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Abstract While the relation between code coverage measures and fault detection is actively
studied, only few works have investigated the correlation between measures of coverage
and of reliability. In this work, we introduce a novel approach to measuring code coverage,
called the operational coverage, that takes into account how much the program’s entities
are exercised so to reflect the profile of usage into the measure of coverage. Operational
coverage is proposed as (i) an adequacy criterion, i.e., to assess the thoroughness of a black
box test suite derived from the operational profile, and as (ii) a selection criterion, i.e., to
select test cases for operational profile-based testing. Our empirical evaluation showed that
operational coverage is better correlated than traditional coverage with the probability that
the next test case derived according to the user’s profile will not fail. This result suggests
that our approach could provide a good stopping rule for operational profile-based testing.
With respect to test case selection, our investigations revealed that operational coverage
outperformed the traditional one in terms of test suite size and fault detection capability
when we look at the average results.
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1 Introduction

Software testing can be based on many criteria (Ammann and Offutt 2016; Bertolino 2007;
Zhu et al. 1997). Among them, operational profile-based testing andcoverage-based testing
provide two quite diverse approaches.

The former is a black-box testing approach: the test cases are selected from the input
domain, trying to reproduce how the software will be used in practice. The aim is to rapidly
detect those failures that would occur most frequently in operation (Musa 1993). Indeed,
operational profile-based testing is grounded on the notion that not all faults have the same
importance: depending on how it will be exercised by the users, a program can show quite
different levels of reliability (Lyu et al. 1996).

On the other hand, coverage-based testing is white-box: a program is tested until all, or
a pre-defined percentage of, targeted code entities (e.g., statements or branches) have been
executed at least once. Starting from the 70’s, code coverage criteria have been actively
studied, and many techniques and tools have been proposed (Zhu et al. 1997). Coverage-
based testing is appealing because it provides in automated way a quantitative feedback from
a testing session, i.e., the ratio between the entities covered and their total number. Such
coverage measure, used as a supplement to other non-coverage-based testing methods, can
be an effective tool (Staats et al. 2012), for example to decide whether a test suite derived
using another black-box method is adequate, as well as to pinpoint portions of code that
have not yet been tested.

What remains controversial is the relation between test coverage and testing effective-
ness, and has been the subject of countless analytical and empirical studies (see, e.g., Basili
and Selby 1987; Wong et al. 1994, among the earliest ones). After three decades, the debate
on the topic does not seem to decline, and current testing research still seeks an answer to
questions such as “Is Branch Coverage a Good Measure of Testing Effectiveness?” (Wei
et al. 2012). A recent large scale experiment (Inozemtseva and Holmes 2014) concludes that
high coverage measures achieved by a test suite do not necessarily indicate that the latter
also yields high effectiveness. Thus, generating test cases for coverage as a target may be
risky, as warned from many sides (e.g., Marick 1999; Staats et al. 2012).

On the other side, we observe that almost all studies assessing the effectiveness of cov-
erage testing have used as a measure of effectiveness the faults (or mutations) detected
without distinguishing their probability of failure in use (e.g., Inozemtseva and Holmes
2014; Kochhar et al. 2015; Staats et al. 2012; Wei et al. 2012; Wong et al. 1994, just to cite
a few). Thus, we still know little about how (and if) coverage testing is related to delivered
reliability (Frankl et al. 1998). An exception is the early study by Del Frate and coauthors
(Del Frate et al. 1995), who observed that the relation between coverage and reliability
varied widely with subject’s size and complexity.

In addition, all studies so far (concerned with either faults or mutants detected, or deliv-
ered reliability) considered traditional coverage measures, which require that all entities
are covered at least once. In other terms, all entities are considered as having same rele-
vance for the purpose of completing coverage. This assumption seems contradictory with
the very idea of reliability according to which user’s functions should be exercised more
or less frequently accordingly to user profiles, and in doing this, code entities as well will
consequently be exercised with different frequencies.

In our research, we have been investigating for some time novel coverage measures that
customize coverage to user’s relevance (Miranda 2014, 2016; Miranda and Bertolino 2015,
2016b). In particular, in previous work, we distinguished between relevant entities and not
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relevant ones depending on the usage domain. Our intuition is that we could find better cor-
relation between coverage and reliability if we took into account how much the program’s
entities are exercised, i.e., we distinguish between entities that are very often exercised from
those that are scarcely exercised, to reflect the profile of usage into the measure of coverage.

Profiling of code entities according to different usage profiles is referred to as program
spectra (Harrold et al. 1998). The idea of using program spectra in software engineering
tasks is not new: program spectra have been used, among others, for regression testing (Xie
and Notkin 2005) and fault localization (Wong et al. 2016). To the best of our knowledge,
however, our research is the first attempt to tune coverage measures based on program
spectra, for the purpose of reflecting the importance of program entities.

More precisely, in a recent paper (Miranda and Bertolino 2016a), we introduced the first
of its kind coverage criterion for operational profile-based testing using program spectra
and called the Operational Coverage. We first assessed the performance of the proposed
approach as an adequacy criterion, i.e., to support the decision on when to stop testing.

In this paper, we extend that work and assess also the performance of the proposed opera-
tional coverage for the task of selecting test cases (selection criterion) for operational profile
-based testing.

The preliminary results we obtained seem to sustain our intuition that spectra-based
coverage may be taken as both a stopping rule and a selection criterion for operational pro-
file -based testing, better than traditional coverage. Such conclusion can be most usefully
applied when the developer can leverage field data collected from profiling usage of the
instrumented software (like the scenario described in Orso et al. 2003). Our proposed cov-
erage measure may improve scalability of automated testing based on field data, because it
provides an evaluation of test thoroughness that is customized to the usage profile, and thus
testing resources can be better calibrated.

In summary, the contributions of the paper (extending preliminary definition and results
in Miranda and Bertolino 2016a) include:

– a method to measuring code coverage that exploits program count spectra
– the design of a study of using operational coverage as an adequacy criterion for

operational profile-based testing
– the design of a study of using operational coverage as a selection criterion for

operational profile-based testing

The rest of the paper is structured as follows: in the next section, we introduce opera-
tional coverage. Then, in Section 3, we present the settings of our empirical evaluations,
including the Research Questions and the study subjects. The results of adopting operational
coverage are reported and illustrated separately for adequacy and selection in Sections 4
and 5, respectively. We discuss threats to the validity of our study in Section 6. Related work
(Section 7) and Conclusions (Section 8) complete the paper.

2 Operational profile-based coverage

An operational profile provides a quantitative characterization of how a system is used
(Musa 1993). Software testing based on the operational profile ensures that testing resources
are focused on the most frequently used operations and, thus, maximizes the reliability level
that is achievable within the available testing time (Musa 1993). So, it can be a good testing
strategy when safety is not an issue.
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Our proposed approach is meant to provide practical adequacy and selection criteria
for operational profile-based testing. As we start from the assumption that the developer
adopted an operational profile-based testing strategy, we also can assume that either an
operational profile is derived by domain experts during the specification stage, or that, as
schematized in Bullet 1 of Fig. 1, this profile is obtained from real world usage, e.g., by
monitoring field data by means of an infrastructure such as Gamma (Orso et al. 2002).

If this developer selects a test suite from the operational profile, how can they decide
whether the test suite is adequate and testing can be stopped, or otherwise more test cases
should be derived? In the latter case, which additional test cases should be selected (Bullet
7 of Fig. 1)? This is where our approach can help. It foresees two main steps:

1. Classify the entities according to their usage frequency with respect to the operational
profile under testing

2. Calculate operational coverage based on the importance of the entities covered

We rate the importance of entities based on their frequency of usage, i.e., we make use
of program spectra (Harrold et al. 1998). A program spectrum characterizes a program’s
behavior by recording the set of entities that are exercised as the program executes. In this
work, we investigated coverage of three types of entities and correspondingly adopted three
types of spectra:

– Branch-count spectrum (BCS): for each conditional branch in a given program P ,
the spectrum indicates the number of times that branch was executed.

– Statement-count spectrum (SCS): for each statement in a given program P , the
spectrum indicates the number of times that statement was executed.

– Function-count spectrum (FCS): for each function in a given program P , the
spectrum indicates the number of times that function was executed.

Based on the spectra, we classify the entities (step 1 of our approach) into different
importance groups. In this work, we used three groups: high, medium, and low, but other
different groupings could be decided. To cluster entities into group, again, different methods
could be applied. In our investigations, we opted for ordering the list of entities accord-
ing to their frequency and assigning the first 1/3 entities to the high frequency group; the
second 1/3 entities to the medium frequency group; and the last 1/3 entities to the low fre-
quency group. Surely, the importance of a given entity could be assigned in many different
ways and the effect of choosing one approach or another should be investigated in future
work.
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Fig. 1 Overview of the approach
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We calculate operational coverage (step 2) by computing the weighted arithmetic mean
of the rate of covered entities according to (1) below. Again, we observe that there may exist
many other different ways in which we could calculate operational coverage and (1) is just
one of the many possibilities.

Operational Coverage =

n∑

i=1
wixi

n∑

i=1
wi

· 100(%) (1)

where:

n = number of importance groups
xi = the rate of covered entities from group i

wi = the weight assigned to group i

When the weights are normalized such that they sum up to 1, Equation 1 can be reduced
to:

n∑

i=1

wixi · 100(%)

In this work, we assigned the weights for the importance groups (the wi of (1)) in such a
way that the medium group is three times more important than the low, and the high group,
on its turn, is three times more important than the medium one.

Example To provide some intuition on how the operational coverage is calculated, we
provide a dummy example.

Let us consider the set of entities in Table 1 that are classified into high, medium, or low,
based on the count spectrum, and the set of test cases displayed in Table 2.

Let us assume that the test cases are executed in ascending order, i.e., from TC1 to TC4.
After TC1 is performed, two out of three low entities and two out of three medium entities
are covered. No high entity is exercised by TC1. Assuming that the weights assigned for the
low, medium, and high groups are 1, 3, and 9, respectively, we have that:

Operational coverage = 1 × 2
3 + 3 × 2

3 + 9 × 0

1 + 3 + 9
≈ 20.5%

After TC2 is performed, two additional entities, both high, are covered and the oper-
ational coverage will be 66.7%. When TC3 is performed, 100% operational coverage is

Table 1 Example of entities
classified into different
importance groups based on their
frequency of execution

Entity Count spectrum Importance group

e1 28 Low

e2 43 Medium

e3 10 Low

e4 59 Medium

e5 107 High

e6 114 High

e7 95 High

e8 85 Medium

e9 14 Low
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Table 2 Test cases and entities
(from Table 1) they cover
classified into different
importance groups

TC # Entities covered Importance group

1 e1 Low

e2 Medium

e3 Low

e4 Medium

2 e3 Low

e5 High

e6 High

3 e7 High

e8 Medium

e9 Low

4 e1 Low

e5 High

e9 Low

achieved. By comparison, had the coverage been measured in the traditional way, the cov-
erage achieved after TC1, TC2, TC3, and TC4, would had been 44.4%, 66.7%, 100%, and
100%, respectively.

3 Exploratory study

We conducted an exploratory study to assess the usefulness of adopting the proposed oper-
ational coverage criterion for test adequacy and selection. In this section, we discuss the
settings of the study. More precisely, we focus on the following research questions:

– RQ1: Does operational coverage provide a good stopping rule (adequacy criterion)
for operational profile based testing?

– RQ2: Does operational coverage provide a good test case selection criterion for
operational profile based testing?

3.1 Study subjects

In order to carry out our exploratory study and to investigate our research questions in a
realistic setting, we looked for subjects in the Software-artifact Infrastructure Repository
(SIR) (Do et al. 2005). SIR contains a set of real, non-trivial programs that have been exten-
sively used in previous research. For selecting our subjects, the only prerequisite was that
they should contain faults (either real or seeded ones) and a test suite associated with them.

We considered three subjects — grep, gzip, and sed — as these are frequently used in
academia for software testing research. grep is a command-line utility that searches for
lines matching a given regular expression in the provided file(s); gzip is a software applica-
tion used for file compression and decompression; and sed is a stream editor that performs
basic text transformations on an input stream. grep and gzip are available from SIR with 6
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Table 3 Details about the study subjects considered in our investigations

Subject Version LoC # Seeded faults # Failing test cases # Faults revealed

grep v3 10124 18 1664 5

gzip v4 5233 12 1638 5

sed v2 9867 5 3195 4

Total: 25224 35 6497 14

sequential versions (1 baseline version and 5 variant versions with seeded faults) whereas
sed contains 8 sequential versions (1 baseline version and 7 variant versions with seeded
faults). Because each version contains a different number of seeded faults, for our study
we selected, from each subject, the version that contained the highest number of faults that
could be revealed by our test pool (detailed next). We then proceeded with version 3 of grep,
version 4 of gzip, and version 2 of sed. Because we adopted only one version of each sub-
ject, throughout the rest of this paper, we refer to them by the subjects’ names only without
reporting the version.

Table 3 provides some additional details about the study subjects. Column “LoC” shows
the lines of code1 of each subject. The meaning of the last two columns is explained later on.

3.2 Operational profile

Operational profiles can be defined in many different ways. Here, following Musa (1993),
we express it as the list of operations that are expected to be invoked by users along with
their associated occurrence probabilities. Ideally, it is developed during system specifica-
tion with the participation of the system experts (e.g.: system engineers, designers, etc)
and domain experts (e.g.: analysts, customers, etc). Because such an ideal operational pro-
file was not available for the subject systems we investigated, we ourselves defined the
operational profile for each subject. We accomplished this task by getting acquainted with
the system (after carefully reading the user manual for the version of the subject being
investigated) and by following Musa’s stepwise approach (Musa 1993). For experimental
purposes, we stopped the process of creating the operational profile just before assigning the
occurrence probabilities for each operation identified, as these are taken as an independent
variable of our study.

Table 4 displays an excerpt of the list of operations we identified for grep. A graphical
version containing the full list of operations identified (grouped according to different usage
paths) is available at http://bit.ly/op grep.

3.3 Study settings

Besides the study subjects obtained from SIR and the subjects’ operational profiles devel-
oped by ourselves, for each of the three investigated subjects, we also created a few
additional artifacts required for our study. Some of them were derived once and for all:

– Test pool. For each subject investigated, we created a test pool containing 10k test cases
uniformly distributed among the operations in the subject’s operational profile.

1Collected using CLOC (http://cloc.sourceforge.net/).

http://bit.ly/op_grep
http://cloc.sourceforge.net/
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Table 4 List of operations identified for grep

ID Description

Op001 Look for a single pattern in a single input file

Op002 Look for multiple patterns, obtained from a file, in a single input file

. . . . . .

Op191 Interpret the pattern as a list of fixed strings and match any of them

Op192 Interpret the pattern as an extended regular expression and print the number of matching lines

– Fault matrix. For each subject considered, we run the set of 10k test cases over the
baseline version first (the one without any faults enabled), and then over the faulty
versions of that subject. To get a precise mapping of which test cases would reveal
which faults, we compile one faulty version for each seeded fault available. For grep,
for example, we have one baseline version and 18 faulty versions, which accounts for
190k test cases run to generate the fault matrix. The second last column and the last
column of Table 3 refer to the results of running the set of 10k test cases over the studied
subjects: they display the number of failing test cases and of seeded faults that could be
revealed, respectively.

– Operation matrix. Each test case in the test pool is created for a specific operation in
the operational profile and this mapping (test case, operation) is stored in the operation
matrix.

Other artifacts, on the other hand, were created on a “per observation” basis. For each
subject, we made 500 observations, each one related to a different operational profile. More
precisely, for each observation, we derived the following artifacts:

– Customized operational profiles. For deriving a customized operational profile, we
randomly select an arbitrary number of operations and randomly assign their respective
occurrence probabilities in a way that the sum of the individual probabilities is equal to
1.

– Importance groups. For each customized operational profile, we classified the pro-
gram entities into different importance groups (high, medium, or low) based on their
frequency of usage. In order to do so, we exercise the subject with randomly generated
test cases that are derived according to the operations and their respective occurrence
probabilities defined in the customized operational profile. Observe that this set of
randomly generated test cases is completely separated from the test pool previously
introduced. We considered three different count spectra, each one related to a differ-
ent coverage criterion: the branch-count, the statement-count, and the function-count
spectrum.

We also used the gcov2 and lcov3 utilities for collecting accurate coverage metrics and
our own code to automate the majority of the steps followed during this study.

2https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
3http://ltp.sourceforge.net/coverage/lcov.php

https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
http://ltp.sourceforge.net/coverage/lcov.php
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4 Adequacy study (RQ1)

In this section we report the results of our investigations with respect to the adoption of
operational coverage as a stopping rule (RQ1). We start by describing the specific tasks and
procedures associated with this exploratory study. Then, we present a summary of the study
results along with an answer to our research question.

4.1 Tasks and procedures

For each subject (and for each one of the 500 customized profiles created per subject) the
following tasks are performed:

1. We carry out operational profile-based testing by selecting the next test case to be run
(from the 10k set) according to the occurrence probabilities defined in the customized
operational profile.

2. After each test case is run, we calculate:

(a) the traditional coverage achieved
(b) the operational coverage achieved (calculated according to (1))
(c) the probability of failure for the next test case, θ

The coverage metrics (items 2a and 2b) are calculated for the three adequacy criteria
considered in this study and we stop testing if none of them increases after a sequence of 10
test cases.

4.1.1 Calculating the probability of failure for the next test case

We illustrate the way we calculate the probability of failure (item 2c) through a simple
example pointing to the artifacts described in Section 3.3:

– Customized operational profile: we assume a very simple profile including only four
operations: Op1 with occurrence probability Pr = 0.6, Op2 with Pr = 0.3, Op3 with
Pr = 0.1, and Op4 with Pr = 0.0.

– Test pool: by construction, the test pool contains the same amount of test cases for each
operation in the operational profile. For this example, we assume the test pool contains
2500 test cases per operation.

– Fault matrix: we assume only one fault, Fault 1, and that from the Fault matrix we can
see it is revealed by 100 test cases in the 10k pool.

– Operation matrix: from the operation matrix, we can match operations to fault-
revealing test cases (in the fault matrix). We assume we get: 50 failing test cases for
Op1, 30 for Op2, 0 for Op3, and 20 for Op4.

Then, when no test case has been run, the probability that the next test will fail is:

θF1 = (50 × 0.6) + (30 × 0.3) + (0 × 0.1) + (20 × 0)

2500
= 0.0156

Because we assume that the existing faults are independent, when more faults exist, θ

is the overall sum of the individual probability of failure for each fault. In the cases where
coupled faults exist, however, this might not be true.
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4.2 Study results

A summary of the output of the tasks described in Section 4.1 is displayed in Table 5. The
second column shows the span variations in the number of test cases required for perform-
ing operational profile-based testing for each subject while the third column presents the
average number of test cases among the 500 customized operational profiles created for our
study. As we can see, for all the subjects, testing stopped after around 60 test cases. The
biggest span variation happened for gzip with some operational profiles requiring as few
as 13 test cases to complete testing, whereas other profiles required 136 tests; sed had the
smallest variation with the number of test cases ranging from 15 to 98.

Table 5 also displays the average traditional and operational coverage achieved grouped
by different adequacy criteria. In this table, “trad.” and “oper.” stand for traditional cover-
age and operational coverage, respectively. Operational coverage achieved higher coverage
values in all the cases. This was expected because, by construction, operational coverage
targets only a subset of the entities for each operational profile, which increases the chances
of providing high coverage values.

Figure 2 shows, for all the subjects and coverage criteria investigated, the average tradi-
tional and operational coverage achieved as the number of test cases increases. The x-axes
display the number of test cases while the y-axes represent the coverage achieved. In this
figure, traditional coverage and operational coverage are represented by the continuous line
and the dashed line, respectively. For each test case n, its equivalent point in the curve rep-
resents the average coverage (of the 500 customized profiles) achieved after n test cases.
Notice that not all the profiles finished after the same amount of test cases. For this reason,
it is possible to see, for gzip in particular, some fluctuation in the curve when the number of
test cases gets close to the maximum number of tests required for that product.

From the graphs, the main observation is the fact that the curve of operational coverage
rises sharply and achieves high coverage values even after just a few test cases. This happens
due to the combination of two facts: (i) the most frequently exercised entities contribute
more for the computation of the coverage achieved (because of the weight assigned to the
high importance group) and (ii) the operational profile-based testing strategy selects test
cases that cover the most frequent entities first.

4.3 Answer to the research question (RQ1)

To answer RQ1, we computed, for both traditional and operational coverage, the correlation
between the coverage achieved and the probability that the next test casewill not fail (1− θ ,
which is the reliability of the next invocation). For doing so, we adopted the Kendall τ

Table 5 Average traditional and operational coverage achieved per subject

Subject #TCs span Avg. #TCs Branch Statement Function

trad. oper. trad. oper. trad. oper.

grep 24 to 116 64 24.7 86.3 42.4 89.2 61.5 92.5

gzip 13 to 136 56 39.9 79.3 52.0 85.4 60.3 95.5

sed 15 to 98 51 29.5 95.5 48.3 96.2 71.3 98.1

Average: 57 31.3 87.0 47.6 90.3 64.4 95.3
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Fig. 2 Average traditional and operational coverage achieved as the number of test cases increases

correlation coefficient. Kendall τ is similar to the more commonly used Pearson coefficient
but it does not require the variables to be linearly related or normally distributed. By using
Kendall τ , we avoided introducing unnecessary assumptions about the distribution of the
data.

As Kendall τ measures the similarity of the orderings of the data when ranked by each
of the variables, a high correlation means that one can predict the rank of the importance of
the faults revealed given the rank of the coverage achieved, which in practice is nearly as
useful as predicting the absolute importance of the faults revealed.

Table 6 displays the Kendall τ correlation between the coverage achieved and the prob-
ability that the next test case will not fail, grouped by the different coverage criteria

Table 6 Kendall τ correlation between coverage and 1 − θ (all entries are significant at the 99.9% level)

Subject Branch Statement Function

trad. oper. trad. oper. trad. oper.

grep 0.37 0.40 0.38 0.41 0.39 0.35

gzip 0.41 0.45 0.44 0.46 0.39 0.44

sed 0.39 0.50 0.40 0.52 0.35 0.47

Average: 0.39 0.45 0.41 0.46 0.38 0.42
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investigated. For interpreting the data in accordance with Inozemtseva and Holmes (2014),
we use the Guildford scale, in which correlations with absolute value less than 0.4 are
described as “low”, 0.4 to 0.7 as “moderate”, 0.7 to 0.9 as “high”, and over 0.9 as “very
high”.

As we can see, operational coverage yielded better correlation coefficients than tradi-
tional coverage for the vast majority of the cases (we set in italics the cases in which
operational coverage performed better than traditional coverage). The only exception was
for grep when considering the function adequacy criterion, in which traditional coverage
achieved a correlation coefficient of 0.39 and operational coverage produced 0.35 (statis-
tically, they were tied as both achieved low correlation). This was the only case in which
operational coverage yielded low correlation. For the remaining cases, it always achieved
moderate correlation.

Traditional coverage achieved moderate correlation three times, and in all the cases, it
was statistically tied with operational coverage, if we consider the correlation group; if we
consider the absolute correlation coefficient achieved, though, it was always defeated by
operational coverage.

5 Selection study (RQ2)

After our investigations on the adoption of operational coverage for test case adequacy,
we examined the usefulness of our approach for test case selection. Here, we report the
specific tasks and procedures associated with the selection study as well as the results of
our investigations.

5.1 Tasks and procedures

For our investigations on the adoption of operational coverage for test case selection, we
used the 500 customized profiles per subject previously created. For each subject and for
each customized profile, the following tasks are performed:

1. We randomly select a subset of 1k test cases from test pool (the 10k set).
2. We calculate the faults’ importance based on the customized operational profile and the

test pool derived for that iteration. This calculation is done in the same way as explained
in Section 4.1.

3. Derive one test suite using the greedy additional algorithm targeting all the entities
available in the subject under testing. We refer to it as the traditional test suite.

4. Derive a second test suite, the operational test suite, again using the greedy additional
algorithm, but this time targeting the most important entities for the target customized
operational profile.

5. We run both test suites against the subject under testing and we measure:

(a) the size of the derived test suites;
(b) the traditional coverage achieved by both test suites;
(c) the operational coverage achieved by the operational test suite;
(d) the remaining failure probability.
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Performing step 1 is important for two reasons: first, as we use a greedy algorithm to
derive the test suites, if we always considered the same test pool, it could be the case that
the derived test suites would be very similar among different iterations. Some differences
in the algorithm choices would still happen as the relevance of each entity changes on each
iteration based on the customized operational profile. However, by randomly selecting a
smaller set from the test pool, we guarantee that the greedy algorithm will always have a
different set of test cases to choose from. Second, this step changes the relative importance
of each fault with respect to the test pool on every iteration. In one iteration, the 1k set may
contain all the test cases that would trigger the most important fault, whereas in a different
round, it could contain only one test case that reveals the critical fault. This is important to
observe whether or not the different approaches are able to (and to what extent) select the
“best” test cases for each customized profile.

The traditional test suite is derived using a greedy additional selection heuristic depicted
in Algorithm 1. Such heuristic repeatedly selects the test case that covers the maximum
number of uncovered entities until all entities are covered. It receives, as input, a test suite
from which test cases can be selected (T ), the list of entities to be covered (entities),
and information regarding which entities are covered by which test cases (coverageInf o).
Then, on each iteration, the test case that yields the highest coverage is selected (line 3)
and the coverage information of the remaining test cases is updated (line 5) to reflect their
coverage with respect to the not yet covered entities. Algorithm 1 outputs a set of test cases
(T ′) selected for testing the target program.When multiple test cases cover the same number
of not yet covered entities, the function getNextTestCase (line 3) will select one test case
randomly among the tied ones.

Algorithm 1 Greedy additional selection (traditional test suite)

Input: T /*the test suite from which test cases can be selected*/
entities /*list of entities to be covered*/
coverageInfo /*list of entities covered by each test from T*/

Output: T /*a subset of T, with which to test the target program*/

1 T /* is initialized as an empty list*/
2 while thereAreUncoveredEntities(T, entities, coverageInfo) do
3 selectedTestCase getNextTestCase T entities coverageInfo /*selects

the test case that covers the highest number of uncovered

entities*/
4 add selectedTestCase T
5 updateUncoveredEntities entities selectedTestCase /*removes the entities

covered by the selected test case from the list of uncovered

entities*/
end

By applying Algorithm 1 to the test cases from Table 2, we have that the first test case
selected is TC1 as it covers the highest number of uncovered entities (4 out of 9). Then, TC3
is selected as it covers three uncovered entities (e7, e8, e9). At the next iteration, TC2 is the
one that covers the highest number of uncovered entities (2 out of 9). At this point, 100%
coverage has been achieved and the selection procedure stops, producing the final test suite
T ′ = [TC1,TC3,TC2].
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Algorithm 2 Greedy additional selection (operational test suite)

Input: T /*the test suite from which test cases can be selected*/
entities /*list of entities to be covered*/
coverageInfo /*list of entities covered by each test from T*/
entitiesImp /*importance of each entity from the list

entities*/
Output: T /*a subset of T, with which to test the target program*/

1 T /* is initialized as an empty list*/
2 while thereAreUncoveredEntities(T, entities, coverageInfo, entitiesImp) do
3 selectedTestCase getNextTestCase T entities coverageInfo entitiesImp

/*selects the test case that achieves the highest rank based on

the importance of the entities it covers*/
4 add selectedTestCase T
5 updateUncoveredEntities entities selectedTestCase /*removes the entities

covered by the selected test case from the list of uncovered

entities*/
end

Algorithm 2, used to derive the operational test suite, differs from Algorithm 1 in the
following ways: (i) it receives an additional input (entitiesImp) which maps each of
the entities to be covered to their respective importance group and (ii) the function get-
NextTestCase (line 3) selects the next test case based on the importance of the entities
covered.

On each iteration, the remaining test cases are ranked based on the list of uncovered
entities and the weights assigned to the importance groups. For each low entity covered by
TCi, its rank is increased by 1 (the weight assigned to the low group); for each medium
entity covered, the rank of TCi is increased by 3 (the weight assigned to the medium group);
and so on. The test case with highest rank is selected. In the case that multiple test cases
achieve the same rank, the function getNextTestCase gets the one that covers the highest
number of entities; if the tie persists, one test case is selected randomly from the list of tied
ones.

When adopting Algorithm 2 for selecting test cases from Table 2, at the first iteration,
TC2 achieves the highest rank (19) as it covers two entities from the high group and one
entity from the low group. After TC2 is selected and the list of uncovered entities is updated,
TC3 scores the highest rank (13) among the remaining test cases. TC1 is the third test case to
be selected (with a rank of 7) and, at this point, Algorithm 2 stops because 100% coverage
has been achieved. The final test suite produced by Algorithm 2 is T ′=[TC2,TC3,TC1].
Table 7 displays the ranks scored by TC1 to TC4 in the different iterations (iterj ) of the
greedy heuristic applied by Algorithm 2.

In the case that the derived test suites contain a different number of test cases, for the
sake of providing a fair comparison, we reduce the size of the bigger test suite down to the
size of the smallest one before computing the metrics described in step 5.

5.2 Study results

Figures 3, 4, and 5 display the box plots of the sizes of the test suites derived for branch,
statement, and function coverage, respectively. The results are grouped by the different
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Table 7 Ranks scored by the test cases in the different iterations of the greedy heuristic applied by
Algorithm 2

TC # Entities Imp. TC Rank TC Rank TC Rank TC Rank

Covered Group at iter1 at iter2 at iter3 at iter4

1 e1 Low 2wl + 2wm = 8 wl + 2wm = 7 wl + 2wm = 7 Selected at iter3
e2 Medium

e3 Low

e4 Medium

2 e3 Low wl + 2wh = 19 Selected at iter1 Selected at iter1 Selected at iter1
e5 High

e6 High

3 e7 High wl + wm + wh = 13 wl + wm + wh = 13 Selected at iter2 Selected at iter2
e8 Medium

e9 Low

4 e1 Low 2wl + wh = 11 2wl = 2 wl = 1 wl = 1

e5 High

e9 Low

subjects considered, and the y-axis displays the number of test cases in the devised test
suites. The red dots indicate the average test suite size for each combination of subject and
approach. For this metric, the lower the test suite size, the better.

Overall, the operational coverage approach defeated the traditional one in all the cases
with lower median and average values. In all the cases observed, the upper quartile for the
operational coverage approach is below (or very close to) the lower fence. This tells us that
in about 75% of the cases, the size of the test suite derived targeting operational coverage
was smaller than the smallest test suite derived targeting traditional coverage.

To complement the visual analysis of the box plots, we performed the Wilcoxon signed-
rank test,4 with significance level of 5%, to assess the null hypothesis that the difference
between the test suite sizes for the two approaches follows a symmetric distribution around
zero, i.e., the null hypothesis is that the median values are statistically equivalent. The p
value returned by the Wilcoxon test was smaller than 2.2e−16 for all the cases, which
means that the differences in the median values are statistically significant at least at the
95% confidence level.

While targeting branch coverage (Fig. 3), the number of test cases in the test suites
derived according to the operational coverage approach varied from 1 to 31 for grep, from
2 to 38 for gzip, and from 2 to 21 for sed. For the test suites derived according to traditional
coverage, the number of test cases ranged from 29 to 34 for grep, from 30 to 41 for gzip,
and from 19 to 22 for sed.

With respect to the statement coverage criterion, displayed in Fig. 4, the average numbers
of test cases in the test suites derived for operational coverage were 22.18, 18.79, and 12.01,
for grep, gzip, and sed, respectively. For the test suites derived for traditional coverage, the
figures were (following the same order) 28.76, 24.85, and 16.18.

4We adopted a non-parametric statistical hypothesis test because our data could not be assumed to be
normally distributed.
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Fig. 3 Test suite reduction achieved when targeting Branch coverage
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Fig. 5 Test suite reduction achieved when targeting Function coverage
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For the test suites generated targeting function coverage (Fig. 5), the average number of
test cases required by operational coverage for grep was 6.28, while 6.29 test cases were
required for traditional coverage. For gzip, the figures were (following the same order)
8.39 and 12.74. Finally, for sed, the average numbers of test cases required were 4.02 and
5.13.

Besides measuring the size of the test suites generated by the greedy algorithm when
targeting different selection criteria, we also computed the traditional and operational cov-
erage achieved by them. The results are available in Table 8 and they are grouped by
the different subjects and coverage criteria considered in this study. In this table, column
“trad.” displays the traditional coverage achieved by the traditional test suite, while col-
umn “oper.” shows the operational coverage achieved by the operational test suite. As we
were also interested in understanding how the test suite derived targeting the most important
entities only would perform in traditional terms, we also computed the traditional cov-
erage achieved by the operational test suite (this information is available in the column
“trad*”).

As we can see in Table 8, the average operational coverage was very high in all the
cases observed. As operational coverage targets only a subset of the entities from the pro-
gram under testing, and considering the relatively big pool of test cases to select from,
it was already expected that the operational test suites would achieve 100% operational
coverage in many cases. Indeed, when targeting function coverage for sed, the opera-
tional test suites achieved 100% coverage of the in-scope entities in each one of the 500
observations.

When the coverage of the operational test suites was measured in the traditional way,
column “trad*”, the average coverage achieved was always lower (but very similar) to the
one obtained by the traditional test suites.

5.3 Answer to the research question (RQ2)

To answer RQ2, we computed, for the traditional and operational test suites, the remain-
ing failure probability, i.e., the probability that the next test case would fail after finishing
running the test suites. Reaching a 0 for this metric means that all the relevant faults for
the customized operational profile have been revealed by the test suite. Thus, the lower the
value, the better.

Table 9 displays the remaining failure probability grouped by subject and coverage crite-
ria. The results achieved by the traditional and operational test suites are shown in columns
“trad.” and “oper.”, respectively. We set in italics the cases in which operational coverage
outperformed traditional coverage.

Table 8 Average coverage (in %) achieved by the test suites derived according to different selection criteria

Subject Branch Statement Function

trad. oper. trad* trad. oper. trad* trad. oper. trad*

grep 32.43 99.69 30.86 51.79 99.82 50.43 68.33 99.71 66.47

gzip 55.59 99.82 50.40 69.04 99.87 63.82 69.26 99.87 66.23

sed 32.46 99.99 31.69 51.61 99.99 50.79 74.12 100.00 73.35

Avg.: 40.16 99.84 37.65 57.48 99.90 55.01 70.57 99.86 68.68
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Table 9 Remaining failure probability (in %) after test suite execution (all entries are statistically significant
at the 95% confidence level)

Subject Branch Statement Function

trad. oper. trad. oper. trad. oper.

grep 2.720 0.907 2.180 0.804 7.113 7.815

gzip 0.003 0.063 0.056 0.043 1.200 0.966

sed 0.205 0.147 0.306 0.174 15.125 13.682

Avg.: 0.976 0.372 0.847 0.340 7.813 7.488

Operational coverage was defeated by traditional coverage for grep when targeting func-
tion coverage, and for gzip when directing test selection for branch coverage. For all the
other cases, operational coverage performed better than the traditional one. When consid-
ering the overall average, operational coverage exceeded traditional coverage for the three
coverage criteria investigated in this study.

Despite the fact that operational coverage performed better in the majority of the cases
when considering the average remaining failure probability, when we look at the individual
results for each customized operational profile, operational and traditional approaches were
tied in more than half of the cases. This was an unforeseen result as we were expecting
that the test suites derived targeting a specific operational profile would had performed
much better than the ones generated without further guidance regarding the relevance of the
entities of the program under testing.

One possible explanation for that unexpected result is collateral coverage. It may have
influenced the results in two ways: (i) for operational coverage, by mapping white-box
entities to existing test cases, it is possible that the greedy algorithm selects not relevant test
cases (a test case that covers some of the target entities but that is not related to the target
operation). Traditional coverage (ii), on the other hand, may have “benefited” from this
collateral coverage effect as the selection of a test case targeting a particular set of entities
will most likely also satisfy the coverage of further entities by accident. Thus, even if the
most important entities for a given operational profile are not the real target of the greedy
algorithm aiming traditional coverage, many of them may be covered unintentionally by the
first test cases selected.

6 Threats to validity

Beyond our best efforts in the accurate design and execution of the reported studies, our
results might still suffer from validity threats. Thus, the results should be interpreted with
the following potential threats to validity in mind.

As for internal validity, the operational profiles derived by ourselves are used in our
study as proxies for true operational profiles, but if this approximation is not good, the
observed results might have been impacted. Because the subjects’ operational profiles were
not readily available, we had to develop them ourselves. It is possible, then, that the set of
operations we identified is not a complete list of operations that could be performed by real
users. We mitigated this threat by carefully reading the subjects’ documentation to under-
stand well how they could be used before developing the operational profiles. However,
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control for this threat can be achieved only by conducting additional studies using subjects
with true operational profiles (preferably derived by experts).

A similar threat concerns the customized operational profiles. The customized profiles
are derived by randomly selecting the target operations and their respective occurrence prob-
abilities, which may have results into unrealistic operational profiles. To control this threat,
we created 500 customized profiles for each subject investigated expecting that the effect of
possible unrealistic profiles would be minimized with a big number of observations. More-
over, since both test suites (the traditional and the one based on operational coverage) are
derived for each customized profile, we do not see how such threat could produce different
impacts on our evaluations in a systematic way and, thus, influence the results biased to the
benefit of one approach or another.

Another threat to internal validity might derive from the operational coverage calculation.
The operational coverage can be influenced by many parameters that allow a high level of
customization (e.g., the entities importance, the number of importance groups, the way the
entities are assigned to different importance groups, the weight assigned to the importance
groups). Control for this threat can be achieved only by conducting additional studies using
different configurations.

Concerning threats to external validity, the study results may suffer from representative-
ness of the used subjects and faults. With reference to subject representativeness, our study
covered three C programs from the SIR repository and additional studies using a range of
diversified subjects that should be conducted before the results can be generalized.

With reference to faults representativeness, as said in our study, we considered seeded
faults and subjects with real faults might yield different results. Control for this threat can
be achieved only by conducting additional studies using subjects with real faults.

7 Related work

Code coverage criteria occupy a large part of software testing literature (Ammann and Offutt
2016; Bertolino 2007; Zhu et al. 1997).Many authors aim at finding novel criteria that subsume
existing ones or that improve fault-finding effectiveness. Here, we do not propose
yet another coverage criterion by identifying a new type of control-flow or data-flow entity to
be covered.We propose instead that the entities to be covered (even basic ones, such as function,
statement or branch) be weighted based on their relevance according to a usage profile.

Our research is inspired by the idea of relative coverage originally defined in Bartolini
et al. (2009). In our previous work (Miranda 2014; Miranda and Bertolino 2014, 2015,
2016b), we distinguished between relevant and not relevant coverage, which amounted to
give entities either a 1 or 0weight, i.e., we used a hit spectrum. In this paper, we consider also the
frequency of coverage and accordingly propose to weight entities using a count spectrum.

As discussed in the introduction, the effectiveness of coverage criteria is still a very active
research topic (Gopinath et al. 2014; Inozemtseva and Holmes 2014; Kochhar et al. 2015;
Staats et al. 2012). However, the studies evaluating the effectiveness of coverage measures
consider the faults (or mutations) as having same importance and do not take into account
their respective probability of failure. Considering the possible impact of faults detected, as
we do here, provides a more meaningful picture when the software under test is going to be
used under different profiles, and thus the effectiveness of coverage measures for the same
software may vary depending on who is the future user.

Our work is mainly related to operational profile-based testing, as pursued in, e.g.,
Musa’s SRET (Software Reliability-Engineered Testing) approach (Musa 1993). In SRET,
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test cases are selected from the user’s operational profile, thus those inputs that were fore-
casted to be more often invoked in use are also more stressed in testing. By classifying the
entities according to their importance to the operational profile under testing and by calcu-
lating coverage based on the importance of the entities covered, we also aim at targeting
the input subdomain that is the most relevant for the user, while giving lower priority to
inputs that are not or seldom exercised. SRET uses a statistical approach for selecting test
cases based on the user’s operational profile. In our approach, we assume that such an oper-
ational profile would be available. In the case of its absence, we propose that field data
could be exploited in the form of count spectra to capture the frequency at which entities
are exercised by real users.

Harder et al. (2003) proposed a specification-based test case selection technique called
“operational difference.” Their technique dynamically generates a collection of logical
statements (called “operational abstractions”) that abstract the program’s operation based
on the execution of test cases. By comparing operational abstractions, their technique can be
used for test suite generation, augmentation, and minimization. In our approach, however,
we assume that the representation of the expected program’s operation is already available in
the form of operational profiles. We classify the code entities according to their importance
to the operational profile and use that information to select test cases that would exercise
the most relevant entities to that particular profile. Besides that, although the same term of
operational coverage is defined in Harder et al., the meaning is different from the one we
used here. In (Harder et al. 2003), operational coverage is defined in terms of precision and
recall and the term is used to evaluate the quality of an operational abstraction when com-
pared with an oracle or goal specification. In our work, operational coverage is a coverage
criterion that can be used for both test adequacy and selection in the context of operational
profile-based testing.

Program spectra (Harrold et al. 1998) have been used extensively in software analysis.
Beyond the original application in program optimization (Ball et al. 1998), more recently
code profiling information has been used to analyze the executions of different versions of
code, e.g., in regression testing (Xie and Notkin 2005), and to compare traces of failed and
successful runs in fault diagnosis (Wong et al. 2016). Here, we propose to exploit traces
information to tune coverage measures onto the usage profile. This is a novel application
of spectra in operational profile-based testing that has never been tried (except for our own
antecedent work (Miranda and Bertolino 2016a)) and could be exploited in many ways.

There are similarities between operational coverage and the former notion of sensitivity
by Voas and coauthors (Voas et al. 1991). Sensitivity was defined as the probability that a
particular program “location” could reveal a possible fault under a specified input profile,
where a location is a unit of code that can change a variable’s value (it may roughly cor-
respond to a statement, although some statements could also contain more locations). We
do not consider specifically program locations; however, similar to sensitivity analysis, we
profile program entities under the operational usage profile to understand their impact on
probability of failure. So, motivations are similar, even though we then propose a different
application of the notion.

Modern pervasive and interconnected networks and huge advances in potential to collect
and analyze big data make it thinkable that developers continue testing and maintenance of
deployed software by exploiting usage profiling information (Orso 2010). This requires the
establishment of proper infrastructures (Orso et al. 2002), but can provide many opportu-
nities for improved testing and analysis techniques (Elbaum and Diep 2005). For example,
in Orso et al. (2003), field data are exploited for impact analysis and regression testing; in
Jin and Orso (2013), field failures data are used to support in-house debugging and fault
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localization. More in general, costs and benefits of profiling deployed software are empir-
ically studied in Elbaum and Diep (2005), and the results confirmed their large potential.
Hence, our approach is one among the many opportunities provided by field data to improve
testing techniques.

8 Conclusions and future work

We have introduced operational coverage, which measures code coverage taking into
account whether and how the entities are relevant with respect to a user’s operational pro-
file. We propose that the entities to be covered (even basic ones, such as function, statement
or branch) should be weighted based on their relevance according to a usage profile.

The results of our studies, reported in Sections 4 and 5, showed that operational coverage
is better correlated than traditional coverage with the probability that the next test case
derived according to the user’s profile will not fail. This result suggests that our approach
could provide a good stopping rule for operational profile-based testing. With respect to
test case selection, our investigations revealed that operational coverage outperforms the
traditional one in terms of test suite size and fault detection capability when we look at the
average results.

Concerning the costs of the proposed operational coverage, the cost of classifying the
entities according to their importance (the first step of our approach) will depend on how the
operational profile is derived. For the case advised in Fig. 1 in which the operational profile
can be derived from real world usage by monitoring field data, the count spectrum (bullet 3,
Fig. 1) required for defining the relevance of the entities might even be readily available, or
otherwise can be obtained by using mining techniques to capture the frequencies of the enti-
ties being exercised by the users. Regarding the cost of computing the operational coverage
itself (bullet 6, Fig. 1), as for any coverage criterion, operational coverage presupposes that
the code is instrumented so to allow the identification of the entities exercised. So the cost
of applying the operational coverage equation is comparable to any other coverage metric.

The proposed operational coverage may be particularly helpful for test suite augmen-
tation. After the developer has derived the test suite to verify a given program, two main
things could happen: (i) for all the code exercised by the program’s users, there exist at
least one test case in the test suite that covers that code; or (ii) there exist some code exer-
cised by the program’s users for which there does not exist any test case in the test suite.
Operational coverage would acknowledge the former case by yielding 100% coverage. For
the latter case, it would provide an assessment of the extent to which the derived test suite
is adequate to that specific operational profile. Moreover, it would also provide the precise
portions of code that are actually exercised by the program’s users and that are not covered
by the test suite, guiding the test suite enhancement process towards the real usage of the
program. Regarding traditional coverage, for the case (i), if the test suite does not achieve
100% traditional coverage — probably the case — the developer cannot tell whether or not
all the code that is relevant to the program’s users has been covered. Similarly, for case (ii)
traditional coverage does not help the developer unless they are willing to augment the test
suite until 100% traditional coverage is reached, which may be impractical even for small
programs.

Even though we believe that operational coverage may be a promising approach for
operational profile-based test case selection, its adoption may not be as straightforward as it
was for adequacy criterion. As anticipated in Section 5.3, one of the issues involved is that
of collateral coverage. To overcome this effect, some fairly sophisticated selection approach
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that takes into account not only the relevance of the entities to be covered, but also the way
the candidate test cases cover those entities needs to be devised. We plan to investigate this
as part of our future work.

The importance groups as well as the weights assigned to them play a fundamental role in
the operational coverage equation as discussed in Section 2. When the weights are assigned
as we did for our experiments, i.e., more weight to the “high” group and less weight to
the “low” group, the operational coverage approach will privilege those entities that are
expected to be exercised more frequently by the program’s users. In different contexts,
however, the testing objective could be different. For example, one could be interested in
testing the areas of the program that are less frequently exercised in the attempt of finding
possibly latent, difficult to find, faults. In that case, more weight should be assigned to the
“low” group (Bertolino et al. 2017). As for any testing strategy, considering the context and
the testing objectives is of fundamental importance when defining the operational coverage
parameters.

Whatever strategy is adopted to assign weights to program entities, this is anyhow based
on the count spectra and as such cannot consider the potential impact of failures, as is done
in so-called risk-based testing (Erdogan et al. 2014; Felderer and Ramler 2014). In risk-
based testing, test selection or prioritization is driven by the potential risk of failures, which
is given by both their probability of occurrence (as in operational testing) and their impact.
In our approach, we do consider the likelihood of failures, but not their consequence. Thus,
parts of the system under test that are rarely used could not receive adequate testing and
possibly lead to serious damages after time in operation. This limitation is common with
SRET (Musa 1993) and any other reliability-driven testing approach. If the subject of test
has safety-critical functions, then different test strategies that are risk-aware should be also
considered.

Operational coverage is the very first attempt to tune coverage testing based on program
count spectra. In particular, here, we used a simple approach to map count spectrum of
branches, statements, and functions into a coverage measure. Of course more empirical
studies are required to further assess the usage of operational coverage for test case selection
and adequacy. However, we believe that the very idea introduced here paves the way to
exploring many other powerful coverage measures.
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