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Introduction

The classical Cahn — Hilliard equation and the so-called viscous Cahn — Hilliard
equation can be written as

Oy—Aw=0 and w=710y—Ay+B(y)+7n(y)—g inQx(0,7), (0.1)

according to the case 7 = 0 or 7 > 0, respectively. Here, Q C R3 stands for the bounded
smooth domain where the evolution takes place and T" denotes some final time.

The set of Cahn — Hilliard equations (0.1) provide a description of the evolution
phenomena related to solid-solid phase separations. We refer to, in chronological order, [1-
5| for some pioneering contributions on these models and problems. In general, an evolution
process goes on diffusively. However, the process of the solid-solid phase separation does
not seem to comply with this structure: more precisely, each phase concentrates and the so-
called spinodal decomposition occurs. A comparative discussion on the modelling approach
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for phase separation, spinodal decomposition and mobility of atoms between cells can be
found in [6-10]).

About the variables appearing in (0.1), y denotes the order parameter and w represents
the chemical potential. Moreover, S and m are the derivatives of the convex part B and
of the concave perturbation 7 of a double-well potential f := B + 7, and ¢ is a source
term. Important examples of f are the everywhere defined regular potential f,., and the
logarithmic double-well potential fi,, given by

Fregr) = i(ﬁ ~1)?, reR, 0.2)
fiog(r) = (1 +7r)In(1+7)+ (1 —7r)In(l—7) —cr®, re(=1,1), (0.3)

where ¢ > 0 in (0.3) is large enough in order that fi,, be nonconvex. Another important
example refers to the so-called double-obstacle problem and corresponds to the nonsmooth
potential fiops : R — (—00, +00] specified by

fdobs(r) - I[—l,l] (T> - CTQ, reR (04)
with ¢ > 0 and where the indicator function of the interval [—1, 1] fulfills
ILig(r)=0 ifre[-1,1] and I_1y(r) =+oo otherwise. (0.5)

In this case, (3 is no longer a derivative, but it represents the subdifferential d1;_; jj of the
indicator function of the interval [—1, 1], that is,

<0 if r=-1,
s€dl_1y(r) ifandonlyif s =0 if —1<r<l, (0.6)
>0 if r=1.

We are interested in the coupling of (0.1) with the usual no-flux condition for the chemical

potential
Opw =0 (0.7)

and with the dynamic boundary condition

Ony + Owyr — Aryr + Br(yr) + 7r(yr) = gr (0.8)
on ¥ :=1"x(0,7), where
e yr denotes the trace y on the boundary ;
e —Ar stands for the Laplace — Beltrami operator on I';

e [(r and 7r are nonlinearities playing the same role as § and 7 but now acting on the
boundary value of the order parameter;

e finally, gr is a boundary source term with no relation with g acting on the bulk.

We aim to point out that the corresponding initial-boundary value problem

Oy—Aw=0 in Q:=Qx(0,7T), (0.9)
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w=710y—Ay+ f'(y)—g in Q, (0.10)

Opyw=0 on X, (0.11)

yr =Yy and Iy + Oyr — Aryr + fr(yr) =gr on X, (0.12)
y(0) =y in Q, (0.13)

has been first addressed in [11]. Actually, the Cahn — Hilliard system (0.9) — (0.13), or better
some variation of it including dynamic boundary conditions, has drawn much attention in
recent years: let us quote [12-16| among other contributions. In particular, the existence
and uniqueness of solutions as well as the behavior of the solutions as time goes to infinity
have been studied for regular potentials f and fr = B\p + 7r. Moreover, a wide class of
potentials, including especially singular potentials like (0.3) and (0.4), has been considered
in [11,17]: in these two papers the authors were able to overcome the difficulties due
to singularities and to show well-posedness results along with the long-time behavior of
solutions. The approach of |11,17] is based on a set of assumptions for 8, 7 and fr, 7
that gives the role of the dominating potential to f and entails some technical difficulties.

In this note, we follow a strategy developed in [18] to investigate the Allen — Cahn
equation with dynamic boundary conditions, which consists in letting fr be the leading
potential with respect to f: it turns out that this approach simplifies the analysis.
Moreover, we discuss the optimal boundary control problem for the viscous and pure Cahn
— Hilliard equation with dynamic boundary conditions, in analogy with the corresponding
contributions for the Allen — Cahn equation (see [19] and [20]). In particular, we review
the results proved in the three research papers

e [21] (well-posedness and regularity);
e |22] (optimal control problem for the viscous Cahn — Hilliard equation);

e [23] (optimal control problem for the pure Cahn — Hilliard equation).

The paper [21] contains a number of results on the state system (0.9) — (0.13).
More precisely, existence, uniqueness and regularity results are proved in [21] for general
potentials that include (0.2) — (0.3), and are valid for both the viscous and pure cases,
i.e., by assuming just 7 > 0. Moreover, if 7 > 0, further regularity and properties of the
solution are ensured.

On the other hand, the paper [22] deals with a control problem for the state
system (0.9) — (0.13) when 7 > 0, ¢ = 0 and gr = up, the control being then the source
term ur that appears in the dynamic boundary condition (cf. (0.8) and (0.12))

Oy + Oyr — Aryr + Br(yr) + 7r(yr) =ur  on X. (0.14)
Namely, the cost functional

bo bs bo
d(y,yr,ur) := By ly — ZQ”%?(Q) + B lyr — ZZH%Q(E) + 5 ||UF”%2(2) (0.15)

is considered, for some given functions zg, zs, and nonnegative constants bg, bs;, bg. The
control problem then consists in minimizing J(y, yr, ur) subject to the state system and
to the constraint ur € U,q, where the control box U,.q is specified by

Uaq := {ur € H'(0,T; Hr) N L>(X) :
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UL min < ur < UT max a&.€. Ol 27 HﬁtuFHLQ(E) < MO} (016)

Here, the functions ur min, Urmax € L°(X) and the positive constant My are prescribed in
order that the control box U,q be nonempty: this is guaranteed if, for instance, at least
one of ur min Or Ur max actually belongs to U,q. The existence of an optimal control and
first-order necessary conditions for optimality are proved and expressed in terms of the
solution of a proper adjoint problem in [22].

These results are then used in [23], where the optimal control problem is discussed for
the same state system, but when 7 = 0. The technique adopted in [23] essentially consists
in starting from the known results for 7 > 0 and then letting the parameter 7 tend to
zero. In doing that, some of the ideas of [20] and [24] are used: indeed, these papers [20,24]
deal with the Allen — Cahn and the viscous Cahn — Hilliard equations, respectively, and
address similar control problems related to the nondifferentiable double-obstacle potential
faobs defined by (0.4).

Now, we think it is important to recall some related contributions. The paper [25]
deals with the well-posedness of the system (0.9) — (0.13) in which also an additional mass
constraint on the boundary is imposed. The case of a dynamic boundary condition also of
Cahn — Hilliard type, i.e. admitting a chemical potential on the boundary too, has been
studied in [26]. Recently, Cahn — Hilliard systems have been rather investigated from the
viewpoint of optimal control. In this connection, we refer to [27-29] and point out the
contributions [30,31] dealing with the convective Cahn — Hilliard equation; the case with a
nonlocal potential is studied in [32]. The paper [33] investigates the second-order optimality
conditions for the state system (0.9) — (0.13) when 7 > 0, ¢ = 0 and gr = ur, starting
from the results of [22|. There also exist articles addressing some discretized versions of
general Cahn — Hilliard systems, cf. [34,35].

The present paper is organized as follows. In the next section, we list our assumptions,
state the problem in a precise form and present our well-posedness and regularity results.
In the last section we deal with boundary control problems both for the viscous and the
pure case.

1. Well-Posedness and Regularity

In this section, we describe the problem more carefully and present some basic results.
As in the Introduction, Q is the body where the evolution takes place. We assume 2 C R?
to be open, bounded, connected, and smooth, and we write || for its Lebesgue measure.
Moreover, I', 0,, Vr and Ar stand for the boundary of €2, the outward normal derivative,
the surface gradient and the Laplace — Beltrami operator, respectively. Finally, 7" is a given
finite final time and we use the notation

Q:=0x(0,7) and X:=T1x(0,7).

Now, we specify the assumptions on the structure of our system. In order to include both
regular and singular potentials, like the examples (0.2), (0.3) and (0.4) of the Introduction,
every potential is split into a convex part and a perturbation, with mild assumptions on
the former and regularity assumptions on the latter. So, we assume that

B,Br : R — [0, +00] are convex, proper, and Ls.c. and 5(0) = Br(0) = 0, (1.1)
0.

m,mr : R — R are Lipschitz continuous with 7(0) = 7p(0) = (1.2)
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We introduce the primitives 7 and 7p of 7 and 71 that vanish at the origin and define the
potentials f and fr and the graphs £ and Or in R x R as follows

= [y m( and 7p(r) = [; mr(s)ds for r € R, (1.3)

f —5+7T and fF Br + 7r, (1.4)

B:=08 and Br:=dbr. (1.5)

Notice that both 5 and fr are maximal monotone with some effective domains D(f)

and D(fr). Due to (1.1), we have §(0) 5 0 and fr(0) > 0. Clearly, all the basic examples
of the Introduction fit the previuos assumptions. For the graphs 5 and fr we assume the
following compatibility condition

D(fr) € D(B) and [B°(r)] < n|Bp(r)] +C
for some 1, C' > 0 and every r € D(fr), (1.6)
where 5°(r) and S2(r) are the elements of 3(r) and Sr(r), respectively, having minimum
modulus. Roughly speaking, condition (1.6) is opposite to the one postulated in [11]. On
the contrary, it is the same as the one introduced in the paper [18|, which however deals
with the Allen — Cahn equation.
The above assumptions are sufficient for satisfactory well-posedness results. In order
to present them with a simplified notation, we set
Vi=H'(Q), H:=L*Q), Hp:=L*) and V:=H'(T), (1.7)
Vi={(v,or) €V xVr: vp =1} and H:=H x Hr, (1.8)
and endow these spaces with their natural norms. Furthermore, the symbol (-, -) stands
for the duality pairing between V*, the dual space of V', and V itself. In the following, it
is understood that H is embedded in V* in the usual way, i.e., such that (u,v) = [, uvdx
for every u € H and v e V.
At this point, we can describe the state problem. For the data, we assume that
g€ L*0,T;H) and gr € L*(0,T; Hr), (1.9
g€ HY0,T;H) ifr=0, (1.10
Y <V, yop€Vr, B(yo) € L'() and BF(yo\p) e LX(T), (1.11
mo = (Yo)o lies in the interior of D(fr). (1.12

Our problem consists in looking for a quintuplet (y, yr, w, &, &r) such that
y € H'(0,T; VYN L®(0,T; V)N L*(0,T; H*(Q)) and 70w € L*(0,T; H),
yr € H'(0,T; Hr) N L>=(0,T; Vi) N L*(0,T; H*(T)),
yr(t) = y(t) fora.a.te(0,7),
w e L*(0,T;V),
€€ L*0,T;H) and €€ pB(y) ae. inQ,
ér € L*(0,T; Hp) and & € Br(yr) a.e. on X,

and satisfying for a.a. ¢ € (0,7") the variational equations

(Ory(t) / Vuw(t (1.19)
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/Qw(t)v = /QT@y(t)v + /F@typ(t) v+ /QVy(t) Vo + /r Vryr(t) - Vrv
+ / (£) +7(y(t) — g(t)) v+ /(fr(t) +7r(yr(t) — gr(t) v (1.20)
Q r
for every v € V and every v € V, respectively, and the Cauchy condition

y(0) = vo. (1.21)

The light notation 79y stands for dy(7y). In particular, it means zero if 7 = 0. Clearly,
equations (1.19) — (1.20) are the variational formulation of the boundary value problem

Oy—Aw=0 and weTdhy—Ay+ By +7(y) —g inQ, (1.22)
Ohw=0, yr=vyy and Iy + dyr — Aryr + Br(yr) + 7r(yr) > gr on B. (1.23)

We notice that the duality pairing that appears in (1.19) can be replaced by a usual
integral if 7 > 0 thanks to the last (1.13), while it has to be kept as it is in the opposite
case due to the low level of regularity of 0,y.

Remark 1. It is worth to note a fact that is typical for Cahn — Hilliard equations. To this
end, if u € V* and u € L*(0,T;V*), we define their generalized mean values u € R and
u? € LY(0,T) by setting

u® ;:ﬁm,n and u®(t) == (u(t)® for aa. ¢ € (0,7). (1.24)

Clearly, the relations in (1.24) give the usual mean values when applied to elements of H
or L*(0,T; H). By testing (1.19) by the constant 1/|Q|, we obtain

(Owy(t)a =0 fora.a.te (0,7) and y(t)o=my foreveryt e [0,T] (1.25)

with the notations (1.24) and (1.12). Thus, the mean value of y is conserved during the
evolution. For that reason, this model has to be included in the class of the so-called
conserved models for two phase systems.

Now, we present a number of results proved in [21]. As far as uniqueness and continuous
dependence are concerned, we have (see [21, Thm. 2.2|):

Theorem 1. Assume (1.1) — (1.5) and let (gi, gri,Yo,i), ¢ = 1,2, be two sets of data
satisfying (1.9) and such that yo1, Yoz belong to V' and have the same mean value. Then,
if (Yi, Yris wi, &, €ni) are any two corresponding solutions to problem (1.13) — (1.21), the
imequality

[y — y2||%oo(o7T;V*) + 7y — y2“%°°(0,T;H) + [lyr1 — yral %OO(O,T;HF)

+ V(Y = 52)

’%Q(O,T;H) + [|Vr(yry — yE?)H%Q(O,T;HF)

< C{Hyo,l — Yool + Tllyos — voollfr + 90,1/ — yo,z\pH%{F

+ g1 = g2l30.rr) + o = gr2l3orm | (1.26)
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holds true with a constant c¢ that depends only on 2, T, and the Lipschitz constants of
7 and wr. In particular, any two solutions to problem (1.13) — (1.21) have the same
components y, yr and Er. Moreover, even the components w and & of such solutions are
the same if B is single-valued.

The above theorem is proved in [21] and is quite similar to the results stated in [11,
Thm. 1 and Rem. 9]. In the latter paper (see [11, Rem. 4 and Rem. §|), it is also shown
that partial uniqueness and conditionally full uniqueness as in the above statement are
the best one can prove. As for existence, here is our general result [21, Thm. 2.3].

Theorem 2. Assume (1.1) — (1.6) and (1.9) — (1.12). Then, there exists a quintuplet
(v, yr, w, &, &r) satisfying (1.13) — (1.18) and solving problem (1.19) — (1.21).

Next goal is regularity. First, we want to prove that the components y and yr of the
solution to problem (1.19) — (1.21) given by the above theorems also satisfy

y € Wh2(0, T; VYN HY0,T; V)N L>*(0,T; H*()) and 7y € L™(0,T; H), (1.27)
yr € WH°(0,T; Hy) N H*(0,T;Vp) N L>(0,T; H*(I)), (1.28)

whence also
y € L>®(Q) and yr € L>(X). (1.29)

To this aim, we make further assumptions on the data. Namely

g€ HY(0,T;H) and gr € H'(0,T; Hy),

yo € H*(Q) and yo. € HX(T),

there exists {y € H such that & € B(yo) a.e. in @,

there exists {ro € Hr such that {ro € Br(yo|) a.e. on ¥,

and, if 7 = 0, we reinforce (1.32) by requiring that
the family {—Ayo — B:(y0) — g(0) : € € (0,&9)} is bounded in V/ (1.34)

for some €5 > 0. In (1.34), the symbol f3. stands for the Yosida regularization of 8 at level ¢
(see, e.g., [36, p. 28]). Clearly, in order to ensure (1.34), one can assume that Ayo+g(0) € V
and that [.(yo) remains bounded in V for £ small enough. A sufficient condition for the
latter is the following: there exist 74,7} € R such that r” <r_ <yy <rp <7/ ae. in Q,
(r_,r.) C D(B) and the restriction of 3 to (r_,7’,) is a single-valued Lipschitz continuous
function.

Here is our first regularity result (see [21, Thm. 2.4]). It regards general potentials and
both the viscous and pure cases.

Theorem 3. Assume (1.1) — (1.6) on the structure and suppose that the data satisfy
(1.30) — (1.33) and (1.12). Moreover, assume either 7 > 0 or (1.34). Then, there exists a
solution to problem (1.19) — (1.21) that also satisfies (1.27) — (1.29) as well as

we L>®0,T;V), &€ L>0,T;H), & € L>(0,T;Hy). (1.35)

The next result regards the viscous case, only, but it still allows general potentials
(see |21, Thm. 2.6]).
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Theorem 4. In addition to the assumptions of Theorem 3, suppose that 7 > 0 and that

g€ LX(@Q), grel™X) and [°(y) € L7(Q). (1.36)

Then, there exists a solution to problem (1.19) — (1.21) that also satisfies (1.27) — (1.29),
(1.35) and
we L0, T; H*(Q)) € L™(Q) and & e L™(Q). (1.37)

It is worth noting an interesting consequence that holds in the following case:
D(B) and D(fr) are the same open interval I. (1.38)

This condition is fulfilled if f and fr are, for instance, the same everywhere defined smooth
potential (0.2) or the same logarithmic potential (0.3). On the contrary, potentials whose
convex part is an indicator function like (0.4) are excluded. However, (1.38) still allows
multi-valued operators § and Sr. We observe that, if [ is not the whole of R and rg is
an end-point of it, then 5° has an infinite limit at ro since the interval I is open. Hence,
the second property in (1.37) yields that y(z,t) remains bounded away from ry. Moreover,
if 1 is unbounded, one can account for (1.29). As D(fr) = D(B) properties of this type
for £ and y imply similar properties for &r. Therefore, if (1.38) holds, the next statement
(see |21, Cor. 2.7]) easily follows from the results already presented. Let us recall (1.4)—(1.5)
before stating it.

Corollary 1. In addition to the hypotheses of Theorem 3, assume T > 0 and (1.38) on the
structure and (1.36) on the data. Then, there ezists a solution (y,yr,w,&,&r) to problem
(1.13) — (1.21) that also satisfies (1.27) — (1.29), (1.35), (1.37) and

y(z,t) € K for a.a. (z,t) € Q and some compact subset K C I,
&r € LOO(E)

Moreover, if 5 and Pr are single-valued, the unique solution also satisfies

B'y) € L¥(Q), Pr(y) € L7(X)
as well as, if f and fr are C? functions in addition,

f"(y) € L>(0,T;V) and fr(y) € L>(0,T;Vr).

2. Control Problems

In dealing with control problems, it might be easy to prove the existence of an optimal
control, while, in general, it is more difficult to establish first-order necessary conditions
for optimality. To this aim, one often needs that the state corresponding to the optimal
control under attention is very smooth. For that reason, we reinforce our assumptions on
the structure. In particular, we also assume that § and fr satisfy (1.38) and are single-
valued smooth function on their common domain. Here are the precise assumptions we

add to (1.1) — (1.6):

D(B) =D(pr) = (r—,ry) with —oo<r_<0<ry <+oo, (2.1)
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f, fr are C3 functions on (r_,r), (2.2)

lf'(r)| < n|fl(r)|+C for some n, C >0 and every r € (r_,r), (2.3)

li "(r) =l Lr)=— d I "(r) =l 4 = . 2.4
Jim f(r) = lim fr(r)=—oo and lim f'(r) = lim fr(r) = +oo (2.4)

Clearly, (2.3) and (2.4) follow from (1.1) — (1.6) if both r_ and r, are finite. Notice that,
once more, the choices f = f,e, and f = fi,, corresponding to (0.2) and (0.3) are allowed.
On the contrary, the double-obstacle potential (0.4) is excluded. It is understood that all
the assumptions (1.1) — (1.6) and (2.1) — (2.4) on the structure are in force throughout
the whole section.

If the data satisfy (1.30) — (1.33) and (1.12), then the solution is unique and enjoys
the following regularity

y € W0, T; V)N HY(0,T; V) N L>®(0,T; H*(2)), (2.5)

O € L=(0,T; H), (2.6)

yp € WH(0,T; Hy) N H*(0,T; Vr) N L>(0, T; H*(I)), (2.7)

r_ < ianessy <supessy < g, (2.8)
Q

w € L>(0,T; H*(Q)). (2.9)

In particular, all the components ¥, yr and w are bounded, as well as f@(y) and féi) (yr) for
i =1,2,3. We notice that the assumptions on yo included in (1.31) and (1.36) mean that

yo € H*(Q), Yol € H*T) and r_ <yo(x) <ry foreveryz € Q (2.10)

in the present case.

At this point, we can address the corresponding control problem. The state system is
(1.13) — (1.21) with g = 0 and the control is gr, which we term ur now. We rewrite the
full system for clarity:

/Qaty(t)w/ﬂw(t)-wzo, (2.11)
/ w(t)v =7 /Q Dyt v + /F e (1) v + /Q Vy(t) - Vo + /F Veyr(t) - Vior

Q
s [ rw®yes [ o) - w), (212
Q r
y(0) = vo, (2.13)
where (2.11) and (2.12) hold for a.a. t € (0,7") and for every v € V and every (v,vr) € V,
respectively. We call (y,yr) the state corresponding to the control ur, and this is the most

important part of the solution. Indeed, the other components are completely determined
by it. The control box U.q is given by

Uoa := {ur € H'(0,T; Hr) N L®(X) :
UP min < UP < UP max a.€. on 2, |[Opur||z < Mo} (2.14)

where the constant M, and the functions up ymin and ur pyax satisfy

Mo >0, Urmin, Urmax € L(X) and Uaq is nonempty. (2.15)

Bectuuk FOYpI'Y. Cepusa «MaTteMaTudecKoe MoJejinpoBaHUe 13
u nporpammupoBanues (Becruunk HOYpI'Y MMII). 2017. T. 10, Ne 1. C. 521



P. Colli, G. Gilardi, J. Sprekels

Finally, given the functions and the constants

29 € L*(Q), =2x € L*(X) and by, by, by € [0, +00), (2.16)
we set
. bQ 2 by, 2 bo 2
d(y, yr,ur) = > ly = zoll72) + 5 lyr — 2zsllz2¢s) + 5 [ur([7zs) (2.17)

for, say, y € C°([0,T); H), yr € C°([0,T]; Hr) and ur € L?(X). At this point, the control
problem consists in minimizing the cost functional (2.17) subject to the constraint ur € Uaqg
and to the state system (2.11) — (2.13). The following result holds true (see [22, Thm. 2.3]
for the viscous case and [23, Thm. 2.5] for the pure one):

Theorem 5. Assume (2.10). Then, there exists ur € Uaq such that

3@, yr,ur) < J(y,yr,ur) for every ur € Uyq, (2.18)

where Y, Jp, y and yr are the components of the solutions (y,yp,w) and (y,yr,w) to the
state system (1.13) — (1.21) corresponding to the controls ur and ur, respectively.

Once such an existence result is established, one looks for necessary conditions for a
given ur to be an optimum control. The natural strategy is the introduction of suitable
Banach spaces X and Y with the following properties: i) the control box U,q is a closed
subset of X; ii) for every ur in some neighbourhood U of U4, the state system has a unique
solution and the corresponding pair (y,yr) belongs to Y; iii) the map 8 that associates
such a pair (y,yr) to the arbitrary ur € U is Fréchet differentiable.

This project is difficult to realize in the general case, due to the low regularity of the
time derivative of the state, which only belongs to L*(0,7;V*) (see (2.5)). The situation
is different in the viscous case due to (2.6).

So, we split our discussion in two parts, and we first assume that 7 > 0. Then, the
results corresponding to the above program are proved in [22| with the following choice of
the spaces:

X:=H'0,T; H-)NL>®(X) and Y:= H'(0,T;3)NL>(0,T;V). (2.19)

Moreover, U is an arbitrary open neighbourhood of U,q (see [22, Prop. 2.4 and Thm. 4.2]).
Then, since the functional to be minimized is U,q > ur — g(uF) = J(8(ur),ur) and Uaq
is convex, the natural necessary condition is the following: (DJ(tr), vr —ur) > 0 for every
vr € Uaq, where Dg (ur) € X* is the Fréchet derivative of 5 at ur. However, because of
the chain rule, this contains the value at hr := vp — ur of the Fréchet derivative DS(ur),
which turns out to be the solution to the problem obtained by linearizing (1.13) — (1.21)
around up and taking hr in the linear term that corresponds to the position of the control
in the nonlinear problem (see [22, Prop. 6.1 and formula (2.42)]). This can be eliminated
by introducing a proper adjoint problem. We set for brevity

0 =bo(y—2¢) and ¢z =bs(Yr — 2x), (2.20)

where (7,7p) is the state associated to the optimal control ur under attention. Then,
the adjoint problem is the following: find a triplet (p,q,qr) that fulfills the regularity
requirements

p € HY0,T; H*(Q)) N L*(0,T; H*(Q)), (2.21)
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q€ H'(0,T; H)N L*0,T; H*(Q2)), (2.22)
qr € H'(0,T; Hr) N L*(0,T; H*(T)), (2.23)
qr(t) = q(t) foraa.te (0,7), (2.24)

and solves the variational equations

/qv:/Vp-Vv a.e. in (0,7) and for all v € V, (2.25)
Q Q
—/Gt(p—irTq)v—l—/Vq-Vv—l—/f”(g)qv

Q Q Q

_/atQFUF+/VFQF’VFUF+/fI/(<yF>qFUF:/@QU+/¢EUF
r r r Q r

a.e. in (0,7) and every (v,vr) € V (2.26)

and the final condition

/Q(p +7¢)(T)v+ /F qr(T)vr =0 for every (v,vr) € V. (2.27)

We have the following result (see |22, Thm. 2.5]):

Theorem 6. Assume (2.10) and 7 > 0, and let ur and (y,yp) = S(ur) be an optimal
control and the corresponding state. Then the adjoint problem (2.25) — (2.27) has a unique
solution (p7,q", qf) satisfying the regularity conditions (2.21) — (2.24).

Finally, the necessary condition involving the linearized problem takes a particularly
simple form if the solution of the adjoint problem is used. Namely, we have (see [22,
Thm. 2.6])

Theorem 7. Assume (2.10) and 7 > 0, and let ur be an optimal control. Moreover, let
(7, yr) = 8(ur) and (p7,q7, qf.) be the associate state and the unique solution to the adjoint
problem (2.25) — (2.27) given by Theorem 6. Then we have

/(qf + bour)(vr —ar) >0 for every vr € Uag. (2.28)
2

Remark 2. In particular, if by > 0, (2.28) says that
ur is the orthogonal projection of —qf./by on Uagq (2.29)

with respect to the standard scalar product in L*(2).

The next step is to treat the pure Cahn — Hilliard system, i.e., the case 7 = 0, and
this is done in [23|. The idea is to take the limit as 7 ~, 0 in the above results.

Even though the adjoint problem (2.25) — (2.27) involves a triplet (p7,q",qf) as
an adjoint state, only the third component ¢ enters the necessary condition (2.28) for
optimality. On the other hand, ¢" and ¢f are strictly related to each other. Hence, we
mention the result proved in [22| that deals with the pair (¢, ¢f). To this end, we recall
a tool, the generalized Neumann problem solver N, that is often used in connection with
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the Cahn — Hilliard equations. With the notation for the mean value introduced in (1.24),
we define

domN :={v, € V*: v¥ =0} and N:domN = {veV: v?=0} (2.30)

by setting, for v, € dom N,
Nov, €V, (Nu,)® =0, and / VNv, - Vz = (v,,z) forevery z € V. (2.31)
0

Thus, Nv, is the solution v to the generalized Neumann problem for —A with datum v, that
satisfies v* = 0. Indeed, if v, € H, the above variational equation means that —ANv, = v,
and 0,Nv, = 0. As 2 is bounded, smooth, and connected, it turns out that (2.31) yields
a well-defined isomorphism. Furthermore, we introduce the spaces Hq and Vg by setting

Ho = {(v,or) €H: v¥ =0} and Vq:=HoNV, (2.32)

and endow them with their natural topologies as subspaces of H and V, respectively. We
have the following result.

Theorem 8. Assume T > 0. Then, with the notation (2.20), there exists a unique pair
(q7, qf) satisfying the reqularity conditions

¢ € H'(0,T; H)N L*(0,T; H*(Q)) and qf € H'(0,T; Hr) N L*(0,T; H*(T')) (2.33)

and solving the following problem:

(q7,q0)(t) € Vo  for every t € [0,T], (2.34)

/@ )+ 14" v—l—/Vq V'U—i—/f"
/ Oyqr vr + / Vrqr - Vror + / ") qr ur

= / YU + / esvr  a.e. in (0,T) and for every (v,vr) € Vg, (2.35)
Q r

/(NqT +7¢")(T) v+ / qr(T)vr =0 for every (v,vr) € Vq. (2.36)
0 r

Moreover, the pair (q7, qf.) is the same as the couple of components of the unique solution
(p7,q"7, qf) to the adjoint problem (2.25) — (2.27) given by Theorem 6.

Remark 3. It is worth to notice that our presentation does not follow [22] in the detail.
Indeed, [22] uses this problem to solve the adjoint problem (2.25) — (2.27) as follows. From
one hand, the system (2.34) — (2.36) can be seen as a backward Cauchy problem in the
framework of the Hilbert triplet (Vg, Hq, V) (see [22, formula (5.25)]). Thus, one proves
that it can be solved (see [22, pp. 21-22]). On the other hand, if (g,qr) is its unique
solution, one shows that on can reconstruct p in order that the triplet (p,q,qr) solves
problem (2.25) — (2.27) (see [22, Thm. 5.4], in particular formulas [22, (5.10) — (5.11)]).
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At this point, we let 7 tend to zero in (2.34) — (2.36) rather than in (2.25) - (2.27). By
doing that, we do not care about the limit of p™. To this end, we need some more tools.
We introduce the spaces

W= L*(0,T;Vq) N (H'(0,T;V*) x H'(0,T; Vi), (2.37)
Wy := {(v,or) € W: (v,0r)(0) = (0,0)} (2.38)

and endow them with their natural topologies. Moreover, we denote by (( -, -)) the duality
product between W§ and W,. We have the following representation result for the elements
of the dual space W{ (see |23, Prop. 2.6]):

Proposition 1. A functional F: Wy — R belongs to W if and only if there exist A and
Ar satisfying

A€ (HY0,T; V)N L*0,T;V))" and Ar € (H'(0,T;V¥) N L*0,T;V))", (2.39)
(F, (v,ur))) = (A, v)g + (Ar,vr)s  for every (v,vr) € Wy, (2.40)

where the duality products (-, -)g and (-, -)x are related to the spaces X* and X with
X = HY0,T; VYN L*0,T;V) and X = H*(0,T; V) N L*(0,T; Vr), respectively.

However, this representation is not unique, since different pairs (A, Ar) satisfying (2.39)
could generate the same functional F' through formula (2.40).

At this point, we can state our last result. The following theorem gives both a
generalized solution to a proper adjoint problem with 7 = 0 and a first-order necessary
condition for optimality similar to (2.28) (see [23, Thm. 2.7]).

Theorem 9. Assume (1.1) - (1.6) and (1.9) - (1.12), and let J and Uaq be defined by
(2.17) and (2.14) under the assumptions (2.15). Moreover, let ur be any optimal control
related to the state system with T = 0. Then, there exist A and Ar satisfying (2.39), and

a pair (q,qr) satisfying

q € L0, T; V)N L*0,T;V), (2.41)
qr € L>(0,T; Hp) N L*(0,T; V), (2.42)
(q,qr)(t) € Vo for a.e. t €10,T], (2.43)

as well as

T T
/ (Opv, Ng) +/ (Ovr, qr)r +/ Vq-Vu+ / Vrgr - Vrur
0 0 0 >

+ (A, v)g + (Ar,vr)s = / 0o v+ / ©x Up for every (v,vr) € Wy, (2.44)
Q 2
such that
/(qr + bour)(vr —ar) >0 for every vr € Uag. (2.45)
b

Remark 4. In particular, if by > 0, (2.45) says that
ur is the orthogonal projection of —qr/by on Uaq (2.46)
with respect to the standard scalar product in L*(2).
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One recognizes in (2.44) a problem that is analogous to (2.35) — (2.36). Indeed, if A, Ap

and the solution (g, qr) were regular functions, then its strong form should contain both
a generalized backward parabolic equation like (2.35) and a final condition for (Ng, qr) of
type (2.36), since the definition of Wy allows its elements to be free at t = 7. However, the
terms f"(g7)q" and f{{(y[)qf are just replaced by the functionals A and Ar and cannot
be identified as products, unfortunately.
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[IOCJIEJHUE PE3VJIBTATHI 1JId YPABHEHU A
KAHA — XWIJIUAPIA C IMHAMWYECKO! TPAHUIIEN

II. Koaau, /lotc. Torcunapiu, FO. Cnpexeanc

B crarbe paccmarpuBaerca ypasuenne Kana — Xumapjia <4ducToes WA C BS3KO-
CTBIO C BO3MOXKHO CHUHTYJISPHBIMUA TOTEHIIMAIAMY U TUHAMUYIECKUMY TPAHUIHBIMU YCIOBU-
svm. OBCYXKTaeTCss KOPPEKTHOCTh COOTBETCTBYIONIEH HAYAIBHOM 3a1a4un. U3ydaercs 3ama4da
PPAHUYHOrO yrpaBiaenus I cucreMbl Kana — Xumrap/ia ¢ BA3KOCTBIO U HAXOAATCA HeOO-
XOAMMBIE YCJIOBHUS ONTHMAJIBHOCTH MEPBOrO MOpsaka. KpoMe Toro, CTaBUTCS aHAJIOTHIHAS
3a/1a9a TPAHUYHOTO YIIPABJIEHU Ul <49uCTO> cucreMbl Kana — Xussmmapaa, pe3yabrars
MOJTYYAIOTCST TTOMOIIIBIO TIPEIEBHOTO Tiepexona B ciaydae cucrembl Kana — Xwummunapaa ¢
BSI3KOCTBIO, KOT/Ia KO3(DMUIIMEHT BAZKOCTH CTPEMUTCST K HYJIIO.

Karoueenie caosa: ypasuenue Kana — Xuaruapda; dunamuneckue 2panusmsie Ycio8us;
pasdesenue Pas; KOPPEKMHOCTb, ONMUMAALHOE ZPAHUYHOE YNPABAEHUE; YCAOBUA OTIMU-
MAALHOCTIU.
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