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In this review we summarise recent investigations of many-body quantum systems with
long-range interactions, which are currently realized in Rydberg atom arrays, dipolar
systems, trapped ion setups, and cold atoms in cavities. In these experimental plat-
forms parameters, can be easily changed, and control of the range of the interaction
has been achieved. Our main aim is to present and identify the common and (mostly)
universal features induced by long-range interactions in the behavior of quantum many-
body systems. We will discuss both the case of strong non-local couplings, i.e. the
non-additive regime, and the one in which energy is extensive, but low-energy, long-
wavelength properties are altered with respect to the short-range case. When possible,
the comparison with the corresponding results for classical systems will be presented.
Finally, cases of competition with local effects will be also reviewed.
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I. INTRODUCTION

The successful use of mathematical models in the the-
ory of critical phenomena lies in the universal behav-
ior of continuous phase transitions. Due to universal-
ity, it is possible to describe different physical situations
within the same theoretical framework. The O(N ) sym-
metric models provided privileged tools to investigate
the universal behavior occurring close to criticality in
a large class of physical systems ranging from magnets
and superconductors to biological systems and cold atom
ensembles (P. M. Chaikin, 1995; Pelissetto and Vicari,
2002). Within the last century, intense investigations of
the properties of O(N ) models, dating back to the origi-
nal Ising’s paper (Ising, 1925), have granted the physical
community with a deep insight in the physics of phase
transitions (Cardy, 1996; Mussardo, 2009; Nishimori and
Ortiz, 2015).

For several decades such understanding has been
mostly limited to the universal behavior of systems with
local, short-range interactions, such as lattice systems
with nearest neighbors couplings or local φ4 field theo-
ries. Only in more recent times has the overall picture
of the universal phenomena appearing in classical sys-
tems due to long-range interactions been delineated. The
range of the effective interactions among the constituents
of a system is in general one of its main properties, and
it can affect in many ways the phase diagram, the crit-
ical properties, and the dynamical behavior of physical
observables. Therefore, a very natural question to be
asked both for classical and quantum systems is how the
properties of the system are modified by increasing the
range of the interactions V , or equivalently reducing the
power exponent α, where V (r) ∼ 1/rα for large inter-
constituents distances r.

For classical systems, the effect of long-range interac-
tions has been systematically investigated both in the
equilibrium and the out-of-equilibrium realms (Campa
et al., 2014). There, the range of interactions in most
of the cases is given and one studies its consequences
on – among others – ensemble equivalence, thermody-
namic properties such as specific heat and the occurrence
of quasi-stationary states, i.e. metastable configurations
whose lifetime scales super-linearly with the system size.
We refer to reviews (Campa et al., 2014; Campa et al.,
2009; Dauxois et al., 2002) for discussions and references
on equilibrium and out-of-equilibrium properties of clas-
sical systems, including O(N ) models, with long-range
interactions.

At the same time, the study of the influence of non-
local couplings, and especially of the competition be-
tween local and long-range interactions, in quantum sys-
tems has seen an extraordinary surge in the wake of sev-
eral experimental realizations in atomic, molecular, and
optical (AMO) systems (see Fig. 1 for an artistic illus-
tration). Of course, the same set of questions on how

Figure 1 Artistic illustration of long-range interactions
in quantum many-body systems. Atoms (red spheres),
trapped in a potential landscape (blue) are coupled to the
light field inside an optical cavity. Far distant atoms can
interact with each other via the exchange of photons (yellow
arc) confined in the cavity mode. Using diverse tools of AMO
systems – provided e.g. by trapped ions, Rydberg atoms, or
dipolar atoms – also other types of long-range interactions
(colored arcs) can be induced.

long-range interactions modify the properties of models
when the interactions are varied from the short-range
limit to the strong long-range regime is present not only
in classical systems but also in the quantum realm.

The recent interest in quantum long-range systems not
only derives from the desire of understanding the funda-
mental physics of non-local systems and the interplay
between local and long-distance properties in presence of
very non-local interactions, and how it is changed with
respect to the classical counterpart, but it is rooted as
well in the role of long-range systems as powerful tools
for efficient quantum computing and quantum simula-
tion, as they allow to realise highly entangled or corre-
lated dynamical states (Gyongyosi and Imre, 2019; Jozsa
and Linden, 2003; Vidal, 2003). Long-range interactions
promise to play a crucial role in quantum technology ap-
plications, since their prominent collective character pro-
motes entanglement spreading and leads to novel forms
of dynamical scaling, which cannot be observed in tra-
ditional systems with local interactions. As a major ex-
ample, the physics of long-range interacting atomic as-
semblies provides a clear route to circumventing the con-
straints imposed by thermal equilibrium, linear entangle-
ment spreading and fast decoherence.

Despite outnumbering investigations, the current lit-
erature still lacks a comprehensive perspective on long-
range interacting quantum systems, making it difficult
to place novel results in the existing framework. Indeed,
most current publications present their findings in com-
parison with the traditional results on short-range sys-
tems, rather than with more recent, but established, re-



4

sults in the quantum long-range realm. While this has
often helped to raise the interest of the broad physics
community on these investigations, it is eventually hin-
dering the drawing of a comprehensive picture on long-
range interacting quantum systems as well as the admis-
sion of this knowledge in the domain of general-interest
physics.

With the present review we aim at constructing an ex-
haustive account of the unique phenomena arising due
to long-range couplings in quantum systems, with spe-
cial focus on the universal common features that may be
observed in AMO experiments. After having reminded
basic notions of classical long-range models and discussed
the phases of non-local systems, we will extend our un-
derstanding beyond the equilibrium properties and clar-
ify paradigmatic questions regarding relaxation and ther-
malization dynamics. Long-range quantum systems, as
they are typically experimentally realized, are mostly iso-
lated and their dynamics is governed by unitary time evo-
lution. In this context, several open questions derive from
the comparison with the conventional local interacting
case, as motivated by recent remarkable progress in the
experimental simulation of quantum long-range systems
with tunable range. At variance, the strong coupling to
the environment is inevitable for cold atom ensembles in
cavities and the discussion about their properties neces-
sarily connects with non-additive classical systems.

The main motivation of this review, i.e. identifying the
universal features induced by long-range interactions in
quantum many-body systems, directly points to the over-
whelming amount of novel research, appearing almost
every day in the literature, featuring both theoretical
results and state-of-the-art experimental measurements
of the dynamical universal behavior of highly non-local
interacting systems, such as trapped ions, cavity quan-
tum electrodynamics (CQED), Rydberg atom arrays and
cold atoms. All these experimental platforms present a
high degree of complexity and the comprehensive picture,
which we aim to draw, will serve as a chart to set in a
context both novel experimental realizations and recent
theoretical findings.

Our ambition is not only the derivation of an all-in-one
picture to direct curious outsiders in the realm of long-
range-induced physical effects, but also to pinpoint the
most relevant and broad results in the field. This effort
will hopefully provide a step towards the inclusion of the
physics of long-range many-body systems into the inven-
tory of university-taught physics. Given this purpose and
the growing amount of publications in the field, we are
necessarily forced to a selection of themes and the reader
should not be surprised if not all the expected references
are to be found. For each topic, we have tried to in-
clude only the references relevant for our main goal of the
discussion of universal properties of quantum long-range
systems or the ones that are better suited to summarise
the previous literature on the issue. Whenever possible,

we will point to the reader the references containing ac-
counts of previous efforts on the different topics.

The review is organized as follows: in the remaining
part of the present section, Sec. I, we will start with a
definition of what we refer to as a long-range interaction
and we present reminders on the behavior of classical
long-range systems, that will be used in the subsequent
presentation. We then move to the classification of quan-
tum systems in different groups. A brief account of the
most relevant properties of each group will be presented,
with a special focus on the classical case. In Sec. II, we
will discuss the most relevant experimental realizations
of each of the aforementioned groups. Sec. III will be de-
voted to the definition and identification of critical and
universal behavior in classical many-body long-range sys-
tems, both at equilibrium and in the dynamical regime.
The content of Sec. IV will mainly concern the equilib-
rium critical properties of long-range interacting quan-
tum many-body systems, evidencing the analogies and
differences with respect to the classical case. Finally,
Sec. V will focus on the rich mosaics of dynamical criti-
cal scalings observed in long-range systems, when driven
out of their equilibrium state. The concluding remarks
and outlook are reported in Sec.VI.

A. Classification of long-range systems

Since the concept of long-range interactions encom-
passes non-local terms, beyond on-site or nearest-
neighbor couplings, it is rather natural to classify long-
range systems based on the shape of the considered in-
teractions. This arrangement does not only reflect dif-
ferences in the interaction shapes, but indicates the rad-
ically different properties that appear in each class.

The word long-range conventionally, but not univer-
sally, refers to couplings that, as a function of the dis-
tance r between the microscopic components, decay as a
power-law in the large r limit, r →∞, as

V (r) ∼ 1

rα
. (1)

The exponent α will be the one the main characters of
this review, together with the related one

σ ≡ α− d, (2)

where d is the dimension of the system.
A preliminary disclaimer is due at this point. The

word “long-range” is sometimes used to denote generic
non-local couplings, where the latter are beyond on-site
or nearest-neighbor couplings, so that within this conven-
tion an exponentially decaying coupling would be called
"long-range". In this review, for the sake of clarity, we
prefer to stick (and to a certain extent promote) the use
of the word "non-local" for a generic coupling which is
not local – exponential or finite-range or power-law et
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cetera – and "long-range" for interactions that at large
distances decay as a power-law of the form (1), i.e. 1/rα,
with an exponent α “small enough”, in a sense that will
be defined below.

An important result on the critical properties of clas-
sical systems with power-law interactions (Defenu et al.,
2020; Sak, 1973) is that if α is larger than a critical value,
α∗, then the critical behavior is indistinguishable from
the short-range limit of the model, retrieved for α→∞.
So, for α > α∗, the behavior of the model is not "gen-
uinely" long-range and its universal behavior is the same
as in the short-range limit. The specific value of α∗ de-
pends on the system and on the transition under study.

Among the unique effects produced by long-range in-
teractions, remarkable features appear in the case α
smaller than the dimension of the system, d. There, the
interaction energy of homogeneous systems becomes in-
finite, due to the diverging long-distance contribution of
the integral

∫
r−αddr. Therefore, when α < d the energy

is not extensive (Campa et al., 2014).
Since α∗ is larger than d, then there is an interval of

values of α for which the energy is extensive, yet the
long-distance properties of the system are altered by the
long-range nature of the interactions.

Given this, for the sake of our presentation we will
employ the following classification:

• weak long-range interactions: infinite-range
interactions with power-law behaviour (1) for large
r, and α such that d < α < α∗.

• strong long-range interactions: infinite-range
interactions with power-law behaviour (1) for large
r, and α < d.

Therefore, with "short-range interactions" we will re-
fer to the limit α → ∞ and by extension to α larger
than α∗, bearing in mind that for α > α∗ it is the criti-
cal behavior to be of short-range type, but non-universal
properties may of course be affected.

In both the above definitions for weak and strong long-
range interactions, with "infinite-range interactions with
power-law behavior" we mean that the power-law decay
is present for large distances, i.e. for the tails of the po-
tential, irrespectively of the short-range structure of the
interactions (Mukamel, 2008). To appropriately cover the
cases in which there is competition between excitations
on different length-scales, e.g. between a certain long-
range interaction and another one acting at short-range,
we will use the following additional notation:

• competing non-local interactions: finite-
and/or infinite-range interactions with different
sign.

It is worth noting that this classification has been in-
troduced to ease the discussion, but it does not pretend

to be rigorous or perfect. Indeed, certain strong long-
range systems may exhibit critical scaling analogous to
the general weak long-range case, – or in an infinite-range
interacting system the dominant effect could be the cre-
ation of non-homogeneous patterns, so that its physics
is more similar to the case of finite-range sign changing
interactions. Similarly, it could happen that in a system
with finite-range interaction plus a power-law interaction
with power decay α, the long-range tail does not affect
ground-state properties so that according to the classi-
fication the interaction could be "long-range" and nev-
ertheless, the system would behave as a non-long-range
system. Given the variety of situations, when needed for
the sake of the clarity of the presentation, we will regroup
the material according to the phenomena exhibited by
the different systems. Nevertheless, when not mislead-
ing, we will stick to the previous convention, which has
the merit to classify different interactions independently
of further considerations and of the knowledge of the ac-
tual behavior of the quantity of interest studied in the
particular models at hand.

In Tab. I we schematically summarize physical systems
governed by long-range interactions. Results for some
of them in the classical limit are summarized in the re-
maining part of this section, and further discussed in the
quantum case in the next sections.

B. Reminders on classical systems with long-range
interactions

In the rest of the section, we will make a brief account
of the most established phenomena occurring in each of
the previously introduced classes in the classical limit to
set the ground for the quantum case.

1. Strong long-range interactions

For α < d, the common definitions for internal energy
turn out to be non-extensive and traditional thermody-
namics does not apply.

These properties are shared by a wide range of phys-
ical systems, ranging from gravity to plasma physics,
see Tab. I. Apart from the cases summarised there, the
general results of strong long-range systems often apply
also to mesoscopic systems, far from the thermodynamic
limit, whose interaction range, even if finite, is compa-
rable with the size of the system. In the perspective of
quantum systems, this situation is particularly relevant
for Rydberg gases (Böttcher et al., 2020).

Due to the lack of extensivity, theoretical investiga-
tions in the strong long-range regime need a suitable pro-
cedure to avoid encountering divergent quantities. This
has been obtained in the literature scaling the long-range
interaction term by a volume pre-factor 1/V α−d, which
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System α α/d Comments

Gravitational systems 1 1/3 Attractive forces, possibly non homogenous states
Non-neutral plasmas 1 1/3 Some LR effects are also present in the neutral case
Dipolar magnets 3 1 Competition with local ferromagnetic effects
Dipolar Gases 3 1 Anisotropic interactions

Single-mode cavity QED systems 0 0 Interactions mediated by cavity photons
Trapped ions systems ∼ 0-3 ∼ 0-3 Interactions mediated by crystal phonons

Table I Table listing different applications where systems are governed by long-range interactions (LR stands for long-range).
These systems present interactions which remain long-range up to the thermodynamics limit. In the table, the ratio α/d,
signaling how strong the long-range is, refers to d = 3 in the first four lines (see the text for a discussion of different d). Notice
that for multi-mode cavity QED systems α is tunable.

is the so-called Kac’s prescription (Kac et al., 1963).
The salient feature of the Kac prescription is that it al-

lows a proper thermodynamic description of strong long-
range systems, without disrupting their key property, i.e.
non-additivity. Indeed, other possible regularisations,
where the long-range tails of the interactions are cut-
off exponentially or at a finite-range tend to disrupt the
peculiar physics of these systems. Similar cutoff regular-
isations are often employed in neutral Coulomb systems,
where the 1/r potential tails are naturally screened by
the presence of oppositely charged particles. However,
even in the screened case, the long-range tails of the
interaction potential may give rise to finite corrections
to thermodynamic quantities from the boundary con-
ditions, which also remain finite in the thermodynamic
limit (Lewin and Lieb, 2015).

Similarly, the appearance of non-additivity in strong
long-range systems is connected with a finite contribu-
tion of the system boundaries to the thermodynamic
quantity, as in the prototypical case of fully connected
systems where the boundary and bulk contributions are
of the same order. It is in fully connected systems
that most of the spectacular properties of strong long-
range systems have been first identified, such as en-
semble in-equivalence (Barré et al., 2001). The latter is
the property of non-additive systems to produce differ-
ent results when described with different thermodynam-
ical ensembles, leading to apparently paradoxical pre-
dictions such as negative specific heats or susceptibil-
ities. These models also present the so-called quasi-
stationary states (QSS) in the out-of-equilibrium dynam-
ics, i.e. metastable configurations whose lifetime scales
super-linearly with the system size. An extensive ac-
count of the peculiar properties of long-range systems in
the classical case can be found in Refs. (Campa et al.,
2014; Dauxois et al., 2002), while in the following we are
going to explicitly focus only on the quantum case.

Based on the discussion above, one may be tempted
to exclusively relate peculiar properties such as ensem-
ble inequivalence, negative specific heat, and QSS to the
non-extensive scaling of strong long-range systems in the
thermodynamic limit. However, similar effects appear
also in mesoscopic systems, where the interaction range

is finite, but of the same order as the system size, or for
attractive systems where most of the density is localized
within a finite radius (Thirring, 1970).

To point out that effective strong long-range models
with α = 0 can emerge also when the couplings do not
occur between components separated in space, but rather
in another, “internal” space, we mention effective models
of interacting neutrino models where the energy and the
momentum dependence of the neutrinos enter an Heisen-
berg model in a magnetic field with α = 0 (Pehlivan et al.,
2011).

2. Weak long-range interactions

The focus on short-range interactions in the theory
of critical phenomena (Nishimori and Ortiz, 2015) is not
only motivated by simplicity reasons, but rather by the
resilience of the universal behavior upon the inclusion
of non-local couplings, at least in homogeneous systems.
Indeed, the common wisdom states that universal prop-
erties close to a critical point do not depend upon vari-
ations of the couplings between the microscopic compo-
nents, but only on the symmetry of the order parameter
and the dimension of the system under study. However,
this statement is not generally true, when long-range in-
teractions are introduced into the system.

Indeed, while universal properties are insensible to the
intermediate range details of the interactions, for critical
systems with homogeneous order parameters, they are
sensitive to the power-law decaying tails of long-range
couplings (and, to be explicit, not on the strength of the
interaction itself). For α < d, the interaction energy
diverges and the universal behavior typically belongs to
the mean-field universality class. On the contrary, as a
function of the parameter σ ≡ α − d > 0 three different
regimes may be found (Defenu et al., 2020):

• for σ ≤ σmf the mean-field approximation correctly
describes the universal behavior, where σmf can be
calculated in the mean-field approximation.

• for σ > σ∗, the model has the same critical expo-
nents of its short-range version, i.e. the σ → ∞
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limit;

• for σmf < σ ≤ σ∗ the system exhibits peculiar long-
range critical exponents,

where the notation σ∗ ≡ α∗ − d has been used. There-
fore, it exists a range of long-range decay exponents
0 < σ ≤ σ∗, where thermodynamics remains well de-
fined and the critical behavior is qualitatively similar
to the one appearing in the limit σ → ∞. Neverthe-
less, the universal properties become σ-dependent and,
loosely, mimic the dependence of the short-range univer-
sal properties as a function of the geometric dimension
d (Fisher et al., 1972). In other words, varying σ at fixed
dimension is, approximately, equivalent to changing the
geometric dimension in short-range systems. Notice that
this equivalence is expected to be not exact in general,
but it does at the gaussian level, as one can explicitly see
for the spherical model (Joyce, 1966).

While the boundary σmf can be exactly calculated by
appropriate mean-field arguments, the location of the
σ∗ is the result of a complex interplay between long-
range and short-range contributions to critical fluctua-
tions. This fascinating interplay is at the root of several
interesting phenomena, which appear in a wide range of
different critical systems upon the inclusion of long-range
interactions in the weak long-range regime (Defenu et al.,
2020). The appearance of novel effects is not limited to
the equilibrium universal properties, but also extends to
the out-of-equilibrium realm, whose plethora of intrigu-
ing long-range phenomena has only been partially under-
stood. Given these considerations, most of the focus of
the forthcoming discussion on weak long-range interact-
ing systems will concern universal properties both at and
out of equilibrium.

3. Competing non-local interactions

Systems with non-local interactions whose tails are
rapidly decaying, with σ > σ∗ or exponentially decaying,
may still produce interesting universal features, due to
the interplay with other local couplings or to the presence
of frustration in the system. Indeed, when long-range re-
pulsive interactions compete with short-range attractive
ones the pertinent order parameter of the system may
form spatial modulations in the form, e.g., of lamellae,
cylinders, or spheres. These modulated phases are ubiq-
uitous in nature and emerge in a large variety of physi-
cal systems ranging from binary polymer mixtures, cold
atoms, and magnetic systems, to high-temperature su-
perconductors (Seul and Andelman, 1995). Especially in
two dimensions, modulated phases lead to rich phase di-
agrams with peculiar features, which are far from being
fully understood. In particular, the appearance of mod-
ulated phases has been invoked to describe several in-
teresting properties of strongly correlated electronic sys-

tems, including e.g. high temperature superconductors
and manganites with colossal magnetoresistance (Bustin-
gorry et al., 2005; Ortix et al., 2008).

At finite temperatures, another striking effect of mod-
ulated phase is the so-called inverse melting, which is a
consequence of reentrant phases. Indeed, a modulated
phase may be "too hot to melt" (Greer, 2000), when the
system recovers the disordered state at very low tem-
perature after being in a symmetry broken state in an
intermediate temperature regime. The extension of this
reentrance becomes appreciable for systems where the
homogeneous and modulated phases present similar en-
ergy cost and the order parameter remains small, and it
is thus strongly influenced by the form and intensity of
non-local interactions (Mendoza-Coto et al., 2019).

The study of the universal properties of modulated
phases has been initiated long ago (Brazovskii, 1975), but
a comprehensive picture of their critical properties is yet
lacking, despite the large amount of investigations (Cross
and Hohenberg, 1993), due to the difficulty to devise
reliable approximation schemes. However, the increas-
ing number of experimental realizations featuring striped
phases could lead to a renovated interest in such prob-
lems within the framework of the physics of long-range
interactions.

II. EXPERIMENTAL REALISATIONS

As mentioned above, the rising interest for long-range
physics has been made pressing by the current develop-
ments of the experimental techniques for the control and
manipulation of AMO systems. Indeed, long-range quan-
tum systems are being currently realised in several exper-
imental platforms such as Rydberg atoms (Saffman et al.,
2010), dipolar quantum gases (Lahaye et al., 2009), po-
lar molecules (Carr et al., 2009), quantum gases coupled
to optical cavities (Mivehvar et al., 2021; Ritsch et al.,
2013) and trapped ions (Blatt and Roos, 2012; Monroe
et al., 2021; Schneider et al., 2012). Long-range interac-
tions with tunable exponent α can currently be realised
using trapped ions off-resonantly coupled to motional de-
grees of freedom stored in a Paul trap (Islam et al., 2013;
Jurcevic et al., 2014; Richerme et al., 2014), in a Pen-
ning trap (Britton et al., 2012; Dubin and O’Neil, 1999)
or neutral atoms coupled to photonic modes of a cav-
ity (Douglas et al., 2015; Vaidya et al., 2018). We also
mention that the dependence of the decay at intermedi-
ate length scales can, in turn, be tuned, as e.g. in polar
gases in one-dimensional lattices (Li et al., 2020).

Based on the aforementioned classification, we are go-
ing to focus our attention on three different classes of
experimental systems: trapped ions, quantum gases in
cavities and dipolar systems, including, in particular, Ry-
dberg states. All of these systems are quantum in nature
and represent prototypical applications of recent inves-
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tigations in long-range physics. Trapped ions present
the almost unique possibility to experimentally realize
long-range interactions with decay exponent which may
be tuned in the range α ∈ 0 ∼ 3 exploring both the
strong and weak long-range regimes. Conversely, cav-
ity mediated interactions between atoms are typically
flat (α = 0) and constitute the experimental counter-
part of the celebrated Dicke or Lipkin-Meshkov-Glick
(LMG) models (Dicke, 1954; Hepp and Lieb, 1973; Lip-
kin et al., 1965), two real workhorses of long-range in-
teractions. Finally, Rydberg states and dipolar atoms in
general present several common features with thin mag-
netic films, which have been the traditional experimental
setup for the study of modulated critical phenomena at
finite temperatures (Selke, 1988).

Thus, each of these experimental platforms represents
a realization of the peculiar physics in each of the long-
range regimes. However, this statement should not be
considered strictly, but mostly a general guideline to
ease our presentation. The reason for such a disclaimer
is that in the following we will describe several exam-
ples violating such correspondence – such as the obser-
vation of QSS in the strong long-range regime of trapped
ions (Neyenhuis et al., 2017); the presence of pattern for-
mation in cavity systems (Baumann et al., 2010; Landini
et al., 2018); and the realisation of the LMG model in
the fully-blockade limit of Rydberg atoms (Henkel et al.,
2010; Zeiher et al., 2016).

A. Trapped ions

Laser cooled ions confined in radiofrequency traps
are one of the most advanced platforms for both quan-
tum computing (Ladd et al., 2010) and quantum sim-
ulation (Monroe et al., 2021). In these systems, time-
dependent electric fields create an effective harmonic,
eV-deep potential (Brown and Gabrielse, 1986; Dehmelt,
1967; Paul, 1990) allowing a long storage time of col-
lections of charged particles in vacuum systems (Pagano
et al., 2018). When laser-cooled (Leibfried et al., 2003a),
the atomic ions form Wigner crystals whose equilibrium
positions and vibrational collective modes are determined
by the competition between the Coulomb interactions
and the harmonic confinement induced by the trap. In
the following sections, we will first review the experimen-
tal techniques used to realize spin models with tunable
power-law interactions. We will then describe the ex-
perimental realizations of these models where the long-
range character of the interaction allowed the observa-
tions of new physical phenomena in many-body quantum
systems.

1. Phonon-mediated interactions

In trapped ions systems, the spin degree of freedom
can be encoded in two long-lived atomic states, either
in the hyperfine ground state manifold (Knight et al.,
2003) or using a metastable electronic state (Blatt and
Wineland, 2008). Both approaches guarantee coherence
time of the order of a few seconds, near-perfect initializa-
tion via optical pumping (Happer, 1972) and high-fidelity
detection via state-dependent fluorescence (Christensen
et al., 2020; Myerson et al., 2008; Noek et al., 2013).

Without any spin-motion coupling, the ion crystal
can be described as a set of normal modes of motion
(phonons) and an independent set of internal (spin) de-
grees of freedom, with the Hamiltonian

H =
∑

m

~ωma†mam +
∑

i

~Bi · ~σi, (3)

where a†m(am) is the creation(annihilation) operator of
the m-th phonon mode with [am, a

†
n] = δmn, and ~σi =

{1i, σxi , σyi , σzi } and ~Bi are the Pauli matrix vector and
effective magnetic fields associated with the i-th ion, re-
spectively. The effective magnetic fields are implemented
experimentally with microwaves or one-photon and two-
photon laser-induced processes.

Laser cooling and sub-Doppler techniques, e.g. re-
solved Raman sideband cooling (Monroe et al., 1995)
and Electromagnetic-Induced Transparency (EIT) cool-
ing (Feng et al., 2020; Jordan et al., 2019; Lin et al., 2013;
Roos et al., 2000), can prepare all motional states near
their ground states, which is crucial for the simulation of
the spin models described below.

Quantum operations can be carried out by exerting
a spin-dependent optical force on the ion crystal, co-
herently coupling spin and motional degrees of freedom.
High-fidelity coherent spin-motion coupling can be real-
ized with one-photon optical transitions in the case of
optical qubits (Blatt and Wineland, 2008), two-photon
stimulated Raman transitions in the case of hyperfine
qubits (Britton et al., 2012; Harty et al., 2014; Kim et al.,
2009) and near-field microwaves (Harty et al., 2016; Os-
pelkaus et al., 2011; Srinivas et al., 2021).

Considering the momentum ~∆k imparted by the laser
on the ions confined in a harmonic potential well, the
general light-atom Hamiltonian in the rotating frame of
the qubit is:

H =
~Ω

2

∑

i

[
(~θ · ~σi) ei(∆kXi−µt−φ) + h.c.

]
, (4)

where Ω, µ and φ are the Rabi frequency, the laser beat-
note frequency and the laser phase, respectively. The
spin Pauli operators ~σi = {1i, σxi , σyi , σzi } are multiplied
by the complex coefficients ~θ = {θ0, θ1, θ2, θ3} depending
on the specific experimental configuration. The position
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the coupling is antiferromagnetic and for Ji,j, 0 the coupling is
ferromagnetic.
We implement ĤI using a spatially uniform, spin-dependent ODF

generated by a pair of off-resonance laser beams with difference fre-
quency mR (Fig. 1 and Supplementary Information). The ODF couples
each ion’s spin to one or more of the N transverse (along z) motional
modes of the Coulomb crystal by forcing coherent displacements of
the ions that in turn modify the ions’ Coulomb potential energy
through the interaction

ĤODF~{
XN

i

Fz(t)ẑiŝzi

Here Fz(t)5 F0cos(mRt) is the ODF; ẑi~
PN

m~1 bi,m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B=2Mvm

p

(âme{ivmtzâ{me
ivmt) is the axial position operator for ion i; bi,m are

elements of theN transverse phonon eigenfunctions,bm, at frequencies

vm, normalized as
PN

m~1 bi,mj j2~
PN

i~1 bi,mj j2~1 (refs 28, 29);M is
the ion mass; and B is Planck’s constant divided by 2p. The modes
include the centre-of-mass (COM) mode (v1) as well as an array of
modes of higher spatial frequencies thatmay be derived fromatomistic
calculations (Fig. 2a) and confirmed by experimental measurement30.
For small, coherent displacements, where residual spin–motion

entanglement can be neglected29 (Methods), ĤODF is equivalent to
ĤI in equation (1): spins i and j are coupled in proportion to their spin
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Top-view image
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Cooling
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ODF
laser beams
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y B0
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ωR

–V0
θR

ωR + μR

Figure 1 | The Penning trap confines hundreds of spin-1/2 qubits on a 2D
triangular lattice. Eachqubit is the valence-electron spinof a 9Be1 ion. Bottom:
a Penning trap confines ions using a combination of static electric andmagnetic
fields. The trap parameters are configured such that laser-cooled ions form a
triangular 2Dcrystal. A general spin–spin interaction, ĤI, is generated by a spin-
dependent excitation of the transverse (along z) motional modes of the ion
crystal. This coupling is implemented using an optical dipole force (ODF)
produced by a pair of off-resonance laser beams (left side) with angular
separation hR and difference frequency mR. Microwaves at 124GHz permit
global spin rotations ĤB. Top: a representative top-view resonance fluorescence
image showing the centre region of an ion crystal captured in the ions’ rest frame;
in the laboratory frame, the ions rotate at vr5 2p3 43.8 kHz (ref. 26).
Fluorescence is an indication of the qubit spin state ( |"æ, bright; |#æ, dark); here,
the ions are in the state |"æ. The lattice constant is d0< 20mm.
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Figure 2 | Spin–spin interactions are mediated by the ion crystal’s
transverse motional degrees of freedom. a, For a 2D crystal withN5 217 ions
and vr5 2p3 45.6 kHz, we calculate the eigenfunctions, bm, and
eigenfrequencies, vm, for the N transverse motional modes (Supplementary
Information). Plotted here arevm and bm for the 14 highest-frequency modes.
Relativemode amplitude is indicatedby colour.TheCOMmotion is thehighest in
frequency (v1< 2p3 795 kHz);b1 has no spatial variation. The lowest-frequency
mode is v217< 2p3200 kHz; b217 has spatial variation at the lattice-spacing
length scale, d0< 20mm. b, Using equation (2), we calculate Ji,j explicitly for
N5 217 spins and plot it as a function of spin–spin separation, di,j. For
mR2v1,2p31kHz, ĤODF principally excites COMmotion in which all ions
equally participate: the spin–spin interaction is spatially uniform. As the detuning
is increased,modes of higher spatial frequencyparticipate in the interaction and Ji,j
develops a finite interaction length. We find the scaling of Ji,j with di,j follows the
power law Ji,j / d{a

i,j . For mR2v1? 2p3 500kHz, all transverse modes
participate and the spin–spin coupling power-law exponent, a, approaches 3. The
solid lines are power-law fits to the theory points. For comparison with other
experiments, the nearest-neighbour coupling (d05 20mm) is marked by the
dashed line. c–e, The power-law nature of Ji,j is qualitatively illustrated forN5 19
(for largerN, diagramsof similar size are illegible). Spins (nodes) are joinedby lines
coloured in proportion to their coupling strength for various values of a. f, For
context, the graph for a 1D nearest-neighbour Ising interaction, a well-known
model in quantum field theory, is plotted.
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Figure 2 Trapped ions systems. (a) A 77 linear chain of 171Yb+ ions. The harmonic confinement and Coulomb interactions
cause the spacing between ions to be inhomogenous, breaking translational invariance. (b) A laser drive at frequency µ is
detuned from the radial center of mass mode frequency ωcom to create phonon-mediated spin-spin interactions. (c) Calculated
spin-spin interaction (blue circles) for a 1D chain of 20 ions versus distance from the edge ion. In this case δ = µ−ωcom = 2π ·100
kHz and J1,1+r ∼ 1/r1.3 (red solid line). (d) Calculated Ising couplings in a 2D crystal of 217 ions versus a sampling of the
distance dij between ion pairs (empty circles). The solid lines are best-fit power law exponents (α = 0.01, 0.12, 0.75, 1.73, 2.72
from top to bottom) for various detunings from the center-of-mass (COM) mode of 795 kHz. Adapted from Ref. (Britton et al.,
2012).

operator can be written in terms of collective phononic
modes as

Xi =

N∑

m=1

ηim(a†me
iωmt + ame

−iωmt),

with ηim = ηmbim where bim1 is the normal mode trans-
formation matrix and ηm = ∆k

√
~/2mωm is the Lamb-

Dicke parameter associated to the m-th normal mode at
frequency ωm.

2. Mapping to spin models

In the Lamb-Dicke regime, ∆k〈Xi〉 � 1, the first-
order term of Hamiltonian (4) gives rise to spin-phonon
couplings of the form (σ±,zi ame

iωmt + h.c.), where the
spin operator depends on the experimental configura-
tion. These terms generate an evolution operator un-
der a time-dependent Hamiltonian that can be written
in terms of Magnus expansions (Zhu et al., 2006). In
the limit of (µ − ωm) � ηmΩ for all m, the motional
modes are only virtually excited, meaning that only the
second-order term of the Magnus expansion is dominant
and leads to the following pure spin-spin Hamiltonian:

H =
∑

ij

Jijσ
~θ
i σ

~θ
j , (5)

where the choice of the Pauli spin operator σ~θi is con-
trolled by the laser configuration2. One common config-

1 ∑
i bimbin = δnm and

∑
m bimbjm = δij

2 For a detailed derivation of Eq. (5) we refer to (Monroe et al.,
2021).

uration {θ1 = 1/2, θ2 = i/2, θ0 = θ3 = 0} leads to the
so-called Mølmer-Sørensen gate (Sørensen and Mølmer,
1999), where two laser beat-notes are tuned close to the
motional mode transitions with opposite detunings ±µ.
In this configuration σ

~θ
i = σφi = σxi cos(φ) + σyi sin(φ),

where φ can be tuned by controlling the phases of the two
laser beat-notes (Monroe et al., 2021). Another widely
used laser configuration is {θ1 = θ2 = θ0 = 0, θ3 = 1}
(Leibfried et al., 2003b) where the ion motion is modu-
lated by a spin-dependent light shift.

The spin-spin interaction matrix Jij can be explicitly
calculated given the frequencies of the normal modes ωm
and the detuning µ as follows:

Jij = Ω2ωrec

N∑

m=1

bimbjm
µ2 − ω2

m

(6)

where ωrec = ~(∆k)2/2M is the recoil frequency associ-
ated with the transfer of momentum ~(∆k) (see Fig. 2).
The spin-spin interaction can be approximated with a
tunable power law:

Jij =
J0

|i− j|α . (7)

The approximate power-law exponent can be adjusted
in the 0 < α < 3 range by tuning the detuning µ and
the trap frequencies ωm. In the limit µ� ∆ω, with ∆ω
being the typical mode separation, all modes contribute
equally, and the spin-spin interaction decays with a dipo-
lar power law, e.g. Jij ∼ 1/|i − j|3. On the other hand,
when µ is tuned close to ωcom (see Fig. 2), the exponent
α decreases.

It is worth noting that in the quantum simulation
regime, large transverse fields (µ − ωcom � Bz � J0)
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have been used in the Mølmer-Sørensen configuration to
tune Hamiltonian (5) and experimentally realize a long-
range XY model:

H =
∑

ij

Jij(σ
x
i σ

x
j +σyi σ

y
j ) =

∑

ij

Jij(σ
+
i σ
−
j +σ−i σ

+
j ). (8)

Qualitatively, the large field Bz transverse to the interac-
tion direction suppresses energetically the processes in-
volving two spin-flips (∼ σ+

i σ
+
j + σ−i σ

−
j ) of the Ising

Hamiltonian (5) and retains only the spin preserving part
(∼ σ+

i σ
−
j +σ−i σ

+
j ). Note that some papers refer to Hamil-

tonian (8) as XX Hamiltonian instead of XY. In the fol-
lowing we will use these two as synonyms, depending on
the specific reference that is being discussed.

B. Cold atomic gases in cavities

Also when microscopic interactions between particles
are local, effective non-local models can be also realized
by coupling the particles to the mode of microwave or op-
tical resonators (Leroux et al., 2010; Majer et al., 2007).
Photons delocalized over the volume of a resonator can
then mediate interactions between the particles, leading
to highly tunable long-range or global-range interactions.
Since the photons constantly decay from the resonator,
these systems have to be externally driven. Depending
on parameters, the lossy character of the cavity can thus
be made dominant, such that the physics has to be ef-
fectively described by non-equilibrium, driven-dissipative
models. In the following, we discuss how this basic
scheme has been applied to cold thermal ensembles of
atoms to realize effective spin interactions, and to quan-
tum degenerate ensembles of atoms to realize effective
density interactions.

1. Thermal ensembles with cavity-mediated interactions

Thermal ensembles of cold atoms coupled to optical
cavities have proven to be a versatile platform for engi-
neering long-range spin interactions. Non-local, tunable
Heisenberg models and spin-exchange dynamics have
been implemented using photon-mediated interactions in
atomic ensembles, where the coupling between atomic
sublevels is controlled via magnetic and optical fields.

For example, by coupling the clock-transition of an
ensemble of Strontium atoms to a detuned narrow-
linewidth optical resonator, photons mediate an effec-
tive spin-exchange interaction which can be widely tuned,
since it scales inversely with the detuning between drive
and cavity resonance (Norcia et al., 2018). The long-
range interactions featured by this system have been ex-
ploited to explore the non-equilibrium phase diagram
of the LMG model with transverse and longitudinal
fields (Muniz et al., 2020), see also Sec.V.D.

Photon-mediated spin-exchange interactions have also
been realized in a spin-1 system of Rb atoms (Davis
et al., 2019, 2020). Here, a detuned four-photon Ra-
man process is induced: A first atom absorbs a drive
photon and emits it virtually into the cavity mode while
changing its internal state. This virtual photon is ab-
sorbed by a second atom which then emits the photon
back into the drive field, while also changing its inter-
nal state, thereby realizing a “flip-flop interaction”. Since
these processes depend via the Zeeman shift on the ap-
plied magnetic field, also spatially dependent interactions
can be generated. Using multi-frequency drives in con-
junction with a magnetic field gradient, highly tailorable
interactions in arrays of atomic ensembles within an op-
tical cavity have been recently realized (Periwal et al.,
2021), see also (Hung et al., 2016) for a theoretical pro-
posal in crystal waveguides. This approach allowed to
generate a multitude of interesting structures such as
Möbius strips with sign-changing interactions or treelike
geometries. With these tools, models that exhibit fast
scrambling connecting spins separated by distances that
are powers of two were proposed in Ref. (Bentsen et al.,
2019b), which neatly connects to 2-adic models.

2. Quantum gases with cavity-mediated interactions

Dilute quantum gases of neutral atoms are a power-
ful platform to study many-body physics (Bloch et al.,
2008a). However, these gases typically only interact via
collisional, short-range interactions. Non-local dipole-
dipole interactions can nevertheless be implemented em-
ploying either particles with a large static dipole mo-
ment (such as heteronuclear molecules or atomic species
with large magnetic dipole moments) or with an in-
duced dipole moment, such as Rydberg atoms. These
approaches will be discussed in section II.C. A comple-
mentary route to exploit induced dipolar interactions is
to couple the quantum gas to one or multiple modes of
an optical cavity (Mivehvar et al., 2021; Ritsch et al.,
2013). In the following sections, we will first provide an
introduction to the fundamental mechanism giving rise
to cavity-mediated long-range interactions and then turn
to experimental realizations of relevance for the current
review.

The basic setting is shown in Fig. 3(a). A Bose-
Einstein condensate (BEC) is trapped by an external
confining potential at the position of the mode of an op-
tical cavity. The quantum gas is exposed to a standing
wave transverse pump laser field with wave vector kp,
whose frequency ωp is far detuned by ∆a = ωp − ωa
from the atomic resonance ωa. In this dispersive limit,
the atoms are not electronically excited, but form a dy-
namical dielectric medium, that scatters photons. At the
same time, the resonance frequency ωc of a cavity mode
with wave vector kc (where |kc| ≈ |kp| = k) is tuned
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Figure 3 Experimental scheme for realizing cavity-
mediated interactions and mode softening at the su-
perradiant phase transition. (a) A BEC (shaded cloud)
inside an optical cavity is transversally illuminated by a far-
red–detuned standing-wave laser field. In a quantized pic-
ture, atoms off-resonantly scatter photons from the pump
field into a close-detuned cavity mode and back, creating and
annihilating pairs of atoms in the superposition of momenta
(px, py) = (±~k,±~k) (one of four possible processes is shown
schematically). This results in global interactions between all
atoms. The interaction strength V is controlled via the power
of the transverse laser field and the detuning ∆c. (b) The
cavity-mediated atom-atom interaction causes a softening of
a collective excitation mode with energy ~ωs at the momenta
(±~k,±~k) and a diverging susceptibility (shaded area) at a
critical interaction strength (dashed line). Adapted from Ref.
(Mottl et al., 2012).

close to the frequency of the transverse pump field, such
that photons scattered off the atoms are preferentially
scattered into the cavity mode. Compared to free space,
such vacuum-stimulated scattering is greatly enhanced
by a factor proportional to the finesse of the optical cav-
ity.

The scattering of a photon from the pump off a first
atom into the cavity and then back into the pump off
a second atom is the microscopic process mediating the
interaction between two atoms. Such a photon scatter-
ing process imparts each one recoil momentum along the
cavity direction and the pump field direction onto the
atoms, such that atoms initially in the zero-momentum
BEC state |p0〉 = |px, py〉 = |0, 0〉 are coupled to a state
|p1〉, which is the symmetric superposition of the four
momentum states | ± ~kc ± ~kp〉. Since the photon is
delocalized over the cavity mode this interaction is of
global range. The strength of the interaction can be in-
creased by either reducing the absolute value of the de-
tuning ∆c = ωp−ωc between pump frequency and cavity
resonance, or by increasing the power of the transverse
pump field. The interaction inherits its shape from the
interference of the involved mode structures of the trans-
verse pump and cavity.

More formally, after adiabatically eliminating the elec-
tronically excited atomic states, a quantum gas driven
by a standing wave transverse pump field with mode
function χ(r) and coupled to a linear cavity with mode
function ξ(r) can be described by the second-quantized

many-body Hamiltonian (Maschler et al., 2008) H =
Hc +Ha +Hac with

Hc = −~∆ca
†a

Ha =

∫
d3rΨ†(r)

[
p2

2m
+ Vpχ

2(r) +
g

2
Ψ†(r)Ψ(r)

]
Ψ(r)

Hac =

∫
d3rΨ†(r)~

[
ηχ(r)ξ(r)(a+ a†) + U0ξ

2(r)a†a
]

Ψ(r),

(9)

where Hc describes the dynamics of a single cavity mode
with photon creation (annihilation) operator a†(a). The
atomic evolution in the potential provided by the pump
field with depth Vp is captured by the term Ha, where
p is atomic momentum, m is atomic mass, g describes
the atomic contact interactions, and Ψ(r) is the bosonic
atomic field operator. The term Hac finally describes the
interaction between atoms and light fields. Its first term
captures the photon scattering between cavity and pump
fields at a rate given by the two-photon Rabi frequency
η =

g0Ωp
∆a

, where g0 is the maximum atom-cavity vacuum-
Rabi coupling rate and Ωp is the maximum pump Rabi
rate. The second term describes the dynamic dispersive
shift of the cavity resonance with U0 =

g2
0

∆a
being the

light-shift of a single maximally coupled atom.
The atomic system evolves on a time scale given by the

energy∼ ~ωr of the excited momentum state, where ωr =
~k2/(2m) is the recoil frequency of the photon scattering
and k the cavity wave-vector. If the cavity evolution
is fast compared to this time scale, i.e. if the cavity
decay rate κ � ωr, the cavity field can be adiabatically
eliminated which yields

a =
ηΘ

∆̃c + iκ
, (10)

where ∆̃c = ∆c − U0

∫
d3rΨ†(r)ξ2(r)Ψ(r) is the dis-

persively shifted cavity detuning. Eq. (10) shows that
the cavity field is proportional to the order parameter
operator Θ =

∫
d3rΨ†(r)χ(r)ξ(r)Ψ(r) which measures

the overlap between atomic density modulation and the
mode structure of the interfering light fields. This re-
lation is essential for the real-time observation of the
atomic system via the light field leaking from the cav-
ity.

Eliminating the steady-state cavity field in Eqs. (9) us-
ing Eq. (10), an effective Hamiltonian is obtained (Mottl
et al., 2012),

Heff = Ha +

∫
d3rd3r′Ψ†(r)Ψ†(r′)Vlr(r, r′)Ψ(r)Ψ(r′) ,

(11)
with the long-range interaction potential

Vlr(r, r′) = Vχ(r)ξ(r)χ(r′)ξ(r′). (12)

This periodic interaction potential with strength V =

~ η2∆̃c

∆̃2
c+κ

2
is of global range and favors a density modula-

tion of the atomic system with a structure given by the
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interference of pump and cavity fields. For a standing
wave transverse pump field impinging on the BEC per-
pendicular to the cavity mode, this interference has a
checkerboard shape of the form cos(kx) cos(ky).

While integrating out the light field provides access to
a simple description in terms of a long-range interacting
quantum gas, it is important to keep in mind that the
system is of driven-dissipative nature. The excitations
of the system are polaritons that share the character of
both the atomic and the photonic fields. Furthermore, as
we detail below, in the sideband resolved regime κ <∼ ωr
the cavity field cannot be integrated out anymore and
the interaction becomes retarded (Klinder et al., 2015b).

The sign of the interaction V can be chosen by an ac-
cording change in the detuning ∆̃c. For V < 0, this inter-
action leads to density correlations in the atomic cloud
favoring a λ-periodic density structure, where λ = 2π/k
is the wavelength of the pump laser field. This can also be
understood by inspecting the first term in Hac from Eqs.
(9). A λ-periodic density structure would act as a Bragg
lattice, enhancing the coherent scattering of photons be-
tween pump and cavity. The emerging intra-cavity light
field interferes with the pump lattice and builds an opti-
cal potential in which the atoms can lower their energy.
However, the long-range interaction favoring the density
modulation competes with the kinetic energy term. Only
above a critical interaction strength, the system under-
goes a quantum phase transition to a self-ordered state
characterized by a density modulated cloud and a coher-
ent field in the cavity mode, see Section IV.G.2.

Also, tunable-range interactions can be engineered by
extending the scheme described above to multi-mode
cavities (Gopalakrishnan et al., 2010, 2009, 2011). In
such cavities, a very large number of modes with or-
thogonal mode functions (in theory an infinite number,
in practice several thousands) are energetically quasi-
degenerate. An atom within the quantum gas will thus
scatter the pump field into a superposition of modes,
with the weights set by the position of the atom and
a residual detuning between the modes. These modes in-
terfere at large distances destructively, such that only a
wave packet localized around the scattering atom remains
where constructive interference dominates. Accordingly,
the effective atomic interaction acquires a finite-range set
by the number of contributing modes.

Full degeneracy can only be reached in a multi-mode
cavity that is either planar or concentric, both of which
are marginally stable cavity configurations (Siegman,
1986). However, also the - experimentally stable - con-
focal cavity configuration supports a high degree of de-
generacy, where either all even or all odd modes are de-
generate. The resultant effective atomic interaction also
features a tunable short-ranged peak, see Fig. 4. This in-
teraction has been experimentally realized (Kollár et al.,
2017; Vaidya et al., 2018), and can be further employed to
realize sign-changing effective atomic interactions (Guo

Figure 4 Tunable-range cavity-mediated interaction in
a multi-mode cavity. Dimensionless interaction strength
D(x1, x1) as a function of BEC position in a mode with waist
w0 for five different cavities, indicated by the saturation of
the color. The darkest data corresponds to a confocal cavity
at high degeneracy of modes, while the brighter shades corre-
spond to fewer interacting modes. The inset shows a close-up
near the cavity center, illustrating how a larger number of in-
teracting modes allows to engineer a more localized effective
atomic interaction. Reproduced from (Vaidya et al., 2018).

et al., 2020, 2019). Changing the range of the medi-
ated interaction is expected to impact also the univer-
sality class of the self-ordering phase transition we de-
scribe in Section IV.G.2. With an increasing number
of modes, the initially second-order phase transition is
expected to develop into a weakly first-order phase tran-
sition (Gopalakrishnan et al., 2010, 2009; Vaidya et al.,
2018).

3. Mapping to spin models

One of the most fundamental models in quantum op-
tics is the Dicke model, which describes the collective
interaction between N two-level atoms (captured as col-
lective spin S) with resonance frequency ω0 and a single
electromagnetic field mode at frequency ω (Dicke, 1954;
Kirton et al., 2019). The Dicke model exhibits for suf-
ficiently strong coupling Λ between matter and light,
Λ > Λc ≡

√
ωω0/2, a quantum phase transition to a su-

perradiant ground state (Hepp and Lieb, 1973; Wang and
Hioe, 1973), with a macroscopically populated field mode
〈a〉 and a macroscopic polarization 〈Sx〉 of the atoms.
The observation of the Dicke phase transition employ-
ing a direct dipole transition was hindered due to the
limited realizable dipole coupling strengths. However, it
was theoretically proposed to make use of Raman transi-
tions between different electronic ground states, allowing
to reach the critical coupling in a rotating frame of the
driven-dissipative Dicke model (Dimer et al., 2007).

Neglecting atomic collisional interactions and the dis-
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Figure 5 Dicke model phase diagram. (a) The power
of the transverse pump is increased over 10 ms for different
values of the pump-cavity detuning ∆c. The recorded mean
intracavity photon number is displayed (intensity scale) as
a function of pump power (and corresponding pump lattice
depth) and pump–cavity detuning, ∆c. A sharp phase bound-
ary is observed over a wide range of values; this boundary is in
good agreement with a theoretical mean-field model (dashed
curve). The dispersively shifted cavity resonance for the non-
organized atom cloud is marked by the arrow on the verti-
cal axis. (b, c) Typical traces showing the intracavity photon
number for different pump–cavity detunings as indicated by
the symbols. Reproduced from (Baumann et al., 2010).

persive shift of the cavity, also the self-organization phase
transition (see Section IV.G.2) can be mapped to the su-
perradiant quantum phase transition of the Dicke model
(Baumann et al., 2010; Nagy et al., 2010). Exploit-
ing the quantized atomic motion, the two-mode ansatz
Ψ = ψ0c0 + ψ1c1 for the atomic wave-function can be
inserted into the Hamiltonian (9). Here c0 and c1 are
bosonic mode operators annihilating a particle in the flat
BEC mode ψ0, respectively in the excited motional mode
ψ1 ∝ ψ0 cos(kx) cos(ky). Introducing the collective spin
operators S+ = S†− = c†1c0 and Sz = (c†1c1 − c†0c0)/2, one
arrives at the Dicke Hamiltonian

H/~ = −∆ca
†a+ ω0Sz +

Λ√
N

(a† + a)(S+ + S−), (13)

with bare energy of the motional excited state ~ω0 and
coupling strength Λ = η

√
N/2. Compared to the original

Dicke model, the mode frequency ω has been mapped to
−∆c in the rotating frame of the pump field. The obser-
vation of the onset of self-organization in the transver-
sally pumped BEC constitutes the first realization of the
Dicke phase transition (Baumann et al., 2010). The phase
diagram of the self-ordering phase transition is shown in
Fig. 5 together with the well-matching theoretical pre-
diction for the open Dicke model phase transition.

It is instructive to rewrite the long-range interaction
Eq. 12 in terms of center-of-mass and relative coordi-
nates. Focusing for simplicity on the 1D case, this results

in

Vlr(x, x′) =V cos(kx) cos(kx′)

=
V
2

[
cos(2kxcom) + cos(kxrel))

] (14)

with xcom = (x + x′)/2 and xrel = x − x′. The
term cos[2kxcom] originates from the cavity standing-
wave mode structure and breaks continuous translational
invariance, pinning the center of mass of the system at the
phase transition onto the underlying mode structure with
periodicity λ/2. More interesting is the term cos[kxrel],
which leads to the tendency of atoms to separate by a
multiple of the wavelength λ. Due to the different period-
icity of the two terms, a parity symmetry is broken at the
self-ordering phase transition. The interaction term cap-
turing the relative coordinate allows mapping this sys-
tem to the Hamiltonian-Mean-Field model (Antoni and
Ruffo, 1995; Campa et al., 2014; Dauxois et al., 2002;
Ruffo, 1994; Schütz and Morigi, 2014). This model is a
paradigmatic model of the statistical mechanics of non-
additive long-range systems. Employing this mapping
it was possible to show that the transition to spatial
self-organization is a second-order phase transition of the
same universality class as ferromagnetism, whose salient
properties can be revealed by detecting the photons emit-
ted by the cavity (Keller et al., 2017).

4. Lattice models with cavity-mediated long-range interactions

Ultracold atoms loaded into optical lattices are an
unprecedented resource for the quantum simulation
of condensed matter systems such as the Hubbard
model (Bloch et al., 2008b; Lewenstein et al., 2007).
A prominent example is the experimental realization of
the superfluid-to-Mott insulator quantum phase transi-
tion (Greiner et al., 2002), caused by the competition
of kinetic and interaction energy. However, since the
dominant interaction in quantum gases is the collisional
interaction, simulating models with long-range interac-
tions poses a challenge. Adding cavity-mediated long-
range interactions to this setting thus opens the path to
access long-range interacting, extended Hubbard mod-
els. If this additional energy scale competes with the
other two, the phase diagram will feature besides the
superfluid and the Mott insulating phases also a den-
sity modulated superfluid phase – the lattice supersolid
– and a density modulated insulating phase – the charge
density wave. Theoretical predictions discussed the re-
sulting phases and phase diagrams in the case of com-
mensurate and incommensurate lattices (Bakhtiari et al.,
2015; Caballero-Benitez and Mekhov, 2015; Chen et al.,
2016; Dogra et al., 2016; Fernández-Vidal et al., 2010;
Habibian et al., 2013; Himbert et al., 2019; Larson et al.,
2008; Li et al., 2013; Lin et al., 2019).
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b

a

Figure 6 Lattice models with cavity-mediated long-
range interactions. (a) Left, Experimental scheme. A stack
of 2D systems along the y axis is exposed to a 2D optical lat-
tice in the x − z plane (red arrows). Right, illustration of
the three competing energy scales: tunneling t, short-range
collisional interactions Us and global-range, cavity mediated
interactions Ul. (b) Measured phase diagram as a function
of detuning ∆c between pump field and cavity, and 2D lat-
tice depth V2D, featuring superfluid (SF), lattice supersolid
(SS), charge-density wave (CDW) and Mott insulating (MI)
phases. Figure reproduced from (Landig et al., 2016).

The system is captured in a wide parameter range by
the following extended Bose-Hubbard model:

H =− t
∑

〈e,o〉
(b†ebo + h.c.) +

Us
2

∑

i∈e,o
ni(ni − 1)

− Ul
V

(∑

e

ne −
∑

o

no

)2

−
∑

i∈e,o
µini.

(15)

Here e and o refer to the even or odd lattice sites, bi is the
bosonic annihilation operator at site i, ni = b†i bi counts
the number of atoms on site i, V is the total number of
lattice sites, and µi is the local chemical potential which
depends on the external trapping potential. The first
term captures the tunneling between neighboring sites
at rate t. It supports superfluidity in the system since it
favors delocalization of the atoms within each 2D layer.
In contrast, the second term represents the on-site inter-
action with strength Us, and leads to a minimzation of
the energy if the atoms are localized on the individual

lattice sites, favoring a balanced population of even and
odd sites. The third term describes the effective global-
range interactions of strength Ul, mediated by the cavity,
and favors an imbalance between even and odd sites. The
last term leads to an inhomogeneous distribution due to
the trapping potential.

Self-organization in a cavity typically results in a 2D
structuring of the atomic medium. If the cloud is ad-
ditionally confined in a lattice along the third direc-
tion, it can be brought into an insulating, density mod-
ulated regime (Klinder et al., 2015a). An experimental
scheme to implement a setting that in addition also fea-
tures the above-mentioned superfluid to Mott insulator
phase transition, and thus also a transition between non-
modulated and modulated insulating phases, is shown in
Fig. 6(a) (Landig et al., 2016). A BEC is sliced into 2D
systems which are subsequently exposed to a 2D optical
lattice formed from one on-axis beam pumping the cavity
and a standing wave lattice perpendicular to the cavity.
The latter simultaneously acts as a transverse pump field
inducing cavity-mediated global range interactions in the
atomic system. The combined control over the lattice
depth V2D and the detuning ∆c allows to independently
tune the ratios of collisional short-range interaction Us,
tunneling t, and global-range interaction Ul. The ob-
servables of this experiment are absorption images of the
atomic cloud after ballistic expansion, indicating if the
atomic system is insulating or superfluid, and the field
leaking from the cavity, indicating a homogeneous or a
density modulated system. Their combination allows to
determine the phase diagram, as shown in Fig. 6(b),
featuring the above-mentioned phases.

Of special interest in the context of global-range in-
teraction is the first-order phase transition between the
non-modulated Mott insulating and the density modu-
lated charge density wave phase. A system with only
short-range interactions supports the formation of do-
main walls due to additivity. The reduction in energy
scales with the volume of the domain, while the en-
ergy cost for the domain wall scales with its surface
area. Fluctuations creating a domain will thus grow and
lead to a decay of the metastable state (Dauxois et al.,
2002). This is different in a global-range interacting sys-
tem, where non-additivity makes domain formation en-
ergetically costly: the energy of a domain wall here is
proportional to the system size and not to the surface
area. Accordingly, long-range interactions can stabilize
metastable phases, whose lifetime then scales with sys-
tem size and diverges in the thermodynamic limit (An-
toni and Ruffo, 1995; Campa et al., 2009; Levin et al.,
2014; Mukamel et al., 2005).

Quenching the system between these two insulating
phases by changing the strength Ul of the global-range
interaction leads to hysteresis and metastability, which
has been observed in the cavity field measuring the
imbalance between even and odd sites (Hruby et al.,
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2018). The quench eventually triggers a switching pro-
cess that results in a rearranged atomic distribution and
self-consistent potential. The time scale during which
this process takes place is intrinsically determined by the
many-body dynamics of the gas and is continuously mon-
itored in the experiment. The Mott insulator, in which
the system is initially prepared, forms a wedding-cake
structure consisting of an insulating bulk surrounded by
superfluid shells at the surface. Such an inhomogeneous
finite-size system can exhibit a first-order phase transi-
tion of the bulk material (the Mott insulator), which is
triggered by a second-order phase transition that took
place previously on the system’s surface (Lipowsky, 1987;
Lipowsky and Speth, 1983), where the superfluid atoms
possess higher mobility than in the insulating bulk (Hung
et al., 2010). Ground state phases and quantum relax-
ation have been calculated exactly for a 1D lattice in the
thermodynamic limit (Blaß et al., 2018).

C. Dipolar and Rydberg systems

The study of modulated and incommensurate phases
arising from the competition between short-range attrac-
tive interactions and long-range repulsive ones has been
a long-standing topic in condensed matter physics (Blinc
and Levanyuk, 1986; Fisher et al., 1984). Tradition-
ally, several theoretical investigations have focused on
simplified models, where the competition was limited
to finite-range interaction terms (Brazovskii, 1975; Fisher
and Selke, 1980; Swift and Hohenberg, 1977). However,
the natural occurrence of modulated phases is mostly due
to repulsive interaction decaying as a power law of the
usual form 1/rα. The most relevant examples include
dipolar (α = 3) and Coulomb (α = 1) interactions.

In the framework of condensed matter experiments,
dipolar interactions are known to produce modulated
structures in monolayer of polar molecules (Andelman
et al., 1987), block co-polymers (Bates and Fredrickson,
1990), ferrofluids (Cowley and Rosensweig, 1967; Dick-
stein et al., 1993), superconducting plates (Faber, 1958)
and thin ferromagnetic films (Saratz et al., 2010). On the
other hand, long-range Coulomb interactions are typical
of low-dimensional electron systems, but experimental re-
sults are limited in this case. Evidences of stripe order
have been found in 2D electron liquids (Borzi et al., 2007),
quantum Hall states (Lilly et al., 1999; Pan et al., 1999)
and doped Mott insulators (Kivelson et al., 1998). In this
perspective, the appearance of stripe order is believed
to be an ingredient in high-temperature superconductiv-
ity (Parker et al., 2010; Tranquada et al., 1997).

The strong relation between traditional investigations
in solid-state systems and cold atomic platforms has
emerged since the long-range nature of the forces be-
tween the atoms has begun to be exploited in experi-
ments. Rydberg gases have been used to observe and

study spatially ordered structures (Schauß et al., 2012,
2015) and correlated transport (Schempp et al., 2015).
Dipolar spin-exchange interactions with lattice-confined
polar molecules were as well observed (Yan et al., 2013).
Furthermore dipolar atoms (Lu et al., 2012; Park et al.,
2015) can open a new window in the physics of compet-
ing long-range and short-range interactions (Natale et al.,
2019), clearing the path for the comprehension of mod-
ulated phases in strongly interacting quantum systems,
as well as to higher-spin physics dynamics (Gabardos
et al., 2020; Lepoutre et al., 2019; Patscheider et al., 2020;
de Paz et al., 2013).

In the following we provide a brief reminder of basic
notions on dipole-dipole interaction and dipolar gases, as
needed for the following presentation. Then, we move
to Rydberg atoms, focusing on their interactions and the
mapping of their effective Hamiltonian on spin systems.

1. Dipolar interactions and dipolar gases

In the context of ultracold atoms, several platforms
have been used to study the effect of electric and mag-
netic dipole-dipole interactions. A typical example is
provided by electric dipole moments using heteronuclear
molecules (Carr et al., 2009; Moses et al., 2017) or Ry-
dberg atoms in an electric field (Saffman et al., 2010).
We remind that, due to rotational symmetry, there is
no permanent electric dipole moment in an atom or in
a molecule in its non-degenerate rotational ground state.
However, when an external electric field couples to the
electric dipole moment operator, an electric dipole mo-
ment may be induced. A permanent electric dipole mo-
ment in homonuclear molecules can be obtained with a
ground-state atom bound to a second atom electronically
excited to a high-lying Rydberg state (Li et al., 2011).
Another very active area of research is provided by the
manipulation of heteronuclear molecules, where an elec-
tric field mixes two rotational states within the electronic
molecular ground state. In this way, one can generate ul-
tracold molecular systems with a large electric dipole mo-
ment. Very recent progress in this direction include the
creation of an ultracold gas of triatomic Na-K molecules
from an atom–diatomic molecule mixture (Yang et al.,
2022) and the magneto-optical trapping of calcium mono-
hydroxide polyatomic molecule (Vilas et al., 2022). At
variance, neutral atoms can have permanent magnetic
dipole moments even at zero fields and the effect of mag-
netic dipolar interactions can be studied under full rota-
tional symmetry at arbitrarily small magnetic fields.

In general, for two particles, denoted by 1 and 2, with
dipole moments along the unit vectors e1 and e2, and
whose relative position is r, the energy due to their
dipole-dipole interaction reads

Udd =
Cdd
4π

(e1 · e2)R2 − (e1 ·R)(e2 · r)

R5
. (16)
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The coupling constant Cdd is µ0µ
2 for particles having

a permanent magnetic dipole moment µ (µ0 is the per-
meability of vacuum) and d2/ε0 for particles having a
permanent electric dipole moment d (ε0 is the permittiv-
ity of vacuum) (Weber et al., 2017). A relevant charac-
ter of the dipolar interaction is its anisotropy. In fact,
the dipole-dipole interaction has the angular symmetry
of the Legendre polynomial of second order P2(cos θ), i.e.
d-wave.

Dipolar gases, and dipolar Bose-Einstein condensates
in particular, have been intensively studied (Baranov
et al., 2012; Lahaye et al., 2009; Trefzger et al., 2011).
The presence on the non-local interaction ∝ r3 and
its anisotropy give rise to a series of very interesting
properties which have been theoretically and experi-
mentally studied. At the mean-field level, a non-local
Gross-Pitaevskii equation describes the static ground-
state properties, as well as the dynamical effects, such as
the excitation spectrum, and the hydrodynamic behav-
ior. Solitons, vortices, and the formation of patterns have
intensively been studied, see the review (Lahaye et al.,
2009), and as well the role of dipolar interactions in spinor
Bose-Einstein condensates (Kawaguchi and Ueda, 2012;
Ueda, 2017). The energy scale associated with dipolar
interactions in alkali atoms is relatively small, in the Hz
range. On the contrary, highly magnetic atoms, such as
Cr, Er, and Dy, display dipole moments of 6, 7 and 10
Bohr magnetons respectively (Chomaz et al., 2022). It is
customary to define the length

add ≡
Cddm

12π~2
. (17)

This parameter plays the role of a dipolar length, giving
a measure of the absolute strength of the dipole-dipole
interaction. The ratio εdd ≡ add/a of the dipolar length
over the s-wave scattering length a may be also intro-
duced in order to compare the relative strength of the
dipolar and contact interactions. Thus, εdd often deter-
mines the physical properties of the system. It is clear
that the possibility to have a large dipole moment allows
the exploration of regimes induced by the 1/r3 tail of the
interaction (Chomaz et al., 2022).

We refer to the reviews (Baranov et al., 2012; Böttcher
et al., 2020; Chomaz et al., 2022; Lahaye et al., 2009;
Trefzger et al., 2011) for further details and references
on dipolar gases, and to Refs. (Bause et al., 2021; Bohn
et al., 2017; Carr et al., 2009; Gadway and Yan, 2016;
Matsuda et al., 2020; Moses et al., 2017; Valtolina et al.,
2020) for polar molecules. We will comment about dipo-
lar gases and polar molecules later in the text discussing
phenomena where the non-local, possibly long-range (de-
pending on the dimension d), tail of the interactions 1/r3

plays a crucial role.
In the remaining part of the present section, the focus

is centered on Rydberg atoms due to their recent applica-
tions for the simulation of spin systems with long-range

and non-local interactions, which are the target of the
present review.

2. Interactions between Rydberg atoms

For the present discussion, we briefly review the main
mechanisms leading to the simulation of paradigmatic
long-range spin Hamiltonians with Rydberg atoms in the
frozen motion limit.

Restricting to alkali atoms and denoting by di, i = 1, 2,
the electric dipole moments, the dominant interaction
term in the large r limit is the dipole-dipole interaction
(16)

Udd =
1

4πε0

d1 · d2 − 3(d1 · n)(d2 · n)

R3
, (18)

with n = r/r. Representing with |α〉 and Eα the single
eigenstates and eigenergies of each atom, one can com-
pute in perturbation theory the effect of the perturbation
given by Eq. (18). The unperturbed eigenenergies of the
two-atom states are given by Eα,β = Eα + Eβ , where
for simplicity the Greek letters α describes the set of
quantum numbers (n, l, j,mj). Depending on the states
involved, the relative energies and the dipole-dipole inter-
action strength, one identifies two main regimes: the van
der Waals regime and the resonant dipole-dipole regime.
To illustrate the main difference between the two, we as-
sume that two atoms that are in the state |αβ〉 are cou-
pled to a single two-atom state |γδ〉, see Fig. 7(a). Then
the reduced Hamiltonian in this two-state basis takes the
form

Hred =

(
0 C̃3/R

3

C̃3/R
3 −∆F

)
, (19)

where ∆F = Eγ +Eδ−Eα−Eβ is the Förster defect, C̃3

is an effective strength of the dipole-dipole interaction,
and R is the distance of the two atoms. The eigenvalues

of Hred are then ∆E = −∆F /2 ±
√

∆2
F + 4

(
C̃3/R3

)2

.

The van der Waals regime is recovered if C̃3/R
3 � ∆F ,

then the state |αβ〉 is only weakly admixed to |γδ〉. Its

energy is perturbed to ∆E ≈ 1
∆F

(
C̃3

R3

)2

≡ C̃6

R6 . One
obtains the scaling of the van der Waals coefficient with
the principal quantum number n as C̃6 ∝ n11, as veri-
fied experimentally in several cases (Béguin et al., 2013;
Weber et al., 2017). More generally, to properly esti-
mate the van der Waals coefficient, one has to formally
include the contribution of all non-resonant states em-
ploying second-order perturbation theory to compute the
two-atom energy shift

∆Eαα =
∑

β,γ

| 〈αα|Udd |βγ〉 |2
Eαα − Eβγ

, (20)
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Figure 7 Long-range interactions in systems of Rydberg atoms for many-body dynamics. (a) Illustration of the
interaction between pairs of atoms excited to Rydberg states. Shown are the relevant dipole-coupled pair states labeled by
quantum numbers α, β, . . . with the Förster defect ∆F relative to the pair states |αβ〉 and |γδ〉. (b) Principle of the Rydberg
blockade. For two nearby atoms, the van der Waals interaction ∝ C6/R

6 (R is the interatomic distance) shifts the doubly-excited
state |rr〉 preventing the double excitation of the atomic pair when R < Rb = (C6/~Ω)1/6. (c) Illustration of a superatom
from the collective blockaded lattice of N atoms. Bloch sphere with its basis states (labeled by excitation numbers ne) and
coupled states highlighted [south pole (ne = 0) and singly excited state (ne = 1), represented by the shaded (red) plane]. The
small pictograms above and below the sphere depict the lattice system with atoms in the ground (below, in red) and Rydberg
(above, in blue) states. The dashed (red) line indicates a zoom into the subspace spanned by the lowest two states. The Husimi
distribution of these states and their enhanced coupling ΩN is shown in the center. Adapted from Ref. (Zeiher et al., 2015).
(d) The first row displays the experimental image of the initial state of a Rydberg atom array. The following rows represent
the atom array after a slow sweep across the phase transition, showing larger average sizes of correlated domains for the slower
sweep. Green spots (open circles) represent atoms in the ground (Rydberg) state. Blue rectangles mark the position of domain
walls [courtesy of A. Omran].

where the sum extends to all the states that are dipole-
coupled to |α〉.

In the case where the |αβ〉 is resonant with |γδ〉, i.e.
Eαβ ≈ Eγδ, or equivalently ∆F � C̃3/R

3, then the two
eigenvalues of Hred become E± ≈ ±C3

R3 and the corre-
sponding eigenstates are |±〉 = |αβ〉±|βα〉√

2
. This is equiv-

alent to a resonant flip-flop interaction |αβ〉 〈γδ| + h.c.
In this case the interaction energy scales as 1/R3 what-
ever the distance between the two atoms (Förster res-
onance). In the case of Rb it is easy to achieve reso-
nance with very weak electric fields (Ravets et al., 2014).
The resonant dipole-dipole interaction is also naturally
realised for two atoms in two dipole-coupled Rydberg
states. Moreover, this interaction is anisotropic, vary-
ing as V (θ) = 1−3 cos2(θ), with θ the angle between the
internuclear axis and the quantization axis.

A central concept, essential for both many-body
physics and quantum technology, is the Rydberg block-
ade (Gaetan et al., 2009; Isenhower et al., 2010; Jaksch
et al., 2000; Lukin et al., 2001; Urban et al., 2009; Wilk
et al., 2010), where the excitation of two or more atoms
to a Rydberg state is prevented due to the interaction
(Browaeys and Lahaye, 2020; Morgado and Whitlock,
2020). The blockade concept is illustrated in Fig. 7(b).

The strong interactions between atoms excited to a Ryd-
berg state can be exploited to suppress the simultaneous
excitation of two atoms and to generate entangled states.
Consider a resonant laser field coherently coupling the
ground state |g〉 and a given Rydberg state |r〉, with a
Rabi frequency Ω. In the case of two atoms separated by
a distance R, the doubly excited state |rr〉 is shifted in en-
ergy by the quantity C6/R

6 due to the van der Waals in-
teraction with C6 being the interaction coefficient (all the
other pair states have energy nearly independent of R).
Assuming that the condition ~Ω � C6/R

6 is fulfilled,
that is, R � Rb = (C6/~Ω)1/6 (blockade radius), then,
starting from the ground state |gg〉, the system performs
collective Rabi oscillations with the state |ψ〉 = |rg〉+|gr〉√

2
.

The above considerations can be extended to an ensem-
ble of N atoms all included within a blockade volume.
In this case, at most one Rydberg excitation is possible,
inducing collective Rabi oscillations with an enhanced
frequency Ωcoll =

√
NΩ, leading to the so-called super-

atom picture illustrated in Fig. 7(c). The system dy-
namics is confined to the symmetric subspace of zero
(nr = 0) and one (nr = 1) excitations, whose basis are
the Fock states |0〉 = |g1, . . . , gN 〉 and the entangled W -
state |1〉 = 1√

N

∑N
i=1 |g1, . . . , ri, . . . , gN 〉, where gi and
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ri label the i-th atom in the ground or Rydberg state
(Zeiher et al., 2015).

An important objective is to implement interacting
many-body systems combining atomic motion with tun-
able long-range interaction via Rydberg atoms. The main
experimental challenge is to bridge the mismatch in en-
ergy and timescales between the Rydberg excitation and
the dynamics of the ground state atoms. A possible so-
lution is the so-called Rydberg dressing where ground
state atoms are coupled off-resonantly to Rydberg states
leading to effectively weaker interaction with lower de-
cay rates (Balewski et al., 2014; Henkel et al., 2010; Jau
et al., 2016; Johnson and Rolston, 2010; Macrì and Pohl,
2014; Pupillo et al., 2010). The main difficulty in this
approach is that decay and loss processes of Rydberg
atoms have to be controlled on timescales that are much
longer than for near-resonant experiments and more ex-
otic loss processes become relevant (Guardado-Sanchez
et al., 2021; Zeiher et al., 2016, 2017). Rydberg dressing
also allows imposing local constraints which are at the
heart of the implementation of models related to gauge
theories, like the quantum spin ice (Glaetzle et al., 2014).
Other predictions include cluster Luttinger liquids in 1D,
supersolid and glassy phases, see Sec. IV.E for more de-
tails. It might be even possible to implement a universal
quantum simulator or quantum annealer based on Ryd-
berg dressing (Glaetzle et al., 2017; Lechner et al., 2015).

3. Mapping to spin models

The two-atom picture described in the previous section
can be extended to the many-body case. Including the
coupling of single-atom states to an external coherent
laser drive, one obtains in the rotating frame of the laser
the Ising Hamiltonian (Labuhn et al., 2016; Schauß et al.,
2012, 2015)

HIsing =
~Ω

2

∑

i

σix −
∑

i

~∆ni +
∑

i<j

C6

R6
ij

ninj , (21)

where ni = |r〉i 〈r| = (1 + σiz)/2 is the projector to the
excited state |r〉, and ∆ is the single-atom detuning from
the Rydberg state |r〉. A discussion with references on
the simulation of quantum Ising models in a transverse
field can be found in Refs. (Morgado and Whitlock, 2020;
Schauss, 2018). We refer to (Lewenstein et al., 2007; Tre-
fzger et al., 2011) for references on effective interacting
lattice models obtained for dipolar gases in optical lat-
tices at low energy.

The realization of the Ising Hamiltonian in Rydberg
atoms quantum simulators led to the observation of many
interesting effects, from the Kibble-Zurek mechanism and
its related critical dynamics (Keesling et al., 2019) [see
Fig. 7(d)], to antiferromagnetic phases (Ebadi et al.,
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Figure 8 Finite-range interactions in spin systems:
dynamics and applications. (a) Experimental setup and
Rydberg dressing scheme for a cloud of Cs atoms is held in an
optical dipole trap and locally illuminated with 319 nm light
to generate Ising interactions of characteristic range rc and
strength J0. The quantization axis is set by a 1 G magnetic
field B. (b) Energy level diagrams for a pair of atoms. (c)
Transverse-field Ising dynamics. Trajectories S(k) for initial
states |θ, φ〉 (square data points) and up to k = 4 Floquet cy-
cles, obtained with dressing parameters (Ω,∆) = 2π×(2.8, 25)
MHz. Plots (i-iv) are for Λeff = 0, 1.2(2), 1.8(3), 2.7(4). Blue
flow lines show mean-field theory for best fit Λ = 0, 1.1, 1.5, 2.2
(see main text). Figures (a)-(c) adapted from Ref. (Borish
et al., 2020). (d) Loschmidt echo protocol applied to the
LMG (one-axis twisting) model. Snapshot of the Husimi dis-
tribution. (Top panel) A spin-polarized state is prepared at
north pole of the Bloch sphere. (Central panel) Interaction
is switched on for a time t1 [transformation U1]. The state is
then rotated of an angle θ [Ry(θ)]. (Bottom panel) Interac-
tion is switched on again for a time t2 [transformation U2] such
that U1U2 = 1. In these plots θ/π = 0.01 and τ/π = 0.05.
(e) Probability P0(θ) (solid line) as a function of phase shift.
as a function of θ for τ/π = 0.05. The dashed line is the
second-order expansion involving the quantum Fisher infor-
mation FQ. Here N = 101. Figures (d) and (e) adapted from
Ref. (Macrì et al., 2016).
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2021; Guardado-Sanchez et al., 2018; Lienhard et al.,
2018; Scholl et al., 2020), quantum spin liquids (Samajdar
et al., 2021; Semeghini et al., 2021; Verresen et al., 2021),
and the quantum critical dynamics of a 2D Ising quan-
tum phase transition (Ebadi et al., 2021). The trapping
and manipulation of Rydberg atoms in optical tweezers
with defect-free configurations has also played a major
role in this perspective (Anderegg et al., 2019; Barredo
et al., 2016; Bohrdt et al., 2020; Covey et al., 2019; En-
dres et al., 2016; Festa et al., 2021; Ohl de Mello et al.,
2019; Schymik et al., 2021; Wang et al., 2020).

Rydberg dressing also provides an alternative way to
implement quantum Ising models with important im-
plications beyond quantum simulation. Two internal
ground states are used to encode spin-up and spin-down
states in the dressing protocol. Coherent many-body dy-
namics of Ising quantum magnets built up by Rydberg
dressing are experimentally studied both in an optical
lattice and in an atomic ensemble. An illustration of
the Ising dynamics in a finite-range model is presented
in Fig. 8, where we show the trajectories of the col-
lective spin S(k) from (Borish et al., 2020). An impor-
tant application of this Hamiltonian is for the study of
Loschmidt echo protocol applied to the LMG (one-axis
twisting) model for quantum metrology purposes (Gil
et al., 2014), e.g. for the preparation of non-gaussian
states that can be detected via the quantum Fisher in-
formation (Borish et al., 2020; Macrì et al., 2016). Ry-
dberg dressing of atoms in optical tweezers can also be
employed for the realization of programmable quantum
sensors based on variational quantum algorithms, capa-
ble of producing entangled states on demand for precision
metrology(Kaubruegger et al., 2019). This investigation
is not limited to Rydberg atoms, but extends naturally
also to ion platforms (Davis et al., 2016; Morong et al.,
2021).

A special case of the quantum Ising model arises when
alatt < Rc < 2alatt with alatt the lattice spacing (nearest-
neighbor blockade) and Vij ≈ 0 for everything beyond
nearest neighbors. Such a situation was experimentally
realized in a 1D chain of Rydberg atoms in (Bernien et al.,
2017; Bluvstein et al., 2021). In this case one can de-
rive an effective Hamiltonian for the low-energy subspace
which amounts to neglecting configurations with two ad-
jacent excitations. In 1D the resulting Hamiltonian takes
the form of a PXP model

H =
∑

i

Ωi
2
Pi−1σ

i
xPi, (22)

where Pi = |g〉 〈g| is the projector onto the ground state.
Resonant dipole-dipole interactions between Rydberg

atoms are at the basis of several proposals to simulate
the quantum dynamics of many-body spin systems. As a
major example, it is possible to see that a system contain-
ing two dipole-coupled Rydberg states can be mapped to
a spin-1/2 XY model, see the review (Wu et al., 2021)

and references therein. Coherent excitation transfer be-
tween two types of Rydberg states of different atoms has
been observed in a three-atom system (Barredo et al.,
2015). The resulting long-range XY interactions give rise
to many-body relaxation (Orioli et al., 2018).

Given the well-known mapping between the XY model
and hard-core bosons (Friedberg et al., 1993), it is possi-
ble to provide an experimental realization of the bosonic
Su-Schrieffer-Heeger model (Su et al., 1979) and its sym-
metry protected topological order with a single-particle
edge state (de Léséleuc et al., 2019; Lienhard et al., 2020),
see also (Kanungo et al., 2021). Proposals to observe
topological bands (Peter et al., 2015) and topologically
protected edge states (Weber et al., 2018) were presented.
Moreover, a realization of a density-dependent Peierls
phase in a spin-orbit coupled Rydberg system has been
recently demostrated (Lienhard et al., 2020).

We finally mention that with Rydberg systems
one could implement digital simulation techniques
(Georgescu et al., 2014). The total unitary evolu-
tion operator U(t) is decomposed in discrete unitary
gates (Weimer et al., 2011, 2010) and one can study
a broad class of dynamical regimes of spin systems,
such as nonequilibrium phase transitions and non-unitary
conditional interactions in quantum cellular automata
(Gillman et al., 2020; Lesanovsky et al., 2019; Winter-
mantel et al., 2020). Kinetically constrained Rydberg
spin systems, in which a chain of several traps each loaded
with a single Rydberg atom and coupled with the bosonic
operators expressing the deviation from the trap centers,
also referred to as facilitated Ryberg lattices, were as well
studied (Mazza et al., 2020).

A further promising line of research is provided by Ry-
dberg ions both for quantum simulation purposes (Gam-
betta et al., 2020; Müller et al., 2008) as well as for the
realization of fast quantum gates for quantum informa-
tion processing (Mokhberi et al., 2020; Müller et al.,
2008). 2D ion crystals for quantum simulation of spin-
spin interactions using interactions of Rydberg excited
ions have been proposed in (Nath et al., 2015) to emu-
late topological quantum spin liquids using the spin-spin
interactions between ions in hexagonal plaquettes in a
2D ion crystal. The role of a Rydberg ion is to modify
the phonon mode spectrum in order to realize the con-
strained dynamics of the Balents-Fisher-Girvin model on
the Kagome lattice. There, the effective spin-spin inter-
action for the hexagonal plaquette can be written as an
extended XXZ model

HSS =
∑

i<j

JzijS
z
i S

z
j +

∑

i<j

J⊥ij (Sxi S
x
j + Syi S

y
j ). (23)

Long-range XXZ Hamiltonians with tunable anisotropies
can be Floquet-engineered using resonant dipole-dipole
interaction between Rydberg atoms and a periodic ex-
ternal microwave field coupling the internal spin states
(Geier et al., 2021; Scholl et al., 2021).
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It is worth noting that in a realistic Rydberg atom
system, coherent driving offered by external fields often
competes with dissipation induced by coupling with the
environment. Such a controllable driven-dissipative sys-
tem with strong and nonlocal Rydberg-Rydberg inter-
actions can be used to simulate many-body phenomena
distinct from their fully coherent counterparts. Evolution
of such an open many-body system is often governed by
the master equation ∂tρ = −i[H, ρ] + Lρ, where ρ is the
state of the system, H the system Hamiltonian and L
is the Liouvillian superoperator (Benatti and Floreanini,
2005; Gardiner and Zoller, 2004; Manzano, 2020). Corre-
spondingy, several aspects of driven-dissipative dynamics
in Rydberg systems and dissipative Rydberg media were
addressed (Bienias et al., 2020; Goldschmidt et al., 2016;
Lee et al., 2015, 2019; Lesanovsky and Garrahan, 2013;
Letscher et al., 2017; Levi et al., 2016; Lourenço et al.,
2021; Pistorius et al., 2020; Torlai et al., 2019).

III. THERMAL CRITICAL BEHAVIOUR

Phase transitions are among the most remarkable phe-
nomena occurring in many-body systems. Among vari-
ous kinds of phase transitions, continuous phase transi-
tions are particularly fascinating since they are tightly
bound with the concept of universality. Thanks to the
universality phenomenon the same formalism can be ap-
plied both to phase transitions occurring at a finite tem-
perature and at T = 0. The latter are usually denoted
as quantum phase transitions (Sachdev, 1999). Nowa-
days the intense efforts of the scientific community have
paid their rewards and the critical properties of several
physical systems have been characterized (Pelissetto and
Vicari, 2002).

Usually, universality is defined as the insensitivity of
the critical scaling behavior of thermodynamic functions
with respect to variations of certain microscopic details
of the system under study, such as the lattice configu-
rations or the precise shape of the couplings. This def-
inition alone cannot be considered rigorous unless one
specifies all the possible adjustments of the microscopic
features, which preserve universality. In the following, we
will reserve the adjective "universal" to all those phenom-
ena which may be quantitatively described by a suitable
continuous formulation. Therefore, in our language, the
concept of universality is strictly tied to the existence of
a continuous field theory formulation, which, albeit ig-
noring the microscopic details of the lattice description,
is able to produce an exact estimate for the universal
quantities.

The quantum critical behavior of local models in di-
mension d at T = 0 can be ofter related with their crit-
ical scaling at finite temperature T , but in a dimension
d + 1 (Sachdev, 1999; Sondhi et al., 1997), a typical ex-
ample being the nearest-neighbour quantum Ising model

in a transverse field (at T = 0) and the short-range clas-
sical Ising model at finite temperature (Mussardo, 2009).
The situation changes for long-range models and for this
reason we are going to review in this section the basics
properties of equilibrium critical long-range systems at
finite temperature, and compare them in Sec. IV with
the corresponding properties at zero temperature.

The prototypical playground for the study of universal
properties at finite temperature are the classical O(N )
spin systems, whose Hamiltonian reads

H = −1

2

∑

i 6=j
JijSi · Sj . (24)

where Si is a N -component spin vector with unit mod-
ulus, Jij > 0 are ferromagnetic translational invariant
couplings and the indices i, j run over all sites on any
d-dimensional regular lattice of V sites. The usual ter-
minology is that N = 1 is the Ising model, N = 2 the
XY model, N = 3 the Heisenberg model and N →
∞ is the spherical model (Stanley, 1968). It is well
known (Mussardo, 2009; Nishimori and Ortiz, 2015) that
for N ≥ 1 and d > 2 the Hamiltonian in Eq. (24) and fast
enough decaying couplings (i.e., in the short-range limit)
presents a finite temperature phase transition between a
low temperature state T < Tc with finite magnetisation
m = |〈∑i Si〉|/N 6= 0 and an high temperature phase
with m = 0. For N = 1, the phase transition occurs
of course also for d = 2 (Mussardo, 2009; Nishimori and
Ortiz, 2015).

Close to the critical point the thermodynamic quan-
tities display power law behaviour as a function of the
reduced temperature τ ≡ (T−Tc)/Tc, with universal crit-
ical exponents which only depend on the symmetry index
N and the dimension d of the system. These critical ex-
ponents coincide with the ones of the O(N )-symmetric
field theory with action

S[ϕ] =

∫
ddx

{
∂νϕi∂νϕi + µ|ϕ|2 + g|ϕ|4

}
(25)

where ϕ is an N -component vector with unconstrained
modulus, the lattice summation has been replaced by a
real space integration, ν = 1, · · · , d runs over the spatial
dimensions, i = 1, · · · ,N refers to the different compo-
nents, the quadratic coupling controls the distance from
the critical point (µ ∝ τ), the value of the constant cou-
pling is g > 0 and the summation over repeated indices
is intended.

An extensive amount of theoretical investigations has
been performed on the critical properties of O(N ) sym-
metric models, both in their continuous and lattice for-
mulation, reaching an unmatched accuracy in the de-
termination of universal properties with a fair degree
of consistency in the whole dimension range 2 ≤ d ≤
4 (Cappelli et al., 2019; Codello et al., 2015; Holovatch
and Shpot, 1992; Kleinert, 2001; Pelissetto and Vicari,
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2002). Numerical simulations, which are limited to
integer dimensional cases d ∈ N, are mostly consis-
tent with theoretical investigations (Pelissetto and Vi-
cari, 2002), while the recently emerged conformal boot-
strap results confirmed and extended the existing pic-
ture (Poland et al., 2019).

A. The weak long-range regime

Having introduced the formalism and notation for uni-
versality problems, we can start with the case of interest
of long-range O(N ) spin systems, i.e. the Hamiltonian
in Eq. (24) with Jij = J/rd+σ

ij , where rij is the distance
between sites i and j, a coupling constant J > 0, and a
positive decay exponent d+σ ≥ 0. The Fourier transform
of the matrix Jij produces a long-wavelength mean-field
propagator of the form Gmf ∼ Jσq

σ + J2q
2, setting the

mean-field threshold for the relevance of long-range in-
teractions to σmf

∗ = 2 (Fisher et al., 1972).
The renormalisation group (RG) approach (Polchinski,

1984; Wegner and Houghton, 1973) can provide a com-
prehensive picture for the universal properties of long-
range O(N ) models. In the so-called functional RG
(FRG) one writes an – in principle – exact equation
for the flow of the effective average action, Γk, of the
model and then resort to various approximation schemes
(Berges et al., 2002; Delamotte, 2011; Wetterich, 1993).
The Γk is obtained by the introduction of a momen-
tum space regulator Rk(q), which cutoffs the infra-red
divergences caused by slow modes q � k, while leav-
ing the high momentum model q � k almost untouched.
The problem of weak long-range interactions in the con-
tinuous space could be then represented by the scale-
dependent action

Γk[ϕ] =

∫
ddx

{
Zk∂

σ
2
ν ϕi∂

σ
2
ν ϕi + Uk(ρ)

}
, (26)

where ρ = 1
2ϕiϕi and the index i = 1, · · · ,N being

summed over as in the previous section.
The ansatz in Eq. (26) is already sufficient to qualita-

tively clarify the influence of long-range interactions on
the universal properties. Indeed, the difference between
the bare action (25) and the effective action (26) is lim-
ited to the presence of the fractional derivative ∂

σ
2
µ into

the kinetic term instead of the traditional ∇2 term. The
definition of the fractional derivative in the infinite vol-
ume limit (Kwaśnicki, 2017; Pozrikidis, 2016) leads to the
straightforward result that its Fourier transform yields
a fractional momentum term qσ. The renormalization
of such anomalous kinetic term qσ is parametrised in
Eq. (26) by a running wave-function renormalization Zk
as it is customary done in the short-range case (Dupuis
et al., 2020).

The actual subtlety of the weak long-range universal-
ity resides in the competition between the analytic mo-

mentum term q2 and the anomalous one qσ arising due
to long-range interaction. Such effect cannot be properly
reproduced by the ansatz in Eq. (26), which only includes
the most relevant momentum term at the canonical level
in the low energy behavior of long-range O(N ) models.
Yet, Eq. (26) reveals to be a useful approximation to re-
cover and extend the mean-field description of the prob-
lem at least in the limit σ � 2, where the non-analytic
momentum term is certainly the leading one.

Close to the transition, the correlation length of the
system, which controls the spatial extent of the corre-
lations, 〈ϕ(x)ϕ(0)〉 ≈ exp(|x|/ξ)/xd−2, diverges as ξ ∝
τ−ν . Thus, the diverging critical fluctuations produce
an anomalous scaling of the correlation functions via the
presence of a finite anomalous dimension η. The standard
definition used for short-range models (Nishimori and Or-
tiz, 2015) is

〈ϕ(x)ϕ(0)〉 ≈ 1

|x|d−2+η
. (27)

Conventionally, we refer to a correlated universality when
η 6= 0 and anomalous scaling appears. If one refers
to the definition (27) of the decay of correlation func-
tions in short-range systems, then the anomalous dimen-
sion of long-range model is already finite at mean-field
level giving ηlr = 2 − σ, due to the contributions of
the power-law couplings to the scaling of the correlations
(here and in the following the indices lr and sr stand for
long- and short-range, respectively) . However, to have a
proper account of correlation effects, it is convenient to
re-define the anomalous dimension ηlr of the long-range
O(N ) models as follows

ηlr(d, σ) ≡ 2− σ + δη , (28)

with respect to the canonical dimension of the long-range
terms, in agreement with the definition in the classic pa-
per (Fisher et al., 1972).

Therefore the low-momentum scaling of the critical
propagator shall become G(q)−1 ≈ qσ−δη. Within the
RG formalism such correction δη is expected to appear as
a divergence of the wave-function renormalization, which
signals the rise of a modified scaling. Yet, the β-function
of the wave-function renormalization for the fractional
momentum term identically vanishes (k ∂kZk = 0) for
any d and σ, at least in the approximation parameter-
ized by Eq. (26). Therefore, the correlated correction for
long-range interactions vanishes

δη = 0,

a result first obtained by J. Sak in 1973 (Sak, 1973). The
flow of the effective potential remains the only non-trivial
RG evolution for the ansatz in Eq. (26).

Similarly to the wave-function flow, the RG evolution
of the effective potential Uk(ρ) has been obtained follow-
ing the traditional derivative expansion approach of the
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Figure 9 Classical correlation length exponent. Corre-
lation length exponent 1/νlr as a function of σ in d = 2 for
several values of N (from top: N = 1, 2, 3, 4, 5, 10, 100). The
discrepancy between the N = 1 and the N ≥ 2 cases is in
agreement with the expectations of the Mermin-Wagner the-
orem. The black dashed line is the analytical result obtained
for the spherical model N =∞ (Joyce, 1966). Adapted from
Ref. (Defenu et al., 2015).

FRG(Delamotte, 2011) by introducing a suitable regula-
tor functionRk(q) = Zk(kσ−qσ)θ(kσ−qσ). The resulting
β-function for the effective potential reads

∂tŪk = −dŪk(ρ̄) + (d− σ)ρ̄ Ū ′k(ρ̄) +
σ

2
cd(N − 1)

1

1 + Ū ′k(ρ̄)

+
σ

2
cd

1

1 + Ū ′k(ρ̄) + 2ρ̄ Ū ′′k (ρ̄)
,

(29)

with c−1
d = (4π)d/2Γ (d/2 + 1) and as usual in RG calcu-

lations we set t = log(k/Λuv) as the RG time, with Λuv
the ultra-violet scale, typically ∼ 1/alatt. In Eq. (29)
rescaled units are as well used: ρ̄ = Zkk

σ−dρ and
Uk(ρ̄) = k−dUk(ρ).

1. Competing momentum contributions

The determination of the threshold decay exponent σ∗
represents one of the most fascinating questions in the
study of weak long-range universality. Its value is the
result of a subtle interplay between different momentum
terms in the critical propagator and of their contribution
to the universal behavior. In particular, the question
concerns the renormalization of the long-range (pσ) term
and its effect on the (p2) one.

The first answer to this question was given in
Ref. (Fisher et al., 1972) by a second-order ε-expansion
approach. This analysis suggested that the mean-field re-
sult η = 2− σ holds at all orders in perturbation theory
with respect to the parameter ε = 2σ−d, a result later ex-
tended by Ref. (Honkonen, 1990). The conclusion of this
study implied a discontinuity of the anomalous dimen-

sion η as a function of the parameter σ, when σ reaches
σ∗ = 2, the mean-field prediction for σ∗ (Fisher et al.,
1972). The discontinuity issue was later solved by the
inclusion of both non-analytic pσ and analytic p2 terms
in the propagator, see Ref. (Sak, 1973), which confirmed
the result η = 2−σ, but found a different threshold value

σ∗ = 2− ηsr.

Most Monte Carlo (MC) investigations, featuring spe-
cific algorithms for long-range interactions (Fukui and
Todo, 2009; Gori et al., 2017; Luijten and Blöte, 1997),
appear to be in agreement with the Sak’s scenario (σ∗ =
2 − η) (Angelini et al., 2014; Gori et al., 2017; Horita
et al., 2017; Luijten and Blöte, 2002). Nevertheless, up
to very recent times, several different theoretical pictures
have been compatible with the σ∗ = 2 result (Blanchard
et al., 2013; van Enter, 1982; Grassberger, 2013; Picco,
2012; Suzuki, 1973; Yamazaki, 1977). Recently, con-
formal bootstrap results (Behan et al., 2017) confirmed
Sak’s scenario and, albeit not giving numerical estimates
for the long-range critical exponents, furnished a rigor-
ous framework for its understanding. A detailed study of
RG fixed points in a model of symplectic fermions with a
nonlocal long-range kinetic term is reported in (Giuliani
et al., 2021).

In the framework of the FRG approach, the absence of
the analytic term in Eq. (26) makes the aforementioned
approximation not suitable to properly investigate the
σ ' σ∗ regime, where the momentum terms interplay
is crucial. A more complete parametrization, which ac-
counts for the leading and first sub-leading term in the
expansion of the mean-field propagator, has been intro-
duced in (Defenu et al., 2015).

The flow equations obtained in Ref. (Defenu et al.,
2015) yield the following picture: when a fixed point
can emerge for non-vanishing long-range coupling Jσ 6= 0
this implies η = 2 − σ. Therefore, the fixed point value
for the long-range coupling J∗σ has to be such that the
short-range momentum term in the propagator is renor-
malized with η = 2 − σ. Such solution is only possible
for d/2 < σ < 2 − ηsr, consistently with Sak’s scenario,
where η = 2 − σ. Therefore, while at the short-range
fixed point the long-range coupling vanishes Jσ = 0,
at the long-range one the short-range momentum term
does not vanish, but its scaling dimension is increased
to match the one of the long-range terms. This complex
structure demonstrates that the effective dimension ap-
proach described for the long-range spherical model in
Ref. (Joyce, 1966) – i.e. that the critical properties of
a long-range system are the same of the corresponding
short-range model, but in a higer dimension – appar-
ently does not hold in the interacting case, as the critical
propagator of the long-range universality class features
a multiple power-law structure, already noticed in MC
simulations (Angelini et al., 2014), which is absent in the



23

short-range case, see also the discussion in Refs. (Defenu
et al., 2015, 2016, 2017b).

The final summary for the universality picture for weak
long-range ferromagnetic interactions is the following:

• for σ ≤ d/2 the mean-field approximation correctly
describes the universal behavior;

• for σ greater than a threshold value, σ∗ = 2 − ηsr,
the model has the same critical exponents as the
short-range model (the local, short-range model is
strictly defined as the limit σ →∞);

• for d/2 < σ ≤ σ∗ the system exhibits peculiar long-
range critical exponents, which may be approxi-
mated by the ones of the short-range model in the
effective fractional dimension deff = (2− ηsr)d/σ.

These results, albeit obtained in the approximated
framework of the derivative expansion, see Ref. (Defenu
et al., 2015), appear to hold also for the full theory and
the result η = 2 − σ has now been established with
multiple techniques (Behan et al., 2017; Defenu et al.,
2015; Gori et al., 2017; Horita et al., 2017). In the
FRG context, the validity of the Sak’s scenario has been
confirmed also for long-range disordered systems (Balog
et al., 2014).

The approximate nature of the effective dimension ap-
proach described in Ref. (Defenu et al., 2015) shall not
hinder its adoption to compute numerical estimates for
the critical exponents. Indeed, the actual correction, ris-
ing from analytical contributions to the critical propa-
gator, appears to be rather small and the application of
the effective dimension approach produced rather accu-
rate theoretical benchmarks for MC data, both in the
long-range Ising and percolation models, see Fig. 10.

2. Berezinskii-Kosterlitz-Thouless scaling

For short-range interacting models with continuous
symmetry, the occurrence of spontaneous symmetry
breaking (SSB) in d = 2 is forbidden by the Mermin-
Wagner theorem (Hohenberg, 1967; Mermin and Wagner,
1966). Yet, the inclusion of long-range interactions with
0 < σ < σ∗ modifies the scaling dimension of operators,
allowing SSB also in low dimensions. The effect of such
altered scaling is conveniently summarised by the effec-
tive dimension approach, which consists in the possibil-
ity for a long-range interacting system in d dimensions
to reproduce, at least approximately, the scaling of any
deff -dimensional short-range system with deff ∈ [d,∞].

Given these considerations, it is not difficult to gener-
alise the results of the Mermin-Wagner theorem to long-
range interactions (Bruno, 2001), leading to the vanishing
of the inverse correlation length exponent in the σ → 2
limit for N ≥ 2, see Fig. 9. Then, for d = N = σ = 2
the traditional picture for short-range models is recovered
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Figure 10 Inverse correlation length exponent of long-
range interactions. Reults obtained from MC simulations
for 1D long-range percolation are compared with the results of
the effective dimension approach. The MC data of Ref. (Gori
et al., 2017) (empty blue circles) are compared with the results
obtained using an effective dimension and the ε-expansion re-
sult (black dashed line) for the short-range model (Gracey,
2015). The low accuracy of the analytical result in the
σ → 1 limit is due to the appearance of BKT scaling (Cardy,
1999), which cannot be captured by the ε-expansion. (Inset)
MC simulations for the long-range Ising model in d = 2 in
Refs. (Angelini et al., 2014; Luijten and Blöte, 1997) (blue di-
amonds and red squares respectively). The black circles have
been obtained by mapping the conformal bootstrap results
for the short-range critical exponents (El-Showk et al., 2014)
via the effective dimension approach described in Ref. (Defenu
et al., 2015). The axis labels of the inset coincide with main
axis labels.

and the Berezinsky-Kosterlitz-Thouless (BKT) scenario
shall occur (José, 2013; Kosterlitz, 1974; Kosterlitz and
Thouless, 1973).

BKT scaling is a characteristic of two-dimensional
systems, ranging from condensed matter (Nelson
and Kosterlitz, 1977; Yong et al., 2013) and cold
atoms (Hadzibabic et al., 2006; Murthy et al., 2015)
to network theory (Dorogovtsev et al., 2008) and
biology (Nisoli and Bishop, 2014). Its most renown
realization is certainly the XY model, where its prop-
erties have been very well characterised (Gupta and
Baillie, 1992; Gupta et al., 1988; Hasenbusch et al.,
1992) and its relation with topological excitations first
discovered (Kosterlitz, 2017).

Yet, first theoretical indications of this topological
phase transition have occurred in long-range interact-
ing classical systems (Thouless, 1969). In particular, the
Coulomb gas problem and the Ising model with d = σ =
1 have been known to display such infinite order tran-
sition, well before its traditional formulation (Anderson
and Yuval, 1969; Anderson et al., 1970). This fact shall
not surprise, since for d = σ = 1 the scaling dimension
of the operators is consistent with the one of short-range
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interactions in d = 2. Understanding in detail the dif-
ference between the number of degrees of freedom in the
traditional short-range BKT scaling with d = N = 2 and
the long-range one occurring for d = N = σ = 1 is a
more complicated and possibly open task, but it is prob-
ably related to the irrelevance of amplitude fluctuations
in d = 2 (Defenu et al., 2017a; Jakubczyk and Metzner,
2017; Krieg and Kopietz, 2017). It is worth noting that
long-range BKT scaling occurring in d = σ = 1 does not
only occur in the Ising model, but also for long-range
percolation and Potts models (Cardy, 1999; Gori et al.,
2017).

Despite this long-lasting relation between BKT scal-
ing and long-range interactions, the influence of power-
law couplings on topological scaling has been the sub-
ject of a very limited amount of research so far. In-
deed, the applicability of the aforementioned threshold
value σ∗ = 2 − ηsr to BKT scaling seems question-
able, since the anomalous dimension of two-point cor-
relations in d = N = 2 does not originate from criti-
cal fluctuations, but from long wave-length phase fluc-
tuations, which disrupt the zero-temperature magnetiza-
tion. Interestingly, long-range interactions with σ < 2
can be mathematically proven to stabilise spontaneous
magnetization in the 2D XY model (Kunz and Pfister,
1976), implicitly suggesting that σ∗ = 2. On the other
hand, early results concerning the XY model on diluted
Lévy graphs (Berganza and Leuzzi, 2013), which has been
conjectured to lie in the same universality class of the
long-range XY model, appeared to be consistent with
σ∗ = 2 − ηsr. However, these results, have been re-
cently challenged (Cescatti et al., 2019). Moreover, self-
consistent harmonic approximation results give an upper
bound for σ∗ equal to 2 (Giachetti et al., 2021b). No MC
results for the 2D XY with (non-disordered) power-law
long-range couplings around σ = 2 are available, to the
best of our knowledge.

Extending the RG approach first employed by Koster-
litz (Kosterlitz, 1974), in a recent paper (Giachetti et al.,
2021a), it has been possible to propose a scenario of
the complex phase diagram of the d = 2 long-range
XY model, which features a novel transition between
a low-temperature magnetized state (T < T∗) and an
intermediate temperature state with topological scaling
(T∗ < T < Tc), which disappears at higher temperatures
(T > Tc). Interestingly, this unexpected transition only
occurs for 2 − 1/4 = 7/4 < σ < 2, while for σ ≥ 2 one
has only two phases separated by a BKT transition, as
in the short-range 2D XY model.

Thus, the introduction of long-range interaction pat-
terns in systems with U(1) symmetry in d = 2 gener-
ates exotic critical features, which have no counterpart
in the traditional universality classification (Raju et al.,
2019). This is not surprising since the interplay be-
tween U(1) systems and complex interaction patterns
is known to generate peculiar critical behaviour as in

the anisotropic 3D XY model (Shenoy and Chattopad-
hyay, 1995), coupled XY planes (Bighin et al., 2019), 2D
systems with anisotropic dipolar interactions (Maier and
Schwabl, 2004; Vasiliev et al., 2014) or four-body interac-
tions (Antenucci et al., 2015), and high-dimensional sys-
tems with Lifshitz criticality (Defenu et al., 2021; Jacobs
and Savit, 1983).

B. Strong long-range regime

1. Ensemble in-equivalence

The traditional universality problem concerns the nu-
merical characterization of universal quantities, in the
strongly correlated regime, where long-range collective
correlations are relevant and mean-field, as well as other
perturbative techniques, cannot be applied. Such ques-
tions have no actual application to the case of long-range
interactions with σ < 0, i.e. α < d, since the divergent
interaction strength stabilizes the mean-field solution of
the problem and the Gaussian theory reproduces the uni-
versal features also at the critical point.

Nevertheless, several interesting effects arise due to
strong long-range interactions, in the thermodynamic be-
havior of statistical mechanics models. These effects may
be loosely regarded as universal since they appear ir-
respectively of the particular model considered, as well
as irrespectively of the introduction of any finite-range
couplings, and they may be often characterized starting
from a continuous description (Antoniazzi et al., 2007;
Bachelard et al., 2011).

At equilibrium, the most striking feature of systems
in the strong long-range regime is probably ensemble
in-equivalence, i.e. the appearance of substantial differ-
ences in the phase diagram of strong long-range systems
depending on the application of the micro-canonical or
the canonical thermodynamic descriptions (Barré et al.,
2001). This property has been extensively revised in sev-
eral review articles and books on the physics of classical
long-range systems (Campa et al., 2014; Campa et al.,
2009; Dauxois et al., 2002) and there is no need to discuss
it here, in detail. For the sake of the following discussion,
we are only going to briefly mention the existence of two
diverse issues of ensemble in-equivalence.

The first example of ensemble in-equivalence is found
in systems with long-range attractive or antiferromag-
netic interactions, which feature a two-phase coexistence
state. Such coexistence states are usually connected with
a ‘dip’ or a ‘convex intruder’ in an otherwise concave en-
tropy, possibly leading to a negative specific heat. The
phase boundary associated with such coexistence states
carries an infinite entropy cost, which makes them un-
stable in the canonical ensemble. On the other hand,
in the micro-canonical description, such entropy cost is
not relevant and such equilibrium states may be real-



25

ized by tuning the energy (Dauxois et al., 2002; Ispolatov
and Cohen, 2001; Lynden-Bell, 1999). Interestingly, the
same phenomenon is observed on sparse random graphs,
where the condition of a negligible surface in the thermo-
dynamic limit is violated (Barré and Gonçalves, 2007).

The second example of ensemble in-equivalence is
conventionally found in long-range systems with a two
parameter-dependent free-energy S(ε, λ), which present
a line of second-order critical points along a line εc(λ),
terminating at a tricritical point at λc. The location of
such tricritical point, as well as the structure of the first-
order lines beyond it, strongly depend on the thermo-
dynamic ensemble considered. In particular, the micro-
canonical description as a function of the temperature
1/T = ∂S/∂ε does not match the standard canonical de-
scription as it should be for short-range interacting sys-
tems (Barré et al., 2001).

It is worth noting that the "convex intruder" causing
the first case of ensemble inequivalence is not exclusive of
long-range interacting systems, but it is also present on
short-range systems with finite sizes, where the bound-
ary contribution is comparable to the one from the finite
bulk (Ispolatov and Cohen, 2001). This feature is then
washed away in the thermodynamic limit for short-range
systems, while it remains for strong long-range ones.

2. Violation of hyperscaling

Apart from ensemble in-equivalence, the relevance of
boundaries in the scaling theory of strong long-range sys-
tems produces several anomalies, which influence the un-
derstanding of their critical behavior. In particular, let
us comment on the usual finite-size scaling theory, which
relates the thermodynamic critical exponent of any quan-
tity, e.g. the susceptibility

χ ∝ |T − Tc|−γ (30)

with its finite-size correction (Cardy, 1996)

χN ∝ Nγ/ν , (31)

where the subscript N indicates the corresponding quan-
tity in a system of size N . In long-range systems, the
correspondence between thermodynamic exponents and
finite-size scaling ones is not obtained via the correlation
length exponent ν, but via an exponent ν∗ = νmfduc,
where νmf and duc are respectively the mean-field correla-
tion length exponent and the upper critical dimension of
the corresponding short-range system (Botet et al., 1982).

Such modification of finite size scaling theory has been
related to the violation of hyperscaling and, more in gen-
eral, to a non-trivial power-law scaling of the correlation
length ξ with the system size N (Flores-Sola et al., 2015),
leading to several anomalous differences between the ac-
tual finite-size scaling of strong long-range systems and

the mean-field solution (Colonna-Romano et al., 2014).
These observations are not peculiar of strong long-range
systems, but have been also found in the study of critical
phenomena in short-range systems above the upper crit-
ical dimension (Binder, 1985; Flores-Sola et al., 2016a;
Luijten and Blöte, 1996).

C. Competing non-local systems

Modulated phases, resulting from the competition of
interactions at different length scales, are ubiquitous in
nature (Seul and Andelman, 1995) and also display uni-
versal scaling close to their critical points. Despite this
ubiquity, a comprehensive description of their universal
behavior has not emerged yet and their understanding is
apparently behind the one of homogeneous phase transi-
tion. A convenient effective action for modulated phases
has been firstly introduced by Brazovskii (Brazovskii,
1975) and it reads

S[ϕ] =
1

2

∫
ddq

(2π)d
~ϕ(q)

(
λ+

(q − q0)2

m

)
~ϕ(q)

+ u

∫
ddx
|~ϕ(x)|4

4!
(32)

where ϕ(q) is the Fourier transform of ϕ(x), which is
a N -components vector field, q = |~q| is the momentum
amplitude and q0 a constant given by the nature of com-
peting interactions. In writing Eq. (32) we assumed that
the long-range tails of the interactions are not relevant
(α > α∗).

The system described by the Hamiltonian in Eq. (32)
represents a different paradigm with respect to the or-
dinary N -vector models. Indeed, the Hamiltonian in
Eq. (32) for λ < 0 supports a condensate with any of the
finite wave-vectors occurring on the d − 1-dimensional
sphere |~q| = q0. Therefore, the condensed phase of the
model is somehow "doubly" symmetry-broken, since the
model does not only choose the i = 1 component of the
field in which it condenses, but must also make a single
choice for the wave-vector ~q = ~q0, out of the infinite set of
equivalent order parameters with |~q| = q0. The diversity
in the symmetry breaking procedure also reflects in differ-
ent phase space for fluctuations, since the d-dimensional
phase space around the |~q| = q0 surface is anisotropic,
with fluctuations parallel to the surface, which are ex-
actly degenerate, and fluctuations away from it, which
are only nearly degenerate. This discussion should have
clarified that the Brazovskii model in Eq. (32) does not
belong to any of the usual universality classes of isotropic
models and presents its own set of universal properties
as a function of the parameters N and d.

Interesting applications of the physics described by
the Brazovskii model occur in two dimensional or
highly anisotropic systems, such as quantum Hall plat-
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forms (Fradkin and Kivelson, 1999), high Tc supercon-
ductors (Kivelson et al., 2003, 1998) and ultra-thin mag-
netic films (Kashuba and Pokrovsky, 1993; Saratz et al.,
2010; Vaterlaus et al., 2000). Nevertheless, the first ef-
forts to apply the momentum shell renormalization group
theory (Wilson and Kogut, 1974) to the Hamiltonian in
Eq. (32) with d = 2 resulted in the impossibility to
construct a reliable perturbative picture (Hohenberg and
Swift, 1995). Applying the RG approach described by
Shankar for fermionic systems (Shankar, 1994), Hohen-
berg and Swift (Hohenberg and Swift, 1995) found out
that momentum dependent corrections to the interacting
coupling u are relevant and no weak coupling expansion
is possible in the treatment of modulated phases. Nev-
ertheless, a symmetry analysis of these relevant correc-
tions suggests the appearance of a second-order nematic-
isotropic transition (Barci and Stariolo, 2007). Simi-
lar difficulties have been encountered by more modern
treatments (Shiwa, 2006) and the description of systems
belonging to the Brazovskii universality has remained
confined to mean-field theory (Barci et al., 2013; Barci
and Stariolo, 2007; Capati et al., 2015), scaling argu-
ments (Barci and Stariolo, 2009, 2011; Mendoza-Coto
and Stariolo, 2012; Portmann et al., 2010) and numerical
simulations (Cannas et al., 2006; Poderoso et al., 2011).

Recently, the study of the nematic-isotropic transi-
tions in the Brazovskii model has been extended beyond
the analytic momentum paradigm in Eq. (32) to include
long-range repulsive interactions of the form 1/rα

′
, with

particular focus on the Coulomb (α′ = 1) and dipolar
(α′ = 3) cases (Mendoza-Coto et al., 2015b). It is partic-
ularly interesting to note that, within the effective field
theory approach of Ref. (Mendoza-Coto et al., 2015b),
it is possible to show the exact correspondence between
the universality of the nematic-isotropic transition and
the one of homogeneous rotor models at finite temper-
ature with decay exponent α = α′ + 2 (Mendoza-Coto
et al., 2017). Therefore, for modulated phases in d = 2,
the relevant regime for long-range interactions is rigidly
shifted in such a way that any power-law decay α′ > 2 is
always irrelevant, while for α′ < 2 the interaction energy
remains finite also in absence of any rescaling, due to the
modulation pattern of the order parameter.

Within this framework, the scalar ϕ4-theory with com-
peting long-range and short-range interactions lies in the
same universality class of the long-range ferromagnetic
O(2) model with σ = α′ (Mendoza-Coto et al., 2015b),
described in Sec. III.A. Therefore, for α′ > 2 the isotropic
nematic transition displays in d=2 BKT scaling as in the
short-range XY model, while for α′ < 2 actual orienta-
tional order shall occur. Given this relation, one expects
that for α′ ∈ [1.75, 2] the same phenomenology described
in Sec. III.A.2 shall occur.

IV. QUANTUM CRITICAL BEHAVIOUR

Our discussion of zero-temperature criticality starts by
observing that field theory approaches allow to relate the
universal behavior at a T = 0 quantum critical point
with the one of the corresponding T 6= 0 classical phase
transition in dimension d + z, where z is the dynamical
critical exponent (Sachdev, 1999). This correspondence is
exact for local, continuous O(N ) field theories with z = 1
and it can also be proven for the one-dimensional lattice
Ising model in a transverse field (Dutta et al., 2015; Mus-
sardo, 2009). Thus, it will be rather natural to connect,
whenever possible, the universal behavior in the quantum
regime with the one of finite-temperature phase transi-
tions also for long-range models.

In the following, we are going to divide our presenta-
tion according to the nature of the variables at hand.

A. Quantum rotor models

Given the correspondence between quantum and clas-
sical universalities, O(N ) field theories constitute a
paradigmatic model also for quantum critical behav-
ior. However, differently from the classical case, they
do not describe in general the universality of ferromag-
netic quantum spin systems, since quantum spins pos-
sess SU(N ) rather than O(N ) symmetry. Nevertheless,
the low energy behavior of quantum O(N ) models de-
scribes the physics of several quantum models, such as
the quantum Ising model, N = 1; superfluid systems,
N = 2; and antiferromagnetic quantum Heisenberg spin
systems, which correspond to N = 3 (Sachdev, 1999).

In this context, a convenient lattice representation of
quantum O(N ) field theories is provided by quantum ro-
tor models, whose Hamiltonian reads

HR = −
∑

ij

Jij
2
n̂i · n̂j +

λ

2

∑

i

L̂2
i , (33)

where the n̂i are n components unit length vector opera-
tors (n̂2

i = 1), λ is a real constant and L is the invariant
operator formed from the asymmetric rotor space angu-
lar momentum tensor (Sachdev, 1999). As above, we are
going to focus on power-law decaying ferromagnetic cou-
plings Jij = J

rd+σ
ij

with J > 0.

In the short-range limit (σ → ∞) the continuum for-
mulation of quantum O(N ) rotor models would exactly
correspond to a d+1-dimensional O(N ) field theory, with
the extra dimension representing the temporal propaga-
tion of quantum fluctuations. However, in the long-range
regime the field theory action is anisotropic as the spa-
tial coordinates feature a leading non-analytic momen-
tum term, at least for σ < σ∗. Following the same FRG
approach as in Sec. III.A, one can introduce the following
ansatz for the effective action of an O(N ) quantum rotor
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model

Γk =

∫
dτ

∫
ddx{Kk∂τϕi∂τϕi − Zkϕi∆

σ
2 ϕ

−Z2,kϕi∆ϕ+ Uk(ρ)} (34)

where ∆ is the spatial Laplacian in d dimensions, τ is
the "Trotter"/imaginary time direction, ϕi(x) is the i-th
component (i ∈ {1, · · · , n}) of the system and ρ ≡∑ ϕ2

i

2
is the system order parameter. In Eq. (34) the summation
over repeated indices is again intended.

It is worth reminding that the ansatz in Eq. (34) for
the effective action, albeit sufficient to characterize the
physics of long-range rotor models, it only approximately
represents the exact critical action of correlated mod-
els. Indeed, it only contains two kinetic terms in the
d spatial directions, as necessary to represent the com-
petition between long-range and short-range contribu-
tions to the critical propagator, but it does not con-
tain momentum-dependent corrections to the theory ver-
tices (Dupuis et al., 2020). As expected, the time direc-
tion τ does not contain any fractional derivative so that
one may obtain a non-unity value for the dynamical crit-
ical exponent z, defined by the relation ω ∝ qz.

1. Effective dimension approach

The characterisation of the critical properties of the
action in Eq. (34) proceeds in full analogy with the case
of classical anisotropic systems (Defenu et al., 2016), but
it leads to a far more interesting picture. Scaling analysis
allows to approximately relate the universal properties of
long-range quantum rotor models in d dimensions with
the ones of their short-range correspondents in an effec-
tive dimension

deff =
2(d+ z)

σ
, (35)

where d and z are respectively the dimension and the dy-
namical critical exponent of the long-range model under
study. Interestingly, the anisotropy between the time and
spatial direction in the long-range model is already ap-
parent in the mean-field estimations for the critical expo-
nents (Dutta and Bhattacharjee, 2001a; Monthus, 2015)

η = 2− σ, (36)

z =
σ

2
, (37)

ν = 1/σ. (38)

Upon inserting the result in Eq. (37) into the effective
dimension relation in Eq. (35) one obtains the mean-field
expression deff = 2d

σ + 1, which proves that the effective
dimension of quantum rotor models is increased by 1 with
respect to the classical case, as it occurs for traditional
short-range systems.

0 1 2
σ

0

1

2

3

d

MF

WF

Figure 11 Phase diagram of long-range quantum rotors
models in the plane d, σ. The universal behaviour features
the mean-field critical exponents in Eqs. (36), (37) and (38) in
the cyan shaded region (upper left corner), while the univer-
sal properties are associated to an interacting Wilson-Fisher
(WF) point in the white region. The color lines (red, blue,
green) represent the boundary between long-range and short-
range universality (N = 1, 2, 3 from left to right respectively).
Finally, the gray shaded region (lower right corner) displays
no phase transition at all.

The correspondence between quantum and classical
O(N ) models based on the effective dimension approach
in Eq. (35) exactly applies to quadratic models in gen-
eral (Vojta, 1996) and it is expected to be very good close
to the upper critical dimension. Then, we can employ the
effective dimension approach to construct the phase dia-
gram displayed in Fig. 11. Indeed, the upper critical di-
mension result duc can be derived by the condition d ≥ 4,
so that

duc =
3

2
σ, (39)

as it follows also by standard scaling arguments (Dutta
and Bhattacharjee, 2001b). Correspondingly, the lower
critical dimension dlc for continuous symmetries N ≥ 2
follows from the condition deff ≤ 2, which yields

dlc =
σ

2
. (40)

It is worth stressing once again that relation (40) is only
valid for continuous symmetries N ≥ 2. As a result,
correlated universality shall be observed in the region
2 ≤ deff < 4, i.e. the cyan shaded region in Fig. 11.
Therefore, the critical exponents do not coincide with
the mean-field result and we need to take into account
the effective potential in Eq. (34).
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2. Beyond mean-field critical exponents

The study of the action in Eq. (34) closely follows the
classical case, as the same mechanism is found for the
transition between the long-range and the short-range
universality which occurs at σ∗ = 2−ηsr as in the classical
case. For σ > σ∗ the effective action of quantum rotors
models is isotropic and analytic in the momentum sector,
then its flow equations are identical to the ones in the
classical d + 1 case (Codello et al., 2015). For σ < σ∗
however the anisotropy between spatial and imaginary
time dimensions produces novel flow equations for the
effective potential and the wave-function renormalization
Kk:

∂tŪk = (d+ z)Ūk(ρ̄)− (d+ z − σ)ρ̄ Ū ′k(ρ̄)

− σ

2
(N − 1)

1− ητz
3σ+2d

1 + Ū ′k(ρ̄)
− σ

2

1− ητz
3σ+2d

1 + Ū ′k(ρ̄) + 2ρ̄ Ū ′′k (ρ̄)
,

(41)

−∂tKk

Kk
= ητ =

f(ρ̃0, Ũ
(2)(ρ̃0))(3σ + 2d)

d+ (3σ + d)(1 + f(ρ̃0, Ũ (2)(ρ̃0)))
. (42)

In the derivation of Eqs. (41) and (42), analytic terms in
the spatial direction are discarded (Defenu et al., 2017b),
setting Z2,k = 0 in Eq. (34), as their contributions to the
RG running of other quantities remain very small up to
σ ' σ∗, see the discussion in Sec. III.A.1.

Interestingly, the numerical study of quantum long-
range O(N ) models appears to be more extended in lit-
erature than the classical case. Numerical simulations
both for the quantum long-range Ising and O(2) rotor
models have been performed, yielding numerical curves
for both the critical exponents z and ν, while confirm-
ing the mean-field result η = 2− σ also in the correlated
regime (Sperstad et al., 2012). Fig. 12 compares the nu-
merical estimates obtained by the flow Eqs. (41) and (42)
using the solution approach described in Refs. (Codello
et al., 2015; Defenu et al., 2015) with the results from
MC simulations of Ref. (Sperstad et al., 2012).

In Fig. 12 (upper panel) the dynamical critical expo-
nent z is reported as a function of σ in d = 1. These nu-
merical results have been obtained solving Eqs. (41), (42)
at the fixed points and studying their stability matrix
accordingly, as described in Refs. (Codello et al., 2015;
Defenu et al., 2015). The mean-field region σ < 2

3 is
not shown as it is exactly described by the analytical
estimates in Eqs. (36), (37) and (38). Numerical results
for σ < 1/2 deviating from the mean-field expectation
have not been reported (Fey and Schmidt, 2016). The
dynamical critical exponents of the transverse-field Ising
model with long-range power-law interaction in the weak
long-range regime have been derived in (Maghrebi et al.,
2017) up to the two-loop order within the renormaliza-
tion group theory. Recent QMC simulation have shown
substantial agreement with the behaviours displayed in
Fig. 12 (Koziol et al., 2021). It is worth noting that recent
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Figure 12 Universal properties long-range quantum
rotor models. (upper panel) reports the estimates for the
dynamical critical exponent z = σ/(2 − ητ ) obtained by the
fixed point solution of the evolution Eqs. (41) and (42) in the
cases N = 1, 2, 3 in red, blue and green (from top to bottom)
respectively. (lower panel) reports the inverse correlation
length exponent N = 1, 2, 3 from top to bottom. The MC
simulations in Ref. (Sperstad et al., 2012) are shown as empty
circles in the N = 1, 2 cases top (red) and bottom (blue) re-
spectively. In both panels the upper grey dashed lines rep-
resent the mean-field results, while dashed lower black lines
represent the spherical model (N =∞) results.

simulation have also targeted the finite temperature tran-
sition at α < d (Gonzalez-Lazo et al., 2021), and the two-
dimensional case (Fey et al., 2019; Koziol et al., 2019).
Interestingly, non-local dissipation can act on Ising lat-
tices molding the universality class of their critical points
(Marino, 2021) and potentially realized and characterized
in cavity experiments (Seetharam et al., 2021).

Out of the mean-field region, correlation effects tend to
increase the value of the dynamical critical exponent, in-
creasing the gap with the analytic prediction in Eq. (37).
This effect is mitigated for continuous symmetries N ≥ 2
due to the vanishing of the anomalous dimension at the
short-range threshold σ∗ = 2 . Accordingly, the agree-
ment between the FRG curves and the numerical MC re-
sults (red solid line and circles in Fig. 12) remains consis-
tent in the whole σ range. On the other hand, the N = 2
case displays overall poorer consistency, mostly due to
the inaccuracy of MC estimates. Indeed, while the effec-
tive action parametrization in Eq. (34) proved unable to
properly describe the continuous BKT line (Gräter and
Wetterich, 1995), it consistently reproduces the scaling
of critical exponents in the BKT limit (Codello et al.,
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2015)3.
The lower accuracy found for the N = 2 case is con-

firmed by the comparison of MC simulation for the corre-
lation length estimates with the FRG curve (blue circles
and line in Fig. 12). Indeed, the MC data provide a fi-
nite correlation length exponent in the limit σ → 2 for
the O(2) model, in contradiction with rigorous analyti-
cal predictions from deff − 2 expansion (Brézin and Zinn-
Justin, 1976). On the contrary, the FRG curve correctly
reproduces the expected feature as it did in the classical
case, see Fig. 9. Therefore, the flow Eqs. (41) and (42)
yield all the qualitative features and reach quantitative
accuracy for all values d, σ and N in the phase diagram of
quantum long-range O(N ) models, producing nice accu-
racy with exact numerical simulations. The difficulties in
the FRG characterization of the BKT transition (Gräter
and Wetterich, 1995; Jakubczyk et al., 2014; Jakubczyk
and Metzner, 2017) appear not to be problematic in this
case, as MC simulations are as well plagued by severe
finite-size effects. Recent numerical results on the long-
range XY model have been reported in (Adelhardt et al.,
2020).

An interesting fact is that the MC points in Fig. 12 ap-
pear to provide σ∗ = 2− ηsr with η = 1

4 also for N = 2,
without any apparent distinction between the N = 1 and
2 cases. As already mentioned, this is in stark contradic-
tion with the picture furnished by FRG, which suggests
σ∗ = 2 identically for all continuous symmetries. The
correct picture is most likely in between, as suggested by
the analysis pursued in Sec. III.A.2.

B. Kitaev chain

The introduction of long-range couplings in Fermi sys-
tems produces radically different results with respect
to the bosonic case. The Kitaev chain (Kitaev, 2001)
emerged as one of the most studied playgrounds in which
effects of long-range terms have been investigated. In
the fermionic context we will first consider the general-
ized Kac-normalized (Kac et al., 1963) long-range Kitaev
chain (Maity et al., 2019). Its Hamiltonian reads

H = −
N∑

j=1

R∑

r=1

(
Jrc
†
jcj+r + ∆rc

†
jc
†
j+r + H.c.

)
(43)

− h
N∑

j=1

(
1− 2c†jcj

)
, (44)

3 It is worth noting that the power-law scaling of BKT correla-
tions originates from phase correlations and does not contradict
the vanishing of the anomalous dimension defined according to
Eq. (42) (Defenu et al., 2017a).

where

Jr = t
d−αr
Nα

, ∆r = g
d−βr
Nβ

, (45)

are the hopping and pairing profiles, respectively, with
hopping t > 0 and normalization satisfying one of the
two relations

Nx =

{ ∑R
r=1 d

−x
r , Kac rescaling

1 otherwise,
(46)

where R denotes the range of the interactions, dr is the
distance between the sites i and i+r, x ≡ α, β refer to the
power-law exponents, h the chemical-potential strength,
and cj , c

†
j the fermionic annihilation and creation oper-

ators, which obey the canonical anti-commutation rela-
tions {cl, c†j} = δl,j and {cl, cj} = 0. In Eq. (46) we al-
lowed both the possibility to implement Kac rescaling or
to leave the couplings unscaled as in the literature both
conventions are employed.

The definition of distance depends on the choice of
the boundary conditions. So, a ring structure, i.e.
closed boundary conditions, leads to the definition dr =
min(r, L−r), while open boundary conditions simply pro-
duce dr = r. Conventionally, (anti)periodic boundary
conditions allow the straightforward analytical solution
of the problem in the short-range limit. Yet, long-range
couplings extending over the whole chain length will lead
to the cancellation of the hopping (pairing) operators
for anti-periodic (periodic) boundary conditions, due to
the anti-commutation relations (Alecce and Dell’Anna,
2017). This issue justifies the introduction of a finite
interaction range R into the Hamiltonian in Eq. (43).

In the following we are going to mainly discuss the ring
convention with dr = min(r, L− r) and fix R = L/2− 1,
where L is the number of sites in the ring chain. This
choice allows us to adequately deal with ring boundary
conditions, but still obtain a non-trivial thermodynamic
limit L → ∞, where the couplings display infinite-range
tails. One can thus introduce the Fourier transform

cj =
1√
L

B.z.∑

k

ckeikj , (47)

where the sum is over the first Brillouin zone. On a
finite ring the values of the momenta have to be chosen in
order to comply with periodic (k = 2πn

L ) or anti-periodic
(k = 2π(n+1/2)

L ) boundary conditions. The Hamiltonian
in momentum space reads

H =

B.z.∑

k

[
(c†kck − c−kc

†
−k)(h− Jk)

+ (c†kc
†
−k − ckc−k)∆k

]
, (48)
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where the momentum space couplings have been obtained
by Fourier transforming Jr and ∆r:

Jk =
t

Nα

R∑

r=1

cos(kr)

rα
, (49)

∆k =
g

Nβ

R∑

r=1

sin(kr)

rβ
. (50)

The Hamiltonian in Eq. (48) is quadratic and it can be
explicitly diagonalised via a Bogoliubov transformation

ck = i sin
θk
2
γk + cos

θk
2
γ†−k, (51)

where γk, γ
†
k are fermionic operators, which, respec-

tively, annihilate and create Bogoliubov quasi-particles.
They obey the conventional anti-commutation relations
{γk, γ†p} = δk,p and {γk, γp} = 0. The proper choice
for the momentum dependent angle θk in order to diag-
onalise the Hamiltonian in Eq. (48) reads

θk = arctan
∆k

h− Jk
. (52)

which leads to the diagonal Hamiltonian

H =

B.z.∑

k

ωk(γ†kγk − γ−kγ
†
−k), (53)

with the quasi-particle spectrum

ωk =
√

(h− Jk)2 + ∆2
k. (54)

In the thermodynamic limit L → ∞, the short-range
model (α, β → ∞) features the familiar relations Jk =
t cos(k) and ∆k = g sin(k). Accordingly, the minimal
gap occurs at k = 0, π, depending on the sign of h, and
vanishes as the chemical potential approaches the crit-
ical values h → ±t. Interestingly, the two short-range
critical points h = ±t feature a soft mode at respec-
tively k = 0, π, in correspondence with the appearance
of ferromagnetic or antiferromagnetic order in the short-
range Ising chain obtained by the Jordan-Wigner trans-
formation (Fradkin, 2013). Yet, in terms of the fermionic
operators of the Kitaev chain no local order is found,
but the quantum critical points divide different topo-
logical phases, where only non-local string orders are
found (Chitov, 2018).

Without loss of generality, we can then impose t =
g = 1 from now on, fixing the location of the short-range
critical point. Upon crossing the critical point the system
undergoes a quantum phase transition between a topo-
logically trivial phase at |h| > 1 and one featuring a finite
winding number

w =
1

2π

∮
dθk, (55)

where the integral has to be taken along the periodic
Brillouin zone.

In terms of topological properties, the quantum phase
transition occurs between the trivial phase w = 0 at
|h| > 1 and the topologically nontrivial phase at |h| < 1.
The existence of a non-trivial topological order in the
bulk of the system is connected with the occurrence of
zero-energy Majorana modes at the boundaries with the
normal phase. In particular, such zero-energy Majorana
modes are found at the edges of the finite chain with open
boundaries (Kitaev, 2001). The inclusion of interactions
beyond the nearest-neighbors case radically modifies and
extends this traditional picture.

Before continuing the discussion, we observe that the
use of open boundary conditions allows to predict that
the edge modes are exponentially localized at the chain
edges in the isotropic case when pairing and tunneling
rates are equal, i.e. α = β (Jäger et al., 2020). Algebraic
decay of the edge modes is found in the anisotropic case,
when either the exponent and/or the rates of tunneling
and pairing is different. In this latter case, the smallest
exponent causes the algebraic scaling of the tails, while
at short distances the decay is exponential.

For power-law decaying superconducting pairings, the
massless Majorana modes at the edges pair into a massive
non-local Dirac fermion localized at both edges of the
chain dubbed topological massive Dirac fermion. with
fractional topological numbers (Viyuela et al., 2016).

It is worth noting that signatures of Majorana edge
modes have been studied in ferromagnetic atomic chains
on top of superconducting leads (Nadj-Perge et al., 2014).
In this context, the realization of power-law decaying cou-
plings via Ruderman-Kittel-Kasuya-Yosida interactions
has been proposed (Klinovaja et al., 2013). A weakening
of bulk-boundary correspondence in the presence of long-
range pairing with Aubry-André-Harper on-site modula-
tion has been observed (Fraxanet et al., 2021). For this
model, a 2D Chern invariant can still be defined. How-
ever, in contrast to the short-range model, this topologi-
cal invariant does not correspond to the number of edge
mode crossings.

1. Finite-range couplings

As usual, finite-range interactions with R < ∞ in the
thermodynamic limit cannot alter the universal critical
scaling close to the quantum phase transition, but they
may alter the topological phase diagram, leading to mod-
ifications in the number and properties of the edge modes.
However, this is not the case if finite-range interactions
only appear in the hopping or the pairing sector sepa-
rately, i.e. β → ∞ or α → ∞ respectively. There the
phase diagram remains almost unaltered with respect to
the short-range case, apart from a modification of the
critical boundaries, which become anisotropic, with the
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k = 0, π instabilities occurring at different values of |h|.
For generic values of α and β, the topological phase

diagram also contains regions with |w| > 1, with a
maximum value equal to the range of the interactions
|w|max = R. The range of parameters in which w is maxi-
mum decreases with α and the phase diagram of the stan-
dard Kitaev chain model is recovered in the α→∞ limit,
independently of β. Interestingly, the winding number
may also assume intermediate values between 1 and R
with steps of 2. Therefore, for R ∈ 2N(2N + 1), the
phase can be trivial, w = 0, it can feature a pair of
Majorana edge modes, w = 1, or any even(odd) num-
ber of Majorana pairs smaller than the interaction range,
r ∈ 2N(2N + 1) < R.

The separation into even and odd numbers of Majo-
rana modes depending on the range R is justified by the
possibility for Majorana modes on the same edge to an-
nihilate each other one by one per edge, according to
the mechanism described in Ref. (Alecce and Dell’Anna,
2017). The topological phase with |w| = 1, instead, per-
sists for each interaction range R ≥ 1, because the annihi-
lation of a single Majorana pair requires overlap between
the two wave-functions peaked at the opposite edges of
the chain.

In general, the influence of long-range interactions on
topology has also been investigated for infinite-range cou-
plings (see Sec. IV.B.2) in antiferromagnetic spin-1 chains
where the α∗ for the survival of the topological phase
strongly depends on the frustrated or unfrustrated na-
ture of the long-range terms, i.e. α ' 0 or 3 (Gong
et al., 2016a,b). Moreover, the interplay between topol-
ogy and long-range connectivity generates a wide range
of peculiar phenomena, including novel quantum phases
(Gong et al., 2016a), modifications of the area law (Gong
et al., 2017), and breaking of the Lieb-Robinson theorem
(Maghrebi et al., 2016).

2. Infinite-range pairing

First studies (Vodola et al., 2014) on the long-range
Kitaev chain have been focusing on the case of infinite-
range long-range coupings R ∝ L only in the paring sec-
tor, leading to the thermodynamic limit expressions

Jk = cos(kr), (56)

∆k =
1

Nβ

∞∑

r=1

sin(kr)

rβ
=

Im[ Liβ
(
eik
)
]

2ζ(β)
, (57)

where the case Nβ = 1 is discussed first. In absence
of Kac rescaling, the critical line at h = −1 appearing in
the short-range models persists independently of β, while
the one at h = 1 disappears as soon as β < 1. Notably,
some references discuss the persistence of the h = −1
critical line below α = 1 to prove that the long-range
Kitaev chain does not require Kac rescaling (Lepori and

Dell’Anna, 2017; Lepori et al., 2016). Subsequent work
clarified that the ground state energy of the system

e∞,β =

∫ π

−π
ωk dk (58)

remains finite for all β and h, due to the fermionic nature
of the model and at variance with the classical case. Yet,
the zero momentum spectrum diverges limk→0 ωk → ∞
for β < 1 leading to the disappearance of the quantum
critical point at h = 1, which could be made stable by the
introduction of Kac rescaling as in the classical case, see
Eq. (46). This whole picture is in loose agreement with
the discussion in Sec. III.C, where we have shown that for
modulated phases, characterized with instability at finite
momentum, no internal energy divergence is detected for
decay exponent α < d, while ferromagnetic models with
homogeneous order need Kac rescaling.

Then, the divergence in k = 0 is the cause for the
disappearance of the h = 1 quantum critical point for
α < 1. At the same time, at every finite α divergences
in some k-derivatives for ωk occur both at k = 0 and at
k = π (Lepori et al., 2016; Vodola et al., 2014), giving
rise to interesting effects both in the correlations decay
and the dynamics (Lepori et al., 2017). In particular,
these divergencies generate several novel features in the
equilibrium behavior of the Kitaev chain, which may be
summarised in the following main effects:

• Hybrid decay of the static correlations with in-
termediate range exponential part and power law
tails (Lepori et al., 2017), which can be connected
to the existence of a Lieb-Robinson bound pecu-
liar to long-range systems (Foss-Feig et al., 2015a;
Hernández-Santana et al., 2017; Van Regemortel
et al., 2016).

• Breakdown of conformal invariance for β < 2 has
been found (Lepori et al., 2016). Nevertheless, the
scaling of the von-Neumann entropy fulfils the area
law up to α = 1, as in the short-range limit
(β →∞) (Eisert et al., 2010). At the critical point,
also the central charge defined by the logarithmic
correction to the von-Neumann entropy remains
c = 1/2 as in the short-range limit as well (Lepori
et al., 2016).

• Below the threshold β = 1 logarithmic corrections
to the area-law have been found out of criticality,
modelled by the formula

S(`) =
ceff

6
log(`), (59)

where ` is the size of the bipartition (Vodola et al.,
2014, 2016). Notably, this correction, which is
identical to the one of short-range systems at
criticality (Calabrese and Cardy, 2004; Holzhey
et al., 1994), has been also found in the Ising
model (Koffel et al., 2012).
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• Again below β = 1, the topological phase at µ < 1
the Majorana edge modes, which remained well
separated in the short-range limit, shall hybridize
and produce a massive Dirac mode, effectively lift-
ing the ground state degeneracy present for β > 1.
This mechanism is analogous to the one occurring
in the short-range limit at finite size (Kitaev, 2001).
An explicit proof of this fact has been given in
Ref. (Patrick et al., 2017) for α = β = 0.

All these striking features are also found in the gen-
eral case α, β <∞, almost independently from the value
of α (Alecce and Dell’Anna, 2017; Lepori and Dell’Anna,
2017; Vodola et al., 2016) and they can be straightfor-
wardly reproduced by an continuous effective field the-
ory description (Lepori et al., 2016). Therefore, all the
aforementioned properties can be classified as universal
according to our definition. It is worth noting that the
peculiar nature of the long-range Kitaev chain at β < 1
is signaled by a non-integer value of the winding number
defined in Eq. (55), which in principle is not admissible.
This effect points towards a general breakdown of the tra-
ditional theory for topological phases in short-range sys-
tems (Kitaev et al., 2009; Schnyder et al., 2008), leading
to modifications in the bulk-edge correspondance (Lepori
and Dell’Anna, 2017).

3. The α = β case and the relation with the long-range Ising
model

The topological features of the α < ∞ case are not
substantially different from the α → ∞ case, as it is
the paring term in Eq. (43) that induces the topologi-
cal behavior. Yet, the presence of long-range hopping
substantially alters both the critical and the dynamical
properties of the long-range Kitaev chain. Before, dis-
cussing such properties, it is convenient to briefly discuss
the case α = β, which is strongly tied with the case of
1/2-spins. In this perspective, it is convenient to first
introduce the long-range Ising model Hamiltonian

H = −
∑

l<j

Jljσ
x
l σ

x
j − h

∑

j

σzj , (60)

where σ{x,y,z}j are the Pauli matrices on-site j, h is the
transverse-field strength, and Jr, with r = |l − j|, is the
spin coupling profile with power-law scaling (∝ 1/rα,
α ≥ 0). As usual, in the limit α → ∞ one recov-
ers the short-range Ising model, which is integrable and
can be exactly solved with a Jordan-Wigner transforma-
tion (Fradkin, 2013). Another interesting limit is reached
for α→ 0, where the Hamiltonian in Eq. (60) represents
the celebrated LMG model (Glick et al., 1965; Lipkin
et al., 1965; Meshkov et al., 1965). In this limit, the flat
infinite-range interactions leads to permutation symme-
try and allows to employ the Dicke basis (Nussenzveig,

1973), which scales linearly with the system size and
yields a tractable description of the system amenable via
exact diagonalization.

The equilibrium phase diagram of the Hamiltonian in
Eq. (60) as well as its universal properties have been de-
picted in Sec. IV.A in the case N = d = 1. In summary,
the system displays a finite temperature phase transition
for α < 2 (Dutta and Bhattacharjee, 2001a; Dyson, 1969;
Thouless, 1969) within the same universality class of the
classical long-range Ising model (Defenu et al., 2015). In
the limit T → 0, the system displays a quantum critical
point at finite h, whose universal properties depend on
the value of σ according to Fig. 11 (Defenu et al., 2017b).
In the nearest-neighbor limit α → ∞ the universal be-
haviour exactly corresponds with the ones of the Kitaev
chain with α = β > 2, as a consequence of the Jordan-
Wigner mapping.

Therefore, one may expect that a qualitative un-
derstanding of the Hamiltonian in Eq. (60) shall result
from the mapping of the spin operators σ{x,y,z}j onto
fermions (Jaschke et al., 2017; Vanderstraeten et al.,
2018)

σzj = 1− 2c†jcj , (61)

σyj = −i
[ j−1∏

m=1

(
1− 2c†mcm

)](
cj − c†j

)
, (62)

σxj = −
[ j−1∏

m=1

(
1− 2c†mcm

)](
cj + c†j

)
, (63)

where the fermionic annihilation and creation opera-
tors are represented, respectively, by cj , c

†
j and, accord-

ing to the canonical anticommutation relations, one has
{cl, cj} = 0 and {cl, c†j} = δl,j . It is worth noting that the
Jordan-Wigner transformation is highly non-local and,
despite preserving the excitations spectrum of the sys-
tem, yields radically different eigenstates and topological
properties (Greiter et al., 2014).

The fermionic Hamiltonian for the long-range Ising
model reads

H = −
∑

l<j

J|l−j|
(
c†l − cl

)[ j−1∏

n=l+1

(
1− 2c†ncn

)](
c†j + cj

)

− h
∑

j

(
1− 2c†jcj

)
. (64)

An exact solution of the Hamiltonian in Eq. (64) is
not possible due to the inclusion of increasingly longer
fermionic strings. In order to introduce a treatable
model, valid close to the fully paramagnetic limit, one
can employ the approximation (Jaschke et al., 2017)

j−1∏

n=l+1

(
1− 2c†ncn

)
= 1, (65)
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for every j ≥ l + 2 and neglect all the non-quadratic
string operators in the first line of Eq. (64). The resulting
Hamiltonian reads

H = −
∑

l<j

J|l−j|
(
c†l cj + c†l c

†
j − clcj − clc†j

)

− h
∑

j

(
1− 2c†jcj

)
, (66)

which corresponds to the Hamiltonian in Eq. (43) in the
infinite-range limit R → ∞ with identical hopping and
pairing functions, i.e. g = t and α = β.

In the nearest neighbor limit, the fermions in the
Hamiltonian (66) can be interpreted as domain-walls in
the spin language. Consistently, long-range interactions
introduce an effective nonquadratic coupling between
such domain walls, which we have discarded via the
introduction of the approximation in Eq. (65)(Fradkin,
2013). Since the relevance of the quartic terms of the
Hamiltonian in Eq. (64) crucially depends on the inter-
action range, it is not surprising that the approximation
in Eq. (65) alters the universal properties of the model
and, then, the Hamiltonian in Eq. (66) does not lie in the
same universality class as the long-range Ising model for
σ = α− 1 < 2. The difficulty to reproduce the universal
properties of the long-range Ising model at small α with
the purely fermionic Hamiltonian can be also understood
via an effective dimension argument.

According to Eq. (35), the long-range Ising model dis-
plays the effective dimension deff = 1 for α > 3 and,
therefore, it is not surprising that the universal prop-
erties of the fermionic theory in Eq. (66) correspond to
the ones of the effective bosonic theory described by
Eq. (34). Conversely, for α < 5/3 the effective dimen-
sion becomes large, deff > 4, and the universal fea-
tures of the effective action in Eq. (34) are exactly cap-
tured by the mean-field approximation, which features
bosonic excitations and cannot be reduced to the purely
fermionic theory in Eq. (66). In the intermediate range
5/3 < α < 3 the low-energy excitations shall possess hy-
brid fermionic-bosonic character, which cannot be cap-
tured by the purely fermionic Hamiltonian in Eq. (66).

4. The general α 6= β case

In Sec. IV.B.3, we have discussed the relation between
the universal properties of the Ising model and the ones
of the Kitaev chain with α = β and t = g. Now, we
will explicitly derive the critical exponents of the Kitaev
chain in the general case with R ∝ L and

Jk =
1

ζ(α)

∞∑

r=1

cos(kr)

rα
=

Re[ Liα
(
eik
)
]

2ζ(α)
, (67)

∆k =
1

ζ(β)

∞∑

r=1

sin(kr)

rβ
=

Im[ Liβ
(
eik
)
]

2ζ(β)
, (68)

which are the momentum range couplings determining
the single particle spectrum in Eq. (54). In analogy with
the nearest-neighbour case the long-range Kitaev chain
features two quantum critical points, corresponding to
the softening of the k = 0 or k = π modes. Employing
the Kac normalised expressions in Eqs. (67) and (68), the
location of the "homogeneous" critical point is fixed at
hhc = 1 independently of the choice of α or β. Conversely,
the k = π instability occurs at the α dependent critical
point hac = 1− 2α. The definition of critical exponents is
given by the scaling of the excitation spectrum close to
each of these quantum critical points

lim
h→hh,ac

ωk ≈ |h− hc|zν k = 0, π (69)

lim
k→0,π

ωk ≈ kz h = hh,cc . (70)

As in the case of rotor models, see Sec. IV.A, the two
exponents z and ν are sufficient to characterize the entire
critical scaling.

Following the definitions in Eqs. (69) , it is straight-
forward to check that limk→0 ∆k = 0 and that the crit-
ical exponents combination is zν = 1 for each of the
two quantum critical points irrespectively of the values
of α, β. The determination of the dynamical scaling ex-
ponent z close to the hhc quantum critical point requires
the expansions of the Fourier couplings close to k = 0

Jk = 1 + sin(απ/2)
Γ(1− α)

ζ(α)
kα−1

− ζ(α− 2)

2ζ(α)
k2 +O(k3) if α < 3, (71)

Jk = 1 +
2 log(k)− 3

4ζ(3)
k2 +O(k3) if α = 3, (72)

Jk = 1− ζ(α− 2)

2ζ(α)
k2 +O(kα−1) if α > 3, (73)

and

∆k = cos(βπ/2)
Γ(1− β)

ζ(β)
kβ−1

+
ζ(β − 1)

ζ(β)
k +O(k3) if β < 2, (74)

∆k =
6(1− log(k))

π2
k +O(k3) if β = 2, (75)

∆k =
ζ(β − 1)

ζ(β)
k +O(kβ−1) if β > 2. (76)

Apart from their relevance to the present case, the ex-
pansions above display the typical example of anomalous
terms in the excitation spectrum generated by long-range
interactions. A close inspection of the expressions above
leads to the following result for the equilibrium dynami-
cal critical exponent:

z =

{
φ− 1 if φ < 2,

1 if φ > 2,
(77)
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where φ = min(α, β). According to the result in Eq. (77)
the relevant region for long-range couplings in the long-
range Kitaev chain radically differs from the case ofO(N )
rotors model described in Sec. IV.A. Indeed, long-range
interactions in the Kitaev chain remain irrelevant also in
the range 2 < α, β < 3, while long-range couplings in ro-
tor models would be relevant in the whole α < 3 region.
Yet, it is worth noting that even if long-range hopping
couplings with 2 < α < 3 do not alter the critical be-
haviour, they still introduce relevant momentum terms
in the hopping sector. Such discrepancy yields further
evidence that the approximation in Eq. (65) crucially al-
ters the universal behaviour at small α, β.

For the sake of the forthcoming discussion, it is cru-
cial to notice that long-range interactions with different
power-law exponents α 6= β modify the influence of the
hopping and pairing term on the critical scaling. Indeed,
while for short-range interactions the dynamical critical
scaling exponents are determined by the low-momentum
terms in the pairing coupling, for relevant long-range in-
teractions with α < β it is the scaling of the hopping
coupling which determines z. A similar scenario may
also occur for finite-range competing interactions and it
is known to cause peculiar dynamical features (Defenu
et al., 2019b; Deng et al., 2009; Divakaran et al., 2009),
which will be discussed in the following sections.

In summary, this section has delineated the equilibrium
critical properties of quadratic fermionic systems, with
a power-law decaying coupling of different decay rates.
Yet, the same characterization cannot be provided in the
case of fermionic systems with long-range non-quadratic
interactions, such as

H =
∑

〈ij〉,s

(
c†i,scj,s + h.c.

)
+
∑

i 6=j
Vijninj (78)

where the c†i,s operator and its conjugate create and an-
nihilate a fermion with spin s on the i − th site of the
lattice, while ni represents the total density operator
on the same site. The understanding of the influence
of long-range density-density interactions on the critical
behaviour of Fermi systems is still relatively incomplete.
One notable counterexample is the 1D case, where map-
ping of fermionic systems into bosonic or spin degrees of
freedom is possible.

In particular, the ground state of continuous 1D
fermions interacting via unscreened Coulomb repulsion
was characterized by bosonization techniques, finding
metallic features and a classical Wigner crystal phase
with slow-decaying charge correlations (Schulz, 1993;
Wang et al., 2001). Numerical confirmation of such a
theoretical picture has been provided by density matrix
renormalization group (DMRG) (Fano et al., 1999) and
variational MC methods (Astrakharchik and Girardeau,
2011; Casula et al., 2006; Lee and Drummond, 2011).
The corresponding lattice systems with commensurate

filling have been numerically shown to display an insu-
lating ground-state, still with Wigner crystal character,
in contradiction with the bosonization picture in the con-
tinuum (Capponi et al., 2000; Poilblanc et al., 1997).

C. XXZ models

The Hamiltonian of the long-range XXZ spin chain
reads

H =
∑

i>j

Jij
(
−σxi σxj − σyi σyj + σzi σ

z
j

)
, (79)

where Jij ≈ r−αij refers to the usual long-range couplings.
Notice that in Eq. (79) all the couplings x−x, y−y and z−
z are long-ranged. Putting the long-range couplings only
in the z−z directions corresponds actually to have hard-
core bosons with long-range density-density interactions,
see the next section for more details.

Conventionally, the solution in the α→∞ limit is ob-
tained through bosonization, showing that the universal
properties of the spin Hamiltonian in Eq. (79) are ex-
actly described by the effective action of the quantum
sine-Gordon model, which also describes the universality
of O(2) quantum rotors (Fradkin, 2013; Giamarchi, 2004;
Sachdev, 1999).

However, such mapping is not possible in presence of
long-range couplings. Nevertheless, one can split the
Hamiltonian into long-range and short-range contribu-
tions and consider the long-range couplings only as a
perturbation of the short-range action (Maghrebi et al.,
2017), see also (Bermudez et al., 2017). As a result one
can consider the low energy action

S[θ] =
K

2πu

∫
dτ dx

{
(∂τθ)

2 + u2(∂xθ)
2
}

− g
∫
dτ

∫
dx dy

cos(θ(τ, x)− θ(τ, y))

|x− y|α (80)

where K is the so-called Luttinger parameter, u is a ve-
locity scale, and g is proportional to the strength of long-
range interactions.

The final picture obtained for the critical behaviour of
the action in Eq. (80) is analogous to the one discussed for
the 2D XY classical case at finite temperature. In fact,
one can define the shifted decay exponent σ = α − d =
α− 1 and derive the flow equations

dyk
dt

= −(2− 4K)yk

dg̃k
dt

= −
(

2− σ − 1

2K

)
g̃k, (81)

where yk is the fugacity of topological excitations and
g̃k the dimensionless long-range coupling, see the discus-
sion in Sec. III.A.2. The phase diagram resulting from
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Eqs. (81) follows in close analogy the one obtained in the
classical case, see Sec. III.A.2.

As long as σ > 2 long-range interactions are irrelevant
and the system displays universal BKT scaling. Con-
versely, for σ < 2 a new phase emerges at large enoughK,
where the long-range RG coupling g̃ grows indefinitely.
As a consequence, a finite order parameter appears in
the x-y plane 〈σ+〉 6= 0 and the system undergoes spon-
taneous symmetry breaking. Evidences of this quasi- to
true- order transition have been found in a numerical
density matrix renormalization group (DMRG) calcula-
tion. Indeed, computing the effective central charge of
the model, Ref. (Maghrebi et al., 2017) was able to show
that this quantity changes from ceff = c = 1, typical of
the isotropic short-range sine-Gordon model (Mussardo,
2009), to ceff > 1 at σ < 2. Such change in the effective
central charge is compatible with the appearance of a
new phase with broken Lorentzian symmetry (Maghrebi
et al., 2017). Correspondingly, also the dynamical critical
exponents deviate from unity and acquire the expected
value for anisotropic long-range field theories z = σ/2.
Including the renormalization of the Luttinger parameter
does not alter the aforementioned picture. Interestingly,
the half-chain entanglement entropy scaling features an
anomalous ∝ log(L) contribution in the ordered phase
caused by the Goldstone mode (Frérot et al., 2017).

By a thoughtful characterization of the long-distance
correlation functions, Ref. (Maghrebi et al., 2017) showed
that the ordered phase displays a finite correlation length
ξ that diverges exponentially as the critical point with
the quasi-ordered phase is reached. Such exponential di-
vergence is reminiscent of the behavior of the correlation
length at the BKT transition (Fradkin, 2013).

D. Hardcore bosons in 1d

In the section on the Kitaev chain, we already dis-
cussed the possibility to recover the homogeneous critical
point of the Kitaev chain also for α, β < 1 by explicitly
introducing Kac rescaling, at variance with existing stud-
ies (Vodola et al., 2014). In the present section, we are
going to review results on this matter by explicitly show-
ing that implementing (or not implementing) the Kac
rescaling may significantly alter the equilibrium phase
diagram of a long-range interacting quantum model.

Restricting our analysis to the one-dimensional case,
we can relate the findings discussed in Sec. IV.C with
the study of hardcore bosons with arbitrary power-law
interactions. The Hamiltonian under consideration reads

H = −t
L∑

i=1

(
c†i ci+1 + h.c.

)
+
∑

i>j

V
(α)
ij ninj , (82)

with the power-law decaying potential

V
(α)
|i−j| =

1

Nα

V

dαi−j
V > 0. (83)

As in the Kitaev chain study presented in the above sec-
tion, due to the quantum nature of the system, one can
choose to implement or not Kac rescaling according to
the physical situation, see Eq. (46). DRMG simulations
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Figure 13 Comparison between Kac-on and Kac-off
finite-size scalings for hard-core bosons. The scaling
of the bosons single-particle energy, as defined in Eq. (84),
as a function of the system size. The results have been ob-
tained via a DRMG computation at half-filling 〈ni〉 = 0.5,
for α = 1 and different interaction strengths V (in units of
the hopping energy t). The difference between the Kac scaled
or unscaled scenario is rather evident, as in the first case the
single-particle energy always vanishes in the thermodynamic
limit, while in the second case the system remains gapped up
to the thermodynamic limit.

have been performed on the Hamiltonian in Eq. (82) to
characterize the phase of the system. In particular, from
the energy of the N particles ground state E0(n) one can
define the single particle gap

∆(n) = E0(n+ 1) + E0(n− 1)− 2E0(n) (84)

which displays radically different behaviours, depending
on the implementation (or non-implementation) of the
Kac rescaling, as it appears from the numerical results
reported in Fig. 13.

In particular, the numerical simulations in absence of
Kac rescaling predict a finite single-particle gap in the
thermodynamic limit, which is consistent with an insu-
lating phase for all values of the interaction coupling V
of the potential in Eq. (83). This scenario has been first
evidenced in Ref. (Capponi et al., 2000) for α = 1 and
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then confirmed, in the general α case, by the simulations
discussed in Ref. (Botzung et al., 2021). Conversely, the
implementation of Kac rescaling induces metallic behav-
ior in the entire range 0 ≤ α ≤ 1 independently on the
interaction coupling V > 0. This proves that the restora-
tion of extensive interaction energy significantly alters
the phase diagram of Hamiltonian (82).

Theoretical understanding of the discrepancy between
the scaled and unscaled theory can be obtained via the
Luttinger liquid theory (Giamarchi, 2004), which reduces
the universal behavior of the Hamiltonian in Eq. (82) to
the one of the continuous action

HLL =
u

2π

∫
dx

{
K(πΠ)2 +

(∂xϕ)2

K
− g

π
cos(4ϕ)

}
,

(85)

where the parameters u and K depend on the Fermi ve-
locity vF and wave-vector kF according to the relations

uK = vF, (86)

u

K
= vF +

1

π

L∑

r=1

V (α)
r (1− cos(kFr)). (87)

It is straightforward to show that the universal physics
of the Luttinger Liquid Hamiltonian in Eq. (85) is the
same as in the sine-Gordon model (Malard, 2013) fea-
turing an infinite-order transition between a line of free
fixed points with power-law bosonic correlations 〈a†iaj〉 =
|i−j|−1/2K and a massive phase with exponential correla-
tions. Therefore, the free field theory phase corresponds
with the metallic phase of the Hamiltonian in Eq. (82).
One can show that g is given by

g =

L∑

r=1

V (α)
r cos(2kFr) (88)

and that the metallic phase breaks down beyond the
critical coupling strength Kc, which at half-filling corre-
sponds to Kc = 1/2, neglecting multiple um-klapp pro-
cesses. In the nearest-neighbour limit α → ∞ this sce-
nario describes the metal-insulator transition appearing
at Vc = 2t. Such transition lies in the BKT universal-
ity and, indeed, the breakdown of the metallic phase is
akin to vortex proliferation in the physics of the 2D XY
model.

For α > 1 the introduction of Kac rescaling does not
influence the physics and the picture does not change,
apart from obvious changes in the value of the critical
interaction strength. On the other hand, the aforemen-
tioned universal picture is broken as soon as α = 1, since,
in absence of Kac rescaling, the first term in the sum-
mation of Eq. (87) diverges in the thermodynamic limit,∑
r V

1
r ∼ log(L), leading to a vanishing K coupling. At

the same time, the interaction coupling remains finite
due to the alternating sign in Eq. (88) and, therefore,

the system lingers in the insulating phase, as verified by
numerical computations (Botzung et al., 2021; Capponi
et al., 2000).

The situation is reversed by the introduction of Kac
rescaling, which imposes convergence on the first sum-
mation of Eq. (87) irrespectively from the α value, while
it makes the interaction coupling vanish identically. It,
then, does not come as a surprise that the Kac scaled
systems always lie in the metallic phase. While the
Luttinger-Liquid theory can reproduce the metallic (insu-
lator) character in the presence (absence) of Kac’s rescal-
ing, the actual features of the phase in both cases are not
completely consistent with the continuous theory pre-
diction. Indeed, the comparison between the numeri-
cal values for the K coupling obtained by the single-
particle correlation functions (K1p), the structure fac-
tor (K2p) and the finite-size scaling of the gap (K∆ =
∂∆/∂L−1) (Kohn, 1964) do not match each other and es-
pecially do not match the prediction of Luttinger Liquid
theory in the Kac rescaled case, see Fig. 14. Therefore,
both the metallic and insulating phases at α < 1 do not
obey Luttinger liquid theory (Botzung et al., 2021). It
is worth noting that this picture does not apply to the
flat interactions case α = 0, which is analytically solvable
and may be treated separately (Botzung et al., 2021).
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Figure 14 Luttinger parameter. Thermodynamic limit ex-
trapolation of the Luttinger parameter K as a function of the
long-range interaction strength V at half-filling, in the case
α = 0.5 (the same scenario has been obtained for several α
values in the range 0 < α < 1). The three different defini-
tions for the Luttinger parameter have been compared both in
Kac unscaled, panel (a), and scaled, panel (b), cases (Botzung
et al., 2021). As a function of α, given a fixed value of the
interaction (V = 1.5 in the inset of panel (b)), there is no dis-
crepancy between the Luttinger parameter obtained by corre-
lation function K1p = K2p, confirming the metallic character
of the system. Still the conventional Luttinger Liquid theory
is not obeyed since the Luttinger parameter does not fit the
gap scaling K∆. As it is seen from the inset of panel (b), the
traditional Luttinger Liquid picture is recovered for α > 1.
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E. Soft-core interactions

In this section, we are going to discuss the case of non-
local interactions, addressing also cases of competing in-
teractions relevant for some of the physical systems intro-
duced in the previous sections. Given the rich variety of
physical behaviors in these systems, we will not attempt
to cover all the phenomena. Rather, after a brief intro-
duction, we focus on two main classes of applications: the
clustering phenomena induced by typical non-local inter-
actions, and the structural phase transitions occurring in
mesoscopic long-range interactions.

The phase structure of ensembles of particles inter-
acting via non-local potentials diverging at the origin
has been extensively studied in the last few decades
both in the classical and more recently in the quan-
tum regime (Likos, 2001). A major problem concerns the
study of freezing transitions and the respective crystal
structure, which depends on the steepness of the poten-
tial, the dimensionality, and the details of the external
trapping. At the classical level, power-law diverging po-
tentials of the form V (r) = ε(σ/r)α, where ε > 0 is an
arbitrary energy scale, σ has the dimension of a length,
and r is the interparticle distance, result into the for-
mation of a crystalline state at arbitrarily high temper-
atures. Moreover, one can show that to ensure the sta-
bility against explosion (infinite thermodynamic observ-
ables, such as the energy per particle or pressure) one has
to impose α > d (Weeks, 1981), with d the system dimen-
sionality, i.e. to be in the weak long-range or short-range
regimes. If this condition is violated, i.e. α ≤ d a neu-
tralizing background could be introduced to stabilize one-
component systems, as e.g. the one-component plasma
(Baus and Hansen, 1980). Notice that both Kac rescal-
ing and the introduction of neutralizing background can
be used to perform calculations and regularize physical
quantities, but the reader should be alerted that while
Kac rescaling preserves the functional power-law form of
the interactions, a neutralizing background may intro-
duce screening effects for charged systems. The study of
quantum systems with density-density power-law interac-
tions without any intrinsic length scale provides a quan-
tum counterpart of these results holding for classical sys-
tems and it has been subsequently investigated (Büchler
et al., 2007; Dalmonte et al., 2010; Pupillo et al., 2010).

Another interesting class of interactions is the one in
which does not diverge at the origin, i.e., it bounded. In
soft-matter physics, such soft-core potentials arise as ef-
fective interactions between the centers of mass of soft,
flexible macromolecules such as polymer chains, den-
drimers, polyelectrolytes, etc. Indeed, the centers of mass
of two macromolecules can coincide without violation of
the excluded volume conditions, hence bringing about a
bounded interaction (Likos et al., 2007). A relevant con-
sequence of the removal of the on-site divergence is the
possibility of overlapping particles, which under certain

conditions can lead to clustering. A rigorous criterion
holding for a fluid at sufficiently high densities states that
a non-attractive and bounded pair potential should sat-
isfy the following requirements: i) it is bounded, ii) it
is positive definite, iii) it decays fast enough to zero at
large separations, so that it is integrable and its Fourier
transform exists, and iv) it is free of attractive parts, i.e.
it does not display clustering. Otherwise, if the Fourier
transform of the pair potential has a negative value for
a finite momentum km, then the system can freeze into
clustered crystals with multiple occupied sites with an
intercluster distance ∝ 1/km (Likos et al., 2001). An
intuitive way to understand such a criterion is via the
high-density limit of the structure factor S(k) of a fluid,
which is a measure of the susceptibility of the system to
a spontaneous spatial modulation having wavenumber k.
Within the framework of the fluctuation-dissipation the-
orem, S(k) appears as a proportionality factor between
a weak external potential of wavenumber k and the asso-
ciated linear density response. Employing the Ornstein-
Zernike relation (McDonald, 2013; P. M. Chaikin, 1995)
one finds that in the high-density limit, the structure fac-
tor can be well approximated by

S(k) =
1

1 + ρ β V (k)
, (89)

where V (k) is the Fourier transform of the potential and
ρ the system density. Hence, a structure factor with a
high peak at some wavenumber km is a signal of an incip-
ient transition of the fluid to a spatially modulated sys-
tem, i.e., a crystal. Recently, Ref. (Mendoza-Coto et al.,
2021a) presented a sufficient criterion for the emergence
of cluster phases with low filling (up to two particles per
cluster) in an ensemble of interacting classical particles
with generic (also diverging at the origin) repulsive two-
body interactions in the classical zero-temperature limit
valid at intermediate densities. The basis of the crite-
rion is a zero-temperature comparison of the energy im-
balance between the single-particle lattice and the first
cluster-crystal configuration at small density obtained by
the use of the Fourier transform of a regularized version
of the potential. It determines the relevant characteris-
tics of the interaction potential that make the energy of
a two-particle cluster-crystal becomes smaller than that
of a simple triangular lattice in two dimensions. See also
(Díaz-Méndez et al., 2017) for an application to the for-
mation of a vortex glass in clean systems of thin films of
"type-1.5" superconductors.

In the quantum regime, it is possible to provide a con-
nection between the emergence of a structural transition
to the structure factor S(k) via the analysis of the spec-
trum of elementary excitation through the Feynman-Bijl
relation (Feynman, 1954): S(k) = ~2k2/2mε(k), where
ε(k) is the energy of excitations at momentum k. A peak
at finite momentum k of S(k) is associated to the pres-
ence of a roton minimum in the spectrum ε(k). Even-
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tually, upon softening of the roton minimum the system
enters the roton instability. This connection has recently
been realized in experiments, see e.g. (Chomaz et al.,
2018; Hertkorn et al., 2021; Mottl et al., 2012; O’Dell
et al., 2000, 2003; Santos et al., 2003).

Dilute quantum gases can feature long-range interac-
tions if the constituent particles have (i) a strong mag-
netic dipole moment, or (ii) a strong permanent electric
dipole moment as in polar molecules, or (iii) an induced
electric dipole moment as in Rydberg atoms or in cavity-
mediated systems. Specifically, quantum gases of atoms
with strong magnetic dipole moments have been exten-
sively employed as an experimental platform to detect the
relation between the microscopic long-range interactions
and the low-energy excitation spectra (Bismut et al.,
2012) and to study crystallization in a quantum many-
body setting (Baranov et al., 2012; Böttcher et al., 2020;
Lahaye et al., 2009; Trefzger et al., 2011). The interplay
between the collisional contact interactions, the magnetic
dipolar interaction, and repulsive quantum fluctuations
(Lima and Pelster, 2011) can give rise to the stabilization
of droplets (Chomaz et al., 2016) or to the formation of
a supersolid phase if the droplets share phase coherence
in the ground state (Böttcher et al., 2021; Norcia et al.,
2021; Sohmen et al., 2021; Tanzi et al., 2019a, 2021),
or to a rich set of patterns out of equilibrium (Parker
et al., 2009). An interesting case is provided by dou-
bly dipolar systems, magnetic and electric, which may
display dimensional crossover in the droplet phase, in
the absence of an external confinement potential (Mishra
et al., 2020). For sufficiently strong interactions dipo-
lar systems display a roton instability which triggers the
phase transition to a dipolar supersolid and arrays of iso-
lated quantum droplets (Baillie and Blakie, 2018; Bail-
lie et al., 2016), or filaments in three dimensions (Cinti
et al., 2017). A similar phenomenology of self-organized
ground-state density modulations was predicted for a
BEC illuminated by a single, circularly polarized laser
beam in the weak saturation limit in (Giovanazzi et al.,
2002). The appearance of a structural transition via the
softening of roton minimum has been extensively studied
also in the context of Rydberg-dressed systems where an
intrinsic soft-core potential can be engineered via laser
coupling to highly excited electronic states. In the fol-
lowing we focus on results both in the continuum and on
a lattice, leading to pattern formation in the presence of
soft-core pairwise interactions.

1. Quantum phases

We start by considering a system of N bosons inter-
acting via two-body soft-core potentials of the type

V (r) =
V0

rα +Rαc
, (90)

where Rc is a characteristic length of the pair poten-
tial. While the considered interactions do not straight-
forwardly occur in natural crystals, they can be de-
signed in ultracold atom experiments. As we commented
in Sec.II.C soft-core interactions of the type described
by eq.(90) can be realized with Rydberg-dressed atoms
where α = 6, for which the Hamiltonian provides a pro-
totype system for addressing the general physical pic-
ture. In general, this interaction approaches a constant
value V0/R

α as the inter-particle distance, r, decreases
below the soft-core distance Rc, and drops to zero for
r � Rc. The limiting case α → ∞ yields the soft-disc
model (Pomeau and Rica, 1994), while α = 3 and α = 6
correspond to soft-core dipole-dipole (Cinti et al., 2010)
and van der Waals (Henkel et al., 2012, 2010) interactions
that can be realized with ultracold atoms (Maucher et al.,
2011) or polar molecules (Büchler et al., 2007; Micheli
et al., 2007).

The mean-field analysis of the structure factor S(k)
suggests the occurrence of spontaneous symmetry break-
ing at zero temperature, in the form of a cluster crystal
phase which occurs at sufficiently high densities. Accord-
ing to dimensional analysis, this phase should remain sta-
ble in dimensions d > 1. Moreover, due to the bosonic
symmetry of this single-component system, in a certain
parameter interval of the phase diagram, one might ex-
pect the system to display both crystalline and superfluid
properties, i.e. the simultaneous breaking of continuous
translational and global gauge symmetry, a supersolid
state. The first mentioning of such a state goes back to
Gross, who presented a theory for a density-modulated
superfluid emerging from a mean-field model for solid
Helium (Gross, 1957). A microscopic picture of super-
solidity was proposed by Andreev, Lifshitz, and Chester
(ALC) (Andreev and Lifshitz, 1969) and is based on two
key assumptions that: (i) the ground state of a bosonic
crystal contains defects such as vacancies and intersti-
tials; and (ii) these defects can delocalize, thereby giving
rise to superfluidity. For a review on the subject and the
debate on the observation of such phase in solid Helium
see (Boninsegni and Prokof’ev, 2012). For a more re-
cent discussion of the observation of supersolid phases in
dipolar systems both in quasi one- and two-dimensional
setups see the review (Böttcher et al., 2021).

Soft-core potentials for hard-core bosons or spinless
fermions on 1D lattice systems described by the Hamil-
tonian

H = −t
∑

〈i,j〉
b†i bj + V

∑

i<j;rij<rc

ninj , (91)

where bi, (b†i ) are hard-core bosonic annihilation (cre-
ation) operators localized on site i, and ni = b†i bi is the
density in i, lead to correlated quantum liquid phases
that do not fall into the conventional Luttinger Liquid
paradigm. Characteristic features of these anomalous
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Figure 15 Zero-temperature phase diagram of one-
dimensional soft-core bosons in the continuum and
their excitation spectrum. (a) Phase diagram of one-
dimensional soft-core bosons (log-log scale). A star marks the
critical point between the Luttinger Liquid and CLL phases
for densities commensurate to 2-particle clusters. The long-
dashed line corresponds to the softening of the Bogoliubov
roton. (b) Spectra at ρ = 1.37 with decreasing U , compared
to Feynman εFA (thin solid) and Bogoliubov εB (dotted) ap-
proximations, and the harmonic chain acoustic mode ωacou
(dashed). At q ≈ qc, the secondary mode is fitted by the
transverse Ising spectrum εTI (thick solid). Figures (a) and
(b) are adapted from Ref. (Rossotti et al., 2017).

cluster Luttinger Liquids (CLL) include a deformation
of the critical surface in momentum space and are evi-
dent in correlation functions such as momentum distribu-
tions and structure factors (Dalmonte et al., 2015; Mat-
tioli et al., 2013) using DMRG and bosonization tech-
niques. Recently, the spinful Fermi-Hubbard model with
both on-site interactions and soft-core (density-density)
interactions has been investigated (Botzung et al., 2019),
generalazing the extended Fermi-Hubbard model with
a soft-core radius equal to one lattice site studied in
Ref. (Nakamura, 2000). It displays different types of
CLL and a nontrivial supersymmetric critical line. The
continuum version of this model has been studied in
Ref. (Rossotti et al., 2017), which showed evidence of the
CLL via exact quantum Monte Carlo simulations. The
phase diagram of the system is shown in Fig. 15(a), to-
gether with the excitation spectrum in Fig.15(b). The
acoustic mode of the CLL phase (panels a-b) is gapless
at q = qc, corresponding to kF , at this density. Above
the transition line, located at U = Uc = 18 (panel c), this
lowest excitation turns into the rotonic mode (panels d-
e). A weaker secondary mode appears also in the strongly
correlated liquid phase, in the form of a secondary roton.
This secondary excitation in the Luttinger Liquid phase
can be linked to incipient cluster formation, due to par-

ticles being preferentially localized close to either the left
or the right neighbor. The gap of both such Luttinger
Liquid excitations, and the anharmonic optical modes of
the CLL phase vanishes at the transition.

In the higher dimensional case in the continuum a good
description is provided by a mean-field treatment (Henkel
et al., 2010; Macrì et al., 2013; Pomeau and Rica, 1994),
justified by the application of the first Born approxima-
tion to the two-body scattering problem, and the phases
emerging from Eq.(90) at zero temperature (Cinti et al.,
2014). In mean-field theory the system dynamics is de-
scribed by a non-local Gross-Pitaevskii equation (GPE),
which reads

i∂tψ(r, t) =

(
−∇

2

2
+ γ

∫
dr′U(r− r′)|ψ(r′, t)|2

)
ψ(r, t) ,

(92)
where r → r/Rc, U(r) = U0

1+r6 , and γ = mnU0/
(
~2R2

c

)

is a dimensionless interaction strength that determines
the ground state properties and the excitation dynam-
ics. Eq. (92) has been reported in reduced density units,
which will be employed from now on. The energy can be
derived from the GPE energy functional:

H =

∫
dr

1

2
|∇ψ0|2+

γ

2

∫
dr dr′ |ψ0(r)|2U(r−r′)|ψ0(r′)|2.

(93)
In order to numerically determine the location of the
transition from a uniform to a modulated ground state,
once can first expand the wavefunction ψ0(r) in Fourier
series:

ψ0(r) =
∑

Q

CQ eiQ·r, (94)

where Q = nb1 + mb2 with n,m integers and b1 =
2π
a

(
1,− 1√

3

)
, b2 = 2π

a

(
0, 2√

3

)
are the reciprocal lattice

basis vectors of a triangular lattice in two dimensions.
One can then substitute Eq. (94) into Eq.(92) and itera-
tively solve the non-linear equations for CQ until conver-
gence is reached (Kunimi and Kato, 2012). This proce-
dure allows determining the optimal lattice spacing, the
chemical potential, and the coefficients CQ. One finds
that for low interaction strengths (γ < 28) the ground
state of the system is in a uniform superfluid phase.
Upon increasing the interaction at γ ≈ 28 one crosses a
first-order phase transition to a cluster supersolid phase
characterized by a finite superfluid fraction and broken
translational invariance where particles arrange in clus-
ters (each cluster contains an average number of particles
according to the density) in a triangular geometry. For
even larger interactions γ > 38 the ground state preserves
triangular symmetry but superfluidity vanishes resulting
into an uncorrelated cluster crystal.

The validity of the above mean-field theory is limited
to the regime of high densities, where the depletion of
the condensate remains small in a wide range of interac-
tion strengths. At lower densities, one has to resort to ab
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Figure 16 Two-dimensional soft-core bosons in the continuum and their excitation spectrum. (a) The phase
diagram displays the emergence of superfluid (SF) and different solid (NS) and supersolid (SS) phases for varying interaction
strength U and density ρ. The density on the left y-axis has been scaled by the soft-core radius Rc. The right axis gives the
density in units of the inverse area, A =

√
3(1.6Rc)2/2, of the unit cell of the high-density solid phase, corresponding to the

lattice site occupation N/Ns for a given number of particles and lattice sites, N and Ns, respectively. For Aρ >∼ 1.5, the grey
region labeled as NS corresponds to a cluster crystal with N/Ns > 1, as indicated by the greyscale. Horizontal dashed lines
refer to integer filling. Supersolid phases with different occupation numbers are found between two hyperbolas, defined by
R2
c ρU = const. (dotted lines). At high densities (Aρ >∼ 3.5) they can be understood in terms of density modulated superfluids.

In contrast, superfluidity within the low-density supersolid lobes emerges from delocalized zero-point defects according to the
ALC scenario. Adapted from Ref. (Cinti et al., 2014). (b) (left) PIMC snapshot illustrating the particle density profile in the
SF phase. (right) Excitation spectrum in the superfluid phase at γ = 11.86 compared to the PIMC data (circles) of (Saccani
et al., 2012). (c) (left) PIMC snapshot illustrating the particle density profile in the SS and NS phases. (right) Mean-field
spectra (solid, dashed, and dashed-dotted lines) at γ = 16.93 (top) and γ = 30.62 (bottom) numerically computed along the
three symmetry directions of the Brillouin zone [see inset of bottom panel]. The symbols represent the PIMC data of (Saccani
et al., 2012) for longitudinal excitations computed along the direction Γ −M − Γ in the first two Brillouin zones. Panels (b)
and (c) adapted from Ref. (Macrì et al., 2013).

initio methods to deal with the development of nontriv-
ial correlations. Numerical results were obtained from
Path-Integral Monte Carlo (PIMC) simulations (Ceper-
ley, 1995) based on the continuous-space worm algorithm
(Boninsegni et al., 2006) to determine the equilibrium
properties of the system in the canonical ensemble, that
is, at a fixed temperature T and a fixed particle num-
ber (of the order of a few hundred). The properties of
the system ground state are obtained by extrapolating
observables, such as the total energy, superfluid fraction
and pair-correlations to the zero temperature limit.

In Fig. 16(a) the zero-temperature phase diagram of
one- and two-dimensional soft-core bosons in continuum
space is presented. At small densities R2

cρ ≤ 0.5 one
finds two phases: a superfluid and an insulating trian-
gular crystal composed of singly occupied sites, that is,
where the number of lattice sites, Ns, equals the particle
number N . A distinctive consequence of the soft-core in-
teraction is that the energy cost for forming close particle
pairs is bound by V0. This fact potentially enables the
formation of crystalline phases with N > Ns above a crit-
ical density where doubly occupied lattice sites become
energetically favorable on increasing the lattice constant.

The most interesting behavior takes place around the

superfluid-solid quantum phase transition at N/Ns = 2.
Starting from the insulating solid with doubly occupied
lattice sites, removing a small number of particles does
not cause structural changes of the ground state, but
rather creates a small fraction fdef = (2Ns −N)/Ns > 0
of zero-point crystal defects in the form of singly occu-
pied sites. Such defects delocalize and give rise to a fi-
nite superfluid fraction, in agreement with the ALC sce-
nario. It is worth noting that the coexistence of a cluster
crystalline structure, breaking translational symmetry in
equilibrium, and of particle diffusion is explained here by
a thermally activated hopping mechanism, where par-
ticles delocalize without altering the underlying cluster
crystalline matrix (Díaz-Méndez et al., 2015).

The extension of this picture to the lattice case is read-
ily obtained considering the 2D extended Bose-Hubbard
model in presence of both finite-range soft-core inter-
actions and an hard-core constraint. Already on the
square lattice, this model displays an intriguing behav-
ior (Masella et al., 2019; Pupillo et al., 2008) For inter-
mediate interaction strengths 4 ≤ V/t ≤ 4.45 the stripes
can turn superfluid, thus leading to a self-assembled ar-
ray of quasi-one-dimensional superfluids. These bosonic
superstripes turn into an isotropic supersolid with de-
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creasing interaction strength. It is relevant to notice that
the mechanism for stripe formation is based on cluster
self-assembling different from recently proposed mecha-
nisms for dipolar magnetic atoms (Böttcher et al., 2021),
spin-orbit coupled BECs (Li et al., 2017), or BECs with
cavity-mediated interactions (Léonard et al., 2017b). A
two-component version of this model in the square lat-
tice has also been recently proposed in (Li et al., 2018),
where, among the several phases of the model, one can
observe that the components that interact via a soft-
core potential can induce a supersolid phase in the other
component. The out-of-equilibrium dynamics following
a temperature quench to values well below the hopping
amplitude T/t � 1 shows that together with classical
solid phases and supersolids (for 3.8 ≤ V/t ≤ 4.2) also
a normal glass is observed (for V/t > 5.5) without any
remnant superfluidity (Angelone et al., 2020). It is in-
teresting to observe that in a triangular lattice, the same
system after a temperature quench displays a superglass
and a normal glass phase (Angelone et al., 2016). For
high enough temperature, the glass and superglass turn
into a floating stripe solid and a supersolid, respectively.
Similar models of systems with nonlocal interactions di-
verging at the origin leading to glassy phases have been
also recently investigated in the context of type-1.5 su-
perconductors (Wang et al., 2020) where the particles are
point-like vortices in the presence of external disorder.

The three-dimensional soft-core model was investi-
gated originally by (Ancilotto et al., 2013; Henkel et al.,
2010) for the repulsive case and by (Maucher et al., 2011)
for the attractive one within a mean-field approach based
on the solution of the 3D GPE of Eq. (92). In the re-
pulsive isotropic case, the ground-state phase diagram
displays a transition from a superfluid phase at low den-
sity and interactions to an fcc supersolid at intermediate
densities, induced by a roton instability similar to the 2D
case. For attractive interactions, one can prove the ex-
istence of (bright soliton) self-bound macroscopic states,
stabilized purely by the competition of kinetic and neg-
ative mean-field energies.

2. Elementary excitations

The elementary excitations in the mean-field approx-
imation are found by expanding the GPE energy func-
tional around the solution ψ0(r), obtaining the so called
Bogoliubov-de Gennes equations (Macrì et al., 2013;
Macrì et al., 2014). Denoting the change in ψ(r, t) by
δψ(r, t) = e−iµt

[
u(r)e−iωt − v∗(r)eiωt

]
and substituting

this expression into the GPE Eq. (92) one finds a set
of two coupled linear differential equations: for the Bo-
goliubov amplitudes u(r) and v(r). The solution of the
Bogoliubov-de Gennes equations in the uniform super-

fluid phase is analytical

εq =

√
q2

2

(
q2

2
+ 2γ Uq

)
, (95)

and depends only on the modulus of the excitation vec-
tor q. Here Uq is the Fourier transform of the potential.
Eq.(95) can be extended to the case of multibody inter-
actions (Laghi et al., 2017). The spectrum is linear for
small momenta and the slope defines the sound velocity
of the system; for sufficiently large γ (the specific value
depends on the shape of the interaction) one recovers the
usual roton-maxon spectrum that is common to other
physical systems with non-local interactions as ultracold
dipolar systems or superfluid 4He. In nonuniform phases,
one has to rely on a numerical solution of the Bogoliubov
equations. One can use a Fourier expansion of the Bogoli-
ubov amplitudes followed by diagonalization of the corre-
sponding equations. The results presented in Fig.16(b,c)
are obtained using a grid-based solution in real space for
the lowest excitation bands and for q vectors lying in the
first Brillouin zone (FBZ) (Macrì et al., 2013) for a soft-
shoulder potential. The figure shows the excitation ener-
gies along the three symmetry axes of the Brillouin zone
corresponding to the underlying triangular lattice. We
find three gapless bands, i.e. three Goldstone modes re-
flecting the symmetries that are broken in the supersolid
phase (Watanabe and Murayama, 2012, 2013). In addi-
tion to the superfluid band due to the breaking of global
gauge symmetry, two bands correspond to longitudinal
and transverse phonon excitations of the two-dimensional
lattice. Even in the insulating phase, Bogoliubov-de
Gennes equations yield excellent agreement for the lon-
gitudinal phonon mode with quantum Monte Carlo cal-
culations based on the method of Genetic Inversion via
falsification of the theories, which allows the calculation
of the Laplace transform F (k, τ) =

∫
dωe−τωS(k, ω) of

the dynamic structure factor (Saccani et al., 2012). How-
ever, this technique is unable to describe the breakdown
of global superfluidity. This indicates that each droplet
maintains a high condensate fraction despite the appar-
ent lack of global phase coherence between the crystalline
ordered droplets. Proper identification of each band can
be done by computing local fluctuations on top of the
mean-field solution ψ0(r). One clearly distinguishes the
transverse band from the direction of the fluctuations,
orthogonal to the perturbing vector k. The contribution
of this band to phase fluctuations is strongly suppressed.
The first and third bands both contribute to density and
phase fluctuations with different weights. The first band
is mostly responsible for phase whereas the third for den-
sity fluctuations. Therefore the lower band can be associ-
ated with the superfluid response of the system, whereas
the other two to the classical collective excitations of the
crystal. The results for a Rydberg-dressed potential of
Eq. (90)) are reported in (Macrì et al., 2014). There
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the modes obtained by the solution of the Bogoliubov-
de Gennes equations have been compared to quantum
Monte Carlo calculations with the inclusion of the trans-
verse excitation band. A good agreement between the
two techniques has been obtained for all three excitation
bands. We briefly comment that the calculation and the
measurement of the excitation spectra received much at-
tention also in the context of dipolar systems, both in
trapped superfluid or droplet phases (Baillie et al., 2017;
Petter et al., 2019), in supersolids (Petter et al., 2020;
Tanzi et al., 2019b) both in the ground states and in
excited states, e.g. in vortices (Cidrim et al., 2018; Lee
et al., 2018; Roccuzzo et al., 2020).

F. Structural transitions in mesoscopic long-range systems

The physics of structural transitions in power-law po-
tentials has been deeply studied in prototypical meso-
scopic systems of ions and dipolar systems thanks to the
close connection to experimental realizations. The sim-
plest one-dimensional case of a chain of singly-charged
particles, confined by a harmonic potential, exhibits a
sudden transition to a zigzag configuration when the ra-
dial potential reaches a critical value, depending on the
particle number (Birkl et al., 1992; Bluemel et al., 1988).
For charged particle interacting via the Coulomb poten-
tial (α = 1) this structural change is a phase transition
of second-order, whose order parameter is the crystal
displacement from the chain axis (Fishman et al., 2008;
Morigi and Fishman, 2004; Piacente et al., 2004; Schif-
fer, 1993) as was also experimentally observed (Enzer
et al., 2000; Kaufmann et al., 2012). In the quantum
limit the universality of the transition lies in the same
class as the ferromagnetic Ising chain in a transverse
field (Friedenauer et al., 2008; Porras and Cirac, 2004;
Shimshoni et al., 2011). The zig-zag transition also ap-
pears in strongly interacting one-dimensional electrons
systems, i.e. quantum wires, whose Wigner-crystal phase
corresponds to a splitting of the Fermi gas into two
chains (Meyer et al., 2007). Interestingly, the zig-zag
transition has been also related to the Peierls instability
which occurs in antiferromagnetic spin chains coupled to
phonon modes (Bermudez and Plenio, 2012).

As the range of the interactions decreases to α > 2
the nature of the transition is radically modified due
to the coupling between transverse and axial vibra-
tions (Cartarius et al., 2014), which leads to a weakly
first-order transition in analogy with the case of fer-
romagnetic transitions in presence of phonon excita-
tions (Imry, 1974; Larkin and Pikin, 1969). This is par-
ticularly relevant to the study of self-organized phases in
polar systems (Astrakharchik et al., 2007; Büchler et al.,
2007; Góral et al., 2002). For the case of purely dipolar
interactions, detailed QMC calculations at zero temper-
ature investigated the fluid-solid transition (Moroni and

Boninsegni, 2014), ruling out the microemulsion scenario
for any physical realization of this system, given the ex-
ceedingly large predicted size of the bubbles. In higher di-
mensions crystals of repulsively interacting ions in planar
traps form hexagonal lattices and undergo an instabil-
ity towards a multilayer structure as the transverse trap
frequency is reduced. The new structure is composed
of three planes, with separation increasing continuously
from zero. Mapping to the six-state clock model can be
performed, implying that fluctuations split the buckling
instability into two thermal transitions, accompanied by
the appearance of an intermediate critical phase. A BKT
phase is predicted interfacing the disordered and the or-
dered phase (Podolsky, 2016).

Another important case is the generalization to the
case of multi-scale potentials which has been recently
studied in the quantum regimes in Refs. (Abreu et al.,
2020; Cinti and Macrì, 2019; Pupillo et al., 2020) which,
for specific configurations of the pairwise potential, can
support quasicrystalline phases or stripe phases. The
corresponding criteria to realize structural phases in
these more complex potentials have been investigated
(Mendoza-Coto et al., 2017, 2019; Mendoza-Coto and
Stariolo, 2012; Mendoza-Coto et al., 2015a,b, 2021b).

Finally, we comment on the presence of smectic, ne-
matic, and hexatic phases in quantum systems with
competing non-local interactions, which presents sev-
eral analogies to the case of classical liquid-crystal sys-
tems(Abanov et al., 1995). This parallel, which de-
rives from the similarity between the anisotropic nature
of the stripe order and the elongated shape of liquid-
crystal molecules, allows the application of traditional re-
sults from liquid-crystal systems (P. G. de Gennes, 1993;
P. M. Chaikin, 1995) to predict the qualitative, and to
some extent also quantitative phase behavior of many
systems with modulated order parameters.

In the context of dipolar Fermi gases theory has been,
until now, ahead of experiments, with several prelim-
inary theoretical calculations predicting exotic scenar-
ios, such as p-wave superfluid (Bruun and Taylor, 2008),
supersolid (Lu et al., 2015), hexatic (Bruun and Nel-
son, 2014; Lechner et al., 2014), and Wigner crystal
phases (Matveeva and Giorgini, 2014). In these systems
stripe formation (in the form of charge density waves)
and nematic phases should also occur with features anal-
ogous to the ones present in low temperature long-range
solid-state systems.

G. Flat interactions

Systems with flat interactions (α = 0) constitute a
unique setup in the realm of long-range interactions,
since they often allow exact analytical solutions of their
thermodynamic and critical properties, at least at large
scales. Yet, several of their qualitative features exactly
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reproduce the more complex physics of general strong
long-range systems with 0 < α < d. This special role
makes such systems worthy of a special focus and in this
section, we are going to consider examples of fully con-
nected quantum systems.

1. The Lipkin-Meshkov-Glick model

The LMG, one the most famous example of strong
long-range interacting model in the quantum realm, has
been first introduced as a simple test for the validity
of perturbative techniques in many-body theories (Glick
et al., 1965; Lipkin et al., 1965; Meshkov et al., 1965).
Subsequently, the model has been applied to investigate
many-body systems that allowed for a sensible descrip-
tions in terms of mean-field interactions, such as cou-
pled BECs (Cirac et al., 1998) or BCS systems (Dusuel
and Vidal, 2005b). The LMG Hamiltonian describes N
1/2-spins coupled by flat ferromagnetic interactions of
strength J/N

HLMG = − J
N

∑

i<j

(σxi σ
x
j + γσyi σ

y
j )− h

N∑

j=1

σzj . (96)

where γ is the anisotropy parameter. At γ = 0, the
former Hamiltonian corresponds to the fully connected
quantum Ising model in a transverse field.

The key property of any flat interaction problem is the
possibility to rephrase it in terms of the collective vari-
able, which is the linear combination of all the micro-
scopic variables. Indeed, in our case one can introduce
the collective spin Sµ =

∑N
i=1 σ

µ
i /2, where µ ∈ {x, y, z}.

In terms of the new variables Eq. (96) reads

HLMG = −2J

N
(S2
x + γS2

y)− 2hSz +
J

2
(1 + γ). (97)

which describes a single self-coupled N -component spin
immersed into a magnetic field. The Hamiltonian HLMG

preserves both the total spin and the total magnetization
values

[HLMG,S
2] = 0 [HLMG, Sz] = 0, (98)

where S2 = S2
x+S2

y+S2
z . The highly symmetric nature of

this model makes it particularly amenable also to numer-
ical techniques, making it a prominent test-bed for novel
algorithms (Albash and Lidar, 2018; Bapst and Semer-
jian, 2012). Moreover, it has been used to demonstrate
several generic properties of quantum critical points, such
as finite size (Botet et al., 1982) and entanglement scal-
ing (Amico et al., 2008; Wichterich et al., 2010).

Nowadays, the LMG model is subject to renewed in-
terest also due to its relation with the celebrated Dicke
model, which is often used to describe driven-dissipative
experimental setups, such as the cavity QED experiments

outlined in Sec. II.B. Its Hamiltonian contains spin-1/2
operators coupled to the cavity electromagnetic field. In
analogy with the long-range Ising model, the Dicke model
displays a phase transition between a disordered ground
state with 〈σx〉 = 〈a†a〉 = 0 and a super-radiant one with
polarised spins and finite photon density inside the cav-
ity 〈a†a〉 6= 0 (Dicke, 1954). At equilibrium, it can be
rigorously proven that the Hamiltonian of the Dicke and
LMG models are equivalent in the thermodynamic limit
and, then, produce the same critical behavior (Brankov
et al., 1975; Gibberd, 1974).

The contribution of quantum fluctuations to the ther-
modynamic observables is washed away in the large size
limit N → ∞ and the total spin S effectively becomes
classical (Bapst and Semerjian, 2012; Chayes et al., 2008).
Therefore, the control parameter for quantum fluctua-
tions in the LMG model is 1/N , which plays the same
role of ~ in more traditional single-body problems. In the
following, we are going to restrict to h > 1, as the spec-
trum of the model is symmetric under inversion h→ −h,
and to ferromagnetic interactions J > 0. A discussion
on the physics of the antiferromagnetic problem J < 0
and its relation to the super-symmetric formalism can be
found in (Vidal et al., 2004). For ferromagnetic inter-
actions J > 0, the ground state always belongs to the
maximum spin S = N/2 sub-sector of the Hilbert space.

Apart from the fully isotropic limit γ = 1, the
LMG Hamiltonian cannot be analytically solved (Botet
and Jullien, 1983). Nevertheless, the LMG Hamilto-
nian is integrable and can be solved via algebraic Bethe
ansatz (Pan and Draayer, 1999) or by mapping it to the
Richardson-Gaudin Hamiltonian (Dukelsky et al., 2004).
Here, we are going to follow a simpler route and employ
the 1/N expansion. First of all, we characterise the crit-
ical behaviour employing the mean-field approximation
by using the non-interacting variational ansatz obtained
via the external product of the single spin states

|ψl〉 = cos

(
θl
2

)
e−i

ϕl
2 | ↑〉+ sin

(
θl
2

)
ei
ϕl
2 | ↓〉. (99)

Since the system is translationally invariant, we can as-
sume (θl, ϕl) = (θ, ϕ) ∀ l, corresponding to the spin ex-
pectation values

S =
N

2
(sin θ cosϕ, sin θ sinϕ, cos θ), (100)

which coincides with the classical spin value. Due to
the inversion symmetry of the model Sx → −Sx one can
select ϕ = 0 and J = 1, without loss of generality. From
the energy minimization within the mean-field ansatz,
one obtains the explicit expression

θ =

{
0 if h ≥ 1

arccos(h) if 0 ≤ h ≤ 1
(101)
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for the angle θ. The semiclassical equations of motion
for the total spin operators yield the system gap in the
thermodynamic limit (Botet and Jullien, 1983)

∆ =

{
2
√

(h− 1)(h− γ) if h ≥ 1

0 if 0 ≤ h ≤ 1
(102)

A close inspection of the formulas above is all one needs
to comprehend the quantum phase transition in the LMG
problem. At h ≥ 1 only the solution ϕ = θ = 0 ex-
ists and the system is fully magnetised along the mag-
netic field direction, 〈Sz〉 = 1. As h decreases below
hc = 1 two-state appears with θ 6= 0 and ϕ = ±π and
the in-plane magnetisation continuously increases in the
interval [0, 1], while the transverse magnetisation only
vanishes at h = 0. Accordingly, the gap ∆ between
the ground and the first excited state, which is finite at
h > 1, smoothly vanishes as h→ 1+ with scaling behav-
ior characterized by the critical exponent zν = 1/2. It
is worth noting that the mean-field scenario can be only
faithfully applied to the thermodynamic limit, while it
cannot capture finite-size fluctuations. Indeed, in the
ordered phase h < 1 the system gap ∆ cannot vanish
at a finite size, since quantum fluctuations will lift the
degeneracy and produce an exponentially vanishing gap
∆N ∝ exp(−N) (Newman and Schulman, 1977).

In order to partially capture finite size fluctuations, it
is convenient to perform the Holstein-Primakoff expan-
sion (Holstein and Primakoff, 1940) for the N -spin vari-
able S around the mean-field expectation value (Botet
and Jullien, 1983; Dusuel and Vidal, 2005a). First, one
shall rotate the total spin in order to align it with the
meand field magentization introducting the new variable
S̄ = R(θ)S, with the rotation matrix

R(θ) =




cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ
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where θ is given by Eq. (101). The re-aligned spin vari-
ables may be then expanded using the equivalence

S̄z =
N

2
− a†a (104)

S̄+ = S̄x + iS̄y =
√
N

(
1− a†a

N

)1/2

a (105)

S̄− = S̄x − iS̄y =
√
Na†

(
1− a†a

N

)1/2

(106)

where the boson operators [a, a†] = 1 have been intro-
duced. This excitation characterises a small depletion of
the mean-field spin expectation due to finite size quan-
tum fluctuations. At leading order in 1/N only quantum
corrections up to order 1/N have to be retained, yield-
ing a quadratic bosonic Hamiltonian which can be sub-
sequently diagonalised by a Bogoliubov transformation

a→ b (Dusuel and Vidal, 2005a). The net result is

HLMG = NE0 + e0 + ωb†b+O

(
1

N

)
(107)

such that we have reduced the many-body problem in
Eq. (96) to an effective 0-dimensional one, described by a
single harmonic oscillator mode. This is the peculiarity
of several fully connected systems, the actual spectrum in
the thermodynamic limit is not constituted by a contin-
uum dispersion relation, but rather by a single quantum
mode, whose contribution to the thermodynamic quanti-
ties is increasingly washed out approaching the thermo-
dynamic limit.

The quantities appearing in Eq. (107) can be easily
written in terms of the internal parameter and the av-
erage magnetization m = 2〈Sz〉/N . The internal mean-
field energy maintains the same form both in the sym-
metric and broken phases E0 = (−1−2hm+m2)/2, while
the next-to-leading energy correction reads

e0 =

{
−h+ 1+γ

2 +
√

(h− 1)(h− γ) for h > 1,

− 1−γ
2 +

√
(1− h2)(1− γ) for h < 1,

(108)

and the dynamical gap

ω =

{
2
√

(h− 1)(h− γ) for h > 1,√
(1− h2)(1− γ) for h < 1.

(109)

Notice that ω is not the actual gap ∆ of the system,
at least not in the ordered phase, where the minimal
gap occurs between the two classical ground-states with
different symmetry, but it rather represents the minimal
gap between two states connected by the Hamiltonian
dynamics.

As expected, the dynamical gap in Eq. (109) vanishes
approaching the transition with a dynamical critical ex-
ponent zν = 1/2 in agreement with the semiclassical
prediction for the disordered phase, see Eq. (102). The
exponent is symmetric on both sides of the transition
and independent on the value of γ 6= 1 proving that
the anisotropy plays no role in the universal behavior.
The only exception is γ = 1 where the system acquires
continuous rotation symmetry, giving rise to a gapless
ordered phase and a critical exponent zν = 1; an analyt-
ical solution of the problem is available in this particular
case (Dusuel and Vidal, 2005a).

The in-plane magnetisation 〈Sx〉/N ∝
√

1− h2 is con-
sistent with a critical exponent β = 1/2. Similar argu-
ments can be used to show that all the thermodynamic
critical exponents, i.e. the ones associated with global
thermodynamic quantities, are in agreement with mean-
field theory. The question becomes, however, more com-
plex if we consider the scaling of spatial dependent quan-
tities such as the correlation length. Conventionally,
the critical exponent ν is associated with the scaling of
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the correlation length ξ at a (quantum) critical point
ξ ∝ λ−ν , where λ is the control parameter. Such crit-
ical exponent is particularly important since it relates
the thermodynamic singularities of any critical quantity,
with its finite-size scaling close to the transition (Fisher,
2002; Fisher and Barber, 1972). However, in a strong
long-range system, and in particular in a fully connected
one, no concept of length and, especially, of correlation
length exists.

However, even in absence of any definition of length, it
is possible to define a correlation number, which diverges
close to the critical point Nc ∝ |h− 1|ν∗ . In general such
correlation number will be proportional to the correlation
volume Nc ∝ ξd and, assuming that such scaling has to
remain the same for all systems in the mean-field regime,
one obtains the estimate

ν∗ = ducν. (110)

The quantity duc represents the upper critical dimen-
sion of the corresponding nearest neighbour model (Botet
et al., 1982). Since the LMG Hamiltonian in Eq. (96)
corresponds to the one of the quantum Ising model in
a transverse field with duc = 3, the correlation number
exponents shall read ν∗ = 3/2.

Interestingly, this scaling theory, first introduced in
Ref. (Botet et al., 1982), provides the exact value for
the finite-size scaling of the dynamical gap ωN which
can be obtained by incorporating higher-order 1/N cor-
rections into Eq. (109) via the continuous unitary trans-
formation approach, yielding ωN ≈ N−1/3 (Dusuel and
Vidal, 2004, 2005a) in perfect agreement with the gen-
eralised finite-size scaling theory ωN ≈ N−

zν
ν∗ . Despite

this apparent simplicity, it has been shown that for large
enough anisotropy parameters the spectrum of the LMG
model may not converge to the prediction of Eq. (107),
due to the influence of two competing semiclassical tra-
jectories (Ribeiro et al., 2007).

More in general, the convergence to the "simple"
thermodynamic limit solution in fully connected mod-
els has been shown to present several anomalous fea-
tures (Colonna-Romano et al., 2014). In particular, it
has been shown that the actual picture for the finite-size
scaling of many-body systems above the upper critical
dimension duc is actually more complicated than the one
depicted in Ref. (Botet et al., 1982), since the zero and
the fluctuations modes present different scaling behaviors
and, therefore, different quantities may display different
finite-size corrections depending on the dominating con-
tribution to that quantity (Flores-Sola et al., 2016b).

2. Self-organization phase transition in cavity QED

The LMGmodel can effectively be realized using cavity
QED platforms, whose self-organization transition can
be described by a pure fully-connected spin Hamiltonian

upon elimination of the cavity field in Eq. (13). There,
the cavity-mediated long-range interaction, Eq. (12), fa-
vors for V < 0 a density modulation of the quantum gas
and induces density correlations with spatial periodicity
λ along pump and cavity directions. These density cor-
relations are the collective elementary excitations of the
system with energy ~ωs and correspond to the creation
and annihilation of correlated pairs of atoms in the mo-
mentum mode |p1〉. However, the kinetic energy term in
Eqs. (9) stabilizes the gas against this modulation.

Only if the long-range interaction becomes sufficiently
strong, the gain in potential energy will overcome the cost
in kinetic energy, and the system undergoes a quantum
phase transition to a self-ordered state (Nagy et al., 2008;
Piazza et al., 2013). At this point, the energy ~ωs of the
collective excitation has softened such that the mode |p1〉
can be macroscopically populated without energetic cost.
The atomic density acquires a checkerboard modulation
that efficiently scatters photons into the resonator, and
the atoms can further lower their energy in the emerging
optical interference lattice potential.

A few years after self-organization of a thermal gas
coupled to an optical cavity had been observed (Black
et al., 2003), the phase transition to a self-ordered state
of a bosonic quantum gas coupled to a cavity was real-
ized (Baumann et al., 2010). While for a thermal gas
the threshold is set by thermal density fluctuations, for a
quantum gas the critical point scales with the recoil en-
ergy. A BEC of 105 87Rb atoms is harmonically trapped
at the location of a single mode of a high-finesse optical
cavity. The transverse pump power is linearly increased
over tens of milliseconds. The experimental signature for
self-ordering of a BEC, where the motion is quantized,
is two-fold as shown in Fig. 17: The cavity photon oc-
cupation rises abruptly when the critical interaction is
reached, as can be observed via the light field leaking
from the cavity. In addition, the momentum state dis-
tribution, as observed from absorption images after bal-
listic expansion, changes from occupying only the zero-
momentum state |p0〉 below the critical point to a su-
perposition of the momentum states |p0〉 and |p1〉 above
the critical point. In real space, this momentum state
occupation corresponds to a chequerboard order of the
atomic density. Ramping the transverse pump power
down again, the normal phase with an empty cavity and
macroscopic occupation of only the single momentum
state |p0〉 is recovered. As discussed in Section II.B.3,
the self-organization phase transition can be mapped to
the Dicke phase transition.

The mode softening preceding the phase transi-
tion (Horak and Ritsch, 2001; Nagy et al., 2008; Öztop
et al., 2013) has been studied using a variant of Bragg
spectroscopy (Mottl et al., 2012). The cavity is seeded
with a weak coherent field at a variable detuning with re-
spect to the transverse pump frequency. If the detuning
matches the soft mode frequency ωs, energy and momen-
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Figure 17 Signatures of atomic self-organization in an
optical cavity. (a) The transverse pump power (dashed) is
gradually increased while the mean intracavity photon num-
ber (solid) is monitored. After the sudden release of the
atomic cloud and its subsequent ballistic expansion, absorp-
tion images are made for pump powers corresponding to trans-
verse pump lattice depths of 2.6 Er (b), 7.0 Er (c) and 8.8 Er

(d). Self-organization is manifested by an abrupt build-up of
the cavity field accompanied by the formation of momentum
components at (px, py) = (±~k,±~k) (d). The weak momen-
tum components at (0,±2~k) result from loading the atoms
into the one-dimensional standing-wave potential of the trans-
verse pump laser. Reproduced from (Baumann et al., 2010).

tum conservation are fulfilled, and the momentum mode
|p1〉 becomes macroscopically occupied by the probing
process. At the same time, photons from the transverse
pump are scattered into the cavity. The measured mode
frequency ωs as a function of transverse pump power is
displayed in Fig. 18. For the case of negative long-range
interaction V < 0, a clear mode softening towards the
critical point of the self-organization phase transition is
observed. In contrast, a positive long-range interaction
V > 0 is leading to a mode hardening without any phase
transition.

Also in the case of a sideband-resolving cavity, κ < ωs,
a self-organization phase transition takes place. However,
due to the increased photon lifetime, the intra-cavity field
acquires a retardation with respect to the atomic evolu-
tion, and the effective cavity-mediated atom-atom inter-
action can not be captured anymore in the simple form
of Equation (12) (Klinder et al., 2015a). In this case, it
is more appropriate to stay with the coupled equation of
motion. As we discuss below in Section V.C.4, the side-

0 0.2 0.4 0.6 0.8 1.0 1.2

Pump power P (Pcr)

0

2

4

6

8

10

E
xc

it
at

io
n

en
er

gy
E

s
(h
×

kH
z)

atom data

photon data

V< 0

V> 0

Figure 18 Excitation spectrum across the self-
organization phase transition. Measured resonance fre-
quencies Es = ~ωs, obtained from atomic and photonic sig-
nals, are shown in blue and red, respectively, for positive
(open circles) and negative (solid circles) interaction strength
V. Gray shading shows the theoretical prediction including
experimental uncertainties. Reproduced from (Mottl et al.,
2012).

band resolved regime allows to study quench experiments
that can be interpreted with a Kibble-Zurek model.

The long-range interaction can not only be engineered
to act on the atomic density. Instead, exploiting the
atomic vector polarizability or Raman schemes coupling
different atomic ground states, an effective long-range
interaction acting on the pseudospin can be realized
(Camacho-Guardian et al., 2017; Kroeze et al., 2018; Lan-
dini et al., 2018).

3. Discrete and continuous symmetry breaking

The Dicke Hamiltonian (13) is invariant under the par-
ity transformation (a, S±) → (−a,−S±). Accordingly,
at the phase transition to the self-organized phase a dis-
crete Z2-symmetry is broken, where the atomic density
localizes either on the even or odd sites of the emergent
checkerboard lattice and the cavity light field phase locks
to either 0 or π with respect to the pump field phase.
Site-resolving real-space imaging of the atomic system
has not been achieved yet. However, this discrete sym-
metry breaking has been observed in the phase of the
light field leaking from the cavity using a phase-sensitive
heterodyne detection system (Baumann et al., 2011).

The discrete nature of this symmetry breaking is dic-
tated by the boundary conditions of the single cavity
mode. The symmetry can however be enhanced to a con-
tinuous U(1)-symmetry, as had been originally discussed
for highly degenerate multimode cavities (Gopalakrish-
nan et al., 2009). Also, the self-organization of a trans-
versely driven BEC in the combined fields of two de-
generate single-mode cavities crossing under an angle of
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60◦ allows engineering an approximate continuous U(1)-
symmetry, as was demonstrated experimentally (Léonard
et al., 2017b). Photons from the pump field were scat-
tered into both cavities, and the atoms self-organized in
the resulting interference potential. This system is invari-
ant with respect to redistributing photons between the
two modes, where the interference lattice potential breaks
a continuous spatial symmetry depending on the rela-
tive photon occupation of the two cavities. The unique
real-time access to the light field leaking from the optical
cavities allowed one to identify the fundamental collective
excitations of the underlying U(1)-symmetry as a phase
and an amplitude mode (Léonard et al., 2017a). The con-
tinuous symmetry can be reduced to a Z2⊗Z2 symmetry
if atom-mediated scattering between the two cavities is
present (Lang et al., 2017; Morales et al., 2018). Extend-
ing the scheme to multiple crossing cavities, also higher
symmetries such as a continuous SO(3) rotational sym-
metry might be realizable (Chiacchio and Nunnenkamp,
2018). A continuous symmetry can furthermore be bro-
ken if instead of two counterpropagating modes of a ring
cavity are employed, as was proposed for a transversally
driven BEC (Mivehvar et al., 2018), and realized for a
BEC coupled to a ring cavity where two longitudinal
modes were simultaneously driven. This configuration
can be regarded as the minimal model of a supersolid
state of matter (Schuster et al., 2020), which has been
extensively discussed in Sec. IV.E.

4. Criticality of the self-ordering phase transition

The critical behavior of the single-mode self-
organization phase transition corresponds to that of the
open Dicke model, falling into the universality class of
the mean-field classical Ising model (Emary and Brandes,
2003; Kirton et al., 2019; Nagy et al., 2010). The constant
flow of energy from the pump laser to the cavity leak-
age causes additional fluctuations of the cavity field and
accordingly larger density fluctuations. The cavity dissi-
pation thus makes the system leave its ground state and
irreversibly evolve into a non-equilibrium steady state.
The global range interaction turns the phase transition
rather into a quantum bifurcation in a zero-dimensional
system, such that there is no notion of a divergent cor-
relation length. However, one can investigate the criti-
cal exponent of the fluctuations of the order parameter.
While a mean-field exponent of 1/2 is expected for the
closed system, see the discussion in Sec. IV.G.1, the pre-
diction for the open system is 1, given by the vanish-
ing of the imaginary part of the spectrum at the critical
point (Nagy et al., 2011; Öztop et al., 2012). The open
system thus effectively behaves thermally. It is important
to note that the actual steady state of the system might
not be reached in experiments, since close to the critical
point the quasinormal modes vanish, leading to a crit-

ical slowdown. An analysis going beyond the mapping
to the open Dicke model and considering also a finite
temperature of the quantum gas produces an interest-
ing picture of the interplay between the self-organization
phase transition and Bose-Einstein condensation (Piazza
and Strack, 2014; Piazza et al., 2013).

Monitoring the light field leaking from the cavity dur-
ing self-organization gives real-time access to the order
parameter of the phase transition, see Eq. (10). This al-
lows not only to measure the mean density modulation of
the atomic cloud but also to detect the fluctuations of the
system (Brennecke et al., 2013). Heterodyne detection of
the light field provides the low-energy spectrum of the
system which can be directly converted into the dynam-
ical structure factor of the gas at the wave vector of self
organization (Landig et al., 2015), see Fig. 19 (a-d). The
observed spectrum features a carrier at zero frequency
with respect to the pump laser frequency and sidebands
at positive and negative frequencies. The sidebands are
signatures of density fluctuations, indicating either the
creation or annihilation of quasi-particles. Approaching
the critical pump power Pcr, the mode softening is visi-
ble in the vanishing sideband frequency. At the critical
point, a strong coherent field emerges at the carrier fre-
quency, indicating the buildup of a static coherent den-
sity modulation. The amplitude of the carrier and the
integrated sidebands converted into density modulation
and density fluctuations, respectively, is displayed in Fig.
19(f). While the density modulation changes by more
than four orders of magnitude, the density fluctuations
diverge towards the critical point. From this data, criti-
cal exponents of 0.7(1) and 1.1(1) for the fluctuations of
the order parameter can be extracted on the normal and
self-organized sides, respectively. The sideband asymme-
try visible in Fig. 19(b-d) can be used to determine the
occupation of the quasi-particle mode, but also to extract
the irreversible entropy production rate (Brunelli et al.,
2018) while the system crosses the phase transition.

V. DYNAMICAL CRITICAL BEHAVIOUR

In this section, we review the multifaceted aspects of
dynamical regimes in quantum long-range aspects, em-
phasizing as much as possible universal behaviors. Given
the vast amount of literature on the subject, we decided
to arrange the material presenting first a discussion of
metastability, a hallmark of long-range systems, followed
by a presentation of results on Lieb-Robinson bound,
Kibble-Zurek mechanism, dynamical phase transitions,
and confinement in quantum long-range systems. Mis-
cellaneous material is presented in the last section.
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Figure 19 Critical behavior of the self-organization phase transition. (a) The power spectral density PSD of the light
field leaking out of the cavity is shown as a function of frequency shift ω with respect to the pump laser frequency and relative
transverse pump power P/Pcr. Two sidebands are visible, corresponding to the incoherent creation (ω < 0) and annihilation
(ω > 0) of quasi-particles. The energy of these quasi-particles vanishes towards the critical point. At the phase transition,
a strong coherent field at the pump frequency appears (ω = 0). The panels (b–d) show the normalized dynamic structure
factor for three different values of P/Pcr (see dashed lines in upper panel). While the position and width of the sidebands
give direct access to the energy and lifetime of the quasi-particles, the sideband asymmetry can be used to determine the
occupation of the quasi-particle mode. Panel (e) is a sketch of the measurement setup: the atoms coupled to the cavity mode
are illuminated by the transverse pump field at frequency ωi, while the frequency emitted from the cavity is ωf . A heterodyne
detection system gives access to the PSD shown as a function of ω = ωi − ωf in (a). The data can be used to extract the
divergent density fluctuations and the emerging density modulation, shown in (f). The inset shows the density fluctuations on
a double logarithmic scale, allowing to determine critical exponents of 0.7(1) and 1.1(1) on the normal and self-organized sides,
respectively. Figure reproduced from (Landig et al., 2015).

A. Metastability and diverging equilibration times

Diverging equilibration times in the thermodynamic
limit are a notorious characteristic of long-range inter-
acting systems. Recently, the absence of equilibration
of strong long-range quantum systems has been directly
linked to their peculiar single-particle spectrum, which
leads to a violation of Boltzmann’s H-theorem and the
appearance of finite Poincaré recurrence times in the
thermodynamic limit (Defenu, 2021). These observations
are in agreement with the aforementioned properties,
see Sec. I.B, which are common to thermodynamically
large long-range systems and finite local ones, such as
the impossibility to fully disregard boundary over bulk
phenomena (Barré and Gonçalves, 2007; Latella et al.,
2015), the existence of concave entropy regions (Ispolatov
and Cohen, 2001) or the presence of a macroscopic en-
ergy gap between the ground state and the first excited
state (Gupta et al., 2012a,b).

The key point is that the spin-wave spectrum of the
systems does not become continuous in the thermody-
namic limit, as the eigenvalues of a long-range coupling
matrix can be shown to remain discrete even in the
infinite components limit, forming a pure point spec-

trum (Last, 1996) similar to the one appearing in strongly
disordered systems (Fröhlich and Spencer, 1983; Scardic-
chio and Thiery, 2017; Simon et al., 1985; Thouless,
1972). A discussion of the spectral discreteness of long-
range couplings in the thermodynamic limit has been
presented in Ref. (Defenu, 2021) in multiple linear ap-
proximations and employed to justify the observation of
diverging equilibration times in a long-range Ising model,
quenched across its quantum critical point (Kastner,
2011).

The first evidence of QSS in quantum systems has been
described in the prototypical example of the long-range
Ising chain, see (60). The QSS have been shown to ap-
pear for quenches starting well inside the paramagnetic
phase in the h → +∞ limit and terminating in deep in
the ferromagnetic phase at h = 0. Then, the system is
prepared in the transversally polarised ground state and
evolved according to the classical ferromagnetic Hamil-
tonian in absence of the transverse field. It follows that
the expectation of the global operator mz = 〈∑i σ

z
i 〉/N

with the Hamiltonian in Eq. (60) evolves from the ini-
tial value limt→0mz = 1 to the equilibrium expectation
limt→∞mz = 0, if the system actually equilibrates, see
Fig. 20(a). These observations may be extended to any
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choice of the initial and final magnetic fields hi, hf using
the Kitaev chain representation of the Ising model given
in Eq. (65), see the discussion in Sec. IV.B.3.

It is worth recalling that for 1 < α < 3 the corre-
spondence between the fermion and spin Hamiltonians
in respectively Eqs. (60) and (65) is not exact. Yet, the
existence of the quantum critical points is preserved and
the equilibration scenario for the two systems is analo-
gous (Essler et al., 2012; Van Regemortel et al., 2016).
The analogy between the transition of the Ising and Ki-
taev chain has been discussed in Sec. IV.B.3 and in the
Refs. (Defenu et al., 2019a; Jaschke et al., 2017). Within
the Kitaev chain perspective, the critical point at h =
hc = 1 is signalled by the property limk→0± θk = ±π2 ,
where the critical Bogoliubov quasi-particles are consti-
tuted by an equal superposition of electrons and holes
(|uk=0| = |vk=0| = 1/

√
2). This phenomenon is often

interpreted as a Dirac mode resulting from the superpo-
sition of two Majorana edge states (Fradkin, 2013).

In the strong long-range regime (0 < α < 1) and in
presence of the Kac rescaling a full characterization of
the quantum phase transition in the Kitaev chain has
not been attempted yet. Indeed, no clear continuum limit
can emerge for this regime in thermodynamic limit due
to the spectral discreteness evidenced in Ref. (Defenu,
2021). Nevertheless, the existence of the quantum crit-
ical point can be also inferred in the strong long-range
regime, analyzing the k → 0 limit of the Bogoliubov an-
gles.

The equilibration of a weak long-range Kitaev chain
after a sudden quench of the chemical potential h is sum-
marised in the upper sub-panel of Fig. 20(b). The initial
state of the system is the ground state at h = hi � 1,
deep in the normal phase, where mz ≈ 1. Then, this
initial state is evolved according to the ferromagnetic
Hamiltonian with h = hf < 1. The explicit descrip-
tion of the quench dynamics solution can be found in
Ref. (Defenu et al., 2019a). To compare with the afore-
mentioned investigations regarding QSS in the long-range
Ising model the pictures displays the evolution of the ob-
servable

mz = 1− 2

N

∑

i

〈c†i ci〉, (111)

which represents the transverse magnetization in terms
of the Fermi quasi-particles.

From the long-time dynamics of the observable in
Eq. (111) it is rather evident that the equilibration in
the weak long-range Kitaev chain, see the upper panel
Fig. 20(b), mimics the case of the long-range Ising model
with α = 2, see the upper panel Fig. 20(b). The initial
value of the observable rapidly equilibrates to a long-time
expectation which becomes time independent in the long
time limit. In other words, any observable A(t) relaxes

to equilibrium if it approaches its Cesaro’s average

Ā = lim
T→∞

〈A〉T with 〈· · · 〉T =
1

T

∫ T

0

· · · dt. (112)

Moreover, the dynamical fluctuations, which are quanti-
fied by the parameter

QA(T ) = 〈
∣∣A(t)− Ā

∣∣2〉T (113)

must disappear in the long-time limit

lim
T→∞

QA(T ) ≈ 0. (114)

Eq. (114) is the conventional way to define equilibration
in closed quantum systems (de Oliveira et al., 2018; Lin-
den et al., 2009; Reimann, 2008; Short, 2011).

In the weak long-range regime (α > d) the result
limT→∞Qmz (T ) = 0 can be exactly proven for most
quadratic models as well as for the Ising model for sud-
den quenches from hi = +∞ to hf = 0 thanks to the
Riemann–Lebesgue lemma (Hughes-Hallett et al., 2008).
In other words, equilibration occurs in these systems as
the Poincaré recurrence times diverge for N →∞. This
phenomenon is evident in the numerical computation of
the mz expectation value both for the Ising and the Ki-
taev chain with α > 1, see the upper panels of Fig. 20(a)
and 20(b).

This picture is radically altered in the α < 1 case, see
the bottom panels in Fig. 20(b). Indeed, the dynamical
evolution of the observable mz persists in the vicinity
of its initial value for longer times as the system size
is increased, in agreement with the τeq ∝ Nβ expecta-
tion coming from classical systems (Campa et al., 2009).
Interestingly, the β = 1/2 scaling observed in the long-
range Ising model appears to be related with the scaling
of Poincaré recurrence time due to the discrete spectrum
of long-range systems (Defenu, 2021; Kastner, 2011). It
is also worth noting that the scaling of time scales in
long-range systems is crucially influenced by the Kac
rescaling and, then, these observations may be altered
modifying the regularization procedures (Bachelard and
Kastner, 2013).

While the phenomenology of the Kitaev and Ising
models are analogous, the quantitative features of the
dynamical evolution display some peculiar differences.
In particular, in the long-range Ising model, no oscil-
latory fluctuations are present, while they occur in the
Kitaev chain. These differences are probably due to
the different quench boundaries between the two mod-
els. Despite these details, it is evident that the curves
in the lower panels of Fig. 20(a) and 20(b) will both yield
limT,N→∞Qmz (T ) 6= 0.

The appearance of the QSS has been often connected
to the scaling of equilibration times of critical observ-
ables such as the magnetization (Antoni and Ruffo, 1995;
Campa et al., 2009; Mukamel et al., 2005). However,
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Figure 20 Evidences of QSS in the long-range Ising chain, the Kitaev chain and the one dimensional spherical
model, from left to right respectively. In all panels the top sub-panel displays the case of weak long-range interactions
α > 1, where roughly the same equilibration properties of the nearest neighbour case are found. Conversely, the bottom
sub-panel shows the case of strong long-range interactions α < d, where dynamical fluctuations survive in the t → ∞ limit.
The leftmost panel displays the transverse magnetisation of the long-range Ising model, see the Hamiltonian in Eq. (60), after
a quench from the fully paramagnetic state at h→∞ deep into the ordered phase at h→ 0. While the observable expectation
equilibrates at long times for α = 2.0 (top sub-panel), it persists in its initial value for increasingly longer times as the system
size increases for α = 0.5 (bottom sub-panel). See the discussion in Ref. (Kastner, 2011). A similar signature is noticed in the
case of the Hamiltonian in Eq. (66), i.e. the Kitaev chain representation of the Ising model, where the dynamics can be exactly
solved for any global quench across the phase boundary. The central panel shows the evolution of the spatial and quantum
average of the σz in Eq. (61) for a long-range Kitaev chain with α >∼ 12 (top sub-panel) and α = 0.4 bottom sub-panel for
hi � 1 to hf = 0.4. Lack of equilibration also appears for non-critical quenches, as it shown in the rightmost panel for the
potential energy U of a quantum spherical model with long-range interactions. Dynamical fluctuations reduce as size increases
for decay rates α > 1, see the upper sub-panel where the α >∼ 12 case is shown for increasing system sizes N ∈ [29, 210, 211, 212]
from bottom to top. Conversely dynamical fluctuations tend to increase for α < 1, as shown in the lower sub-panel for α = 0.2,
again from bottom to top, see Ref. (Defenu, 2021).

signatures of persistent time fluctuations in classical sys-
tems have been also found in generic thermodynamic ob-
servables, as for the evolution of internal energy in sys-
tems of particles with attractive power-law pair interac-
tions (Gabrielli et al., 2010). The same picture can be
also found in many-body quantum systems. Indeed, per-
sistent dynamical fluctuations are also observed for non-
critical quantities or quenches, as occurs for the internal
energy of the spherical model, see Fig. 20(c).

B. Lieb-Robinson bound

Understanding the maximum speed at which informa-
tion propagates in many-body systems allows to put tight
bounds on fundamental questions, such as how fast a
quantum system can thermalize (Calabrese and Cardy,
2006) or the amount of quantum information that can be
transmitted through a quantum channel (Bose, 2007). In
short-range interacting systems the Lieb-Robinson bound
predicts a constant maximal velocity that confines the in-
formation to a linear effective light-cone (Lieb and Robin-
son, 1972a). Long-range interactions substantially alter
this picture, since the traditional definition of group ve-

locity does not apply to their case. Accordingly, the
spreading of correlations, information, or entanglement
speeds up dramatically, leading to a wide range of exotic
dynamical properties, which may be exploited for fast in-
formation transmission, improved quantum state prepa-
ration, and similar applications. Then, it is not surprising
that a large body of theory work has emerged in recent
years in order to find tighter propagation bounds for dif-
ferent values of the power-law exponent α (Chen and Lu-
cas, 2019; Eisert et al., 2013; Else et al., 2020; Foss-Feig
et al., 2015b; Gong et al., 2014; Guo et al., 2020; Hastings
and Koma, 2006; Hauke and Tagliacozzo, 2013; Hazzard
et al., 2013, 2014; Hermes et al., 2020; Kuwahara and
Saito, 2020; Lashkari et al., 2013; Matsuta et al., 2017;
Rajabpour and Sotiriadis, 2015; Schachenmayer et al.,
2013; Storch et al., 2015; Sweke et al., 2019; Tran et al.,
2020, 2019a,b)

Most of the current understanding of correlations and
entanglement spreading in presence of long-range interac-
tions has been based on prototypical systems. There, the
synergy between analytical and numerical investigations
has been particularly fruitful (Hauke and Tagliacozzo,
2013; Hazzard et al., 2014; Nezhadhaghighi and Ra-
jabpour, 2014; Rajabpour and Sotiriadis, 2015; Schachen-
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mayer et al., 2013, 2015a,b). The general understanding
of propagation in long-range systems is summarised in
Fig. 21. This qualitative picture applies almost indepen-
dently to the particular model, the quantity or the decay
range α.

In analogy with other universal results in the short-
range regime, entanglement scaling in long-range models
with α � 3 reproduces the well-known light cone shape
observed for local systems (Lieb and Robinson, 1972b)
(See Fig. 21 on the right). For intermediate values of
α (see the central panel in Fig. 21) cone-light propaga-
tion is observed at short distances, while correlations be-
tween distant sites are heavily influenced by the presence
of the long-range terms. Multi-speed prethermalization
for lattice spin models with long-range interactions in
the regime d < α < d + 2 was studied in (Frérot et al.,
2018). The behavior of correlations at intermediate de-
cay is akin to the one found in the critical behavior of
the long-range Kitaev chain in Sec. IV.B.4, where long-
range hopping amplitudes with 2 < α < 3 do not modify
the universal scaling behavior, but they alter the overall
shape of excitations. However, in the Kitaev chain long-
range hopping only influences the subcritical behavior for
α < 3, while the light-cone bending is observed also for
α = 4 (Rajabpour and Sotiriadis, 2015).

Finally at smaller α (left panel in Fig. 21) the universal
scaling is altered by long-range interactions and, accord-
ingly, the correlations propagate faster than any possible
group velocity, disrupting the linear light-cone shape.

Analytical insight into information propagation in
long-range system may be also achieved by general Lieb-
Robinson-type bounds. A first contribution in this direc-
tion has been given in Ref. (Hastings and Koma, 2006),
yielding for α > d

||[OA(t), OB(0)]|| ≤ C ||OA|| ||OB ||
|A| |B| (ev|t| − 1)

[dA,B + 1]α
.

(115)
The regions A,B are a disjunct subset of the d dimen-
sional lattice. The generic operator expectations OA and
OB only receive contributions from Hilbert-space states
whose support lies in the spatial regions A and B, respec-
tively. In Eq. (115) the symbol ||·|| denotes the operator
norm, and dA,B is the distance between the regions A and
B. The importance of the expression in Eq. (115) derives
from its generality, since it applies to a wide range of
observables, while it is straightforwardly extended also
to other non-local quantities, such as the equal time cor-
relators (Bravyi et al., 2006; Nachtergaele et al., 2006).
In its regime of validity α > d, the bound in Eq. (115)
qualitatively reproduces the shape in the left panel of
Fig. 21. However, the wave-front propagation obtained
by Eq. (115) is logarithmic rather than power-law and,
then, does not faithfully describe larger α values. Fur-
ther insight into this problem was obtained in Ref. (Gong
et al., 2014), where a more general bound was derived,

capable to reproduce both the Lieb-Robinson result in
the local limit (α→∞) and the expression in Eq. (115).
Even this general bound does not appear to be tight on
the entire α range, but rather to be more accurate at
large α.

The extension of the previous picture to the strong
long-range regime needs to account for the influence of
diverging long-range interactions with α < d on the sys-
tems time scales. In analogy with the equilibration rate
of QSS, see Sec.V.A, also the fastest propagation scale in
strong-long-range systems is found to vanish as a power-
law approaching the thermodynamic limit τfastest ∝ N−q
with q > 0 (Bachelard and Kastner, 2013). Accordingly,
signal propagation becomes increasingly faster as the sys-
tem approaches the thermodynamic limit and hinders the
traditional formulation of Lieb-Robinson bound. To cir-
cumvent such complications it is convenient to introduce
rescaled time τ = tNq. In terms of this "proper" time
variable the bound for α < d takes the same form as in
the weak long-range regime, but with τ in spite of t on
the r.h.s. of Eq. (115) (Storch et al., 2015).

The aforementioned results for α < d produce the
shortest signaling time tss between the edges of a sys-
tem of size N to scale as tss >∼ N

2α
d −2 log N , which leads

to the possibility of a vanishing time for transmitting in-
formation between linearly distant sites of a strong long-
range system. However, such fast signals have never been
observed nor described, rather a size-independent sig-
naling time was evidenced in several situations (Eisert
et al., 2013; Eldredge et al., 2017; Hauke and Taglia-
cozzo, 2013). Moreover, for specific initial states strong
long-range interactions may be inconsequential to signal
propagation, due to the so-called shielding effect (Santos
et al., 2016).

Focusing on quadratic Hamiltonians a much tighter
bound can be obtained, tss >∼ N

α
d−1/2, which is satu-

rated for α < d/2 by the quantum state transfer proto-
col described in Ref. (Guo et al., 2020). The same ref-
erence also provides a stricter bound for general inter-
acting spin systems. It is worth noting that the Lieb-
Robinson bound can be also used to predict the velocity
of quantum information scrambling, whose importance
lies at the edge between high-energy and condensed mat-
ter physics (Bentsen et al., 2019a; Gärttner et al., 2017;
Maldacena et al., 2016; Sekino and Susskind, 2008). In
this context, the role of long-range interactions is par-
ticularly relevant due to their inclusion in most quan-
tum mechanical models of black holes, possibly making
these systems the fastest information scramblers in na-
ture (Lashkari et al., 2013).

Despite the fast propagation and scrambling of cor-
relations due to long-range interactions, the growth of
entanglement entropy after a sudden quench is strongly
reduced. In particular, in the strong long-range regime
(α < d) it can become as slow as logarithmic, even in
the absence of disorder (Buyskikh et al., 2016; Pappalardi
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Figure 21 Propagation patterns as a function of distance δ = dij between sites i, j and time t for different
long-range exponents α. Different models and physical quantities are shown in the different panels, but the overall picture
remains the same. Left: The detection probability for a signal sent through a quantum channel between two sites at distance
δ is shown for the long-range Ising chain (Eisert et al., 2013). The green displays the power-law δ ∝ t1.7. Center: Connected
correlation functions between two sites at distance δ in a long-range field theory, see the effective action in Eq. (34) with d = 1
and α = 4 (Rajabpour and Sotiriadis, 2015). The short-distance spreading resembles the conventional light-cone observed with
local interactions, while for larger distances long-range effects appear, and power-law scaling is observed. The green dashed
curve is a guide to the eye. Right: The mutual information between two lattice sites at distance δ in the KItaev chain described
by the Hamiltonian in Eq. (48) with vanishing pairing and long-range hopping (α = 8). The decay rate is large enough that
only the light-cone is observed. Picture taken from Ref. (Storch et al., 2015).

et al., 2018; Schachenmayer et al., 2013). This peculiar
phenomenon is connected with a suppression of the quasi-
particle contribution to the von Neumann entanglement
entropy, which is known to be governed by collective
spin-excitations related with spin-squeezing (Pezzé and
Smerzi, 2009; Sørensen and Mølmer, 2001; Tóth et al.,
2007). Extending to the dynamical case the bosonization
procedure outlined in Sec. IV.G.1 (Lerose et al., 2019c;
Rückriegel et al., 2012), it has been possible to show that
the rate of divergence of semiclassical trajectories governs
the transient growth of entanglement. This provides a
very transparent and quantitative relationship between
entanglement propagation measures (such as entropy,
quantum Fisher information, spin squeezing) and chaos
quantifiers (such as Lyapunov exponents and out-of-time-
order correlations) in the semiclassical regime (Lerose
and Pappalardi, 2020a,b). Fast entanglement growth is
recovered only at criticality, corresponding to an unsta-
ble separatrix terminating onto a saddle point in phase
space. Similarly, when the classical dynamics is chaotic
(e.g. for kicked or multi-species models), the growth is
fast, with a rate related to Lyapunov exponents. Inter-
estingly, also long-but-finite-range interactions open up a
finite layer of instability with fast entanglement growth,
due to the presence of a chaotic dynamical phase (Lerose
et al., 2018, 2019c) Correlation spreading with van der
Walls interactions and the presence of positional disor-
der in 2D was investigated in (Menu and Roscilde, 2020).
Multifractality and localization of spin-wave excitations
above a ferromagnetic ground state are observed. Also,
the spreading of entanglement and correlations starting
from a factorized state exhibits anomalous diffusion with
variable dynamical exponent.

1. Experimental observation

The propagation of correlations and the violation of
the local Lieb-Robinson bound have been observed in
trapped ions quantum simulators for 0.6 <∼ α <∼ 1.2 (Ju-
rcevic et al., 2014; Richerme et al., 2014). In Ref. (Jurce-
vic et al., 2014), the authors have studied the dynamics
following either a global or a local quench of a long-range
XY Hamiltonian (see Eq. 8). The experimental system
consists of a 15 ions chain, prepared in a product state
where only the central spin is flipped with respect to the
rest of the system. In this system the global magnetiza-
tion Sz =

∑
i σ

z
i is a conserved quantity, therefore the ex-

citation can be described as a magnon quasiparticle that
propagates from the center throughout the system. Af-
ter the local quench, the authors observed that for α < 1
the light cone calculated considering only the nearest-
neighbor couplings did not capture well the dynamics of
the system (see Fig. 22 a,b,c).

In Ref. (Richerme et al., 2014), a global quench was
performed under both Ising (5) and XY (8) Hamiltoni-
ans, measuring the evolution of the connected two-body
correlations

C1,1+r(t) =
〈
σz1(t)σz1+r(t)

〉
− 〈σz1(t)〉

〈
σz1+r(t)

〉
.

The light-cone boundary is extracted by measuring the
time it takes a correlation of fixed amplitude (Ci,j ∼
0.1Cmax

i,j , where Cmax
i,j is the largest connected correla-

tion between two ions) to travel an ion–ion separation
distance r. For strongly long-range interactions (α < 1),
accelerating information transfer is observed through
the chain. This fast propagation of correlations is ex-
plained by the direct long-range coupling between distant
spins. The increased propagation velocities quickly sur-
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Figure 22 Propagation of quantum information in long-range trapped ions systems. (a) Single-site magnetization
〈σzi (t)〉 as a function of time, following a quantum quench of the long-range XY Hamiltonian (8), with the central 8th ion
initially flipped. Dashed (red) lines are fits to the observed magnon arrival times (see in b, bottom); dot-dashed white lines,
light cone for averaged nearest-neighbour interactions; orange dots, after renormalization by the algebraic tail. The white lines
are in clear disagreement with red lines. (b-c) Gaussian fits of magnon arrival time (red lines in a) for ion 6 (dark blue on the
left) and 13 (light blue on the right) with α = 1.41 (Top) and α = 0.75, a nearest neighbour Lieb–Robinson bound captures
most of the signal (shaded region) in the α = 1.41 case and it does not for α = 0.75. Adapted from Ref. (Jurcevic et al., 2014).
(d) Spatial and time-dependent correlations following a global quench of a long-range Ising Hamiltonian (5) with α = 0.63
. Correlation propagation velocity (e) . The curvature of the boundary shows an increasing propagation velocity (f), quickly
exceeding the short-range Lieb–Robinson velocity bound, v (red dashed line) (c). Solid lines give a power-law fit to the data,
which slightly depends on the choice of fixed contour Ci,j . Adapted from Ref. (Richerme et al., 2014).

pass the Lieb–Robinson velocity for a system with equiv-
alent nearest-neighbour-only interactions, v = 12eJmax,
where e is Euler’s number and Jmax is the maximum Ising
coupling strength for a given spin–spin coupling matrix.

C. Kibble-Zurek mechanism

The correlation length of a quantum system diverges
approaching its quantum critical points, while the dy-
namical gap vanishes. As a result, the dynamical scaling
of the observables when the system is driven across the
transition is reminiscent of the thermodynamic scaling
at equilibrium. Yet, for such scaling to be displayed, the
drive has to be slow enough that the dynamical evolution
occurs in the vicinity of the equilibrium critical point.

Let us consider a critical system with an internal con-
trol parameter λ such that a (quantum) critical point
occurs at λc = 0 (λ = |T − Tc|/Tc for finite-temperature
phase transitions). Conventionally, any slow enough
drive of internal parameters λ(t) = δ · t shall only pro-
duce adiabatic corrections ∼ δ2 to the observables expec-
tations with respect to the equilibrium value, as it can be
deduced by simple thermodynamic arguments (Zwerger,
2008). However, when crossing an equilibrium critical
point, the traditional adiabatic picture breaks down and

the residual energy (heat) generated by the drive dis-
plays non-analytic behavior Eres ≈ δθ with θ < 2 (Zurek,
1996). In most local systems such non-analytic scaling
emerges due to the formation of topological defects ac-
cording to the celebrated Kibble-Zurek mechanism, as
confirmed by several condensed matter experiments, see
Ref. (del Campo and Zurek, 2014) for a review.

In the quantum realm, the simplest example of de-
fect production is furnished by the Landau-Zener prob-
lem, which describes a two-level system driven through
an avoided level crossing (Damski, 2005; Landau and Lif-
shit’s, 1991; Zener, 1932), but actual Kibble-Zurek scal-
ing is only observed in quantum many-body systems in
the thermodynamic limit (Dziarmaga, 2010; Zurek et al.,
2005). The heuristic scaling argument at the basis of the
Kibble-Zurek mechanism can be proven to exactly apply
to the nearest neighbor Ising model, i.e. the Hamilto-
nian (60) in the α → ∞ limit since that problem can be
mapped to an infinite ensemble of Landau-Zener transi-
tions (Dziarmaga, 2005).

In a general system, the Kibble-Zurek argument relies
on the so-called adiabatic-impulse approximation, where
the dynamical evolution of a system starting in its or-
dered ground-state a t = −∞ is assumed to adiabat-
ically follow the drive until the so-called freezing time
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−t̂. Beyond the "freezing" time the equilibration rate of
the system becomes too small with respect to the drive
velocity and the system state cannot follow the Hamil-
tonian modification, as it is approaching the quantum
critical point at t = 0. Then, the dynamics is assumed
to remain frozen at all times t > −t̂ up to the crossing
of the quantum critical point (at t = 0) and after; until
the equilibration rate of the system grows back and the
"un-freezing" time t̂′, where adiabaticity is restored, is
reached.

Once the system has unfrozen the state evolution will
resume on the opposite side of the transition, where
the Hamiltonian ground-state is supposed to break the
Hamiltonian symmetry. Then, the dynamics will induce
a transition between the symmetric and a symmetry-
broken state. However, this transition will occur at fi-
nite correlation length ξ̂, since the process only starts at
t ≥ t̂′ = t̂, at least for a symmetric transition. The dy-
namics has thus modified the character of the continuous
phase transition, making it rather similar to a first-order
one, and the system will likely form topological defects,
whose size would be roughly proportional to the (finite)
correlation volume ξ̂d. Therefore, the total defect density
scales according to nexc ≈ ξ̂−d.

During the adiabatic stage of the dynamics, the sys-
tem observables will acquire the equilibrium expectation
of the instantaneous Hamiltonian and so does the mini-
mal gap of the system ∆(t) = ∆(λ(t)). Then, a proper
estimation of the drive strength on the system is ∆̇/∆
which has to be compared with the equilibration time
∆−1, leading to the adiabatic condition

∆̇� ∆2. (116)

The freezing time t̂ is defined by the breakdown of the
adiabatic condition ∆̇(t̂) ' ∆(t̂)2. Appling the critical
scaling of the minimal gap with λ, one obtains the scaling
of the freezing time t̂ ≈ δ−

zν
1+zν and, accordingly, the

freezing length scaling ξ̂ ≈ δ−
ν

1+zν , which leads to the
defect density expression

nexc ≈ ξ̂−d ≈ δ
dν

1+zν . (117)

The application of the traditional Kibble-Zurek picture is
complicated by different effects depending on the strong
or weak nature of long-range interactions. In the first
case, the additional relevance of boundaries with respect
to local systems produces clear difficulties in the defi-
nition of the topological defects. In the latter case, the
presence of the competing scaling contributions discussed
in Sec. IV.B.4 leads to novel scaling regimes, which are
not encompassed by the Kibble-Zurek framework.

1. Kitaev chain

The appearance of multiple scaling contributions to
the critical behavior of long-range quantum systems has

been already exemplified in the study of the Kitaev chain
in Sec. IV.B.4. In this sub-section, we are going to con-
sider the effect of such multiple scalings on the universal
dynamics.

The study of exactly solvable toy models is at the root
of the current understanding of Kibble-Zurek scaling in
general quantum systems. Indeed, first studies of defect
formation in quantum systems have been pursued on the
nearest neighbor Ising model, where finite-size scaling ar-
guments led to the prediction

nfss
exc ≈ δ

1
2z (118)

which produces nexc ≈
√
δ in agreement with the Kibble-

Zurek prediction in Eq. (117) since z = ν = 1 in this
case (Zurek et al., 2005). Soon after this seminal investi-
gation, an exact solution to the universal slow dynamics
of the Ising model has been provided by mapping it to
an infinite sum of Landau-Zener problems, each repre-
senting the dynamics of a single fermionic quasi-particle
excitation (Dziarmaga, 2005).

Indeed, the dynamical evolution of quadratic fermions
can be described in terms of the Bogoliubov amplitudes
via the equation

i
d

dt

(
uk
vk

)
=

(
εα(k, t) ∆β(k)
−∆β(k) εα(k, t)

)(
uk
vk

)
, (119)

which generically represent an ensemble of two level sys-
tems, whose energy and coupling are given by the mo-
mentum space kinetic and pairing terms, respectively.
Thus, the Kibble-Zurek dynamics of the Kitaev chain
can be studied exactly and this solution is not limited
to the nearest neighbour case, which represents the Ising
model, but it can be extended to any form of the long-
range couplings.

Let us, then, consider a slow variation of the chemical
potential h in the Hamiltonian (43) with the usual slow
drive form h(t) = hc + δt, with the time spanning in the
interval t ∈ [−hc/δ, hc/δ]. Then, in the small δ limit,
the system is adiabatically ramped from a point deep in
the topological phase h = 0 across the quantum phase
transition and up into the trivial phase h = 2hc. In
the following we are going to focus on a ramp across the
quantum phase transition occurring at hc = 1.

Within this dynamical protocol the dynamical system
in Eq. (119) reduces to the k dependent Landau-Zener
problem (Damski, 2005; Landau and Lifshitz, 1969).
Thus, the excitation probability of each Bogoliubov
quasi-particle can be computed according to the Landau-
Zener formula

〈γ†kγk〉 = nexc(k) = exp
(
− π
δ2

∆β(k)2
)

+O(δ2∆β(k)4).

(120)

The equation above only explicitly reports the leading
term in the k → 0 limit, which is the relevant one for the
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universal behavior. However, when considering a slow
quench in a finite time interval t ∈ [−hc/δ, hc/δ], the dis-
continuity in the drive derivative at the borders of the
interval induces δ2 corrections to the excitations proba-
bility (Defenu et al., 2019b; Dziarmaga, 2010).

The excitation probability in Eq. (120) only depends
on the pairing term in Hamiltonian (43), so that the
universal slow dynamics is fully determined by the low-
momentum scaling of the pairing coupling. Accordingly,
the excitation density can be obtained by integrating
Eq. (120) over the Brillouin zone

∫
nexc(k)dk ≈ δ

1
2z∆ (121)

where we have defined z∆ from the scaling of the pairing
coupling limk→0 ∆β(k) ≈ kz∆ . The result in Eq. (121)
has been also employed to prove the validity of the
Kibble-Zurek argument in Kitaev chains with long-range
pairing terms (Dutta and Dutta, 2017) in addition to the
purely local case (Dziarmaga, 2005).

Apart from the aforementioned results, which explic-
itly refer to quadratic Fermi systems, the application of
adiabatic perturbation theory to slow quenches close to
quantum critical points predicts the scaling of the de-
fect density to agree with the Kibble-Zurek prediction
θ = dν/(1 + zν) (Polkovnikov, 2005). Such prediction
comes from the assumption that the scaling form of the
critical propagator reproduces the equilibrium critical ex-
ponents. Since for 1d Fermi systems, one has zν = 1,
the perturbative argument yields dν/(zν + 1) = 1/2z
in agreement with the finite-size scaling argument in
Eq. (118). However, it was realized long ago (Dziarmaga,
2010) that the correspondence between the exact scal-
ing in Eq. (121) and the perturbative prediction is tied
to the relevance of the pairing term with respect to the
momentum term in the scaling of the quasi-particle gap,
see Eq. (54).

As outlined in Sec. IV.B.4, the presence of long-range
(anisotropic) couplings in 1D Fermi systems may produce
equilibrium scaling exponents dominated by the kinetic
term in the gap scaling, see Eq. (77), differently from
what occurs in short-range systems. Similarly, the intro-
duction of non-local finite-range couplings in the Kitaev
model has been known to produce a modified equilib-
rium scaling with a kinetic dominated dynamical critical
exponent. The latter phenomenon is only found in the
proximity of multi-critical points, where finite-range non-
local couplings become relevant and are known to lead to
a violation of the Kibble-Zurek result (Deng et al., 2009;
Divakaran et al., 2009; Dziarmaga, 2010).

At variance, the anisotropic Kitaev model with weak
long-range couplings in the α < β regime displays
the aforementioned kinetic dominated scaling already
at a second-order quantum critical point (Defenu et al.,
2019b). In particular, its dynamical phase diagram, de-
picted in Fig. 23(a) contains four different regions, two

of them (green and white in Fig. 23(a)) fulfil the Kibble-
Zurek prediction both with the nearest neighbours uni-
versal exponents (θ = 1/2 in the white region) or with
pairing dominated critical exponents (θ = (2β − 2)−1

green region in Fig. 23(a)). The conventional prediction
θ = zν/(1 + zν) cannot be applied to the two red re-
gions in Fig. 23(a), where α < β, to the point that in
the upper portion of the red region the nearest-neighbor
prediction for the dynamics θ = 1/2 remains valid deep
in the regime where the equilibrium universal behavior is
dominated by long-range interactions.

The absence of kinetic contributions to the critical dy-
namics only holds in the strict δ → 0 limit. So that non
universal corrections still carry a sizeable contribution to
the defect density from the power-law α as long δ <∼ 1 as
it is shown in Fig. 23(b), where a full numerical computa-
tion of the defect density for various points in the (α, β)
plane (reported in different colours and shapes, see the
legends in Fig. 23) is compared with the analytical pre-
diction in Eq. (120) (dashed lines). Such non-universal
corrections are rapidly washed out in the slow drive limit,
see Fig. 23(c), where the excitation probability at differ-
ent α but with the same β collapse on each other.

It is worth noting that the agreement between the an-
alytic prediction in Eq. (119) and the numerical result
shown in Fig. 23(b) is limited by the δ2 contributions to
the excitation probability, which, in turn, are generated
by the finite edge-points of the present dynamical pro-
tocol. Actually, for a slow linear quench in the infinite
interval t ∈ [−∞,∞] the result in Eq. (119) will remain
valid independently on the δ value. Yet, in the present
problem, a variation of h ∈ [−∞,+∞] will lead to the
crossing of two critical points and it will naturally lead
to more complications.

In summary, several diverse predictions exist for the
defect scaling after slow quenches in quantum many-body
systems. In particular, the finite-size scaling argument
in Eq. (118) and the traditional Kibble-Zurek result in
Eq. (117) remain consistent with each other and with the
exact solution for quadratic fermions, as long as zν = 1.
This last condition always holds for the fermionic system
described in Sec. IV.B, but this is not the case for the in-
teracting field theories described in Sec. IV.A, where the
dynamical critical exponent zν depends on the decay ex-
ponent, see Fig. 12. In particular, the mean-field approx-
imation produces the result zν = 1/2 for rotor models, in
agreement with the result observed in the LMG model,
which represents the α = 0 limit of such theories. In the
following, we are going to examine such extreme cases
in detail and show how the Kibble-Zurek mechanism is
modified by interactions in the strong long-range regime.
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Figure 23 Kibble-Zurek mechanism in long-range Kitaev chains. (a): the dynamical phase diagram reporting the
universal slow-dynamics exponents of the anisotropic Kitaev chain in the (α, β) plane. (b,c): numerical analysis of Eq. (119)
compared with the analytic formula in Eq. (120) for intermediate and small dynamical rates δ = 0.5, 0.05. Each line represents
a different value of β = 1.25, 1.50, 1.75,∞ from bottom to top at small k. Different values of α are displayed by different
symbols, see the legend in panel (b).

2. Lipkin-Meshkov-Glick model

In the following, the difficulty to reconcile the finite
size scaling prediction in Eq. (118) with the perturbative
result θ = dν/(1 + zν) (Polkovnikov, 2005) is exempli-
fied by the study of the flat interactions case α = 0
such as the LMG model, whose equilibrium behaviour
has been described in Sec. IV.G. Apart from its proto-
typical role, the interest in the LMG model is motivated
by the possibility to experimentally study slow dynamics
in this system thanks to cold atoms into cavity experi-
ments (Brennecke et al., 2013), in spin-1 ferromagnetic
BECs (Anquez et al., 2016; Hoang et al., 2016; Saito
et al., 2007; Xue et al., 2018) as well as to its relation
with the BCS model (Dusuel and Vidal, 2005b).

First numerical results on the scaling of the defect den-
sity after an adiabatic ramp crossing the quantum crit-
ical point of the LMG model could not be reproduced
by the Kibble-Zurek formula in Eq. (117), but they dis-
played qualitative agreement with the finite-size scaling
prediction in Eq. (118) (Caneva et al., 2008). Yet, more
intensive numerical studies unveiled a more complicated
landscape where the adiabatic crossing of the equilib-
rium quantum critical point does not display any ac-
tual Kibble-Zurek scaling, but rather a universal behav-
ior as a function of the scaled variable Λ = N δ (Acevedo
et al., 2014); while non-analytic corrections for the de-
fect scaling was found for quenches up to the critical
point (Hwang et al., 2015).

This scenario can be safely reconstructed by the study
of the effective critical theory depicted in Sec. IV.G.1.
However, since the effective harmonic theory, which de-
scribes the fully-connected problem at order 1/N , was

obtained at equilibrium, it is first convenient to gener-
alize the treatment to the dynamical case. Our goal is
to consider the LMG problem with time-dependent cou-
pling h(t), with the system initially prepared at equi-
librium at any initial time ti and, then, manipulated
across the quantum critical point. Thus, during the time
evolution, the average expectation value of the global
spin will change as the order parameter is modified by
the dynamics as soon as h(t) < hc. As a consequence,
the assumption of small quantum depletion of the clas-
sical equilibrium expectation 〈S〉, which is at the basis
of the Holstein-Primakov expansion in Eqs. (104), (105)
and (106), is dynamically disrupted by the macroscopic
change in the order parameter.

A simple solution to this difficulty is obtained by
considering a time-dependent classical expectation for
the Holstein-Primakov expansion via the time-dependent
spin-wave approximation introduced in Ref. (Rückriegel
et al., 2012). This solution strategy for the time-
dependent fully-connected problem has already been
employed to characterize the chaotic dynamical phase
which emerges upon the inclusion of additional nearest-
neighbor couplings on top of the LMG Hamilto-
nian (Lerose et al., 2018, 2019c).

At leading order 1/N this procedure effectively de-
couples the classical evolution of the order parameter
from the quantum fluctuations. Ramping the magnetic
field slowly across the critical point h(t) = hc − δ t
for t ∈ [−1/δ, 1/δ] is equivalent to dynamically modify
the frequency of both classical field and the quantum
fluctuations according to the equilibrium formulas (109)
and (102). In principle, an accurate description of the
ramp dynamics at finite δ would need the description of
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the back-action of the displacement of the classical ob-
servable from its equilibrium configuration into the dy-
namics of the quantum mode.

However, in the adiabatic limit δ → 0 we can em-
ploy the classical adiabatic theorem (Landau and Lif-
shitz, 1976) to conclude that the classical trajectory will
remain close to the instantaneous solution θ(t)−θeq ≈ δ2

and ϕ(t)−ϕeq ≈ δ2, where the equilibrium contributions
are ϕeq = 0 and θeq is given in Eq. (101). Yet, based
on the previous discussion, the classical δ2 correction is
going to be superseded by the one arising from quan-
tum fluctuations. Indeed, quantum fluctuations in the
LMG problem are effectively described by a single har-
monic mode adiabatically ramped across its fully degen-
erate quantum critical point.

Interestingly, none of the results on defect scaling, pre-
sented at the beginning of Sec.V.C, apply to the present
problem since the general result derived by dynami-
cal perturbation theory does not apply to Bose quasi-
particles (de Grandi and Polkovnikov, 2010). In fact, it
was first noticed by asymptotic expansion that a quasi-
static transformation of an harmonic oscillator with lin-
ear time scaling of its frequency across the fully degen-
erate point ω(t)2 ≈ (δt)2 produces non-adiabatic correc-
tions which do not vanish in the δ → 0 limit (Bachmann
et al., 2017). Clearly, this result does not directly apply
to the LMG case, since for a linear scaling of the control
parameter λ(t) = h(t)−hc = δt the dynamical frequency
for the spin wave model reads

ω(t)2 ≈ δ|t| (122)

at leading order in the small-time δ expansion. Based
on the conventional adiabatic argument ω̇(t) � ω(t)2

the faster the drive vanishes across the fully-degenerate
point, the stronger non-adiabatic effects shall be. Then,
one may in principle expect the linear drive in Eq. (122)
to be more adiabatic than the ∼ t2 case studied in
Ref. (Bachmann et al., 2017) and to present a different
non-adiabatic scaling.

In general, the characterization of slow dynamics for
different kinds of excitations and dynamical scaling is
very relevant to the problem of long-range interactions.
Indeed, we have already shown that the quantum long-
range Ising model in Eq. (60) varies as a function of α
from a critical point with Fermi quasi-particles (α > α∗)
to a purely bosonic effective field theory (α < 5

3d). In the
first case (α > α∗), the validity of the Kibble-Zurek ar-
gument follows from the derivation in Ref. (Dziarmaga,
2005), which generally applies to critical systems with
Fermi quasi-particles. In the intermediate case (α∗ >
α > 5

3d) non-analytic scaling ∼ δθ follow from the dy-
namical perturbation theory result in Ref. (Polkovnikov,
2005). However, this picture cannot be applied to
Bose quasi-particles, whose large occupation numbers
hinder the applicability of adiabatic perturbation the-
ory (de Grandi and Polkovnikov, 2010).

Then, the Kibble-Zurek scaling of mean-field systems,
such as the LMG, whose excitation spectrum is described
by free Bosons, needs a tailored framework to be un-
derstood (Defenu et al., 2018). In this perspective, it is
worth considering a single dynamically driven Harmonic
mode with Hamiltonian

H(t) =
1

2

(
p2 + ω(t)2x2

)
, (123)

which faithfully describes the dynamics in Eq. (96), when
adiabatic δ2 corrections coming from the classical dynam-
ics of the order parameter are neglected (Defenu et al.,
2018), see also Eq. (96).

For any time-dependent frequency a complete set of
time-dependent states ψn(x, t) can be constructed, whose
occupation is conserved by the dynamics (Lewis, 1967;
Lewis Jr., 1968; Lewis Jr. and Riesenfeld, 1969). In or-
der to determine the excitation density and the ground
state fidelity with respect to the instantaneous equilib-
rium solution of the problem, we define the adiabatic
basis ψad

n (x, t), which is obtained taking the conventional
time-independent Harmonic oscillator eigenstates and re-
placing the constant frequency with the time-dependent
one (Dabrowski and Dunne, 2016). Accordingly, one can
expand the exact time-dependent state in terms of the
adiabatic basis ψ(x, t) =

∑
cn(t)ψad

n (x, t), leading to the
excitation density nexc(t) =

∑
n∈2N n|cn|2, the adiabatic

ground-state fidelity f(t) = |c0|2 and the residual heat
Q(t) = ω(t)nexc(t) expressions.

According to the behaviour of these observables in the
adiabatic limit δ → 0 the dynamical evolution described
by Eq. (123) presents three regimes

1. Perturbative regime (Q ∼ δ2).

2. Kibble-Zurek regime (Q ∼ δ zν
1+zν , half-ramp).

3. Non-adiabatic regime (Q ∼ O(1), full ramp).

Regime (1) occurs for a finite minimal frequency at the
critical point limt→0 ω(t) = ω0 6= 0: there the adia-
batic perturbation theory result produces the analytic
δ2 corrections predicted by dynamical perturbation the-
ory. Regime (2) is realized in a dynamics terminat-
ing at the quantum critical point ω0 = 0, where non-
analytic corrections appear, which are encompassed by
the Kibble-Zurek argument. The actual crossing of the
quantum critical point only occurs in regime (3) and the
actual non-adiabatic regime, is realized, leading to rate-
independent corrections to the adiabatic observables, as
it will be seen in the following.

For a finite thermodynamic system, we expect the dy-
namical gap not to completely vanish at the critical point,
but to present a finite correction vanishing according to
finite size scaling t0 ≈ N−1/ν∗ , where ν∗ = 3/2 according
to Eq. (110). Then, the residual scaled frequency only
depends on the parameters combination Λ = Nδ and,
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Figure 24 We present the heat curves obtained respectively
via the effective model in Eq. (123) (upper panel) and via the
full numerical solution of the time-dependent LMG model in
Eq. (96) with time-dependent coupling J = hc−δ t performed
in Ref. (Acevedo et al., 2014) (lower panel). Each colour rep-
resents a different value of Λ = Nδ = 15, 3.75, 0.94 from top
to bottom withN = 29 andN = 211 (dashed and solid lines in
the upper panel). Both the heat and the time variables have
been rescaled following the notation of Ref. (Acevedo et al.,
2014). As expected, the curves at different sizes but same
Λ collapse both in the theory and in the exact simulations.
Moreover, the similarity between the theoretical model and
the numerics is remarkable. Despite the effective model in
Eq. (123) is just an effective model, which does not account
for the mean-field energy shift, it captures quantitative fea-
tures such as the initial smooth increase and the oscillations
of the residual energy. We thank the authors of Ref. (Acevedo
et al., 2014) for sharing the numerical data displayed in the
lower panel.

since the minimal scaled frequency reads ω̃2(0) ≈ Λ−2/3,
it follows that the thermodynamic limit (N → ∞) and
the adiabatic one (δ → 0) do not commute. Rather, the
same dynamical evolution for thermodynamical observ-
ables occurs for different sizes and drive rates as long as
the combination Λ remains fixed. The universal behavior
evidenced for the present harmonic effective model faith-
fully reproduces exact numerical computations. Indeed,
a comparison between the analytic and numerical anal-
yses of the LMG model is shown in Fig. 24 proving that
the “anomalous" scaling described in Ref. (Acevedo et al.,
2014) is perfectly justified by the effective model studied
here and introduced in Ref. (Defenu et al., 2018).

3. Structural transitions

Ion crystals and, in general, structural transitions oc-
curring in non-local systems with competing interactions
have first triggered the theoretical interest in the Kibble-
Zurek scaling of non-homogeneous systems (Chiara et al.,
2010; Del Campo et al., 2010; Zurek, 2009). In presence
of inhomogeneity, the critical point occurs at different
moments in the different regions of the system, restor-
ing adiabaticity for dynamical transition where critical
excitations propagate faster than the phase boundaries.
A straightforward enough argument to justify the pre-
vious picture is found by generalizing the scaling the-
ory outlined at the beginning of Sec.V.C to the non-
homogeneous case.

We consider a both spatial and time dependent control
parameter λ(x, t), such that the critical front occurs at
λ(x, t) ≈ 0, while in general one has

λ(x, t) = α(x− vpt) (124)

where vp > 0 is the velocity of the phase front. Locally,
the inhomogeneous control parameter in Eq. (124) resem-
bles the homogeneous case with ramp rate δ = α vp. Ac-
cordingly, all the locations of the systems where λ(x, t) <
0 already lie in the symmetry broken phase and, then,
they can communicate the orientation of the order pa-
rameter across the phase boundary at λ(x, t) ≈ 0 towards
the symmetric regions of the system where λ(x, t) > 0.
The maximal velocity v̂p at which this communication
occurs can be found via the relation v̂p = ξ̂/t̂. As long as
vp � v̂p inhomogeneity is not relevant, since the regions
on the opposite side of the phase front are effectively de-
coupled. On the contrary, defect formation is suppressed
for vp � v̂p due to the symmetry broken regions of the
system coordinating with the ones at λ(x, t) > 0.

Following the discussion above one can use the con-
ventional scaling relations for the homogeneous Kibble-
Zurek mechanism to obtain v̂p ∼ δ

(z−1)ν
zν+1 ∼ α

(z−1)ν
ν+1 ,

which, in turns, leads to the "critical" ramp rate

δ̂ ∼ α zν+1
1+ν . (125)

At rates δ � δ̂ the system effectively behaves as ho-
mogeneous and the traditional results for the excitations
density are retrieved, conversely in the slow drive limit
δ � δ̂ inhomogeneity becomes relevant and can alter
the universal Kibble-Zurek scaling. Accordingly, in the
homogeneous limit the critical rate vanishes limα→0 δ̂ =
0. Several examples of non-homogeneous Kibble-Zurek
mechanism can be found in the literature (Collura and
Karevski, 2010; Dziarmaga and Rams, 2010; Schaller,
2008; Zurek and Dorner, 2008).

Thanks to their tuneability(Lemmer et al., 2015),
trapped ion platforms played a crucial role both in the
theoretical and experimental investigations of defects for-
mation in the non-homogeneous realm (Lemmer et al.,
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2015; Schneider et al., 2012). By adiabatically altering
the trapping parameters, it is possible to drive the sys-
tem across the structural transition briefly outlined in
Sec. IV.F (Baltrusch et al., 2012). However, such a pro-
cedure will naturally generate localized defects in agree-
ment with the Kibble-Zurek theory (Schneider et al.,
2012). A similar phenomenology is also expected for
sudden quenches across the boundary of the structural
transition (Del Campo et al., 2010; Landa et al., 2010).
Moreover, the dynamics of local defects in Coulomb crys-
tals have been proposed to realize the Frenkel-Kontorova
model (Cormick and Morigi, 2012; Pruttivarasin et al.,
2011).

The experimental exploration of the quantum dynam-
ics and formation of kinks in Coulomb crystals (Pyka
et al., 2013; Ulm et al., 2013) has shown good agree-
ment with the theory expectation (Landa et al., 2010),
providing a flexible tool to investigate defect forma-
tion according to the inhomogenous Kibble-Zurek mech-
anism (Chiara et al., 2010; Del Campo et al., 2010).

4. Cavity systems

Quench experiments based on quantum gases in opti-
cal cavities (Baumann et al., 2011; Klinder et al., 2015b)
have also been interpreted within the framework of the
Kibble Zurek mechanism (del Campo and Zurek, 2014;
Kibble, 2001; Zurek, 1985). The global character of the
cavity-mediated interaction inhibits the formation of do-
mains and thus also of defects during the crossing of this
second-order phase transition. However, remnants of the
Kibble Zurek mechanism can be found in hysteretic be-
havior and the symmetry breaking itself.

In the case of a retarded cavity-mediated interaction,
i.e. where the cavity linewidth κ is comparable to the re-
coil frequency ωr, pronounced dynamical hysteresis has
been observed when crossing the self-organization phase
transition (Klinder et al., 2015b), see Fig. 25. The intra-
cavity light field, corresponding to the order parameter,
shows a hysteresis loop that encloses an area exhibiting a
power-law dependence upon the duration of the quench
across the phase transition. Real-time observation of the
intra-cavity field thus allows identifying at which cou-
pling strength the system effectively freezes its dynamics,
depending on the quench rate. A simple power-law model
allows to extract dynamical exponents zν. However, a
deeper interpretation would require a comprehensive ex-
tension of the concept of universality to driven-dissipative
systems (Klinder et al., 2015b; Sieberer et al., 2013). In
particular, it should be noted that these experimental
observations appear not to follow the theoretical predic-
tions outlined in Sec.V.C.2 and in Refs. (Acevedo et al.,
2014; Defenu et al., 2018) for isolated quantum systems.

In the limit of large cavity line width with respect
to the atomic recoil frequency (Baumann et al., 2011),

Figure 25 Dynamical critical behavior at the self-
organization phase transition. (A) Intracavity intensity
while the transverse pump lattice depth εp is ramped up (blue)
and down (red) in ramps of 1.5 ms, each. Below, momentum
spectra (1–5) are shown, recorded at increasing times during
the εp-ramp, indicated by the numbered arrows inA.BMean-
field calculation according to A neglecting collisional interac-
tions and assuming an infinite system. The points εp,1 and εp,2
indicate the upper and lower critical lattice depths. C Mean-
field calculations of εp,1 and εp,2 as a function of quench time,
resulting in exponents of (n1, n2) = (−0.57, 0.85) for power
law fits. D,E Experimentally determined dependence of the
upper and lower critical lattice depths on the quench time,
together with solid lines reproducing the power law depen-
dences of C. Figure reproduced from (Klinder et al., 2015b).

the hysteresis loop is vanishing (Klinder et al., 2015b),
but the effect of the quench rate can be observed in
the discrete symmetry breaking described in Sec. IV.G.3.
The finite size of the system naturally leads to a
small symmetry-breaking field, completely dominating
the symmetry-breaking process in the limit of adiabat-
ically crossing the phase transition. However, for a finite
quench rate, the approach to the phase transition can be
again divided into a quasi-adiabatic regime, where the
system follows the control parameter, and an impulse
regime, where the system is effectively frozen. For in-
creasing quench rates of the transverse pump power, the
coupling strength separating these two regimes is decreas-
ing, as captured by Zurek’s equation (Zurek et al., 2005)
|ζ̇/ζ| = ∆/~, with ζ = (Λc − Λ)/Λc describing the dis-
tance to the critical point (see also Section II.B.3) and
the energy gap between ground and first excited state
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∆ = ~ω0

√
1− Λ2/Λ2

c . Accordingly, in the experiments,
the symmetry breaking for large quench rates becomes
dominated by (quantum) fluctuations and increasingly
independent of the symmetry breaking field. Quantita-
tive agreement of the observations with the model was
found (Baumann et al., 2011).

D. Dynamical Phase Transitions

One of the most relevant scaling phenomena in the far
out-of-equilibrium realm is provided by dynamical phase
transitions (Mori et al., 2018; Zvyagin, 2016). In par-
ticular, after the sudden quench of a control parameter
dynamical phase transitions may be classified into two
main families. The first family displays a (possibly local)
order parameter A(t), whose long-time Cesaro’s average
Ā, defined according to Eq. (112), characterises different
steady states (Eckstein and Kollar, 2008; Eckstein et al.,
2009; Halimeh et al., 2017; Lang et al., 2018; Moeckel and
Kehrein, 2008; Sciolla and Biroli, 2010). While this phe-
nomenon is naturally observed for quenches across equi-
librium symmetry breaking transitions, diverse dynam-
ical phases may also arise in quantum systems, which
do not possess any finite-temperature phase transition.
There, following a sudden quench, the order parame-
ter A(t) always equilibrates to its normal phase expec-
tation in the long time limit (Ā = 0 for ferromagnetic
systems), but the dynamical phase transition can be ob-
served in a sudden change in the scaling approach to equi-
librium (Altman and Auerbach, 2002; Barmettler et al.,
2009; Heyl, 2014; Lang et al., 2018).

Experimental evidence of this first kind of dynamical
transitions has been found in a linear chain of trapped
171Yb+ ion spins stored in a Paul trap (Zhang et al.,
2017b). The system was initialized in the ferromagnetic
product state |ψ0〉 = |↓↓↓ ... ↓〉x and, then, evolved ac-
cording to the long-range Ising Hamiltonian in Eq. (60).
The dynamical quantum phase transition occurs when
the ratio h/J0 ∼ 1, where J0 is the strength of long-
range interactions (Vr ∝ J0/r

α) and the order parame-
ter changes abruptly from ferromagnetic to paramagnetic
order. The observation of the dynamical transition has
been obtained by measuring the late time average of the
two-body correlator defined as:

C2 =
1

N2

∑

ij

〈σxi σxj 〉, (126)

after the quantum quench.
The measured late time correlator C2 features a "dip"

at the critical point that sharpens scaling up the sys-
tem size N up to 53 171Yb+ qubits, as shown in Fig.
26(c). Additional evidence of the occurrence of the dy-
namical phase transition can be also observed in higher-
order correlations, such as the distribution of domain
sizes throughout the entire chain, shown in Fig. 26(d).

The occurrence of the dynamical phase transition is ob-
served in the decreased probabilities of observing long
strings of aligned ions at the critical point h/J0 ∼ 1. This
is shown by measuring the mean largest domain size as
a function of the transverse field strength, for late times
and repeated experimental shots, which feature a sharp
transition at the critical point. Another recent experi-
mental realization of dynamical phase transitions within
the LMG model was reported in Ref. (Muniz et al., 2020).
The experiment was performed with large ensembles of
88Sr atoms in an optical cavity where magnetic interac-
tions can be accurately tuned (Norcia et al., 2018) and
reports the observation of distinct dynamical phases of
matter in this system. A similar setup has been proposed
also for the observation of dynamical phases of the cele-
brated BCS model in superconductivity as a function of
system parameters and the prepared initial states (Lewis-
Swan et al., 2021).

The second family of dynamical phase transitions fea-
tures periodic non analyticities in the Loschmidt re-
turn rate (Heyl et al., 2013). It is convenient to define
the return probability to the initial state |ψ0〉 after a
quantum quench under the Hamiltonian H as G(t) =
〈ψ0| e−iHt |ψ0〉. This quantity exhibits non-analycities
that are formally analogous to the ones of the partition
function of the corresponding equilibrium system, defined
as Z = Tr(e−H/kBT ) (Heyl et al., 2013). Along this anal-
ogy, the complex counterpart of the thermodynamic free
energy density f = −N−1kBT log(Z) is the rate func-
tion λ(t) = −N−1 log[G(t)]. This quantity, in the ther-
modynamic limit, exhibits dynamical real-time nonana-
lyticities that play an analogous role as the non-analytic
behavior of the free energy density of a thermodynamic
system at equilibrium.

As a consequence of the above statements, the non-
analyticities in the return rate signal the occurrence of
dynamical quantum phase transitions at certain critical
evolution times after the sudden quench. These phenom-
ena recently generated a high degree of interest both from
the theoretical (Heyl, 2018; Mori et al., 2018) and experi-
mental physics communities (Fläschner et al., 2018a; Ju-
rcevic et al., 2017). The first theoretical description of
dynamical phase transitions in the return rates has been
shown in the case of the nearest-neighbor transverse-field
Ising chain. There, non-analytic cusps in the return rate
could be only observed after a sudden quench across
the equilibrium critical point. It was shown by several
subsequent examples that dynamical crossing an equi-
librium phase boundary may not produce the aforemen-
tioned cusps in the return rates while sudden quenches
within the same phase may produce type-II dynamical
phase transitions (Andraschko and Sirker, 2014; Vajna
and Dóra, 2014).

Therefore, the dynamical critical point for the appear-
ance of type-II dynamical phase transitions does not need
to coincide with the quantum critical point of the system
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Figure 26 Dynamical phase transitions: Type I (a-b) and type II (c-d). (a) Measured rate function λ for three different
system sizes at h/J0 ≈ 2.38, with τ = th being the dimensionless time. The kinks in the evolution become sharper for
larger N . Here the rate function is defined based on the return probability to the ground state manifold, namely λ(t) =
N−1 log(P|ψ0〉 + P|−ψ0〉), where |−ψ0〉 = |↑↑↑ · · · ↑〉x. (b) Comparison between rate function λ(t) and magnetization evolution
mx(t). The inversion of the magnetization sign corresponds to the nonanalyticity of the rate function λ(t). Solid lines are
exact numerical predictions based on experimental parameters (h/J0 = 2). Adapted from Ref. (Jurcevic et al., 2017). (c)
Long-time averaged values of the two-body correlations C2, for different numbers of spins in the chain. Solid lines in are exact
numerical solutions to the Schrödinger equation, and the shaded regions take into account uncertainties from experimental
Stark shift calibration errors. Dashed lines in for N = 12, 16 are calculations using a canonical (thermal) ensemble with an
effective temperature corresponding to the initial energy density. (d) Domain statistics and reconstructed single-shot images
of 53 spins. Top and bottom: reconstructed images based on binary detection of spin state. The top image shows a chain of 53
ions in bright spin states. The other three images show 53 ions in combinations of bright and dark spin states. Center: statistics
of the sizes of domains for three different values of h/J0, plotted on a logarithmic scale. Dashed lines are fit to exponential
functions, which could be expected for an infinite-temperature thermal state. Long tails of deviations are clearly visible and
vary depending on h/J0. Right: mean of the largest domain sizes in every single experimental shot. Dashed lines represent a
piecewise linear fit, used to extract the transition point. The green, yellow, and red data points correspond to the transverse
fields shown in the domain statistics data on the left-center figure. Adapted from Ref. (Zhang et al., 2017b).

at equilibrium. Further proof of this distinction comes
from the strong dependence of the dynamical critical
point on the initial state of the system (Halimeh et al.,
2017; Lang et al., 2018). In this perspective, long-range
interactions have been shown to produce several addi-
tional dynamical phases with respect to the simple near-
est neighbors case (Defenu et al., 2019a; Halimeh and
Zauner-Stauber, 2017; Homrighausen et al., 2017; Uhrich
et al., 2020). It is, thus, not surprising that the first ob-
servation of type-II dynamical phase transitions has been
detected in a trapped ion simulation of the long-range
Ising Hamiltonian in Eq. (60).

The simulation was performed with a linear chain of
trapped 40Ca+ ion spins (Jurcevic et al., 2017). The sys-
tem is prepared in the classical eigenstate which mini-
mizes the ferromagnetic interactions |ψ0〉 = |↓↓↓ ... ↓〉x,
then a finite transverse field is suddenly switched on
(quenched), such that the Hamiltonian in Eq. (60) lies in
the h > J0, with J0 being the average nearest-neighbor
spin-spin coupling. Fig. 26(a) displays the return rate
λ, which exhibits clear non-analyticities at the critical
times tc. As expected, the Löschmidt echo cusps also
correspond with the zero crossings of the order parame-

ter at the critical times tc, see Fig. 26(b).
The correspondence between the zero crossings of the

order parameter and the cusps of the return rate λ(t)
is not the only relation between the two families of dy-
namical phase transitions. Indeed, the dynamical critical
points for type-I and type-II transitions were shown to co-
incide (Halimeh et al., 2017; Žunkovič et al., 2018). More
in general, the fundamental relations between thermo-
dynamic equilibrium phases and their dynamical coun-
terparts has been extensively explored not only in terms
of order parameters (Ajisaka et al., 2014; Heyl, 2018; Ti-
tum et al., 2019; Žunkovič et al., 2018), but also with re-
spect to scaling and universality (Heyl, 2015), discrete or
continuous symmetry breaking (Huang et al., 2019; Wei-
dinger et al., 2017; Žunkovič et al., 2016) and nature of
the quasi-particles (Syed et al., 2021).

Free-fermionic systems, described by the Kitaev
Hamiltonians studied in Sec. IV.B, played a prominent
role both in the experimental and theoretical study of
dynamical phase transitions. Indeed, despite the absence
of a local order parameter in the equilibrium topological
phase transition of the Kitaev chain, dynamical phase
transitions also occur in these models (Bhattacharya and
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Dutta, 2017a,b; Budich and Heyl, 2016; Vajna and Dóra,
2015), where they have been also experimentally ob-
served (Fläschner et al., 2018b). The possibility of an-
alytically solving free-fermionic models also in presence
of long-range hopping or pairing produced a comprehen-
sive understanding of how additional dynamical phases
can be influenced by corrections to scaling in the spec-
trum as well as its relation with the results for the Ising
model (Defenu et al., 2019a). Despite the absence of any
local order parameter in free-fermi systems, a relation
between the occurrence of cusps in the Loschmidt echo
and the zero crossings of the (non-local) string order pa-
rameter (Uhrich et al., 2020)

Despite its close relation to the Kitaev chain, see
Sec. IV.B.3, the long-range Ising model presents a more
complex phenomenology with respect to the Kitaev
chain. This occurrence is related to the appearance
of domain-wall confinement due to long-range interac-
tions in the Ising model (Liu et al., 2019), these con-
fined excitations behave like Stark-localized particles in
an effective confining potential (Lerose et al., 2020), see
also the next section. This domain-wall coupling was
found to be the reason for the appearance of anoma-
lous cusps in quantum quenches at sufficiently small
transverse-field strengths (Halimeh et al., 2020; Halimeh
and Zauner-Stauber, 2017), while the absence of quasi-
particles coupling in the Kitaev chain disrupts the
anomalous phase (Defenu et al., 2019a).

Critical quenches, where the post-quench Hamiltonian
is critical are known to yield long-time universal scaling
behavior following the mechanism of aging (Chiocchetta
et al., 2017). These kinds of phenomena are strongly
influenced by long-range interactions as studied in (Hal-
imeh and Maghrebi, 2021). In particular, in the LMG
model, depending on the type of quench, three behaviors
where both the short-time dynamics and the stationary
state at long times are effectively thermal, quantum, and
genuinely non-equilibrium were identified. Each station-
ary state is characterized by distinct universality classes
and static and dynamical critical exponents (Titum and
Maghrebi, 2020).

E. Confinement

As previously shown in section V.B, long-range inter-
actions can give rise to the fast-spreading of correlations.
However, focusing on trapped ions systems in this section
we will review a different regime in which long-range in-
teractions allow the observation of confinement.

In general, spin models can be engineered to exhibit
confinement of correlations and meson production. Ref.
(Kormos et al., 2017), studied the case of a global quench
with the nearest-neighbor Ising Hamiltonian

H = −J
∑

i

σxi σ
x
i+1 + hz

∑
σzi + hx

∑
σxi (127)

with both transverse hz and longitudinal field hx. In
this case, the dynamics produces confinement of quasi-
particles and magnetization oscillations with frequencies
related to the mass/energy differences between the bound
states most involved in the dynamics. In this setting,
the quasiparticle excitation is mapped to domain walls
whose separation is energetically suppressed by the lon-
gitudinal field, which causes the appearance of a ladder
of discrete meson states in the low-energy spectrum of
the system (James et al., 2019). Remarkably, after a
quantum quench in this system, both correlation spread-
ing and energy flow (Mazza et al., 2019) are suppressed,
even if the system is non-integrable and non-disordered.

A similar phenomenology can be also observed in long-
range spin systems described by Hamiltonian (60), as the-
orized in Ref. (Liu et al., 2019) for low energy states and
α < 3 [see Figs. 27(b)-(c)] and in Ref. (Lerose et al.,
2019b) for highly excited states for α < 2 [see Fig. 27(d)].
Interestingly, the confining potential induced by the long-
range tail of the interaction on the domain walls acts, to
a first approximation, as an effective longitudinal field
that constrains the evolution of the spin excitations, see
Fig. 27(a). Therefore, in the regime in which the trans-
verse field hz is smaller than the spin-spin interaction
J0, long-range interactions cause a phenomenology anal-
ogous to the one found in the Hamiltonian in Eq. (127):
the presence of bounds states results in the slow spread
of correlations and magnetization oscillations.

The latter has been observed experimentally for a chain
of up to 38 ions (Tan et al., 2021), showing a mass scaling
in agreement with theory in the low energy part of the
spectrum. In the same work, a smaller chain of 11 ions
was used to probe the first few bound states by preparing
different initial product states and measuring the mag-
netization 〈σzi (t)〉 at the center of the chain (for 0 initial
domain walls) or next to the boundaries of the initial
domain (for 2 initial domain walls). The initial states
have been chosen to maximize the matrix elements of
the magnetization between the prepared state i and the
adjacent higher-energy bound state i+ 1, allowing to ex-
tract the energy gap between these two states, see Fig.
27(d). Similarly, the slow spread of correlations has been
observed by measuring two-body correlations of the cen-
tral spin with the rest of the system, resulting in a much
slower correlation spread compared to the nearest neigh-
bor Ising chain, see Fig. 27(e).

The possibility to engineer mesons in long-range in-
teracting spin systems has sparked an increasing body
of theoretical works on the existence of string breaking
in a specific range of parameters (Verdel et al., 2020) and
mesons collisions (Karpov et al., 2020; Surace and Lerose,
2021).
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Figure 27 Confinement in long-range spin systems (a) Magnetic domain walls in Ising spin chains can experience an
effective confining potential that increases with distance, analogously to the strong nuclear force. This potential results in
meson-like domain wall bound states (labeled E1 to E3) that influence the post-quench dynamics. Adapted from Ref. (Tan
et al., 2021). (b) Magnetization oscillation 〈σz(t)〉 (black line) versus time after quenching to α = 2.3, Bz = 0.27J0, for N = 20.
The dashed green lines show the magnetization for the TFIM with nearest neighbor interactions only. Numerical calculations
adapted from Ref. (Liu et al., 2019). (c) Left: Confinement of correlation in long-range system for α = 2.3 starting from the
polarized state |↓↓ . . . ↓〉, adapted from Ref. (Liu et al., 2019). Right: Confinement of correlation in long-range system for
α = 1.25 starting from the highly excited state |↓↓ . . . ↓↑↑ . . . ↑〉, adapted from Ref. (Lerose et al., 2019b). (d) Magnetization
oscillations (α ∼ 1.1) starting from low energy product states to probe the first three mesons’ masses. Adapted from Ref.
(Tan et al., 2021). (e) Confinement dynamics at Bz/J0 ≈ 0.75, L = 11, α ∼ 1.1). The top row shows the absolute value of
experimental center-connected correlations |Cxi,6(t)| averaged over 2000 experiments. The middle row shows |Cxi,6(t)| calculated
by solving the Schrödinger equation. Dashed white lines show correlation propagation bounds (light cones) in the limit α→∞
(nearest-neighbor interactions). The bottom row shows measured individual-spin magnetizations along their initialization axes,
〈σzi (t)〉, averaged over 2000 experiments. Symbols represent magnetization data and solid colored curves represent theoretical
magnetizations calculated by solving the Schrödinger equation. Purple (green) dashed lines represent thermal expectation
values calculated from a canonical (microcanonical) ensemble averaged over the three displayed spins. Adapted from Ref. (Tan
et al., 2021).

F. Other dynamical phenomena

1. Many-body localization

Long-range interacting quantum systems have been
explored also in different settings, including disordered
fields or interactions or in a Floquet setting, where the
system is subjected to a periodic drive. In presence of
disorder, long-range interacting quantum systems can
exhibit many-body localization (MBL), where the sys-
tem fails to thermalize at long times owing to the exis-
tence of an extensive set of quasi-local integrals of mo-
tion (Abanin et al., 2019; Nandkishore and Huse, 2015).
However, sufficiently long-range interactions can destroy
many-body localization as shown in (Pino, 2014; Yao
et al., 2014). In this perspective, as it occurred for the
XXZ model in Secs. IV.C and IV.D, it is important to dif-
ferentiate between the case of long-range exchange cou-
plings, i.e. hopping terms in the Hubbard model rep-
resentation, and long-range density-density interactions,
i.e. Ising interactions in the spin formalism.

In particular, for long-range hopping terms, analyti-
cal arguments have been used to predict the boundary
α < 3d/2 (Burin, 2015a) as a condition for delocal-
ization in long-range spin systems governed by an XY
Hamiltonian, while in the case of long-range Ising in-
teractions, the boundary value has been found to be
α∗ = 2d (Burin, 2015b). Within this framework, the re-
laxation rates of local excitations in dipolar disordered
systems have been studied in two and three dimensions in
Ref. (Nandkishore and Gopalakrishnan, 2021) as a func-
tion of frequency and temperature. Again, in the case
of a long-range spin exchange, Ref. (Safavi-Naini et al.,
2019a) shows numerical evidence that an XY model is
delocalized for α < 1 in one dimension, in contrast with
the α∗ = 1.5 result of Ref. (Burin, 2015a). This different
prediction might be due to how dominant finite size ef-
fects are for system sizes that can be simulated exactly.
In this respect, (Maksymov and Burin, 2020) studied the
scaling with the size of critical disorder for α < 3/2d.
(Nandkishore and Sondhi, 2017) use bosonization argu-
ments to show that MBL can arise in one-dimensional
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systems with ∼ r interactions and speculate that MBL
can be observed in two-dimensional systems with log(r)
interactions, and in three-dimensional systems with 1/r
interactions. Interestingly, MBL has been predicted with
mean-field analysis (Roy and Logan, 2019) on the disor-
dered XXZ model with different power-law exponents for
β < 1/2 and β < α, where α is the decay exponent long-
range exchange couplings and β the one of long-range
Ising interactions. MBL has also been found numerically
in all-to-all systems (Sierant et al., 2019) and fermionic
system with long-range hopping (Nag and Garg, 2019).

An important feature of MBL in the presence of long-
range density-density interactions is algebraic localiza-
tion of the quasi-local integrals of motion (LIOMs) which
characterize the MBL phase (De Tomasi, 2019; Pino,
2014). Conversely, in short-range interacting systems,
LIOMs are exponentially localized and entanglement en-
tropy grows logarithmically. However, since in MBL
long-range systems LIOMs are algebraically localized one
expects that entanglement entropy grows polynomially
(Safavi-Naini et al., 2019b). In particular, (Deng et al.,
2020) showed that in a variety of models (XY, XXZ, and
Extended Hubbard Model) with power-law interactions
there is a universal power-law growth of the entanglement
entropy at the MBL transition. Experimental signatures
of many-body localization in long-range systems, such as
memory of the initial states (Smith et al., 2016) confirmed
numerically by Ref. (Wu and Das Sarma, 2016), and slow
growth of the second-order Renyi entropy (Brydges et al.,
2019), have been observed in trapped ion chains up to 20
qubits.

More recently, disorder-free, "stark" MBL (van
Nieuwenburg et al., 2019; Schulz et al., 2019) has been
predicted to be more resilient than “standard” MBL
to long-range exchange couplings (Bhakuni and Sharma,
2020). This phenomenon has been later connected
to the Hilbert space shattering caused by conservation
laws (Khemani et al., 2020; Moudgalya et al., 2021). Sig-
natures of this type of disorder-free MBL have been ob-
served in a trapped-ion chain of up to 25 qubits with
long-range interactions decaying with α ∼ 1.3 and a
strong effective magnetic field gradient (Morong et al.,
2021). As mentioned in section II.A.1, a large mag-
netic field makes the Ising model an effective XY model
with long-range exchange couplings, and, in this case,
the LIOMs are given by the Wannier-Stark states. Con-
versely, in the case of long-range density-density inter-
actions, one expects Hilbert-space fragmentation, which
was also studied in short-range interacting disordered
spinless fermions (Bar Lev et al., 2015; De Tomasi et al.,
2019). In particular, in Hubbard models with polar in-
teractions and nearest-neighbor hoppings (Li et al., 2021)
the power-law tail plays a crucial role because it induces
Hilbert-space shattering and MBL-like localization in ab-
sence of any disorder, even for moderate ratios of the po-
lar interactions versus hopping. This is not the case of

models with both nearest-neighbor hopping and density-
density interactions, where Hilbert-space fragmentation
does not lead to disorder-free MBL (De Tomasi et al.,
2019).

2. Periodic drive

Quantum many-body systems with both disorder and
interactions have been recently used to observe new
phases of matter in periodically driven (Floquet) systems
(Else et al., 2016; von Keyserlingk et al., 2016; Khemani
et al., 2016; Yao and Nayak, 2018) in which discrete-time
translational symmetry is spontaneously broken. The ob-
servation of time-crystalline behavior has been achieved
in a periodically driven 1D trapped ion chain with on-
site static disorder (Zhang et al., 2017a) and a 3D dis-
ordered sample of NV-centers with dipolar interaction
(Choi et al., 2017). However, it has been later shown
numerically (Khemani et al., 2019) that both realiza-
tions did not realize a genuine discrete time crystal where
MBL prevents the system to heat to infinite tempera-
ture, but rather a pre-thermal (trapped ions) and critical
(NV-centers) time crystal. Recently, genuine MBL time
crystals have been realized in systems with disordered
interactions in a system of 9 13C nuclear spins coupled
to a single NV center (Randall et al., 2021) and in the
Google quantum computer (Mi et al., 2022) using 20 su-
perconducting qubits with fully programmable interac-
tions. In the same spirit, quasi-periodic Floquet drives
have been predicted (Friedman et al., 2022) to realize
an emergent dynamical symmetry-protected topological
phase (EDSPT) that has been experimentally realized
with 10 atomic ions in Ref. (Dumitrescu et al., 2021).

Long-range interactions do play a special role in the
case of pre-thermal discrete time crystals, where the tem-
poral and spatial long-range order is exhibited only for
low energy initial states (Machado et al., 2020). The pre-
thermal discrete time crystal has been observed and char-
acterized experimentally in a trapped ions chain of up
to 25 spins (Kyprianidis et al., 2021). Limit cycles and
time crystalline behavior has been predicted and experi-
mentally observed also in periodically driven many-body
cavity QED systems (Cosme et al., 2018; Georges et al.,
2021; Keßler et al., 2019, 2020). In addition, even without
providing a time-dependent external drive, many-body
cavity QED systems can feature non-stationary periodi-
cally evolving states that emerge due to the competition
between dissipative and coherent processes in long-range
interacting systems, as has been recently experimentally
observed (Dogra et al., 2019) and theoretically analyzed
(Buča and Jaksch, 2019; Chiacchio and Nunnenkamp,
2019).

Time crystals and, in general, Floquet dynamics has
been also found to be a source of dynamical phase transi-
tion (Kosior and Sacha, 2018; Yang et al., 2019). Indeed,
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novel dynamical transitions can be engineered by periodic
driving. In the particular case of the long-range Ising
model, the periodic drive can stabilize phases, dubbed
Kapitza phases, with magnetic ordering without an equi-
librium counterpart (Lerose et al., 2019a). Moreover, in
the study of the quantum Ising chain, long-range inter-
actions have been shown to induce a huge variety of dif-
ferent "higher-order" discrete time crystal phases, where
the periodicity of the response is a multiple nT of the
external drive period T (Collura et al., 2021; Giachetti
et al., 2022; Pizzi et al., 2021). It is worth noting that a
similar structure of the time-crystal phases has been also
predicted to occur in periodically driven BCS supercon-
ductors (Ojeda Collado et al., 2021).

VI. CONCLUSION AND OUTLOOK

In this paper, we have reviewed the main atomic,
molecular and optical (AMO) systems in which long-
range interactions are naturally present, and we have
also emphasized the fact that in many of such systems
the range of the interaction can be controlled and var-
ied giving rise to tunable values of α. This can be seen
in the spirit of quantum simulations, where one has a
high degree of control over the system and on its crucial
properties.

We have discussed in the main text most of the quan-
tum models that it is possible to currently simulate,
focusing in particular on lattice and spin models. A va-
riety of spin models such as quantum Ising, XX, and
XXZ models (and their variants) with tunable long-range
interactions can be implemented. These spin models
alongside bosonic and fermionic models with long-range
density-density interactions provide an ample arena of
models in which the long-rangedness of the interactions
plays a key role. If remarkable progress has been done
in the simulations of quantum long-range lattice models,
many more models have yet to find their way, such as
bosonic and fermionic models with long-range hopping (a
task presently hard to be implemented) and long-range
multi-body and multi-spin terms (Andrade et al., 2021).

In particular, in experimental AMO systems, the main
challenges are centered on gaining more tunability of
the spin-spin interactions through individual atom con-
trol. For example, trapped-ion systems are routinely
used as quantum computing platforms (Bruzewicz et al.,
2019; Pino et al., 2021; Wright et al., 2019) where in-
dividual qubit control and detection are necessary in-
gredients to exploit the long-range connectivity of pair-
wise quantum logic gate operations. Leveraging on the
same technological advances, trapped-ion simulators are
posed to explore a wider range of physical models where
long-range interactions and high connectivity play cru-
cial roles, ranging from high energy physics (Martinez
et al., 2016; Muschik et al., 2017), spin-boson mod-

els (Gorman et al., 2018; Safavi-Naini et al., 2018), to
quantum glasses (Rademaker and Abanin, 2020).

Also, many-body cavity QED systems have just
demonstrated the first results on tuning the interaction
range. In the next step, the resulting many-body phases,
phase transition, and associated phenomena including
the Brazovskii transition, glassiness, or frustration have
to be explored. Having these tunable range interactions
compete with short-range collisional interactions will al-
low to enter strongly correlated regimes and to explore
the rich universe of extended Hubbard models.

Long-range couplings induce a dispersion relation ∝ kσ
as opposed to the standard relation ∝ k2 in short-range
systems. Given this nature of the dispersion relation
in long-range systems, one can expect – and find in
some cases with microscopic calculations – that the ef-
fective low-energy model features fractional derivatives
(or fractional Laplacians) altering the scaling of the ob-
servables in the system. While this modified scaling is –
at least partially – understood for O(N ) systems (Defenu
et al., 2020), its counterpart in interacting lattice systems
remains to be thoroughly investigated (Botzung et al.,
2021; Ferraretto and Salasnich, 2019; Iglói et al., 2018;
Lepori et al., 2016).

Interestingly, relevant non-analytic momentum terms
in quantum long-range models induce an universal be-
havior which effectively corresponds to the one of a
classical model in the fractional d + z dimension, with
z < 1 (Defenu et al., 2017b). For this reason, the spatial
dimensionality does not appear to play a crucial role in
long-range systems as it does in the local case, since long-
range couplings alter the spectral dimension of the bare
theory (Leuzzi et al., 2008a; Millán et al., 2021). A simi-
lar effect may be also expected in the strong long-range
regime, where the spectral dimension is not defined, but
the spectral properties are still expected to rule the uni-
versal behaviour both at and out of equilibrium. Nev-
ertheless, the connection between those spectral proper-
ties and universal aspects of celebrated phenomena such
as ensemble in-equivalence, negative specific heats and
quasi-stationary states largely remain to be explored and
exploited (Defenu, 2021; Kastner, 2010).

Several recent results not fully established in the long-
range literature have not been discussed in details. The
choice of topics has been motivated by the goal to advo-
cate for the inclusion of long-range physics, and quantum
long-range systems in particular, in university-taught
courses. The (not exhaustive) list of topics we did not dis-
cuss includes the well established interplay between long-
range couplings and disorder (Katzgraber et al., 2009;
Kotliar et al., 1983; Leuzzi et al., 2008b), recently stud-
ied in the perspective of long-range interactions (Millán
et al., 2021). Also, the presence of long-range correlated
noise in quantum computing devices (Aharonov et al.,
2006), has been reconsidered in the context of studies
on long-range systems (Biella et al., 2013; Chávez et al.,
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2019; Seetharam et al., 2022). Finally, examples of quan-
tum circuits, where long-range couplings or disorder gen-
erate peculiar scaling of entanglement (Block et al., 2022;
Minato et al., 2022; Xu, 2022), promising to induce fur-
ther excitement on applications of long-range interac-
tions, were not substantially covered in our review. Nev-
ertheless, a careful reading of the previous papers shows
that the information provided in the present work should
put the interested reader in condition to fully understand
the phenomena typically discussed in such recent areas
of research.

The analysis of the different systems presented in this
review ultimately shows then that long-range interactions
provide an "ingredient" that we can control and use for
different purposes. On the one hand, they can be ex-
ploited to control the stationary states and the thermal-
ization properties. On the other hand, they may affect
the phase diagram and the universality properties. Ad-
ditionally, they can be a resource in the quantum control
of the system, providing a useful knob to control the dy-
namics and the implementation of quantum information
tasks, where they can be used to improve the efficiency of
control gates and the unitary dynamics needed to modify
in the desired way the quantum state of the system.

Long-range properties can be also exploited in typi-
cal quantum simulations contexts, as highlighted in the
simulation of dynamical gauge field theory with AMO
systems (Bañuls et al., 2020; Davoudi et al., 2020, 2021),
where a suitably tailored long-range interactions can be
used to simulate the effect of dynamical gauge fields.
Similarly, they can play a role in the study of quantum
devices and the thermodynamic aspects of quantum reg-
isters.

The study of the possible uses of long-range interac-
tions in quantum simulators and devices is only at the
beginning and it will benefit from (and motivate in turn)
progress in systems in which the long-range nature of
the interactions can be controlled, as in the mode con-
trol of long-range interactions with trapped ions. Sev-
eral systems in which long-range interactions may play a
crucial role remain to be fully investigated, such as ul-
tracold fermionic gases with long-range interactions. We
envision a significant interplay between the study of new
equilibrium phases and dynamical regimes in quantum
long-range systems and the focused embodiment of sys-
tems with long-range coupling in quantum devices and
simulators. We hope that the present review may trig-
ger such combined studies to fully exploit the richness of
quantum long-range systems.
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