The hierarchic treatment of marine ecological information
from spatial networks of benthic platforms, Sensors 20 (6) (2020) http://dx.doi.
org/10.3390/s20061751.

[59] L. Verderame, I. Merelli, L. Morganti, E. Corni, D. Cesini, D. D’Agostino, A.
Merlo, A secure cloud-edges computing architecture for metagenomics analysis,
Future Gener. Comput. Syst. 111 (2020) 919–930, http://dx.doi.org/10.1016/j.
future.2019.09.013.

[60] Nvidia, Jetson nano user guide, 2023, https://developer.nvidia.com/embedded/
downloads. (Accessed August 2024).

[61] QEngineering, Qengineering, 2023, https://qengineering.eu/. (Accessed: August
2024).
13
[62] L. Pecci, M. Fichaut, D. Schaap, SeaDataNet, an Enhanced Ocean Data In-
frastructure Giving Services to Scientists and Society, Vol. 509, 2020, http:
//dx.doi.org/10.1088/1755-1315/509/1/012042.

[63] J. Felden, L. Möller, U. Schindler, R. Huber, S. Schumacher, R. Koppe, M. Diepen-
broek, F.O. Glöckner, PANGAEA - data publisher for earth & environmental
science, Sci. Data 10 (1) (2023) 347, http://dx.doi.org/10.1038/s41597-023-
02269-x.

[64] K. Katija, E. Orenstein, B. Schlining, L. Lundsten, K. Barnard, G. Sainz, O. Boulais,
M. Cromwell, E. Butler, B. Woodward, K.L.C. Bell, FathomNet: A global image
database for enabling artificial intelligence in the ocean, Sci. Rep. 12 (1) (2022)
15914, http://dx.doi.org/10.1038/s41598-022-19939-2.

[65] H. Wang, T. Fu, Y. Du, W. Gao, K. Huang, Z. Liu, P. Chandak, S. Liu, P.
Van Katwyk, A. Deac, A. Anandkumar, K. Bergen, C.P. Gomes, S. Ho, P. Kohli,
J. Lasenby, J. Leskovec, T.-Y. Liu, A. Manrai, D. Marks, B. Ramsundar, L. Song,
J. Sun, J. Tang, P. Veličković, M. Welling, L. Zhang, C.W. Coley, Y. Bengio, M.
Zitnik, Scientific discovery in the age of artificial intelligence, Nature 620 (7972)
(2023) 47–60, http://dx.doi.org/10.1038/s41586-023-06221-2.

[66] A. Belfiore, S. Carpano, D. D’Agostino, F. Haberl, D. Law-Green, G. Lisini, et
al., The extras project: Exploring the X-ray transient and variable sky, Astron.
Astrophys. 650 (2021) A167.

[67] S. Giakoumi, S. Katsanevakis, P.G. Albano, E. Azzurro, A.C. Cardoso, E. Cebrian,
A. Deidun, D. Edelist, P. Francour, C. Jimenez, V. Mačić, A. Occhipinti-Ambrogi,
G. Rilov, Y.R. Sghaier, Management priorities for marine invasive species, Sci.
Total Environ. 688 (2019) 976–982, http://dx.doi.org/10.1016/j.scitotenv.2019.
06.282.

[68] A. Zenetos, M. Galanidi, Mediterranean non indigenous species at the start
of the 2020s: recent changes, Mar. Biodivers. Rec. 13 (1) (2020) 10, http:
//dx.doi.org/10.1186/s41200-020-00191-4.

[69] L. Guidi, A. Fernandez Guerra, C. Canchaya, E. Curry, F. Foglini, J.-O. Irisson, K.
Malde, C.T. Marshall, M. Obst, R.P. Ribeiro, J. Tjiputra, D.C. Bakker, Big Data
in Marine Science, Tech. Rep., European Marine Board, Ostend, Belgium, ISBN:
9789492043931, 2020, http://dx.doi.org/10.5281/zenodo.3755793.

[70] D.J. Papworth, S. Marini, A. Conversi, A novel, unbiased analysis approach for
investigating population dynamics: A case study on Calanus finmarchicus and its
decline in the North Sea, PLOS ONE 11 (7) (2016) 1–26, http://dx.doi.org/10.
1371/journal.pone.0158230.

[71] M. Landajuela, C.S. Lee, J. Yang, R. Glatt, C.P. Santiago, I. Aravena, T.
Mundhenk, G. Mulcahy, B.K. Petersen, A unified framework for deep symbolic
regression, in: S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, A.
Oh (Eds.), Advances in Neural Information Processing Systems, Vol. 35, Curran
Associates, Inc., 2022, pp. 33985–33998.

[72] N. Makke, S. Chawla, Interpretable scientific discovery with symbolic regression:
a review, Artif. Intell. Rev. 57 (1) (2024) 2, http://dx.doi.org/10.1007/s10462-
023-10622-0.

[73] B. Romera-Paredes, M. Barekatain, A. Novikov, M. Balog, M.P. Kumar, E. Dupont,
F.J.R. Ruiz, J.S. Ellenberg, P. Wang, O. Fawzi, P. Kohli, A. Fawzi, Mathematical
discoveries from program search with large language models, Nature 625 (7995)
(2024) 468–475, http://dx.doi.org/10.1038/s41586-023-06924-6.

[74] Blue cloud - a federated European FAIR and open research ecosystem for
oceans, seas, coastal and inland waters, 2024, https://blue-cloud.d4science.org.
(Accessed August 2024).

[75] S. Marini, L. Corgnati, L. Mazzei, E. Ottaviano, B. Isoppo, S. Aliani, A. Conversi,
A. Griffa, GUARD1: An autonomous system for gelatinous zooplankton image-
based recognition, in: OCEANS 2015 - Genova, 2015, pp. 1–7, http://dx.doi.org/
10.1109/OCEANS-Genova.2015.7271704.

[76] Iridium short burst data (SBD), 2024, https://www.iridium.com/services/
iridium-sbd/. (Accessed August 2024).

[77] S. Marini, L. Corgnati, C. Mantovani, M. Bastianini, E. Ottaviani, E. Fanelli, J.
Aguzzi, A. Griffa, P.-M. Poulain, Automated estimate of fish abundance through
the autonomous imaging device GUARD1, Measurement 126 (2018) 72–75,
http://dx.doi.org/10.1016/j.measurement.2018.05.035.

[78] D. D’Agostino, A. Quarati, A. Clematis, L. Morganti, E. Corni, V. Giansanti, D.
Cesini, I. Merelli, SoC-based computing infrastructures for scientific applications
and commercial services: Performance and economic evaluations, Future Gener.
Comput. Syst. 96 (2019) 11–22.

[79] D. D’Agostino, I. Merelli, M. Aldinucci, D. Cesini, Hardware and software
solutions for energy-efficient computing in scientific programming, Sci. Program.
2021 (2021) 1–9.

[80] P.J.B. Sanchez, F.P.G. Marquez, M. Papaelias, S. Marini, S. Govindaraj, En-
duruns project: Advancements for a sustainable offshore survey system using
autonomous marine vehicles, in: J. Xu, F. Altiparmak, M.H.A. Hassan, F.P.
García Márquez, A. Hajiyev (Eds.), Proceedings of the Sixteenth International
Conference on Management Science and Engineering Management – Volume 1,
Springer International Publishing, Cham, 2022, pp. 363–378.

[81] RAISE - robotics and AI for socio-economic enpowerment, 2024, https://www.
raiseliguria.it/. (Accessed August 2024).

http://dx.doi.org/10.1145/1877868.1877881
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb38
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb38
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb38
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb38
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb38
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb38
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb38
https://homepages.inf.ed.ac.uk/rbf/Fish4Knowledge/
https://homepages.inf.ed.ac.uk/rbf/Fish4Knowledge/
https://homepages.inf.ed.ac.uk/rbf/Fish4Knowledge/
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb40
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb40
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb40
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb40
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb40
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb41
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb41
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb41
http://dx.doi.org/10.23919/oceans.2015.7404464
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb43
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb43
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb43
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb43
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb43
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb43
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb43
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb44
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb44
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb44
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb44
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb44
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb45
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb45
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb45
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb45
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb45
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb46
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb46
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb46
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb47
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb47
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb47
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb47
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb47
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb48
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb48
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb48
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb48
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb48
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb49
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb49
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb49
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb50
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb50
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb50
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb50
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb50
https://obsea.es/
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb52
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb52
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb52
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb52
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb52
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb53
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb53
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb53
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb53
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb53
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb53
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb53
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb53
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb53
https://github.com/rbonghi/jetson_stats
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb55
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb55
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb55
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb55
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb55
https://data.epo.org/gpi/EP2863257B1
https://data.epo.org/gpi/EP2863257B1
https://data.epo.org/gpi/EP2863257B1
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb57
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb57
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb57
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb57
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb57
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb57
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb57
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb57
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb57
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb57
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb57
http://dx.doi.org/10.3390/s20061751
http://dx.doi.org/10.3390/s20061751
http://dx.doi.org/10.3390/s20061751
http://dx.doi.org/10.1016/j.future.2019.09.013
http://dx.doi.org/10.1016/j.future.2019.09.013
http://dx.doi.org/10.1016/j.future.2019.09.013
https://developer.nvidia.com/embedded/downloads
https://developer.nvidia.com/embedded/downloads
https://developer.nvidia.com/embedded/downloads
https://qengineering.eu/
http://dx.doi.org/10.1088/1755-1315/509/1/012042
http://dx.doi.org/10.1088/1755-1315/509/1/012042
http://dx.doi.org/10.1088/1755-1315/509/1/012042
http://dx.doi.org/10.1038/s41597-023-02269-x
http://dx.doi.org/10.1038/s41597-023-02269-x
http://dx.doi.org/10.1038/s41597-023-02269-x
http://dx.doi.org/10.1038/s41598-022-19939-2
http://dx.doi.org/10.1038/s41586-023-06221-2
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb66
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb66
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb66
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb66
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb66
http://dx.doi.org/10.1016/j.scitotenv.2019.06.282
http://dx.doi.org/10.1016/j.scitotenv.2019.06.282
http://dx.doi.org/10.1016/j.scitotenv.2019.06.282
http://dx.doi.org/10.1186/s41200-020-00191-4
http://dx.doi.org/10.1186/s41200-020-00191-4
http://dx.doi.org/10.1186/s41200-020-00191-4
http://dx.doi.org/10.5281/zenodo.3755793
http://dx.doi.org/10.1371/journal.pone.0158230
http://dx.doi.org/10.1371/journal.pone.0158230
http://dx.doi.org/10.1371/journal.pone.0158230
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb71
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb71
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb71
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb71
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb71
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb71
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb71
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb71
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb71
http://dx.doi.org/10.1007/s10462-023-10622-0
http://dx.doi.org/10.1007/s10462-023-10622-0
http://dx.doi.org/10.1007/s10462-023-10622-0
http://dx.doi.org/10.1038/s41586-023-06924-6
https://blue-cloud.d4science.org
http://dx.doi.org/10.1109/OCEANS-Genova.2015.7271704
http://dx.doi.org/10.1109/OCEANS-Genova.2015.7271704
http://dx.doi.org/10.1109/OCEANS-Genova.2015.7271704
https://www.iridium.com/services/iridium-sbd/
https://www.iridium.com/services/iridium-sbd/
https://www.iridium.com/services/iridium-sbd/
http://dx.doi.org/10.1016/j.measurement.2018.05.035
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb78
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb78
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb78
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb78
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb78
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb78
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb78
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb79
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb79
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb79
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb79
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb79
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb80
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb80
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb80
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb80
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb80
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb80
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb80
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb80
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb80
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb80
http://refhub.elsevier.com/S0167-739X(24)00431-X/sb80
https://www.raiseliguria.it/
https://www.raiseliguria.it/
https://www.raiseliguria.it/

M. Ferrari et al. Future Generation Computer Systems 162 (2025) 107481
Michele Ferrari received his MsC in Computer Science in
2023. Since 2019 he is employed at FlairBit, a company that
develops IoT and data analysis solutions. He mainly works
on mobile and Bluetooth development to support raw data
collection from hardware devices.

Daniele D’Agostino, Ph.D., is associate professor at the
Department of Computer Science, Bioengineering, Robotics
and Systems Engineering of the University of Genova.
His research activities concern the design of science gate-
ways in different research fields, and the development of
parallel software for e-Science. He co-organized the 22th
Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing, several special issues on
ISI journals and co-authored more than 100 scientific pa-
pers, published in journals, book chapters and conference
proceedings.
14
Jacopo Aguzzi research focuses on changes in sampled rich-
ness and biodiversity at different temporal scales, extracting
ecological indicators from imaging products by cabled ob-
servatories, crawlers, ROVs, AUVs and neutrino telescopes.
He is manager for the ‘‘ecological monitoring’’ and ‘‘citizen
science’’ of the EMSO Testing-Site OBSEA (www.obsea.es).
Between 2019-2019, he has been Scientific Advisor for the
Ocean Network Canada (ONC) for the Section ‘‘Life in the
Environments of the Northeast Pacific Ocean and Salish
Sea’’.

Simone Marini Ph.D. is researcher at the Institute of
Marine Sciences of the National Research Council of Italy.
His research activity deals with knowledge discovery and
pattern analysis, study and design of intelligent marine ob-
serving systems, where he is first inventor of the European
patent EP2863257. He leaded several research units and
workpackages within national and international projects, he
co-authored more than 100 scientific publications among
which 70 with impact factor. He edited several special issues
and he is associated editor of two ISI scientific journals. He
acted as reviewer for different research programs, included
the European Research council.

http://www.obsea.es

	Underwater Mediterranean image analysis based on the compute continuum paradigm
	Introduction
	Related Works
	The Image Analysis Pipeline
	The Dataset
	Training the Object Detectors
	Monitoring Framework
	Result Management

	Experimental Results
	The Edge Device
	The Object Detection stage
	The Full Fish Detection Pipeline

	Discussion
	From the Edge to the Cloud
	Conclusions and Future Developments
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

