

PATANKAR-TYPE LINEAR MULTISTEP SCHEMES

GIUSEPPE IZZO^{1,3}, ELEONORA MESSINA^{1,3}, MARIO PEZZELLA^{1,3}, ANTONIA VECCHIO^{2,3}

GNCS ΙΝδΑΜ

¹ DEPARTMENT OF MATHEMATICS AND APPLICATIONS – UNIVERSITY OF NAPLES FEDERICO II
² C.N.R. NATIONAL RESEARCH COUNCIL OF ITALY – INSTITUTE FOR COMPUTATIONAL APPLICATION MAURO PICONE
³ MEMBER OF THE ITALIAN INDAM RESEARCH GROUP GNCS

INTRODUCTION

We present a novel class of high order, uncondionally positive and conservative linear multistep methods for **Production-Destruction Systems** (PDSs).

PRODUCTION-DESTRUCTION SYSTEMS

A general differential PDS has the form

$$y'_{i}(t) = \sum_{j=1}^{N} p_{ij}(y(t)) - \sum_{j=1}^{N} d_{ij}(y(t)), \quad i = 1, \dots, N,$$

where $t \ge 0$, the initial values $y_i^0 = y_i(0)$ are given and • $y(t) = (y_1(t), \dots, y_N(t))^{\mathsf{T}} \in \mathbb{R}^N$;

MODIFIED PATANKAR LINEAR MULTISTEP METHODS

Let k > 1 be an integer number. Let $\alpha_r \ge 0$ and $\beta_r \ge 0$, r = 1, ..., k, be the coefficients of an explicit k-steps Linear Multistep (LM) method. A Modified Patankar Linear Multistep k-steps scheme (MPLM-k) reads

$$y_i^n = \sum_{r=1}^k \alpha_r y_i^{n-r} + h \sum_{r=1}^k \beta_r \sum_{j=1}^N \left(p_{ij}(y^{n-r}) \frac{y_j^n}{\sigma_j^n} - d_{ij}(y^{n-r}) \frac{y_i^n}{\sigma_i^n} \right), \qquad i = 1, \dots, N, \qquad n \ge k,$$

where h > 0, $t_n = nh$ and $y^n = (y_1^n, \dots, y_N^n)^{\mathsf{T}} \approx y(t_n)$, for $n \ge 0$. The starting values $y^0, \dots, y^{k-1} \in \mathbb{R}^N$ are given and the **Patankar Weight Denominators** (PWDs) satisfy

• σ_i^n unconditionally positive, i = 1, ..., N and $n \ge k$;

Theorem 1.

Assume that $y_i^m > 0$, for each $1 \le i \le N$ and $0 \le m < k$. Then, **independently of the stepsize** *h*,

• σ_i^n independent of y_i^n , i = 1, ..., N and $n \ge k$.

Theorem 2.

Let $\sum_{i=1}^{N} y_i^m = \sum_{i=1}^{N} y_i^0$, for each 0 < m < k. Then,

- *p_{ij}(y)* ≥ 0 is the rate of production of the *i*-th component consuming the *j*-th constituent;
- *d_{ij}(y)* ≥ 0 is the rate of destruction of the *i*-th component tranformed into the *j*-th constituent.

PDSs find relevant applications to

▲ Chemistry Solution Biogeochemistry Hydrodynamics
⑤ Finance Prince Finance Solution Solution Solution
▲ Hydrodynamics Solution
▲ Hydrodyna

POSITIVE AND CONSERVATIVE PDS

A PDS is referred to as **positive** if for all 1 ≤ i ≤ N, y_i⁰ > 0 ⇒ y_i(t) > 0, ∀t ≥ 0.
Theoretical positivity criteria are established in [1, 2].
A PDS is **fully conservative** if for all 1 ≤ i, j ≤ N, p_{ij}(y) = d_{ji}(y) and p_{ii}(y) = 0, ∀y ∈ ℝ^N.

The solution to a positive and fully conservative PDS satisfies the following **conservation law**

 $\sum_{i=1}^{N} y_i(t) = \sum_{i=1}^{N} y_i^0, \qquad \forall t \ge 0.$

 $y_i^n > 0$, for all $i = 1, \ldots, N$ and $n \ge k$.

 $\forall h > 0$ the following **discrete conservation law** holds

$$\sum_{i=1}^N y_i^n = \sum_{i=1}^N y_i^0, \qquad orall n \geq 0.$$

The MPLM methods are linearly implicit, uncondionally positive and conservative numerical integrators.

HIGH ORDER CONSISTENCY AND CONVERGENCE

Consider $\Omega = \left[0, \sum_{i=1}^{N} y_i^0\right]^N \subset \mathbb{R}^N$ and assume that

- $p \ge 1$ is a positive integer,
- the functions $p_{ij}(y)$ and $d_{ij}(y)$ belong to $C^p(\Omega)$,

• the underlying LM scheme is convergent of order p, so $\sum_{r=1}^{k} \alpha_{r} = 1, \sum_{r=1}^{k} \left(r^{q} \alpha_{r} - qr^{q} - \frac{1}{\beta_{r}} \right) = 0, \quad 1 \le q \le p.$

Theorem 3.

A MPLM-k scheme is **consistent of order** p with the continuous-time PDS **if and only if**

 $\sigma_i(y(t_{n-1}),\ldots,y(t_{n-k}))=y_i(t_n)+\mathcal{O}(h^p),$

for $i = 1, \ldots, N$ and $n \ge k$.

Theorem 4.

An order *p* consistent MPLM-*k* scheme is **convergent**

EMBEDDING TECHNIQUE

The implementation of order $p \ \mathrm{MPLM}\text{-}k$ schemes requires

- A accurate, positive and conservative starting values,
- A PWDs that are order p-1 approximations of the continuous solution.

We address both tasks with an embedding technique based on the recursive integration by MPLM methods

- for p = 1 we just consider the one-step Modified
 Patankar Euler (MPE) scheme in [4];
- for p > 1 we employ a k^* -steps order p 1 MPLM method, with $k^* \le k$.

Theorem 5.

Let α_r^* , β_r^* and σ_i^{*n} be the coefficients and the PWDs of a MPLM- $k^*(p-1)$ integrator. A MPLM-k(p) scheme is then consistent and convergent of order p if the PWDs are given, for 1 = 1, ..., N and $n \ge k$, by

of order p if the PWDs are continuously differentiable functions on $\Omega^k = \Omega \times ... \times \Omega$ and $||y(t_m) - y^m|| = \mathcal{O}(h^p)$ for m = 0, ..., k - 1.

Figure 1: Brusselator test problem [3], maximum absolute error as a function of the stepsize. Here, MPLM-k(p) denotes a k-steps, order p convergent method.

NUMERICAL EXPERIMENTS: EPIDEMIC MODEL

I test: the modified SIRD epidemic model in [5] with $y(t) = (S(t), A(t), C(t), E(t), I(t), R(t), Q(t), D(t))^{\mathsf{T}}$,

 $S'(t) = -\left(\alpha + \frac{\beta I(t) + \sigma A(t)}{N_P} + \eta\right) S(t),$ $A'(t) = -\tau A(t) + \xi E(t), \qquad C'(t) = \alpha S(t) - \mu C(t),$ $E'(t) = \left(\frac{\beta I(t) + \sigma A(t)}{N_P} + \eta\right) S(t) + \mu C(t) - (\gamma + \xi) E(t),$ $I'(t) = \tau A(t) + \gamma E(t) - \delta I(t), \qquad R'(t) = \lambda Q(t),$ $Q'(t) = \delta I(t) - \lambda Q(t) - k_d Q(t), \qquad D'(t) = k_d Q(t).$

Figure 2: Modified SIRD model simulation with $h = 5.5 \cdot 10^{-3}$. The

REFERENCES

- [1] L. Formaggia and A. Scotti. Positivity and Conservation Properties of Some Integration Schemes for Mass Action Kinetics. *SIAM J. Numer. Anal.*, 49(3):1267–1288, 2011.
- [2] P. Öffner and D. Torlo. Arbitrary high-order, conservative and positivity preserving Patankar-type deferred correction schemes. *Appl. Numer. Math.*, 153:15–34, 2020.
- [3] S. Kopecz and A. Meister. Unconditionally positive and conservative third order modified Patankar–Runge–Kutta discretizations of production–destruction systems. *BIT Numer. Math.*, 58(3):691–728, 2018.
- [4] H. Burchard, E. Deleersnijder, and A. Meister. A high-order conservative Patankar-type discretisation for stiff systems of productionâĂŞdestruction equations. *Appl. Numer. Math.*, 47(1):1–30, 2003.
- [5] D. Sen and D. Sen. Use of a Modified SIRD Model to Analyze COVID-19 Data. *Ind. Eng. Chem. Res.*, 60(11):4251–4260, 2021.

parameters, set accordingly to early-stage Covid-19 data [5], are $N_P = 6.046 \cdot 10^7$, $\alpha = 0.0194$, $\beta = 7.567$, $\mu = 2.278 \cdot 10^{-6}$, $\eta = 9.180 \cdot 10^{-7}$, $\sigma = 1.4633 \cdot 10^{-3}$, $\tau = 1.109 \cdot 10^{-4}$, $\xi = 0.263$, $\gamma = 0.021$, $\delta = 0.077$, $\lambda = 6.28 \cdot 10^{-4}$, $k_d = 0.0013$, $y^0 = (60459997, 0, 0, 1, 1, 0, 1, 0)^{\mathsf{T}}$.

Figure 3: Work precision diagram and comparison of MPLM methods with the 3^{rd} order **Modified Patankar Runge-Kutta** (MPRK3) scheme in [3, Lemma 6, Case II, $\gamma = 0.5$].

NUMERICAL EXPERIMENTS: ALGAL BLOOM MODEL

