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Abstract11

This study presents a series of self-correcting models that are obtained by inte-12

grating information about seismicity and fault sources in Italy. Four versions of the13

stress release model are analyzed, in which the evolution of the system over time is14

represented by the level of strain, moment, seismic energy, or energy scaled by the15

moment. We carry out the analysis on a regional basis by subdividing the study area16

into eight tectonically coherent regions. In each region, we reconstruct the seismic17

history and statistically evaluate the completeness of the resulting seismic catalog.18

Abbreviations:
SR stress release
MR macroregion
McMC Markov chain Monte Carlo
ISS Individual Seismogenic Sources
CSS Composite Seismogenic Sources
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Following the Bayesian paradigm, we apply Markov chain Monte Carlo methods19

to obtain parameter estimates and a measure of their uncertainty expressed by the20

simulated posterior distribution. The comparison of the four models through the21

Bayes factor and an information criterion provides evidence (to different degrees22

depending on the region) in favor of the stress release model based on the energy23

and the scaled energy. Therefore, among the quantities considered, this turns out24

to be the measure of the size of an earthquake to use in stress release models. At25

any instant, the time to the next event turns out to follow a Gompertz distribution,26

with a shape parameter that depends on time through the value of the conditional27

intensity at that instant. In light of this result, the issue of forecasting is tackled28

through both retrospective and prospective approaches. Retrospectively, the fore-29

casting procedure is carried out on the occurrence times of the events recorded in30

each region, to determine whether the stress release model reproduces the observa-31

tions used in the estimation procedure. Prospectively, the estimates of the time to32

the next event are compared with the dates of the earthquakes that occurred after33

the end of the learning catalog, in the 2003-2012 decade.34

Keywords. Point process; Probabilistic forecasting; Interevent time distribution;35

Seismogenic sources; Bayesian inference.36

1 Introduction37

The formulation of stochastic models for seismic hazard assessment in probabilistic terms38

is essentially based on phenomenological analyses or physical hypotheses. Phenomenolog-39

ical analyses generate models that belong to the class of the self-exciting models (Hawkes40

& Oakes , 1974) that describe the temporal and spatial clustering of earthquakes (Kagan41

1991; Ogata 1988, 1999; and references therein). These models were originally proposed42

to explain the decay of secondary shocks that follow a strong earthquake, and then they43

were applied for the detection of anomalies in seismic activity (Matsu’ura 1986; Ogata44

1997). These empirical models aspire to provide a good descriptive fit to the data, but45

they do not necessarily strive for a context-specific physical explanation. Models based on46
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physical hypotheses are more challenging, as these embody features that relate directly47

to the underlying scientific knowledge. Using these models, the aim is to explain how48

the evolution of the process depends on its history, in ways that can be interpreted in49

terms of the underlying mechanisms. Examples of such physical models are the block-50

slider, the branching for fractures, percolation, and cellular automata (Bhattacharyya &51

Chakrabarti et al. , 2006); these operate typically on small space-time scales. The most52

popular models that attempt to incorporate physical conjecture into the probabilistic53

framework and are concerned with large space-time scales are those included in the class54

of self-correcting models. In the seismological context, the elastic rebound theory still55

has the leading role, even though it was proposed a century ago by Reid (Reid , 1910).56

As a first approximation, modern measurements using global positioning systems (GPS)57

largely support the Reid theory as the basis of seismic movement along faults. Vere-Jones58

(1978) transposed this Reid theory into the framework of stochastic point processes, and59

in particular of the self-correcting models, through the first version of the stress release60

model. Enriched versions of this model have been extensively adopted for over 20 years61

now (Vere-Jones & Yonglu 1988; Zheng & Vere-Jones 1991, 1994; Bebbington & Harte62

2003; Kuehn et al. 2008). One of their peculiarities is that they allow for possible inter-63

actions among neighboring fault segments as an explanation for the presence of clusters64

of even large earthquakes, in contrast to the quiescence that one would expect after a65

strong earthquake, according to the elastic rebound theory.66

The stress release (hereinafter SR) model is based on a physical quantity that rep-67

resents a proxy measure of the size of an earthquake, and that is generically indicated68

as ‘stress’. Translating the ‘elastic rebound theory’ into stochastic terms, the occurrence69

probability in a SR model depends on the elastic stress stored on a fault, which is the70

result of its gradual accumulation due to tectonic forces, and of sudden releases during71

past earthquakes.72

In this study, we focus on alternative choices for the proxy variable ‘stress’ to identify73

which physical quantity among those considered produces the best performance of the74

model. We propose four versions of the SR model in which the evolution of the system75
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over time is represented by the amount of strain, seismic moment, seismic energy, or76

scaled energy. The values of these quantities for the events considered are obtained by77

integrating the available information on the most common input to probabilistic seismic78

hazard assessment, that is, the historical (macroseismic) and instrumental catalogs of79

seismicity, which are characterized by epicentral/ hypocentral location, origin time, and80

magnitude, and the map of seismogenic faults, as active faults deemed to be sources of81

large earthquakes and characterized by rupture parameters, such as area, mechanism, and82

magnitude.83

In the literature the SR model was initially applied to strong earthquakes located in84

wide tectonic units, such as the northern China region (Vere-Jones & Yonglu , 1988). Then85

it turned out that the model fit can be improved by subdividing the region on the basis86

of seismicity, geophysical structure, and tectonic features, and by applying a different SR87

model to each subregion (Zheng & Vere-Jones 1991, 1994). Analogously, in Section 2, the88

four versions of the SR model are analyzed on a regional basis, by subdividing the Italian89

territory into eight large tectonically coherent zones, hereinafter called the macroregions90

(MRs). Using publicly available databases (Section 3), we put together eight datasets,91

one for each MR, that are constituted by earthquakes of Mw ≥ 5.3 that are most likely92

associated with the fault sources that are included in each MR. Statistical treatment of the93

possible incompleteness of the recorded seismicity is also taken into account (Appendix94

A).95

In Section 4, the model parameters are estimated following the Bayesian paradigm and96

applying Markov chain Monte Carlo (McMC) methods for sampling from the posterior97

probability distributions of the parameters. In this way, we obtain not only the parameter98

estimates, typically as their posterior means, but also a measure of their uncertainty, as99

expressed through the simulated posterior distribution of each parameter. In Section 4.2,100

the four models are compared one to the other through the Bayes factor and the Ando &101

Tsay information criterion (Ando & Tsay , 2010), to determine which among the proposed102

measures of the size of an earthquake provides the best fit to the data, and which resulting103

model shows the best predictive accuracy. We have also examined the various models in104
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the light of the probability distribution F (ωt|Ht) of the ‘time to next event’ conditioned105

on the previous history Ht of the process. Results of the four SR models fitted to the106

data of each MR are shown in Section 5, and their performances are compared with each107

other and also with those of the Poisson model. Retrospective validation is performed by108

evaluation of the expected time to the next event immediately after each earthquake in109

the datasets (Section 5.2.2). The same analysis is then carried out in a prospective sense,110

which considers the earthquakes that occurred from the end of the learning catalog to the111

end of 2012 (Section 5.2.3). These test events were drawn from the available instrumental112

and parametric catalogs, while remaining as consistent as possible with the characteristics113

of the learning catalog.114

All of the forecasts were carried out using data based on 2002 knowledge, as they were115

made available by the database compilers, so that our results are independent of subjective116

choices and only reflect the capability of the applied model in an actual context.117

2 Self-correcting models118

Let us take into account a region that can be considered as a seismic unit on the basis,119

for instance, of the kinematic context and the expected rupture mechanism, and with120

a sufficiently extensive historical record. Adopting the Reid elastic-rebound theory, we121

generically use the word ‘stress’ to indicate the quantity X that governs the state of the122

system in that region. We assume that X increases linearly with time at a constant123

loading rate ρ imposed by external tectonic forces, until it exceeds the strength of the124

medium. X then abruptly decreases each time an earthquake occurs. This hypothesis125

can be formalized by:126

X(t) = X0 + ρ t− S(t), (1)127

which expresses the variation of X(t) over t ∈ [0, T ], where X0 is the initial level of ‘stress’128

and S(t) is the accumulated ‘stress’ released by the earthquakes in the region at times129

0 < ti < t, which is S(t) =
∑

i:ti<t
Xi. Assuming that the probability λ(t) of instantaneous130

occurrence in (t, t+ dt) is a monotonic increasing function ψ of the ‘stress’ level, we have131
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λ(t|Ht) = ψ[X(t)] where Ht is the accumulated history of the process. In the original132

version of this model, given by Vere-Jones (1978), the form of the intensity function133

was λ(t) = [ν + β(t− τS(t)]+, where [x]+ is 0 if x < 0; otherwise [x]+ = x. Then, to134

guarantee the positivity of λ, an exponential function for ψ was chosen such that:135

λ(t|Ht) = exp {ν + βX(t)} = exp {ν + β[X0 + ρ t− S(t)]} (2)136

with β > 0.137

0
.1

0
0
.1

4

λ
 (

t|
 Η

t 
)

1900 1920 1940 1960 1980

5
.0

6
.0

t (in years)

M
w

Figure 1: Representation of the conditional intensity function λ(t|Ht) of the stress release

model (top); moment magnitude versus occurrence times of the related seismic dataset

(bottom).

This implies that when X(t) assumes a positive and larger value (i.e., low seismic138

activity), the intensity ψ[X(t)] is also larger, and the occurrence probability increases;139

conversely, smaller negative values of X(t) reduce the probability (Figure 1). This model140

belongs to the class of self-correcting point processes of Isham & Westcott (1979), with141

history-conditioned intensities. In other words, the model given by Equation (2) can142

be thought of in terms of the balance between the expected and observed values of the143

physical quantity X. In Equation (1), at each ti, it can be seen that X0 + ρti is the144

estimated ‘stress’ in the region, whereas S(ti) is the stress released by all of the earthquakes145

before ti, and thus represents the lowest boundary of the stress estimate in the region.146

This line of reasoning implies that when the observed accumulated stress is lower than147

the expected, a seismic event is more likely to occur.148
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In Equation (2), X can be any physical parameter that constitutes a proxy measure149

of the strength of an earthquake, with the only constraint being that when dealing with150

long-term seismic hazard, this physical quantity can be evaluated from historical events.151

In the first applications of the stochastic model given by Equation (2) (Vere-Jones &152

Yonglu 1988; Zheng & Vere-Jones 1991, 1994), X(t) is a scalar quantity - the Benioff153

strain - that can be calculated from:154

log10X =
1

2
log10E = 0.75 Ms + 2.4 (3)155

where E is the unknown seismic energy and Ms is the earthquake magnitude, which156

incorporates proportionality between the stress drop and the square root of the energy157

release (Benioff , 1951). To also take into account the contribution of energy lost to heat158

during an earthquake, the seismic moment M0, given by:159

log10M0 = 1.5 Mw + 9.1 (M0 in Nm), (4)160

(Kanamori & Brodsky , 2004) better represents the total seismic release. Note that Ms161

and Mw do not differ significantly for earthquakes with rupture lengths of 100 km or less162

(Kanamori , 1977).163

The seismic moment depends on the coseismic displacement, and it is a static measure164

of the earthquake size related to its long-term tectonic effects. In contrast, the radiated165

energy is a dynamic measure of seismic potential for damage to anthropogenic structures.166

Hence energy and moment can be considered as complementary size measures in the esti-167

mation of seismic hazard. For recent earthquakes, however, the seismic energy computed168

through direct spectral analysis of broadband seismic waveforms can have significant re-169

gional and tectonic variations (Choy & Boatwright , 1995) that are largely neglected170

when using empirical formulae. In the case of historical earthquakes, ways to measure171

the amount of energy released that contain information on source, tectonic setting, and172

faulting mechanism can compensate for the inability to provide direct measurements of173

the energy.174
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Several studies have analyzed the scaling relationship for the apparent stress as a175

function of the seismic moment M0, the rupture area A, and the average slip acceleration176

(Senatorski 2005, 2006). Considering different earthquake sets, from mining-induced,177

to small-to-moderate, and up to large earthquakes (Kanamori et al. , 1993), Senatorski178

(2007) deduced that the E-M0 relationship is not linear, and the scatter in the logE-179

logM0 plot can be noticeably reduced by taking into account the rupture area. Hence he180

proposed the relationship:181

E ∝ M1.5
0√
A
, (5)182

where A is the area of the fault surface that ruptures during an earthquake. Rupture area183

A is hereafter approximated by using the well-known regressions of Wells and Coppersmith184

(1994; see Section 4.1 for more details). Another influential seismic parameter that gives185

information on the rupture behavior (Kanamori & Heaton , 2000) is the scaled energy Es,186

a non-dimensional radiated energy scaled with M0, such that:187

Es =
E

M0

. (6)188

Substituting the expression of Equation (5) for E in Equation (6), the following expression189

for the scaled energy is obtained:190

Es ∝
M0

0.5

√
A
. (7)191

In the present study, we examine the four different versions of the SR model (Eq.192

2) that can be obtained by substituting X with the Benioff strain XB (3), the seismic193

moment XM (4), the seismic energy XE (5), or the scaled energy XS (7). The four models194
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depend on the magnitude and threshold magnitude Mth, and are expressed by:195

XB = 100.75 (Mw−Mth), (8)196

XM = 101.5 (Mw−Mth), (9)197

XE =
102.25 (Mw−Mth)

√
A

, (10)198

XS =
100.75 (Mw−Mth)

√
A

, (11)199

Hereinafter, we denote these models as RB, RM, RE, and RS, respectively.200

3 Databases201

In the present study, we used two independently developed and publicly available databases202

(at the time this study was carried out): the Database of Individual Seismogenic Sources203

(DISS, version 3.0.2; DISS Working Group 2007), and the Parametric Catalog of Italian204

Earthquakes, version 2004 (CPTI04; CPTI Working Group 2004). These two databases205

reflect the level of knowledge at the end of 2002. To test our results we then used206

the most recent version of the Parametric Catalog of Italian Earthquakes, version 2011207

(CPTI11; Rovida et al. 2011), which extends the records to 2006, and from 2007 on-208

wards, we used the Italian Seismic Instrumental and parametric Data-base (ISIDe 2010;209

http://iside.rm.ingv.it/iside/standard/index.jsp).210

3.1 Fault sources211

DISS is a large repository of geological, tectonic and active fault data for Italy and the212

surrounding areas, which was compiled from first-hand experience of the authors and213

from a large amount of literature data (Basili et al. 2008; Basili et al. 2009). The214

database stores two main categories of parameterized crustal fault sources: Individual215

Seismogenic Sources (ISS) and Composite Seismogenic Sources (CSS), both of which are216

considered to be capable of releasing earthquakes of Mw 5.5 or greater. In most cases, the217

ISS represent the preferred source solutions of well-known large earthquakes of the past218
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that ideally ruptured the fault from end to end (i.e., a fault segment). In recognition of219

the inherent difficulties in the identification of all possible fault segments in the tectonic220

record, however, in 2005 the DISS was extended to include the CSS, a source category221

that was also meant to expand the territorial coverage and completeness, and hence the222

capabilities, of the database. A CSS is essentially an active structure where the definition223

is based on regional surface and subsurface geological data that are exploited to identify224

and map entire fault systems. As opposed to the ISS, the termination of a CSS can be225

either an identified fault limit or a significant structural change. This implies that such226

fault sources can comprise an unspecified number of different potential ruptures, and can227

produce earthquakes of any size, at least in principle, up to an assigned maximum. The228

DISS (version 3.0.2) contains 81 such fault sources, most of which are located in Italy,229

whereas seven fault sources, which are not used in this study, are located in neighboring230

countries (Figure 2).231
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Figure 2: Map of the Composite Seismogenic Sources (CSS) from the DISS database,

version 3.0.2 (DISS Working Group , 2007), classified according to the faulting mechanism.

Shaded area: vertical projection of the fault plane to the ground surface. The outlined

polygons are the MRs described in the text and Table 3.

3.2 Earthquakes232

CPTI04 is a parametric catalog of earthquakes that exploits all of the sources of infor-233

mation that are available in historical documents and published scientific studies. The234

thresholds for including an earthquake in the catalog are as follows: for the pre-1980 sec-235

tion, macroseismic intensity I0 = V-VI, evaluated through the Mercalli-Cancani-Sieberg236

scale (MCS), or Ms = 4.0; for the post-1980 section, Ms = 4.15; and for earthquakes237

located in the Etna volcano area, Ms = 3.0 (Figure 3).238
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Figure 3: Map of earthquakes from the CPTI04 catalog (CPTI Working Group , 2004).

The associations among the earthquakes, macroregions (MRs), and fault sources are listed

in Tables 1-2. Stars indicate earthquakes that occurred after the end of the learning

catalog, and were thus used to validate the forecast (see Section 5.2.3).

The catalog is supplied by the compilers in declustered form, such that the few his-239

torical events that were recorded within 90 days and 30 km from the principal events240

(mainshocks) in seismic sequences are not included. Each event in the catalog is charac-241

terized by its origin time, location, number of macroseismic intensity points, maximum242

and epicentral intensities, and moment and surface-wave magnitudes, which are based on243

empirical relationships for older events and on instrumental catalogs for modern events.244

ISIDe is a parametric catalog of seismicity that includes revised quasi-real-time earth-245

quake locations based on data collected from the Italian National Seismic Network. The246

sizes of the events are given in the local magnitude scale (Ml). This catalog has been247

published twice a month since April 16, 2005.248
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3.3 Dataset construction249

To carry out the model analysis in a regionalized way, we subdivided the Italian territory250

into eight large zones (see Table 3, Figures 2 and 3), which we refer to as the MRs (i.e.,251

macroregions), because they are larger than the usual sizes of the zones in zonation models252

that are used for standard seismic hazard assessments in Italy.253

ID Name Mechanism

MR1 Western Alps Mixed faulting mechanisms.

MR2 Eastern Alps Dominating south-verging thrust faulting mechanism

with some strike-slip faulting in the easternmost

portion of the MR (Slovenia).

MR3 Central northern Exclusively northeast-verging thrust faulting

Apennines, east mechanism. Faulting depth is progressively shallower

towards the northeast.

MR4 Central northern Exclusively normal faults with NE-SW extension axis

Apennines, west that affect the crest of the Apennine mountain chain.

MR5 Southern Apennines, E-W trending right-lateral strike-slip faulting.

Apulia Depth of faulting often deeper than in other regions.

MR6 Southern Apennines, Exclusively normal faults with NE-SW extension axis

west that affect the crest of the Apennine mountain chain.

MR7 Calabrian Arc N-S to NE-SW trending normal faults, minor

oblique-slip faults located inland, and thrust faults in

the Ionian offshore. These last are mainly located in the

overriding plate, and they are poorly mapped and difficult

to associate with specific earthquakes.

MR8 Sicily Dominating thrust faulting, north-verging in the

Tyrrhenian offshore, south-verging inland. Strike-slip

faulting in the southwestern corner of Sicily.

Table 3: Faulting mechanisms in the MRs.

To construct these MRs, we aggregated zones from the seismic ZS9 zonation (Meletti254

et al. , 2008) based on their common tectonic characteristics, and refined the boundaries255

to include fault sources that belong to the same tectonic domain. Earthquakes from256

CPTI04 that are explicitly associated with an ISS based on geological/ geophysical studies257

in the DISS are also associated with the CSS, which contains the ISS. The remaining258
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earthquakes are associated with the nearest CSS (Fracassi U. and Valensise G., personal259

communication). Hence each dataset represents the activity of a system of faults which260

belong to the same tectonic domain; this guarantees consistency with the assumptions261

underlying the SR model and agreement with the case studies proposed in the literature.262

To allow for potential underestimation of the earthquake magnitudes, we considered263

all of the earthquakes with moment magnitude larger than 5.3. It is necessary to note264

that the algorithm used for the locating of historical events from macroseismic data used265

in CPTI04 cannot determine the hypocentral depth or reliably locate offshore events. The266

latter are automatically located near the coast, and can be mistaken for actual coastal267

events. To address the issue of the possible incompleteness of the catalog in the time span268

(T0, Tf ) covered by the data, we follow the statistical approach based on the detection269

of a changepoint in the occurrence rate function (Rotondi & Garavaglia , 2002); this270

point is meant as the beginning of the complete part of the catalog. The model and the271

estimation procedure are briefly recalled in Appendix A. Table 4 summarizes the results272

obtained for the eight MRs: ĥ2 and š are the estimates of the occurrence rates in the273

complete part and of the changepoint. The method adopted tends to place the estimate274

š relatively close to t1 (the time of the first earthquake occurred after T0), where the275

unknown stress level could be high. This means that the analysis of the phenomenon276

started from a nonrandom point, but neglecting this piece of information. To overcome277

this issue we moved š to Tc, so that the time interval that separates the beginning of the278

complete part of the catalog from the first event is equal to the average interevent time,279

which is calculated by also taking into account the censored observation related to the280

time elapsed between the latest event and Tf . Thus, we have the relationship:281

Tc = t1 −
∑n−1

i=1 (ti+1 − ti) + (Tf − tn)

n− 1
. (12)282

Extending the analyzed time interval in this way, no events are added to the original283

dataset. Thus, we start to observe the phenomenon when the stress level accumulated in284

the system is reasonably small, and a recharge period is roughly at the beginning. Note285

that the estimated changepoint of MR1 falls beyond the most recent event (see 1887.15∗286
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in Table 4), which implies that the entire dataset can be considered as complete. Then,287

by applying Equation (12) to the data after 1600, we have the year 1584 as the initial288

time for the analysis.289

Tables 1 and 2 list the earthquakes that make up the datasets analyzed below, which are290

sorted according to MR and fault source.291

region T0 š ĥ2 Tc

MR1 1448 1887.15∗ 0.0126 1584

MR2 1197 1776.52 0.0676 1762

MR3 1264 1781.25 0.164 1763

MR4 1244 1703.03 0.120 1695

MR5 1260 1841.13 0.0764 1829

MR6 985 1688.42 0.0461 1667

MR7 931 1767.53 0.108 1735

MR8 1168 1613.64 0.0488 1593

Table 4: Completeness of the learning datasets according to MR: š = posterior mode of

the position of the changepoint, ĥ2 = posterior mean rate, Tc = left end of the time

interval under examination (see Equation (12)), ∗ dataset considered as a complete set.

4 Bayesian inference and model comparison292

A Bayesian approach to the analysis of the SR model is illustrated. Section 4.1 presents293

the Bayesian method for parameter estimation of the four versions of the SR model294

introduced in Section 2; then, Section 4.2 shows how these models can be tested through295

global summary measures of model performance and earthquake forecast procedures.296

4.1 Parameter estimation297

In this section, we deal with the problems of estimating the model parameters, and then298

of selecting the best model from the group of candidate models. Point processes are299

characterized by their intensity function λ(t|Ht) conditioned on the history Ht of the300
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process itself. Hence, we have:301

λ(t|Ht) = exp

{
ν + β[X0 + ρ t−

∑
i:ti<t

Xi]

}
(13)302

where Xi is the strain XB (8), the seismic moment XM (9), the seismic energy XE (10), or303

the scaled energy XS (11), depending on the version of the SR model under examination.304

The quantity Xi is released at time ti by an earthquake where the magnitude is scaled by305

a threshold magnitude Mth. The rupture area involved in the expression of the seismic306

energy (5) and the scaled energy (7) is obtained as a function of the earthquake moment307

magnitude, by the regression log10Aw = a+b Mw (Wells & Coppersmith , 1994), where the308

parameters a and b depend on the faulting type of the associated fault source. Specifically,309

a = −2.87 and b = 0.82 for normal fault (N), a = −3.99 and b = 0.98 for reverse fault (R),310

a = −3.42 and b = 0.90 for left/right-lateral strike-slip fault (LL/RL); Figure 4 represents311

the four proxy measures of the stress versus moment magnitude by taking into account312

the faulting types. Tables 1 and 2 provide the faulting types of each fault source.313
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Figure 4: The strain XB (top-left), the seismic moment XM (top-right), the seismic energy

XE (bottom-left), and the scaled energy XS (bottom-right) versus moment magnitude,

where XE and XS are provided for different faulting types.
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The parameter vector to be estimated is θ = (α, β, ρ) where α = ν+β X0 (see Equation314

(13)). According to the Bayesian paradigm, we assume the model parameters θ as random315

variables and formalize our beliefs about their variability, borrowed from the literature and316

previous experience, through prior distributions (e.g., as for the original version of the SR317

model, see Votsi et al. 2011; Jiang et al. 2011; Rotondi & Varini 2007). In our case, this318

information is not available because the SR model is here formulated in terms of moment319

and energy for the first time; moreover, the parameters α, β, ρ are not strictly related to320

easily measurable physical quantities. We then assign the prior distributions according to321

an objective Bayesian perspective, by combining the empirical Bayes method (Carlin &322

Louis , 2000) and the use of vague-proper prior distributions (Berger , 2006). We choose323

the families of the prior distributions according to the support of the parameters (β and324

ρ are positive parameters, and α lies on the real line), and we set the prior parameters325

(called hyperparameters) equal to the prior mean and variance of the corresponding model326

parameter; for instance, β follows a priori the Gamma distribution Gamma(ξ, ν) where327

ξ = E0(β) and ν = var0(β). According to the empirical Bayes method, preliminary values328

of the hyperparameters η are obtained by maximizing the marginal likelihood:329

ηEB = arg max
η∈H

m(data | η) = arg max
η∈H

∫
θ∈Θ

L(data | θ)π0(θ | η) dθ (14)330

and by setting the standard deviations to 90% of the corresponding means, to avoid the331

estimates provided for the variances through the maximation (14) being too close to zero.332

This procedure clearly implies a double use of the data: in assigning the hyperparameters333

and in evaluating the posterior distributions. This philosophically undesirable double use334

can become a serious issue when the sample size is fairly small, as in our case. A solution335

is provided by choosing priors that ‘span the range of the likelihood function’ (Berger ,336

2006); that is, by varying the hyperparameters around their preliminary estimates ηEB337

and choosing those values that include most of the mass of the likelihood function, but338

that do not extend too far. For a graphic exemplification of this procedure we refer to339

Varini & Rotondi (2015).340

In the Bayesian framework, the prior distribution of the parameter θ is given by π0,341
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and the log likelihood function is given by:342

logL(data | θ) =
N∑
i=1

log λ(ti)−
∫ Tf

Tc

λ(s) ds. (15)343

Through Bayes’ theorem, the posterior distribution is given as:344

π(θ | data) =
L(data | θ) π0(θ)∫

Θ
L(data | θ) π0(θ) dθ

(16)345

from which the estimate of the parameter can be obtained, which is typically given by the346

posterior mean, and measures of its uncertainty expressed through measures of location347

(median and mode), dispersion (variance and quantiles), and shape of the distribution348

(skewness and kurtosis). The explicit formulation of the posterior distribution generally349

requires the computation of multi-dimensional integrals. This can seldom be done in the350

closed form; numerical methods on integral approximations are a standard solution for351

this problem. Recently, methods based on the stochastic simulation of Markov chains352

have turned out to be highly efficient and flexible tools. McMC methods are a class of353

algorithms for sampling from probability distributions, which are based on constructing354

a Markov chain that has the desired distribution as its equilibrium distribution. The355

states of the chain after a large number of steps can be used as samples from the desired356

distribution. In the Bayesian context, the target distribution is the posterior distribution357

of the parameter θ. The algorithm applied to generate the Markov chains is summarized358

in Appendix B. Then diagnostic tools are applied to the sequences of the values generated359

for each parameter through pilot runs of the estimation algorithm, to test if it is safe to360

stop sampling and to use those sequences to estimate the characteristics of the posterior361

distributions, or if necessary, to vary the variance of the proposal distribution to reach362

the optimal acceptance rate so that a long run of the McMC algorithm guarantees the363

best estimates for the model parameters.364
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4.2 Model comparison365

We provide an overview of the approaches for model comparison that are then applied in366

Section 5: the Bayes factor, the Ando & Tsay information criterion, and a retrospective367

analysis based on the probability distribution of the waiting time for the next event that368

is obtained from the SR model.369

4.2.1 Bayes factor370

We adopt the Bayesian approach to quantify the evidence in favor of one model in pairs of371

candidate models, through the Bayes factor. Given the modelsM1,M2, and the dataset372

D, the Bayes factor is the ratio of the posterior odds of M1 to its prior odds; that is to373

say:374

B12 =
pr(D | M1)

pr(D | M2)
=

pr(M1 |D)

pr(M2 |D)
÷ pr(M1)

pr(M2)
. (17)375

When the prior probabilities of the two competing hypotheses are equal, the Bayes factor376

coincides with the posterior odds. The densities pr(D | Mk), k = 1, 2 are obtained by377

integrating over the parameter space with respect to their prior distributions:378

pr(D | Mk) =

∫
pr(D | θk,Mk) π(θk|Mk) dθk (18)379

where π(θk|Mk) is the prior density of the parameter θk under Mk, and pr(D | θk,Mk)380

is the likelihood function of θk. The quantity pr(D | Mk) is a marginal (or integrated)381

likelihood ; it is also referred to as evidence forMk. Details on the computational aspects382

concerning the evaluation of the Bayes factor can be found in Rotondi & Varini (2007).383

4.2.2 Ando and Tsay information criterion384

For each model, the Bayes factor considers the posterior probability induced by the prior385

distribution π(θ), and aims at the model comparison by looking for the best fit of the386

model to the data. Alternatively, one may be interested in the predictions from the various387

models and in choosing which model gives the best predictions of future observations388

generated by the same process as the original data. The predictive performance of a389
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model Mk is assessed by scoring rules (Gneiting & Raftery , 2007); the most commonly390

used is the logarithmic score derived from the Kullback-Leibler distance between two391

distributions, the predictive distribution for new data z given the observations y and392

their true density g(z):393

∫ [
log

g(zn)

pr(zn | yn,Mk)

]
g(zn) dzn394

=

∫
log[g(zn)] g(zn) dzn −

∫
log pr(zn | yn,Mk) g(zn) dzn. (19)395

The term relevant to the model Mk is the latter, which is the expected log-predictive396

likelihood where the unknown true density can be approximated by the empirical distri-397

bution g̃(yn) constructed by the data so as to obtain as estimator the posterior predictive398

1
n

log pr(yn | yn,Mk). The accuracy of the predictions of future data is generally lower399

than the accuracy of the predictions of the same model for the observed data; then the400

resulting overestimation has to be corrected by applying some sort of bias correction. Fol-401

lowing this approach, a variety of measures of predictive accuracy have been proposed in402

the literature, which are also referred to as information criteria; for instance, the Akaike403

information criterion (AIC) adopts the maximum likelihood estimate for θ, whereas the404

deviance criterion (DIC) uses the posterior mean E(θ | yn); for a review, we refer the405

reader to Vehtari & Ojanen (2012).406

The Watanabe criterion (Watanabe , 2010) has the advantage of being fully Bayesian,407

because it averages the predictive distribution over the posterior distribution π(θ|yn)408

rather than conditioning on a point estimate. However, it is hardly applicable to data409

that, as in our case, are not independent given parameters. A solution is given by the410

Ando & Tsay criterion where the joint density can be decomposed into the product of411

the conditional densities pr(yn | θ) =
∏n

i=1 pr(yi | y(1:i−1), θ) (Ando & Tsay 2010, pgg.412

747-748). The complete definition of this criterion is the following:413

PL(Mk) =
1

n

(∫
log pr(yn | θ,Mk) π(θ|yn) dθ − p

2

)
, (20)414

where, in the bias correction, p is the dimension of θ and the integral can be evaluated415
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using draws from the posterior π(θ|yn) performed in the McMC estimation procedure, so416

that we have:417

PL(Mk) =
1

n

{
log

(
1

R

R∑
j=1

pr(yn | θ(j),Mk)

)
− p

2

}
. (21)418

To be on the same scale as the other criteria, we multiply Equation (21) by −2n.419

4.2.3 Probability distribution of the ‘time to next event’420

For a more detailed analysis of the model performance we derive the probability distri-421

bution of the time to the next event for each class of SR model in an explicit way. This422

enables us to perform a retrospective analysis by comparing the occurrence time of each423

earthquake with its forecast value from the model. At the instant t, let us consider the424

conditional intensity function:425

λ(t|Ht) = exp {α + β[ρ t− S(t)]} (22)426

of the general SR model with parameter vector θ = (α, β, ρ). Let Wt be the random427

waiting time for the next event given the history Ht up to t; hence, the occurrence time428

of the next event will be T = t+Wt. Hereinafter, for the sake of simplicity, we substitute429

the explicit indication of the conditioning on Ht with the subscript t.430

The conditional cumulative distribution of Wt is given by:431

Ft(w | θ) = Pr(Wt ≤ w | θ) = 1− Pr(Wt > w | θ) = 1− Pr(Nt+w −Nt = 0 | θ)432

= 1− exp

(
−
∫ t+w

t

λ(u) du

)
433

= 1− exp

[
− 1

βρ

(
eα + β(ρ(t+ w)− S(t)) − eα + β(ρt− S(t))

)]
(23)434

= 1− exp

[
−λ(t)

βρ
(eβρw − 1)

]
,435

where Ns is the number of earthquakes recorded by time s. If we set φt = λ(t)/(βρ) and436
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η = βρ, then we have:437

Ft(w | θ) = 1− exp{−φt (eηw − 1)} , (24)438

which is a Gompertz distribution with shape parameter φt > 0, scale parameter η > 0,439

and support w ≥ 0. As the probability that an event occurs before a fixed time w increases440

with φt, the shape parameter φt can be interpreted as the propensity of the region to the441

occurrence. The probability density function is such that:442

ft(w | θ) = ηφte
ηweφt exp(−φteηw). (25)443

This function can take a large variety of shapes, and be skewed either to the right or444

the left. To describe the characteristics of the Gompertz distribution (24), we recall its445

summary statistics: mode, mean, variance, and quartiles (Lenart , 2014). The mode of446

the density function (25) is as follows:447

w∗ =


1

η
log

1

φt
, with 0 < F(w∗) < 1− e(−1) = 0.632 if 0 < φt < 1

0 if φt ≥ 1.

(26)448

The expected waiting time for the future event is such that:449

E(Wt | θ) = −e
φt

η
Ei(−φt), (27)450

where Ei() is the exponential integral Ei(x) = −
∫ ∞
−x

(e−u/u) du, (Abramowitz & Stegun451

1972, p. 228). On the one hand, according to the Reid theory, when φt (or equivalently452

λ(t)) gets close to 0, Equation (27) approaches ∞; i.e., after a large reduction in the453

hazard function λ(·) due to a very high ‘stress’ release, an unusually long waiting time454

should elapse before the next event. On the other hand, the expected waiting time can455

be short even when it is evaluated after relatively large earthquakes, because through456

the parameter φt it depends on the value that the hazard function has at the occurrence457

time. Indeed, if an earthquake of size Xi occurs at time ti, the drop of the hazard458
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function, ∆λ(ti) = λ(t−i ) [exp(−βXi)− 1], depends on the value of the hazard function459

λ(t−i ) computed immediately before the occurrence time. Consequently, variations in the460

hazard function caused by two events of the same size, but that occurred at different461

times, are typically different; hence, depending on the conditions of the system at that462

moment, the SR model does not preclude a small waiting time, even immediately after a463

strong event.464

The variance of Wt is such that:465

V (Wt | θ)

=
1

η2

∫ 1

0

log2

(
1− log u

φt

)
du− [E(Wt | θ)]2

=
φte

φt

η2

(log2 φt + 2γ log φt + π2/6 + γ2)

φt
− 2 3F3

 1, 1, 1

2, 2, 2
;−φt

− [E(Wt | θ)]2

(28)466

where γ = 0.5772 . . . is the Euler-Mascheroni constant, and 3F3 is the generalized hyper-467

geometric function.468

The generic quantile of order q is given by Wq = η−1 log(1−φ−1t log(1− q)); hence, the469

median is equal to η−1 log(1 − φ−1t log 0.5). Consistent with the definition of conditional470

intensity function, the hazard rate holds that ht(w | θ) = ft(w | θ)/[1 − Ft(w | θ)] =471

φtηe
ηw = λ(t)eηw = λ(t+ w), and hence it is an exponential increasing function.472

In the case where additional time h has elapsed after the issue time t of the forecast,473

and no event has occurred during that time h, the distributions of the waiting times Wt474

and Wt+h can be compared. The second distribution is thus issued at time (t+ h), and it475

is enriched by the additional knowledge that no event has occurred between t and t+ h.476

Since φt+h = φte
ηh ≥ φt for all h > 0, the expected value of the waiting time Wt+h477

decreases as h increases; that is, E(Wt | θ) ≥ E(Wt+h | θ):478

E(Wt | θ) = −e
φt

η
Ei(−φt) =

eφt

η

∫ +∞

φt

e−u

u
du

[u=φt(z+1)]
=

1

η

∫ +∞

0

e−φtz

z + 1
dz ≥

≥ 1

η

∫ +∞

0

e−φt+hz

z + 1
dz = E(Wt+h | θ).

(29)479
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Moreover, it holds (Abramowitz & Stegun 1972, p. 229) that:480

1

2η
ln

(
1 +

2

φt+h

)
< E(Wt+h | θ) <

1

η
ln

(
1 +

1

φt+h

)
. (30)481

Therefore, as φt+h tends to infinity as h increases, the expected waiting time tends to482

zero as h grows to infinity and approaches its limit, with a convergence rate of O(e−ηh).483

Similarly, it can be shown that also the variance decreases to zero when h tends to infinity.484

For more details on the Gompertz distribution and further consideration of its application485

to other SR models we refer the reader to Varini & Rotondi (2015)486

We recall that the Bayesian approach not only provides a point estimate of the parameters,487

but also a measure of their uncertainty in terms of the posterior distribution. Taking into488

account this uncertainty, the posterior predictive distribution of Wt is given by:489

Ft(w) = P (Wt < w) =

∫
Θ

P (Wt < w | θ) π(θ | data) dθ , (31)490

where the conditional Gompertz distribution of Wt is integrated with respect to the poste-491

rior distribution of the parameters. Pointwise approximation of the resulting probability492

distribution can be obtained by varying the model parameters into the Markov chains493

generated for their estimation (see Section 4.1):494

Ft(w) ≈ F̂t(w) =

∑R
j=1 P (Wt < w | θ(j))

R
. (32)495

The expected value of the waiting time Wt is estimated by the average of the expected496

waiting times E(Wt | θ(j)), j = 1, . . . , R, as given by (27); similarly for the variance of Wt,497

as the θ(j) have negligible correlation, as indicated by the diagnostics on the convergence498

of the Markov chains. The mode of Wt can be evaluated through a numerical optimization499

algorithm (e.g., we use the direct search complex algorithm), which finds the waiting time500

in which the posterior predictive density function of Wt reaches the global maximum.501

The quantile of order q is the solution wq of the equation F̂t(w) = q; we have solved this502

by the Müller method, as implemented in IMSL numerical libraries, version 4.0 (IMSL503
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, 2000). Through the quantiles, we then estimate the Highest Posterior Density (HPD)504

(or credible) interval of order q (0 < q < 1) for the waiting time Wt, which is the time505

interval that satisfies the following two conditions: (a) the probability of that interval is506

q; and (b) the lowest density of any point within that interval is greater than or equal507

to the density of any point outside the interval. In other words, the most likely waiting508

times belong to the HPD interval, which turns out to be the smallest interval of order q.509

The relationship T = t+Wt links the time of the next event T with the corresponding510

waiting time Wt, and allows the estimation of the distribution F (·) of T and its summary511

statistics, so that it is possible to perform both retrospective and prospective validations.512

5 Results513

This section illustrates the results concerning both the parameter estimations and model514

comparisons related to the application of the four versions of the SR model to the data515

of each MR.516

5.1 Parameter estimates517

Details on the prior distributions used in the Bayesian inferential procedure are reported518

in Table B2. As illustrative examples, the prior and posterior densities of the parameters519

of the four models for MR3 and MR4 are shown in Figures B1 and B2, respectively.520

Table 5 collects parameter estimates of the different models obtained through the McMC521

algorithm by generating a chain ofR = 250, 000 elements, after discarding 50, 000 elements522

as burn-in, and recording the output every 20th iteration, for each parameter.523

The α parameters for the four models of each MR are similar, and according to the524

order of their size, they are equal to the natural logarithm of the average number of events525

per year. The ρ parameters vary according to the stress proxy used in the model. Thus,526

e.g., in MR4, for the middle value of the magnitude Mw = 6.4, the values of XB, XE,527

and XS are about 16%, 42%, and 1%, respectively, of the value of XM ; analogously ρ̂B,528

ρ̂E, and ρ̂S are 13.6%, 62%, and 1.3%, respectively, of ρ̂M = 2.55. As β and ρ behave529
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inversely, β̂E has the same order of size of β̂M , whereas β̂B and β̂S increases by one and530

two orders with respect β̂M .531

RB RM

α̂ β̂ ρ̂ α̂ β̂ ρ̂

MR1 -5.65 3.14E-1 5.33E-2 -7.29 2.20E-1 1.38E-1

MR2 -2.83 6.64E-2 1.66E-1 -2.87 1.09E-2 6.03E-1

MR3 -1.72 3.02E-2 2.93E-1 -1.62 1.04E-2 6.04E-1

MR4 -1.98 2.11E-2 3.48E-1 -2.02 1.21E-3 2.55

MR5 -2.51 6.23E-2 2.26E-1 -2.57 3.78E-3 1.40

MR6 -2.57 4.24E-2 2.66E-1 -2.58 3.49E-3 2.90

MR7 -2.14 6.67E-3 6.36E-1 -2.18 3.56E-4 8.45

MR8 -3.24 1.39E-2 2.69E-1 -2.18 3.51E-4 8.73

RE RS

α̂ β̂ ρ̂ α̂ β̂ ρ̂

MR1 -7.17 7.56E-1 4.24E-2 -4.96 1.38 7.31E-3

MR2 -2.84 1.83E-2 2.47E-1 -2.92 9.92E-1 2.33E-2

MR3 -1.63 2.30E-2 2.12E-1 -1.80 1.89E-1 5.20E-2

MR4 -2.08 1.67E-3 1.59 -2.13 5.36E-1 3.31E-2

MR5 -2.59 7.15E-3 6.96E-1 -2.45 1.63 2.27E-2

MR6 -2.60 6.28E-3 1.68 -2.62 1.05 1.66E-2

MR7 -2.19 4.44E-4 5.88 -2.17 1.70E-1 4.44E-2

MR8 -3.27 3.72E-4 8.35 -3.61 7.89E-1 1.71E-2

Table 5: Parameter estimates for the RB, RM, RE, and RS models in each MR.

As an example, Figures 5 and 6 show the results for the estimate of the conditional532

intensity function that is obtained by applying the various models to the data from MR3533

and MR4, which can be followed in two ways. The first is to replace the parameter534

estimates in the different versions of the expression (2), thereby obtaining the so-called535

plug-in estimate λ̃(t) = λ(t | θ̂,HT ), where θ̂ is the vector of posterior means. The second536

way is to estimate the conditional intensity through the ergodic mean λ̂(t) = 1
R

∑R
j=1 λ(t |537

θ(j),HT ), where θ(j) is the jth element of the Markov chain generated for each parameter538

by the McMC algorithm. Through the sequence
{
λ(t | θ(j),HT )

}R
j=1

, we can also obtain539

the median and quartiles of the pointwise estimate λ̂(t).540
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Figure 5: Conditional intensity function of the RB, RM, RE, and RS models. The

ergodic mean, plug-in estimate, and median are all represented by solid lines that are

practically indistinguishable from each other; 1st and 3rd quartiles (dashed line), 10% and

90% quantiles (dotted line). The Poisson rate is shown for comparison (horizontal thin

line). The bottom panel shows the time history of the earthquakes scaled by their moment

magnitudes (Mw). The example is taken from MR3.
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Figure 6: Same as Figure 5. The example is taken from MR4.

5.2 Results of the model comparison541

In this Section, we compare the four versions of the SR model to identify the best one; we542

note that what constitutes the “best” model is not uniquely defined, as it often depends543

on the goals of the user. Model testing can be performed for different purposes, such as544

the goodness of fit to the data of the learning set and the forecasting skill. To reach these545

aims, we propose two validation criteria: the Bayes factor that compares pairwise models546

through the ratio of their marginal densities with respect to the prior distributions of the547

parameters, and the information criterion by Ando and Tsay that averages the predictive548

distributions over the posterior distributions of the parameters.549
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5.2.1 Bayes factor550

Table 6 shows the marginal log10 likelihood of each model, as applied to the various MRs,551

under the assumption that the prior probabilities of the models are equal; the maximum552

value represents the best model. In six out of eight MRs, the highest value is given by553

model RS, and in the remaining ones by model RE.554

region

model
RB RM RE RS

MR1 -15.1469 -13.8686 -13.5957 -15.6580

MR2 -27.3373 -27.5929 -27.5686 -27.1243

MR3 -49.6949 -49.7956 -48.9883 -49.7344

MR4 -50.3988 -50.6119 -50.6318 -50.1548

MR5 -21.9602 -22.0761 -22.1250 -21.4926

MR6 -28.2593 -28.2575 -28.2209 -28.1026

MR7 -43.1532 -43.1471 -43.0928 -43.0173

MR8 -35.3877 -35.4283 -35.3487 -35.0062

Table 6: Marginal log10 likelihood for the four stress release model versions. Bold: the

maximum value, which indicates the best model in each MR.

More specifically, to evaluate the significance of these results, Table 7 shows the set555

of pairwise Bayes factors for each MR: according to the interpretation of Jeffreys’ scale556

given by Kass & Raftery (1995), values in the three ranges of (0, 0.5), (0.5, 1), and (1,557

2) of the log10B12 indicate ‘barely worth mentioning’, ‘positive’, and ‘strong’ evidence,558

respectively, in favor of the model M1. Based on the Bayes factors, it can be seen that:559

In MR1, RE behaves similarly to RM (log10BEM = 0.27 means that the evidence560

in favour of RE is barely worth mentioning), whereas RE shows strong evidence561

against RB and RS;562

In MR2, there is slight evidence in favor of RS compared to the other models, while563

RM shows the worst performance;564

In MR3, RE shows positive evidence against the other models, with RM being the565

worst again;566
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In MR4, there is slight evidence in favor of RS compared to the other models, while567

RE shows the worst performance;568

In MR5, RS performs from slightly-to-moderately better than the other models; RE569

shows the worst performance;570

In MR6, there is minimal evidence in favor of RS, and minimal evidence against571

RB;572

In MR7, as in MR6;573

In MR8, RS performs slightly better than the other models, with RM being the574

worst.575
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MR1 MR2

M1

M2 RB RM RE RS M1

M2 RB RM RE RS

RB - -1.2784 -1.5512 0.5111 RB - 0.2556 0.2314 -0.2130
RM 1.2784 - -0.2728 1.7894 RM -0.2556 - -0.0243 -0.4686
RE 1.5512 0.2728 - 2.0623 RE -0.2314 0.0243 - -0.4443
RS -0.5111 -1.7894 -2.0623 - RS 0.2130 0.4686 0.4443 -

MR3 MR4

M1

M2 RB RM RE RS M1

M2 RB RM RE RS

RB - 0.1007 -0.7067 0.0394 RB - 0.2131 0.2330 -0.2440
RM -0.1007 - -0.8073 -0.0612 RM -0.2131 - 0.0199 -0.4571
RE 0.7067 0.8073 - 0.7461 RE -0.2330 -0.0199 - -0.4770
RS -0.0394 0.0612 -0.7461 - RS 0.2440 0.4571 0.4770 -

MR5 MR6

M1

M2 RB RM RE RS M1

M2 RB RM RE RS

RB - 0.1159 0.1648 -0.4676 RB - -0.0018 -0.0384 -0.1567
RM -0.1159 - 0.0489 -0.5835 RM 0.0018 - -0.0366 -0.1549
RE -0.1648 -0.0489 - -0.6324 RE 0.0384 0.0366 - -0.1184
RS 0.4676 0.5835 0.6324 - RS 0.1567 0.1549 0.1184 -

MR7 MR8

M1

M2 RB RM RE RS M1

M2 RB RM RE RS

RB - -0.0061 -0.0603 -0.1358 RB - 0.0406 -0.0389 -0.3815
RM 0.0061 - -0.0542 -0.1297 RM -0.0406 - -0.0796 -0.4221
RE 0.0603 0.0542 - -0.0755 RE 0.0389 0.0796 - -0.3425
RS 0.1358 0.1297 0.0755 - RS 0.3815 0.4221 0.3425 -

Table 7: Bayes factors log10B12 comparisons of the four stress release models, pair by

pair (M1 vs M2), in every MR. Jeffreys’ scale is used for rating the evidence in favor of

M1 models. Legend: bold, 0-0.5, ‘barely worth mentioning’; gray striped, 0.5-1, ‘positive

evidence’; dark-gray striped, 1-2, ‘strong evidence’.

Summarizing, we can say that the evidence in favor of RE is sufficiently significant576

in MR1 and MR3, whereas in the other MRs, RS performs just slightly better than577

the other models; anyhow, in all of the MRs the information on the faulting geometry578

provided through the rupture area (A) appears to improve the performance of the SR579

model. Note that MR1 has only seven events associated with two fault sources and a580

poorly constrained tectonic setting; therefore, the results of this MR must be considered581
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with caution. With reference to Equations (8-11), recalling that the rupture area is582

obtained by the regression log10Aw = a + b Mw with b ∈ {0.82, 0.90, 0.98} according583

to the faulting type (Wells & Coppersmith , 1994), it turns out that XB ∝ 100.75 Ms ,584

XM ∝ 101.5 Mw , XE ∝ 10(1.76,1.84) Mw , and XS ∝ 10(0.26,0.34) Mw , where (., .) indicates the585

variability range of the magnitude coefficient. The same order of size of this coefficient586

in RB-RS and RM-RE can explain the similar performances of these models in the MRs587

where no or few events with Mw ≥ 6.5 were recorded.588

5.2.2 Retrospective forecast validation589

Another tool to compare the performances of the four versions of the SR model is the590

analysis of their forecasting skill through retrospective forecast validation. Table 8 shows591

the value of the Ando & Tsay information criterion (Eq. (21)) for each model and for592

each MR. In the seven MRs of MR2-MR8, the highest value is given by model RS, and in593

the remaining MR1, by model RE. These results agree with those provided by the Bayes594

factor, except for MR3 where, however, the values are very similar. In all of the cases595

except MR1, as the pairwise differences are less than 2, there is slight evidence in favor of596

these models.597

region

model
RB RM RE RS

MR1 70.7222 64.6214 63.4842 73.5678

MR2 127.5156 128.6673 128.6785 126.1706

MR3 226.8038 227.2734 227.3653 226.5803

MR4 233.6563 234.7216 234.8703 231.9754

MR5 102.7009 103.3292 103.4852 100.2118

MR6 131.4636 131.4883 131.2725 130.4955

MR7 200.3160 200.3123 200.1481 199.6899

MR8 164.4944 164.6212 164.5529 162.4373

Table 8: Ando & Tsay information criterion (Eq. (21) times −2n) evaluated for the four

stress release models. Bold: minimum value, which indicates the best model in each MR.

Another retrospective validation is carried out by evaluating the expected occurrence598
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time of each earthquake (target event) included in each MR dataset, from right after the599

occurrence of the event that precedes it. The discrepancies between the expected times600

and the actual earthquake occurrence times can then be calculated. To this end, we use601

the Gompertz distribution (Equation 32) and its statistical summaries: mean, median,602

75% HPD interval, and 90% HPD interval. Figure 7 provides two forecast examples: one,603

(retrospectively) issued for MR1 on 1854/12/29, the date of the occurrence of a Mw 5.77604

earthquake, shows a waiting time to the next event that relatively closely predicts the605

occurrence date of the 1887/02/23, Mw 6.29, earthquake; the other is issued for MR2 on606

1776/07/10, the date of occurrence of a Mw 5.82 earthquake, and closely predicts the607

waiting time to the 1788/10/20, Mw 5.71, earthquake. Note the different shapes of the608

two density functions that characterize the expected interevent times that vary from more609

than 30 years to about 12 years.610
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Figure 7: Examples of the estimated density functions of the time to next event, and their

statistical summaries. Legend: Gompertz density function (solid curve), mean (open

circle), median (solid circle), and 75% HPD (solid horizontal segment) and 90% HPD

(dotted horizontal segment) intervals. The forecast issue date is denoted by a short

vertical bar (|), and the occurrence time of the target event by a long, dashed, vertical

line. The examples are taken from MR1 (left) and MR2 (right) and are based on the RE

and RS models, respectively.

Table 9 summarizes the discrepancies of the forecasts for the four versions of the SR611
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model for the eight MRs, in terms of the average lengths of the 75% HPD and 90% HPD612

intervals, as well as the mean absolute (root-mean-square) errors between the medians613

(means) and the observed times. For the absolute error, it is reasonable to compute its614

standard deviation, which is of the same order of magnitude as its mean in all of the615

MRs. In all of the MRs, the lowest values (or minimum discrepancy) essentially confirm616

the models chosen according to the Bayes factor (Table 7), except for MR3; in this MR,617

even if the values of the indicators are very similar to each other, they support the model618

RS in agreement with the Ando & Tsay information criterion (see Table 8). Hence,619

hereinafter we report the results provided by model RE for MR1, and by model RS for620

the remaining MRs. The energy and the scaled energy again appear to be the appropriate621

quantities to be used in SR models.622
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Region Model HPD average length Average discrepancy
90% 75% Median Mean

MR1 RB 94.4 65.9 27.9 40.7
RM 64.6 44.4 14.4 26.4
RE 62.5 42.8 13.8 25.3
RS 117.8 78.1 37.6 51.0

MR2 RB 33.8 20.8 9.1 12.6
RM 35.2 21.1 9.3 13.2
RE 35.3 21.0 9.2 13.1
RS 31.8 20.8 8.8 11.7

MR3 RB 14.0 8.4 4.6 7.4
RM 14.1 8.5 4.6 7.5
RE 14.1 8.5 4.7 7.5
RS 13.9 8.4 4.6 7.4

MR4 RB 19.9 12.0 6.6 8.8
RM 20.0 11.9 6.7 9.1
RE 20.0 11.9 6.7 9.1
RS 19.3 12.1 6.6 8.6

MR5 RB 31.1 19.3 8.7 12.1
RM 32.0 19.0 8.7 12.6
RE 32.1 19.0 8.8 12.7
RS 27.8 19.2 8.1 10.7

MR6 RB 50.5 32.4 12.8 17.7
RM 51.6 32.7 13.2 18.0
RE 51.9 33.1 13.2 18.1
RS 48.1 32.3 12.2 17.0

MR7 RB 21.1 12.6 6.9 8.5
RM 21.1 12.6 6.9 8.5
RE 21.0 12.5 6.9 8.5
RS 20.8 12.6 6.8 8.3

MR8 RB 50.6 30.4 14.6 19.9
RM 51.2 30.5 14.7 20.2
RE 51.1 30.5 14.7 20.1
RS 46.4 30.1 14.2 18.3

Table 9: Ability of retrospective forecasting of the four stress release models in each MR,
in terms of the following indicators: average length of the 75% and 90% HPD intervals,
the mean absolute (root-mean-square) error between the expected median (mean) and
observed occurence times. Bold, lowest values.

Figure 8 shows the results of the retrospective validation of all of the data in MR3 by623

representation of the statistical summaries of the estimated Gompertz density functions624

(see examples in Figure 7). The results for the other MRs are shown in Appendix C625

(Figures C1-C7). In these figures the reliability of the forecasts is expressed as the time626

discrepancy with respect to the actual occurrence of the targeted event. As a visual627

tip, for comparing the various discrepancies one with the other, time lines are vertically628
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aligned with respect to the actual occurrence time of the target events. Forecasts to the629

right of the alignment thus correspond to overestimations of the interevent time, and the630

opposite for those to the left. In the case of MR3, the actual event time is outside the631

90% HPD interval only for 4 of the 39 events examined, whereas for 30 events it is within632

the 75% HPD interval.633
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Figure 8: Time lines of 39 retrospective forecasts for MR3, RS model, in order of de-

scending date from the top to the bottom. Each forecast is as would have been issued on

the occurrence date (shown on the left, and marked by a short vertical bar) of an event

in the MR dataset, and is aimed at predicting the date (on the right) of the next event

(target). The forecasts are shown by the statistical summaries of their Gompertz density

functions (see Figure 7). The time lines are shifted laterally so that they intersect the

vertical dashed line at the actual occurrence date of the target event.39



5.2.3 Prospective forecast validation634

To conduct prospective validation, there is the need to first determine which earthquakes635

that occurred since the beginning of 2003 are consistent with the learning dataset used.636

To this end, we used CPTI11 for the period from 2003-2006, and ISIDe for the period637

from 2007-2012 (see Section 3), where there were the following four earthquakes:638

1. 2003/09/14, Mw = 5.29 ± 0.09 (from CPTI11), Bolognese Apennines, reverse639

faulting, MR3;640

2. 2008/12/23, Mw = 5.4, (Ml = 5.2, from ISIDe), Parma, reverse faulting, MR3;641

3. 2012/05/20, Mw = 5.9 (Ml = 5.9, from ISIDe), Finale Emilia, reverse faulting,642

MR3;643

4. 2009/04/06, Mw = 6.1 (Ml = 5.9, from ISIDe), L’Aquila, MR4.644

The CPTI11 catalog assigns earthquake #1 a magnitude that is very close to the645

threshold (Mw ≥ 5.3) that we considered for the learning phase. However, Rovida et646

al. (2011) reported that the use of new empirical relations in CPTI11 decreases the647

magnitudes < 5.5 and increases those > 5.5, with respect to the CPTI04. Therefore,648

according to the rules of our learning catalog (CPTI04), the 2003/09/14 earthquake would649

be likely to be beyond the threshold, and we thus include it in the validation procedure650

with Mw = 5.3. The three earthquakes with Mw ≥ 5.3 that occurred in the period 2007-651

2012 (#2, #3, and #4) are taken from ISIDe by exclusion of their aftershocks, i.e., for652

homogeneity with the CPTI04 declustering, the events that occurred within 30 km and 90653

days are excluded. Note also that ISIDe uses local magnitude (Ml), and thus we obtain654

Mw values using the same conversion formula (Mw = 0.812 Ml + 1.145) used for the655

compilation of CPTI04 (MPS Working Group 2004 , 2004).656

The various magnitude determinations for earthquake #4 span a wide range that657

depends on the co-existence of source and path complexities and heterogeneities in the658

local seismic response (Ameri et al. , 2012). The most significant magnitude values are:659

Ml = 5.9, based on the INGV seismic bulletin from ISIDe; Mw = 6.08, based on the time-660

domain moment tensor (Scognamiglio et al. , 2010); Mw = 6.13, based on the regional661
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moment tensor (Herrmann et al. , 2011); Ml = 6.08 ± 0.17, based on the Huber mean662

of accelerometric determinations (Maercklin et al. , 2011); and Mw = 6.3, based on the663

regional centroid moment tensor (Pondrelli et al. , 2010). We thus adopt Mw = 6.1, as664

this appears to be the most frequent value.665

Table 10 summarizes the prospective forecasts provided by the RE model for MR1,666

and by the RS model for the other MRs. Note that the forecast issue dates considered667

here are: the date of the latest event in each MR learning dataset; the end date of the668

learning catalog (end of 2002, everywhere); the date when any earthquake occurred in669

each MR over the years 2003-2012 (in our case in MR3 and MR4); and the beginning of670

2013. Forecasts are addressed in terms of the probability distribution of the time to the671

next event, as summarized by the median, the mean, and its standard deviation, as well672

as by the 75% HPD and 90% HPD intervals.673

In MR4, after the last observed event in the learning catalog (2001/11/26; Table 10,674

first line in the MR4 block), it can be expected that the next earthquake with Mw ≥ 5.3675

will be in early 2011 according to the mean, with a standard deviation of ±8.4 years; or by676

2008.4, 2014.7, or 2022.7 with probabilities of 50%, 75%, and 90%, respectively. A little677

more than a year later (2003/01/01; Table 10, second line), by adding the information678

that no event had occurred in the meanwhile, the expected time to the next event moves679

forward by a year. This additional information not only lengthens the waiting time to680

the next event, but also reduces the uncertainty on the HPD interval length. After the681

2009/04/06 earthquake (Table 10, third line), the estimation of the model parameters is682

fully repeated when the new earthquake is added to the dataset. Based on the seismic683

and tectonic knowledge available in 2002, and reinforced only with the addition of about684

10 years of seismic history (Table 10, fourth line), the RS model predicts that the next685

earthquake with Mw ≥ 5.3 in MR4 can be expected in 2022, according to the mean value,686

or by 2019.5, 2025.8, and 2033.7, with probabilities of 50%, 75%, and 90%, respectively.687
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Region Date of forecast issue HPD 75% HPD 90% Median Mean (st.dev.)
MR1 1887.2 2046.6-2327.3 1985.7-2401.5 2190.8 2198.1 (54.5)

2003.0 2040.9-2304.0 2003.0-2359.0 2191.7 2204.2 (48.9)
2013.0 2044.4-2301.0 2013.0-2360.1 2193.9 2207.3 (48.3)

MR2 1977.7 1977.7-2009.8 1977.7-2025.9 1994.9 1999.9 (16.9)
2003.0 2003.0-2024.0 2003.0-2036.9 2013.8 2018.1 (13.4)
2013.0 2013.0-2033.0 2013.0-2045.9 2023.2 2027.7 (13.4)

MR3 1998.2 1998.2-2006.7 1998.2-2012.5 2002.4 2004.4 ( 6.1)
2003.0 2003.0-2011.1 2003.0-2016.7 2007.0 2008.9 ( 5.9)
2003.7(a) 2003.7-2011.6 2003.7-2016.9 2007.6 2009.4 ( 5.7)
2009.0(b) 2009.0-2016.8 2009.0-2022.1 2012.8 2014.7 ( 5.6)
2012.4(c) 2012.4-2020.2 2012.4-2025.5 2016.3 2018.1 ( 5.6)
2013.0 2013.0-2020.8 2013.0-2026.2 2016.9 2018.7 ( 5.6)

MR4 2001.9 2001.9-2014.7 2001.9-2022.7 2008.4 2011.0 ( 8.4)
2003.0 2003.0-2015.6 2003.0-2023.5 2009.4 2012.0 ( 8.3)
2009.3(d) 2009.3-2022.3 2009.3-2030.4 2015.9 2018.5 ( 8.5)
2013.0 2013.0-2025.8 2013.0-2033.7 2019.5 2022.1 ( 8.3)

MR5 2002.8 2002.8-2019.2 2002.8-2029.5 2011.5 2015.0 (11.1)
2003.0 2003.0-2019.3 2003.0-2029.6 2011.6 2015.2 (11.1)
2013.0 2013.0-2028.4 2013.0-2039.9 2020.7 2024.8 (11.8)

MR6 1998.7 1998.7-2029.0 1998.7-2047.3 2014.7 2020.8 (19.7)
2003.0 2003.0-2031.7 2003.0-2049.6 2018.0 2024.1 (19.2)
2013.0 2013.0-2040.5 2013.0-2059.0 2027.0 2033.5 (19.4)

MR7 2001.4 2001.4-2012.5 2001.4-2020.4 2006.8 2009.6 ( 8.4)
2003.0 2003.0-2014.0 2003.0-2021.9 2008.4 2011.1 ( 8.3)
2013.0 2013.0-2025.0 2013.0-2033.7 2018.9 2021.9 ( 9.1)

MR8 2002.7 2002.7-2035.0 2002.7-2053.8 2019.4 2025.5 (19.5)
2003.0 2003.0-2035.3 2003.0-2054.0 2019.7 2025.7 (19.5)
2013.0 2013.0-2043.9 2013.0-2061.9 2029.1 2035.0 (19.1)

(a) just after 2003/09/14 earthquake, Mw 5.3
(b) just after 2008/12/23 earthquake, Mw 5.4
(c) just after 2012/05/20 earthquake, Mw 5.9
(d) just after 2009/04/06 earthquake, Mw 6.1

Table 10: Prospective forecasts according to the RE model in MR1, and to the RS model in
the other MRs. All of the dates are expressed in decimal years. The estimated probability
distribution of the time to the next event is expressed as: 75% and 90% HPD intervals,
median, mean, and standard deviation (years).

In MR3, three earthquakes occurred in the period 2003-2012, and thus the forecasts can688

be successively updated after each one of these. Note that all of these successive forecasts689

fall within the 75% HPD interval, and that the average absolute error of the forecast time690

for all three of these occurrences is 1.7 years when considering the median values, whereas691

the root-mean-square error is 3.29 years when considering the mean values.692

We note that the model parameters are fully re-estimated after every new earthquake,693

by its inclusion in the learning dataset of the MR. The robustness of these parameter694

estimates is shown by the similar intensity functions (Figure 9) they allow, and the similar695
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values they achieve (Table B1).696
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Figure 9: Estimate (ergodic mean) of the intensity function for the RS model in MR3 and

MR4, updated whenever new information (i.e., earthquake occurrence) is included in the

relevant dataset.

For completeness of information, Table C1 provides a summary of all of the forecasts697

issued at the end of the learning catalog (end of 2002) for the four versions of the SR698

model for each MR.699

5.3 Comparison with the Poisson model700

The Poisson model is a time-independent point process that is defined by its conditional701

intensity function λ(t) = eα, where α is a real parameter; in particular, a SR model where702

the b parameter tends to zero is a Poisson model. In this view, it is apparent that the SR703

model is conceived as a time-dependent version of the Poisson model, and its conditional704

intensity function is expected to evolve in time around an average rate according to the705

variation of the level of ‘stress’ in the region. To compare the performances of the Poisson706

and SR models, the results on the Bayesian analysis of the Poisson model for each MR707

are summarized below. Similar to the results in Table 5, the Poisson parameter α is708

estimated for each MR; from MR1 to MR8 respectively, these estimates are −4.11, −2.67,709

−1.78, −2.12, −2.51, −3.05, −2.16, and −3.03. Similar to Tables 6 and 7, Table 11 shows710

the estimated values of the marginal log10 likelihoods and the Bayes factors between the711

versions of the SR and Poisson models.712
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For the marginal log10 likelihood, the Poisson model behaves worse than the best SR713

model for each MR. Based on the Bayes factor, we can note: positive/ strong evidence714

in favor of model RE in MR1 and MR3; on the whole, positive/ strong evidence in favor715

of the SR models in MR4, MR7, and MR8; and slight evidence in favor of RS in the716

remaining MRs.717

marg. log10B12

Region log10 L RB RM RE RS

MR1 -15.8748 0.7279 2.0063 2.2791 0.2168
MR2 -27.3635 0.0262 -0.2294 -0.2052 0.2392
MR3 -49.7749 0.0800 -0.0207 0.7866 0.0405
MR4 -52.3692 1.9704 1.7573 1.7374 2.2144
MR5 -21.7897 -0.1705 -0.2864 -0.3353 0.2971
MR6 -28.5106 0.2513 0.2531 0.2897 0.4080
MR7 -43.7551 0.6019 0.6080 0.6622 0.7377
MR8 -36.1995 0.8118 0.7712 0.8507 1.1933

Table 11: Global summary measures of the performance of the Poisson model in each

MR: (marg.log10 L), marginal log10 likelihood; (log10B12), logarithm of the Bayes factors

of the four SR models, M1, versus Poisson model, M2. As for the Bayes factor, the

Jeffreys’ scale is used for rating the evidence in favor of M1 models: bold, 0-0.5, ‘barely

worth mentioning’; gray striped, 0.5-1, ‘positive evidence’; dark-gray striped, 1-2, ‘strong

evidence’.

Table 12 shows the results of the retrospective forecast validation by applying the718

Poisson model to each MR. We recall that according to the Poisson model, the waiting719

time to the next event is exponentially distributed with mean e−α, and consequently the720

forecast is time-independent. By comparing this with the results in Table 9, we note721

that the 90%-HPD intervals and all of the average discrepancies between the observed722

occurence times and the forecasted values estimated by the best SR model are less than723

those of the Poisson model, whereas the 75%-HPD intervals related to the Poisson model724

are narrower.725

Taking the cue from this slightly larger uncertainty of the forecasts issued by the SR726

model, we highlight that the values in Table 9 are computed immediately after an event727
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and that they can be updated as time passes and no occurrence happens, obtaining a728

reduction in the 75% and 90% HPD intervals of the waiting time variable (as shown in729

Table C1); of course this is not possible with the homogeneous Poisson model, for which730

the mean and variance of the waiting time do not depend on the time elapsed since the731

last event. This is more clearly depicted in Figure 10; through the model RS, we calculate732

the forecasts issued immediately, and 10, 20 and 30 years since the 1922/12/29 earthquake733

in MR4. We note that the forecasts are modified based on the additional information on734

nonoccurrence, and that the average waiting times and HPD intervals are shortened.735

Region HPD length Average discrepancy

90% 75% Median Mean

MR1 154.1 87.1 41.9 61.7

MR2 34.5 20.2 9.1 12.4

MR3 13.9 8.3 4.8 7.6

MR4 19.6 11.7 6.7 9.2

MR5 29.7 17.3 8.3 12.3

MR6 50.8 29.8 14.4 20.2

MR7 20.4 12.1 6.8 8.5

MR8 49.1 29.0 14.7 20.3

Table 12: Ability of retrospective forecasting of the Poisson model in each MR, in terms

of the following indicators: length of the 75% and 90% HPD intervals, and mean ab-

solute (root-mean-square) error between the expected median (mean) and the observed

occurence times. Bold, the lowest values for each MR compared to those in Table 9.
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Figure 10: Density functions of the time to the next event and their statistical summaries,

estimated at different issue times before the 1964/08/02 earthquake in MR4 according to

model RS. The forecast issue dates are for immediately after the 1922/12/29 earthquake

(A), and for 10 years (B), 20 years (C), and 30 years (D) after this event. Legend:

Gompertz density function (solid curve), mean (open circle), median (solid circle), 75%

HPD (solid horizontal segment), and 90% HPD (dotted horizontal segment). The forecast

issue date is indicated by the gray dashed vertical line, and the occurrence time of the

target event by the black dashed vertical line.
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6 Final remarks736

We examined four different versions of the classic SR model, based on the probabilistic737

translation of the elastic rebound theory and including the contribution of the tectonic738

information. All of these model versions imply a sudden hazard reduction right after a739

strong earthquake (threshold set at Mw ≥ 5.3) and an exponentially increasing hazard740

function between two consecutive earthquakes (excluding the aftershock sequences).741

The four model versions, however, differ from one to the other in the quantity - strain,742

moment, energy, and scaled energy - as chosen to represent the physical process respon-743

sible for the generation of earthquakes. Equations (8)-(11) highlight the key elements744

(i.e., earthquake magnitude, fault rupture area, exponential coefficient) that quantify the745

abrupt change in the system when an earthquake occurs. The affinity among these el-746

ements is reflected in the similarity of the shapes of the relevant conditional intensities747

(Figures 5 and 6). Despite the general similarity, note that the conditional intensity vari-748

ation (equivalent to a hazard drop) is different in the different SR models, depending on749

the sizes of the intervening earthquake. With reference to Figure 6, take for example the750

amount of the vertical drop in the conditional intensity after the 1915/01/13, Mw = 6.99,751

earthquake and the vertical drop after all of the other moderate earthquakes (Mw < 6).752

The ratio between these two values for the RS model is much smaller than the same753

ratio in any of the RB, RM, and RE models. In other words, when the scaled energy754

is adopted, the SR model produces a hazard decrease that is relatively heightened for755

smaller earthquakes and abated for larger earthquakes.756

As for the model comparisons, the Bayes factor indicates (Table 7) that the RS model757

performs, slightly in MR2, MR4, MR6-MR8, and moderately, in MR5, better than the other758

models. RE performs considerably better than the others in MR1 and moderately so in759

MR3. However, we note that the results for MR1 should be taken cautiously because of760

the lower number of events (only seven) and its nonuniform tectonic characterization. For761

the predictive performance, the Ando & Tsay information criterion supports (Table 8) the762

conclusions reached by the Bayes factor, except for MR3, where the criterion assigns slight763

evidence in favor of RS. Overall, although the differences among the model performances764
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are not clearly significant, we suggest that adopting the energy or the scaled energy as a765

proxy measure of earthquake size is advisable. Indeed, the scaled energy allows the model766

to be enhanced with information on the rupture parameters, such as the area and the767

mechanism, which can be expected to become progressively less uncertain, in the future,768

as knowledge of earthquake faulting improves (e.g., fault scaling relationships).769

The probability distribution of the time to next event for the SR model has been ana-770

lytically identified as the Gompertz distribution (Section 4.2.3) with two parameters that771

depend on the model parameters and on the value of the hazard function at time t (Section772

4.2.3). After summarizing its main properties, we examined the Gompertz distribution773

in the Bayesian framework by evaluation of its posterior predictive distribution through774

the Markov chains generated from the posterior distributions of the model parameters in775

the estimation procedure (the McMC algorithm is detailed in Appendix B). These find-776

ings bring about immediate benefit, by allowing modelers to avoid approximating this777

distribution through numerical simulations (e.g., Wang et al. 1991). We thus used778

the Gompertz distribution and its statistical summaries to run a set of retrospective and779

prospective forecasts of the occurrence times of the main shocks, and then we validated780

the procedure against the data observed.781

Retrospective forecasts have also been used as a further criterion for supporting the782

selection of the best SR models. Different measures of the discrepancy between the783

expected occurrence time of an earthquake and the time of its actual occurrence (Table784

9) have shown that the retrospective analysis supports the choice of the RS model in most785

of the cases analyzed here.786

Based on the knowledge available in 2002 in terms of the seismicity and tectonics,787

prospective forecasts issued at the very beginning of 2003 indicated that in decreasing788

order of immediacy, MR3, MR7, and MR4 were the most prone areas to be hit by earth-789

quakes of Mw ≥ 5.3 in the following decade (Table 10). Of these MRs, earthquakes have790

actually occurred in MR3 (three events) and MR4 (one event) with forecasts in terms of791

median and mean with an average accuracy of about 6 years. However, no earthquake has792

occurred in MR7 up to the end of 2012. By adding this information to the 2013 update,793
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the forecast postpones the expected occurrence time of the next event considerably (by794

more than 10 years).795

As we anticipated in Section 4.2.3, updating a forecast during the waiting time by796

adding the information that no earthquake has occurred tends to postpone the time to797

the next event and to reduce the uncertainty around that value. This effect is achieved798

through the shortening and peaking of the probability density function of the time to the799

next event. The prospective forecasts reported in Table 10 confirm this general behav-800

ior, although the amount of delay and uncertainty gain remain variable, and depend on801

repeated parameter estimates.802

It is important to recall that both the time and space scales of the SR models and their803

associated uncertainties that we have investigated here depend on the characteristics of804

the available datasets. Note that there is a trade-off between the size of the region to be805

investigated and the length of the learning dataset. On the one hand, a reduction in the806

size of the region would be likely to improve its tectonic characterization, which would807

allow the analyst to single out homogeneous faults and avoid mixing tectonic structures808

that obey mechanically different stress-loading systems. It would also imply a smaller809

spatial domain within which the forecasted earthquakes can occur. On the other hand, a810

smaller area would capture fewer earthquakes for building the learning dataset, thereby811

worsening the robustness and overall quality of the SR model. The balancing of these812

factors (tectonics and seismicity) in the Italian case allowed us to investigate only a limited813

number of cases (the eight MRs). Additional studies are thus needed for the exploration814

of more fault systems with different seismic histories, to further test the energy and scaled815

energy as the best option in SR models, and for the refining of the time-space limits of the816

SR model applications in robust earthquake forecasting. Similar limitations hold for the817

application of the interesting extension of the SR model which was presented by Jiang et818

al. (2011) and which requires knowledge of source parameters that are rarely available819

for historical Italian earthquakes.820

Depending on the data availability, possible future research directions can also be821

aimed at developing the linked (or coupled) versions of the SR models (e.g., Bebbington822
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& Harte 2003, Kuehn et al. 2008) on the same Italian data, using the (scaled) energy823

as the measure of the sizes of the events.824
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A Completeness of the catalog: statistical analysis984

Let us consider a catalog that covers the time interval (T0, Tf ), and suppose that there is985

a point s in this interval in which the seismicity rate changes, so that the global model986

for the number of events within the given time interval is the mixture of two Poisson987

processes, with the intensity function λ(t) given by:988

λ(t) = h1 It<s(t) + h2 It≥s(t) (33)989

where h1 and h2 are the seismicity rate of the pre-complete and complete parts, re-990

spectively. According to the Bayesian approach, both the rates and the position of the991

changepoint s are random variables; we assume that both h1 and h2 follow the prior dis-992

tribution Gamma(a0, b), with density function b−a0e−h/bha0−1/Γ(a0), while s is uniformly993

distributed on (T0, Tf ). A priori information on the variability of the yearly occurrence994

rate is inferred from the general considerations of the average number of events under995

examination. In the present study, we considered the shocks with Mw ≥ 5.3 recorded996

in the CPTI04 for 1600-2002, a period generally considered sufficiently complete in the997

literature on Italian seismicity (Stucchi et al. , 2004). The uncertainty on the occurrence998

rate is then incorporated in the model through a further hierarchical level by considering999

b as an InvGamma(c0, f0) distributed random variable. In our case, parameter a0 and1000

hyperparameters c0 and f0 are set as a0 = 0.1, c0 = 3, and f0 = 5. For the time interval1001

(T0, Tf ), we set Tf = 2003, as the end of the CPTI04, while T0 varies in each MR. To1002

balance the final gap between Tf and the time tn of the last event, we approximately set1003

T0 back by (Tf − tn), so we have T0 = t1 − Tf + tn, with t1 as the time of the first event1004

in the dataset.1005

We estimate the model parameters h1, h2, s, and b through Gibbs sampling, one of the1006

most popular McMC methods, which is a class of methods that are based on the simulation1007

of samples of dependent values that constitute a realization of a stationary Markov chain1008

asymptotically convergent in distribution to the quantity to estimate (Gilks et al. ,1009

1996). For a detailed description of the algorithm, see Rotondi & Garavaglia (2002).1010
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Model estimations provide the posterior probability distributions of the parameters; the1011

most probable value (mode) of s is assumed as the beginning of the complete part of1012

the dataset, whereas the posterior mean of h2 gives the estimate of the corresponding1013

seismicity rate. We recall that measures of the uncertainty of the estimates, expressed1014

through measures of location (mean, mode) and dispersion (variance, quantiles) can be1015

drawn from the posterior distribution of the parameters.1016

B McMC methods1017

We implemented the Metropolis-Hastings algorithm to generate a Markov chain for each1018

parameter, as summarized below. Assuming some transition kernel q(θ, θ∗) (called the1019

proposal distribution), from which it is easy to simulate, such that:1020

1. Initialize the chain by simulating θ(0) from the prior distribution π0(θ), and set the1021

iteration counter j = 1.1022

2. Generate a proposed value θ∗ using the kernel q(θ(j−1)), θ∗).1023

3. Evaluate the acceptance probability α(θ(j−1), θ∗) of the proposed move, where:1024

α(θ(j−1), θ∗) = min

{
1,

π(θ∗|data) q(θ∗, θ(j−1))

π(θ(j−1)|data) q(θ(j−1), θ∗)

}
.1025

4. Put θ(j) = θ∗ with probability α(θ(j−1), θ∗), otherwise retain the current value of θ:1026

θ(j) = θ(j−1).1027

5. Change the counter from j to j + 1 and return to step 2.1028

Given a function g(θ), under suitable regularity conditions it has been shown that the1029

ergodic mean

∑R
j=1 g(θ(j))

R
converges almost surely to Eθ|data {g(θ)} as R→∞; therefore,1030

if we set g(θ) = θ or g(θ) = [θ − E(θ)]2, by applying this theorem, we obtain the estimate1031

of the mean and variance of θ respectively. It is important to note that the density1032

of interest π(· | data) only enters in the acceptance probability as a ratio, and so the1033

method can be used when this density is known up to a normalizing constant, for instance1034
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π(θ | data) ∝ L(data | θ) π0(θ). The Markov chain generated through the algorithm is1035

reversible and has a stationary distribution π(θ | data) irrespective of the choice of the1036

proposal distribution. The critical point of this method is how to assess the convergence1037

of the sampler; to solve this issue, we first discard the ’burn-in’ of the simulated sequence1038 {
θ(j)
}R
j=0

, i.e., its initial part (ca. 10%-20%), to reduce the dependence on the initial1039

value; then we apply one of the software tools that are available for McMC convergence1040

diagnostics. In particular, we choose the open-source package BOA (Smith , 2005) for the1041

R system for statistical computing (R Development Core Team , 2006), and check that1042

all of the generated sequences do not fail the following tests: Geweke test, Heidelberger1043

& Welch test, and Raftery & Lewis test (Smith , 2007). Table B2 reports the prior and1044

proposal distributions used in the McMC algorithm for the parameter estimation: we1045

note that the mean of every proposal is given by the current value of the chain, whereas1046

the value of the variance is assigned through some pilot runs of the algorithm so that1047

the acceptance probability varies in the range of 25% to 40% - a range that has been1048

suggested in the statistical literature to be the best. As an example, Figure B2 shows the1049

prior density and the kernel density estimates of the posterior density of each parameter1050

of the various models obtained by analyzing the data from MR4.1051

t α̂ β̂ ρ̂

MR3 (end of the catalog) 2002/12/31 -1.80 1.89E-1 5.20E-2

(event) 2003/09/14 -1.83 1.90E-1 5.52E-2

(event) 2008/12/23 -1.83 1.93E-1 5.53E-2

(event) 2012/05/20 -1.85 1.94E-1 5.68E-2

2012/12/31 -1.84 1.95E-1 5.62E-2

MR4 (end of the catalog) 2002/12/31 -2.13 5.36E-1 3.31E-2

(event) 2009/04/06 -2.15 5.32E-1 3.35E-2

2012/12/31 -2.13 5.52E-1 3.29E-2

Table B1: Parameter estimates of the RS models for MR3 and MR4, updated by enlarging

the history Ht on which the intensity function is conditioned.
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Prior distribution Proposal distribution
Model Region α β ρ α β ρ
RB MR1 N(-4.00; 13.0) Γ(0.50; 2.0E-1) Γ(0.10; 8.1E-3) N(∗; 1.7) LogN(∗; 4.0E-2) LogN(∗; 4.0E-4)

MR2 N(-2.50; 5.0) Γ(0.10; 8.1E-3) Γ(0.20; 3.2E-2) N(∗; 8.0E-1) LogN(∗; 7.5E-3) LogN(∗; 1.5E-2)
MR3 N(-1.00; 8.0E-1) Γ(0.05; 2.0E-3) Γ(0.40; 1.3E-1) N(∗; 3.0E-1) LogN(∗; 1.8E-3) LogN(∗; 3.0E-2)
MR4 N(-1.50; 1.8) Γ(0.05; 2.0E-3) Γ(0.40; 1.3E-1) N(∗; 3.5E-1) LogN(∗; 5.0E-4) LogN(∗; 4.0E-2)
MR5 N(-2.00; 3.2) Γ(0.20; 3.2E-2) Γ(0.40; 1.3E-1) N(∗; 9.0E-1) LogN(∗; 1.0E-2) LogN(∗; 3.0E-2)
MR6 N(-2.50; 5.0) Γ(0.10; 8.1E-3) Γ(0.50; 2.0E-1) N(∗; 8.0E-1) LogN(∗; 2.0E-3) LogN(∗; 2.3E-2)
MR7 N(-2.00; 3.2) Γ(0.02; 3.2E-4) Γ(1.00; 8.1E-1) N(∗; 4.0E-1) LogN(∗; 1.6E-4) LogN(∗; 5.0E-1)
MR8 N(-3.00; 7.0) Γ(0.03; 7.0E-4) Γ(0.20; 3.2E-2) N(∗; 7.0E-1) LogN(∗; 4.0E-4) LogN(∗; 6.0E-2)

RM MR1 N(-5.00; 20.2) Γ(0.50; 2.0E-1) Γ(0.30; 7.0E-2) N(∗; 2.0) LogN(∗; 6.0E-3) LogN(∗; 1.0E-3)
MR2 N(-2.50; 5.0) Γ(0.03; 7.0E-4) Γ(0.80; 5.0E-1) N(∗; 8.0E-1) LogN(∗; 3.0E-4) LogN(∗; 4.0E-1)
MR3 N(-1.00; 8.0E-1) Γ(0.02; 3.2E-4) Γ(0.80; 5.0E-1) N(∗; 3.0E-1) LogN(∗; 2.0E-4) LogN(∗; 2.5E-1)
MR4 N(-1.50; 1.8) Γ(0.003;7.0E-6) Γ(3.00; 7.0) N(∗; 3.0E-1) LogN(∗; 3.0E-6) LogN(∗; 5.0)
MR5 N(-2.00; 3.2) Γ(0.01; 8.1E-5) Γ(2.00; 3.2) N(∗; 9.0E-1) LogN(∗; 5.0E-5) LogN(∗; 3.5)
MR6 N(-2.50; 5.0) Γ(0.01; 8.1E-5) Γ(6.00; 30.0) N(∗; 8.0E-1) LogN(∗; 1.5E-5) LogN(∗; 2.4)
MR7 N(-2.00; 3.2) Γ(0.001;1.0E-6) Γ(12.0; 1.1E+2) N(∗; 4.0E-1) LogN(∗; 4.0E-7) LogN(∗; 1.0E+2)
MR8 N(-3.00; 7.0) Γ(0.001;1.0E-6) Γ(8.00; 5.0E+1) N(∗; 7.0E-1) LogN(∗; 3.0E-7) LogN(∗; 8.0E+1)

RE MR1 N(-5.00; 20.2) Γ(1.50; 1.8) Γ(0.05; 2.0E-3) N(∗; 2.0) LogN(∗; 8.0E-2) LogN(∗; 1.0E-4)
MR2 N(-2.50; 5.0) Γ(0.04; 1.3E-3) Γ(0.30; 7.0E-2) N(∗; 8.0E-1) LogN(∗; 8.0E-4) LogN(∗; 8.0E-2)
MR3 N(-1.00; 8.0E-1) Γ(0.04; 1.3E-3) Γ(0.30; 7.0E-2) N(∗; 3.0E-1) LogN(∗; 1.0E-3) LogN(∗; 4.0E-2)
MR4 N(-1.50; 1.8) Γ(0.004;1.3E-5) Γ(2.00; 3.2) N(∗; 3.0E-1) LogN(∗; 8.0E-6) LogN(∗; 3.0)
MR5 N(-2.00; 3.2) Γ(0.02; 3.0E-4) Γ(1.00; 8.1E-1) N(∗; 9.0E-1) LogN(∗; 1.5E-4) LogN(∗; 9.0E-1)
MR6 N(-2.50; 5.0) Γ(0.02; 3.2E-4) Γ(3.00; 7.0) N(∗; 8.0E-1) LogN(∗; 5.0E-5) LogN(∗; 8.0E-1)
MR7 N(-2.00; 3.2) Γ(0.001;1.0E-6) Γ(8.00; 5.0E+1) N(∗; 4.0E-1) LogN(∗; 1.0E-6) LogN(∗; 4.8E+1)
MR8 N(-3.00; 7.0) Γ(0.001;1.0E-6) Γ(8.00; 5.0E+1) N(∗; 7.0E-1) LogN(∗; 3.0E-7) LogN(∗; 6.0E+1)

RS MR1 N(-3.50; 1.0E+1) Γ(3.00; 7.0) Γ(0.01; 8.1E-5) N(∗; 1.7) LogN(∗; 1.7) LogN(∗; 2.0E-5)
MR2 N(-2.50; 5.0) Γ(2.00; 3.2) Γ(0.04; 1.3E-3) N(∗; 8.0E-1) LogN(∗; 1.5) LogN(∗; 8.0E-5)
MR3 N(-1.00; 8.1E-1) Γ(0.30; 7.0E-2) Γ(0.08; 5.0E-3) N(∗; 3.0E-1) LogN(∗; 6.0E-2) LogN(∗; 1.0E-3)
MR4 N(-1.50; 1.8) Γ(1.00; 8.1E-1) Γ(0.04; 1.3E-3) N(∗; 3.0E-1) LogN(∗; 3.8E-1) LogN(∗; 8.0E-5)
MR5 N(-2.00; 3.2) Γ(3.00; 7.0) Γ(0.04; 1.3E-3) N(∗; 9.0E-1) LogN(∗; 4.0) LogN(∗; 6.0E-5)
MR6 N(-2.50; 5.0) Γ(2.00; 3.2) Γ(0.03; 7.0E-4) N(∗; 8.0E-1) LogN(∗; 1.2) LogN(∗; 3.0E-5)
MR7 N(-2.00; 3.2) Γ(0.40; 1.3E-1) Γ(0.08; 5.0E-3) N(∗; 4.0E-1) LogN(∗; 7.0E-2) LogN(∗; 1.0E-3)
MR8 N(-3.00; 7.0) Γ(1.50; 1.8) Γ(0.01; 8.1E-5) N(∗; 7.0E-1) LogN(∗; 5.0E-1) LogN(∗; 3.0E-5)

Table B2: Prior and proposal distributions of the model parameters θ = (α, β, ρ) adopted
in the McMC estimation method. The mean and variance of every prior/ proposal dis-
tribution are reported, so that, e.g., for the Gamma distribution, the shape and scale
parameters can be derived. The mean of each proposal distribution is set equal to the
current value of the corresponding parameter in the Markov chain.
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Figure B1: From top to bottom, the RB, RM, RE, and RS models. Prior density functions

(dotted line); histograms and kernel posterior density estimates (solid line) computed from

the values of the Markov chain of each parameter α, β, and ρ. Example taken from MR3.
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Figure B2: Same as Figure B1. Example taken from MR4.
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C Retrospective validation1052

Figures C1-C7 summarize the retrospective analyses of the forecasts issued at the occur-1053

rence time of every event in the datasets.1054

Region Model HPD 75% HPD 90% Median Mean (st.dev.)

MR1 RB 2003.0-2061.6 2003.0-2106.3 2031.4 2048.3 (41.4)

RM 2003.0-2139.8 2003.0-2201.6 2085.0 2101.2 (39.7)

RE 2003.0-2304.0 2003.0-2359.0 2191.6 2204.2 (48.9)

RS 2003.0-2066.5 2003.0-2119.2 2032.7 2053.1 (51.2)

MR2 RB 2003.0-2026.8 2003.0-2043.2 2014.8 2020.5 (16.7)

RM 2003.0-2028.4 2003.0-2047.1 2015.3 2022.0 (18.9)

RE 2003.0-2027.7 2003.0-2046.0 2014.9 2021.5 (18.9)

RS 2003.0-2024.0 2003.0-2036.9 2013.8 2018.1 (13.4)

MR3 RB 2003.0-2010.8 2003.0-2016.2 2006.8 2008.7 ( 5.7)

RM 2003.0-2010.5 2003.0-2015.8 2006.7 2008.5 ( 5.6)

RE 2003.0-2010.5 2003.0-2015.8 2006.7 2008.5 ( 5.6)

RS 2003.0-2011.1 2003.0-2016.7 2007.0 2008.9 ( 5.9)

MR4 RB 2003.0-2015.5 2003.0-2024.1 2009.2 2012.1 ( 9.0)

RM 2003.0-2015.0 2003.0-2023.5 2008.9 2011.8 ( 9.0)

RE 2003.0-2014.7 2003.0-2022.9 2008.8 2011.6 ( 8.8)

RS 2003.0-2015.6 2003.0-2023.5 2009.4 2012.0 ( 8.3)

MR5 RB 2003.0-2021.0 2003.0-2034.1 2011.8 2016.5 (13.5)

RM 2003.0-2020.9 2003.0-2034.1 2011.6 2016.3 (13.8)

RE 2003.0-2020.8 2003.0-2033.9 2011.6 2016.3 (13.7)

RS 2003.0-2019.3 2003.0-2029.6 2011.6 2015.2 (11.1)

MR6 RB 2003.0-2033.8 2003.0-2054.5 2018.6 2025.8 (21.6)

RM 2003.0-2037.1 2003.0-2059.6 2020.2 2028.0 (23.5)

RE 2003.0-2039.3 2003.0-2062.8 2021.4 2029.5 (24.4)

RS 2003.0-2031.7 2003.0-2049.6 2018.0 2024.1 (19.2)

MR7 RB 2003.0-2014.5 2003.0-2022.7 2008.6 2011.5 ( 8.7)

RM 2003.0-2015.1 2003.0-2023.7 2009.0 2011.9 ( 9.1)

RE 2003.0-2015.4 2003.0-2024.1 2009.1 2012.1 ( 9.3)

RS 2003.0-2014.0 2003.0-2021.9 2008.4 2011.1 ( 8.3)

MR8 RB 2003.0-2025.7 2003.0-2042.5 2014.0 2019.9 (17.5)

RM 2003.0-2023.1 2003.0-2038.2 2012.7 2018.0 (15.7)

RE 2003.0-2022.9 2003.0-2037.7 2012.6 2017.8 (15.5)

RS 2003.0-2035.3 2003.0-2054.0 2019.7 2025.7 (19.5)

Table C1: Prospective forecast after the end date of the learning catalog. Summary of

the estimated probability distributions of the times to next event in each MR provided by

all of the models: 75% and 90% HPD intervals, median, mean, and standard deviation.
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Figure C1: As for Figure 8, validation results related to macroregion MR1 - RE model.
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Figure C2: As for Figure 8, validation results related to macroregion MR2 - RS model.
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Figure C3: As for Figure 8, validation results related to macroregion MR4 - RS model.
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Figure C4: As for Figure 8, validation results related to macroregion MR5 - RS model.
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Figure C5: As for Figure 8, validation results related to macroregion MR6 - RS model.
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Figure C6: As for Figure 8, validation results related to macroregion MR7 - RS model.
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Figure C7: As for Figure 8, validation results related to macroregion MR8 - RS model.
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