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Abstract: Anti-diffraction is a theoretically predicted nonlinear optical
phenomenon that occurs when a light beam spontaneously focalizes inde-
pendently of its intensity. We observe anti-diffracting beams supported by
the peak-intensity-independent diffusive nonlinearity that are able to shrink
below their diffraction-limited size in photorefractive lithium-enriched
potassium-tantalate-niobate (KTN:Li).
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1. Introduction and motivation

Diffraction causes light beams to spread out, losing spatial definition and intensity [1, 2]. This
forms a limit to the spatial resolution of optical imaging systems based on far-field optics,
such as a standard wide-area microscope. In nonlinear materials, self-focusing can change this
spreading, but the effect is intrinsically peak-intensity dependent [3]. When self-focusing ex-
actly balances beam spreading caused by diffraction, something that imposes a precise peak-
intensity beam-width relationship, stable non-spreading beams in the form of spatial solitons
appear [4, 5].

Experiments in waveguide arrays and photonic crystals have shown that interference can
cause beams in specific directions to suffer a cancelled diffraction [6–8]. In electro-magnetic-
induced transparency experiments, interference can even lead to inverted (or negative) diffrac-
tion [9]. Based on interference, this modified diffraction occurs along specific directions and for
beams with a small angular spectrum. A more general effect would be the observation of beams
that literally ”anti-diffract” as they propagate in a substance. In such a system, beams will natu-
rally converge instead of spreading, irrespective of direction of propagation and for a wide range
of beam sizes, even with a considerable angular spectrum. In distinction to self-focusing, that
depends on intensity and generally becomes stronger as beams shrink, anti-diffraction should
be intensity-independent.

Studies in nanodisordered photorefractive crystals have shown that the diffusive nonlinearity
in paraelectric samples [10–13] can strongly reduce natural diffraction, ultimately cancelling it,
a phenomenon known as scale-free optics [14–17].

In this paper we theoretically predict anti-diffraction supported by the diffusive nonlinearity
and report its first observation in lithium-enriched potassium-tantalate-niobate (KTN:Li).

2. Theoretical

In a photorefractive crystal, light absorbed by deep in-band impurities diffuses and gives rise to
a static electric field Edc = −(kBT/q)∇I/I, where kB is the Boltzmann constant, T the crystal
temperature, q the elementary charge, I = |A|2 the optical intensity, and A the optical field
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amplitude [10–13]. When the crystal is a disordered ferroelectric above its peak temperature
Tm [18], the electro-optic response of the mesoscopic dipoles (polar-nanoregions - PNRs) [19]
gives rise to a scalar change ∆n =−(n3

0/2)gε2
0 χ2

PNR|Edc|2 in the background index of refraction
n0 [20], where χPNR is the PNR low-frequency susceptibility, g is the electro-optic coefficient,
and L = 4πn2

0ε0
√

gχPNR(kBT/q) [14, 15]. In the paraxial approximation, the slowly varying
optical amplitude A obeys the equation

2ik
∂A
∂ z

+∇
2
⊥A− L2

λ 2

(
∇⊥|A|2

2|A|2

)2

A = 0, (1)

where k = k0n0, k0 = 2π/λ , z is the propagation axis, ∇⊥ ≡ (∂x,∂y), and λ is the optical
wavelength. Separating the variables, A(x,y,z) = α(x,z)β (y,z), α must obey

2ik
∂α

∂ z
+

∂ 2α

∂x2 −
L2

λ 2

(
∂x|α|2

)2

4|α|4
α = 0. (2)

The same equation holds for β replacing x with y. Eq. (2) is satisfied by the solution

α(x,z) =
α0√
wx(z)

e
− x2

w2x (z)
+i[φ0(z)+ 1

2 φ2(z)x2]
(3)

with

φ0(z) =−
1

kw2
0x

tan−1(
√

az)√
a

(4)

and
φ2(z) =

az
1+az2 . (5)

Here a ≡ (1−L2/λ 2)/k2w4
0x, wox is the initial beam in the x−direction, and α0 is a constant.

For a round launch beam with wox = woy = w0, the waist in two transverse dimensions along
the propagation direction z is given by

w(z) = w0

√
1+

4
k2w4

0

[
1−
(

L2

λ 2

)]
z2. (6)

For L > λ , Eq.(6) foresees beams that shrink into a point-like focus at a characteristic ”collapse
length”

zc =
nπw2

0
λ

1√
(L/λ )2−1

, (7)

independently of intensity.

3. Experimental

To experimentally demonstrate diffusive anti-diffraction described by Eq.(6) we use the setup
illustrated in Fig. 1. A 0.8 mW (before L3) He-Ne laser operating at λ = 632.8nm is expanded
and subsequently focused down to a spot with an w0 = 7.8µm (intensity full-width-at-half-
maximum of ∆x = ∆y ' 9.4µm) at the input face of a sample of lithium-enriched potassium-
tantalate-niobate (KTN:Li) . The composite ferroelectric is grown through the top-seeded solu-
tion method so as to have a peak dielectric maximum Tm at room temperature and high optical
quality [21]. Our specific crystal is a zero-cut 2.6×3.0×6.0 mm sample with a composition of
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Fig. 1. Anti-diffraction setup. A He-Ne laser operating at 633 nm is enlarged through lenses
L1 and L2 and focused down to an 8 µm spot at the input facet of the KTN:Li sample,
rotated with the respect to the propagation axis z by a variable angle θ and brought through
a temperature cycle T (t). (Front-view) The input and output facets are imaged through
lens L4 onto a CCD camera. (Top-view) Scattered light is captured above the sample and
imaged, through a microscope, onto a second CCD camera.

K1−xTa1−yNbyO3:Lix with x = 0.003, y = 0.36. Cu impurities (approximately 0.001 atoms per
mole) support photorefraction in the visible, whereas focusing and cross-polarizer experiments
give n0 = 2.2 and g = 0.14m4C−2. The beam is polarized in the x direction and propagates
inside the crystal for a distance of Lz ' 3.0mm. The crystal is rotated to a desired angle θ in the
x,z plane. The output intensity distribution of the beam is imaged by a CCD camera through
an imaging lens (NA' 0.35). Light scattered in the vertical y direction is captured by a second
CCD camera placed above the sample in the y direction through a high aperture microscope
(NA' 0.8) positioned so as to image the plane of propagation.

We are able to achieve L > λ during a transient by operating near Tm = 287.5K, identified
through dielectric constant measurements, and enacting a non-monotonic temperature trajec-
tory T (t) [22–27]. In fact, considering the values of n0, g, and kBT/q ' 25 mV, L ∼ λ for
χPNR ∼ λ/(4πn2

0ε0
√

g(kBT/q)) ' 105, i.e., an anomalously large value of susceptibility only
observable in proximity of the dielectric peak. In each anti-diffraction experiment we enacted
the following procedure: the crystal was first cleaned of photorefractive space-charge by illumi-
nating it with a fully powered microscope illuminator placed at approximately 0.1 m above the
crystal for over 10 minutes. Using a temperature controller that drives the current of a Peltier
junction placed directly below the crystal in the y direction, we brought the sample to ther-
malize at TA = 303K. The sample is then cooled from TA = 303K at the rate of 0.07 K/s to a
temperature TD (that is fixed to different values in experiments, see below), where it is kept for
60 s. Then the sample is heated once again at a rate of 0.2 K/s to the operating temperature
(> TD) TB = 290K. The strong transient response is observed to have a characteristic response
time of 10-30 s, with measured values of collapse length zc = 3.9− 6.8mm that depend on
the actual value of TD used. This regime is not otherwise accessible with our apparatus by a
standard rapid cooling (i.e., from TA directly to TB). Once TB is reached, the temperature cycle
T (t) is complete and we switched on the laser beam, recording top-view and front view images
of the captured intensity distribution. All intervals of time t are indicated such that the laser is
turned on at t = 0.

4. Results

In Fig. 2 we show a condition of strong anti-diffraction observed when TD = 283K. As shown
in Fig. 2(a-c), the w0 = 7.8µm input beam diffracts to 38 µm as it propagates to the output
facet at the initial TA = 303K. After the cooling/heating cycle, the output beam shrinks to 5
µm (L ' 0.643µm). Snapshots of the top-view scattered light illustrate the transition from the
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Fig. 2. Strong anti-diffraction for TD = 283K. The input 800 µW 8 µm Gaussian beam (a)
diffracts to 38 µm at TA = 303K (b). It then shrinks after 15 s to a waist of 5 µm (c), be-
fore relaxing once again into a strongly spreading beam. (d)-(i) Top-view images captured
through a high-aperture microscope of the stray light emitted by the beam showing the
transition, in time, from a diffracting (d) to an anti-diffracting beam (g), and once again to
a diffracting one (i). (j) Intensity profiles of the input beam compared to the anti-diffracting
beam at t = 15s.

diffracting Fig. 2(d-f) to the shrinking beam condition Fig. 2(g), and ultimately to the once
again spreading phase Fig. 2(h-i) with strongly reduced scattering. In this case, the crystal is
rotated by θ = 11◦. The beam profiles of the input and output distributions (at t = 15s) are
compared in Fig. 2(j) . From Eqs.(6-7) we deduce a value of zc = 3.9mm. To confirm the
approximate intensity-independent and angle-independent nature of the effect, we repeated the
experiment with different levels of beam power and propagation angles. We found same levels
of anti-diffraction repeating experiments with 8, 30, 240, 800 µW beams and for launch angles
θ = 5◦ − 11◦. For example, at a fixed angle θ = 11◦, increasing the beam power from 30
µW and 240 µW, alters the minimum waist by less than 12%. In turn, at θ = 5◦, for beam
powers from 30 µW and 240 µW, the minimum waist of the antidiffracting beams varies by
less than 14 %. The only relevant systematic effect associated with different beam powers was
a lenghtening of the anti-diffraction response time, as expected for the cumulative nature of the
photorefractive response.

In Fig. 3 we show a condition of weaker anti-diffraction from 7.8 to 7 microns when TD =
286K, (L ' 0.636µm) . Here from Eqs.(6-7) zc = 6.8mm, and the maximum anti-diffraction
occurs after 10 s from the end of the thermal cycle.

In Fig. 4 we show the time sequence for the two reported cases of Fig. 2 and Fig. 3. The
transverse intensity distribution is shown for different intervals of time t from the completion
of the temperature cycle and the launching of the laser beam, highlighting the transient nature
of the anti-diffraction.
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Fig. 3. Weak anti-diffraction for TD = 286K. The input 7.8 µm beam (a) diffracts as in the
previous case (b) and shrinks to 7 µm after 10 s (c). (d) Profiles of input and anti-diffracting
beams (at t = 10s).
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Fig. 4. Time sequence of the anti-diffraction. Output intensity distributions at different
instants of time showning the decay of the anti-diffracting regime and the formation of
transient spatial patterns in the cases of strong (Top) and weak (Bottom) anti-diffraction.

5. Conclusion

Anti-diffraction is a new nonlinear intensity-independent wave phenomenon that can possibily
lead to new ideas in imaging techniques. From a purely fundamental perspective, we note that
our paraxial theory will break down if Lz ' zc, where the strong-focusing requires a fully non-
paraxial treatment, so that future experiments with shorter zc or longer Lz may hold further novel
effects. Moreover, one phenomenological aspect that already at this stage of anti-diffraction
merits discussion is the formation of transient patterns after the strong anti-diffraction stage,
as reported in Fig. 4. The patterns are more evident as the value of zc decreases and are not
strongly dependent on θ for the range θ = 5−22◦ we scanned. Since this excludes the possible
influence of ferroelectric domains, which are pinned to the principal axes of the crystal in its
nominal paraelectric m3m phase [28, 29], these patterns appear an effect of the nonlinear (but
peak-intensity-independent) propagation itself.
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