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Introduction

The classical Cahn � Hilliard equation and the so-called viscous Cahn � Hilliard
equation can be written as

∂ty −∆w = 0 and w = τ∂ty −∆y + β(y) + π(y)− g in Ω× (0, T ), (0.1)

according to the case τ = 0 or τ > 0, respectively. Here, Ω ⊂ R3 stands for the bounded
smooth domain where the evolution takes place and T denotes some �nal time.

The set of Cahn � Hilliard equations (0.1) provide a description of the evolution
phenomena related to solid-solid phase separations. We refer to, in chronological order, [1�
5] for some pioneering contributions on these models and problems. In general, an evolution
process goes on di�usively. However, the process of the solid-solid phase separation does
not seem to comply with this structure: more precisely, each phase concentrates and the so-
called spinodal decomposition occurs. A comparative discussion on the modelling approach
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for phase separation, spinodal decomposition and mobility of atoms between cells can be
found in [6�10]).

About the variables appearing in (0.1), y denotes the order parameter and w represents
the chemical potential. Moreover, β and π are the derivatives of the convex part β̂ and
of the concave perturbation π̂ of a double-well potential f := β̂ + π̂, and g is a source
term. Important examples of f are the everywhere de�ned regular potential freg and the
logarithmic double-well potential flog given by

freg(r) =
1

4
(r2 − 1)2 , r ∈ R, (0.2)

flog(r) = (1 + r) ln(1 + r) + (1− r) ln(1− r)− cr2 , r ∈ (−1, 1), (0.3)

where c > 0 in (0.3) is large enough in order that flog be nonconvex. Another important
example refers to the so-called double-obstacle problem and corresponds to the nonsmooth
potential fdobs : R → (−∞,+∞] speci�ed by

fdobs(r) = I[−1,1](r)− cr2, r ∈ R (0.4)

with c > 0 and where the indicator function of the interval [−1, 1] ful�lls

I[−1,1](r) = 0 if r ∈ [−1, 1] and I[−1,1](r) = +∞ otherwise. (0.5)

In this case, β is no longer a derivative, but it represents the subdi�erential ∂I[−1,1] of the
indicator function of the interval [−1, 1], that is,

s ∈ ∂I[−1,1](r) if and only if s


≤ 0 if r = −1,

= 0 if − 1 < r < 1,

≥ 0 if r = 1.

(0.6)

We are interested in the coupling of (0.1) with the usual no-�ux condition for the chemical
potential

∂nw = 0 (0.7)

and with the dynamic boundary condition

∂ny + ∂tyΓ −∆ΓyΓ + βΓ(yΓ) + πΓ(yΓ) = gΓ (0.8)

on Σ := Γ× (0, T ), where

• yΓ denotes the trace y
Σ
on the boundary Σ;

• −∆Γ stands for the Laplace � Beltrami operator on Γ;

• βΓ and πΓ are nonlinearities playing the same role as β and π but now acting on the
boundary value of the order parameter;

• �nally, gΓ is a boundary source term with no relation with g acting on the bulk.

We aim to point out that the corresponding initial-boundary value problem

∂ty −∆w = 0 in Q := Ω× (0, T ), (0.9)

6 Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming
& Computer Software (Bulletin SUSU MMCS), 2017, vol. 10, no. 1, pp. 5�21



ÌÀÒÅÌÀÒÈ×ÅÑÊÎÅ ÌÎÄÅËÈÐÎÂÀÍÈÅ

w = τ ∂ty −∆y + f ′(y)− g in Q, (0.10)

∂nw = 0 on Σ, (0.11)

yΓ = y
Σ

and ∂ny + ∂tyΓ −∆ΓyΓ + f ′
Γ(yΓ) = gΓ on Σ, (0.12)

y(0) = y0 in Ω, (0.13)

has been �rst addressed in [11]. Actually, the Cahn � Hilliard system (0.9) � (0.13), or better
some variation of it including dynamic boundary conditions, has drawn much attention in
recent years: let us quote [12�16] among other contributions. In particular, the existence
and uniqueness of solutions as well as the behavior of the solutions as time goes to in�nity
have been studied for regular potentials f and fΓ = β̂Γ + π̂Γ. Moreover, a wide class of
potentials, including especially singular potentials like (0.3) and (0.4), has been considered
in [11, 17]: in these two papers the authors were able to overcome the di�culties due
to singularities and to show well-posedness results along with the long-time behavior of
solutions. The approach of [11, 17] is based on a set of assumptions for β, π and βΓ, πΓ

that gives the role of the dominating potential to f and entails some technical di�culties.
In this note, we follow a strategy developed in [18] to investigate the Allen � Cahn

equation with dynamic boundary conditions, which consists in letting fΓ be the leading
potential with respect to f : it turns out that this approach simpli�es the analysis.
Moreover, we discuss the optimal boundary control problem for the viscous and pure Cahn
� Hilliard equation with dynamic boundary conditions, in analogy with the corresponding
contributions for the Allen � Cahn equation (see [19] and [20]). In particular, we review
the results proved in the three research papers

• [21] (well-posedness and regularity);

• [22] (optimal control problem for the viscous Cahn � Hilliard equation);

• [23] (optimal control problem for the pure Cahn � Hilliard equation).

The paper [21] contains a number of results on the state system (0.9) � (0.13).
More precisely, existence, uniqueness and regularity results are proved in [21] for general
potentials that include (0.2) � (0.3), and are valid for both the viscous and pure cases,
i.e., by assuming just τ ≥ 0. Moreover, if τ > 0, further regularity and properties of the
solution are ensured.

On the other hand, the paper [22] deals with a control problem for the state
system (0.9) � (0.13) when τ > 0, g = 0 and gΓ = uΓ, the control being then the source
term uΓ that appears in the dynamic boundary condition (cf. (0.8) and (0.12))

∂ny + ∂tyΓ −∆ΓyΓ + βΓ(yΓ) + πΓ(yΓ) = uΓ on Σ. (0.14)

Namely, the cost functional

J(y, yΓ, uΓ) :=
bQ
2

∥y − zQ∥2L2(Q) +
bΣ
2
∥yΓ − zΣ∥2L2(Σ) +

b0
2
∥uΓ∥2L2(Σ) (0.15)

is considered, for some given functions zQ, zΣ and nonnegative constants bQ, bΣ, b0. The
control problem then consists in minimizing J(y, yΓ, uΓ) subject to the state system and
to the constraint uΓ ∈ Uad, where the control box Uad is speci�ed by

Uad :=
{
uΓ ∈ H1(0, T ;HΓ) ∩ L∞(Σ) :
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uΓ,min ≤ uΓ ≤ uΓ,max a.e. on Σ, ∥∂tuΓ∥L2(Σ) ≤ M0

}
. (0.16)

Here, the functions uΓ,min, uΓ,max ∈ L∞(Σ) and the positive constant M0 are prescribed in
order that the control box Uad be nonempty: this is guaranteed if, for instance, at least
one of uΓ,min or uΓ,max actually belongs to Uad. The existence of an optimal control and
�rst-order necessary conditions for optimality are proved and expressed in terms of the
solution of a proper adjoint problem in [22].

These results are then used in [23], where the optimal control problem is discussed for
the same state system, but when τ = 0. The technique adopted in [23] essentially consists
in starting from the known results for τ > 0 and then letting the parameter τ tend to
zero. In doing that, some of the ideas of [20] and [24] are used: indeed, these papers [20,24]
deal with the Allen � Cahn and the viscous Cahn � Hilliard equations, respectively, and
address similar control problems related to the nondi�erentiable double-obstacle potential
fdobs de�ned by (0.4).

Now, we think it is important to recall some related contributions. The paper [25]
deals with the well-posedness of the system (0.9) � (0.13) in which also an additional mass
constraint on the boundary is imposed. The case of a dynamic boundary condition also of
Cahn � Hilliard type, i.e. admitting a chemical potential on the boundary too, has been
studied in [26]. Recently, Cahn � Hilliard systems have been rather investigated from the
viewpoint of optimal control. In this connection, we refer to [27�29] and point out the
contributions [30,31] dealing with the convective Cahn � Hilliard equation; the case with a
nonlocal potential is studied in [32]. The paper [33] investigates the second-order optimality
conditions for the state system (0.9) � (0.13) when τ > 0, g = 0 and gΓ = uΓ, starting
from the results of [22]. There also exist articles addressing some discretized versions of
general Cahn � Hilliard systems, cf. [34, 35].

The present paper is organized as follows. In the next section, we list our assumptions,
state the problem in a precise form and present our well-posedness and regularity results.
In the last section we deal with boundary control problems both for the viscous and the
pure case.

1. Well-Posedness and Regularity

In this section, we describe the problem more carefully and present some basic results.
As in the Introduction, Ω is the body where the evolution takes place. We assume Ω ⊂ R3

to be open, bounded, connected, and smooth, and we write |Ω| for its Lebesgue measure.
Moreover, Γ, ∂n, ∇Γ and ∆Γ stand for the boundary of Ω, the outward normal derivative,
the surface gradient and the Laplace � Beltrami operator, respectively. Finally, T is a given
�nite �nal time and we use the notation

Q := Ω× (0, T ) and Σ := Γ× (0, T ).

Now, we specify the assumptions on the structure of our system. In order to include both
regular and singular potentials, like the examples (0.2), (0.3) and (0.4) of the Introduction,
every potential is split into a convex part and a perturbation, with mild assumptions on
the former and regularity assumptions on the latter. So, we assume that

β̂ , β̂Γ : R → [0,+∞] are convex, proper, and l.s.c. and β̂(0) = β̂Γ(0) = 0, (1.1)

π, πΓ : R → R are Lipschitz continuous with π(0) = πΓ(0) = 0. (1.2)
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We introduce the primitives π̂ and π̂Γ of π and πΓ that vanish at the origin and de�ne the
potentials f and fΓ and the graphs β and βΓ in R× R as follows

π̂(r) :=
∫ r

0
π(s) ds and π̂Γ(r) :=

∫ r

0
πΓ(s) ds for r ∈ R, (1.3)

f := β̂ + π̂ and fΓ : β̂Γ + π̂Γ, (1.4)

β := ∂β̂ and βΓ := ∂β̂Γ. (1.5)

Notice that both β and βΓ are maximal monotone with some e�ective domains D(β)
and D(βΓ). Due to (1.1), we have β(0) ∋ 0 and βΓ(0) ∋ 0. Clearly, all the basic examples
of the Introduction �t the previuos assumptions. For the graphs β and βΓ we assume the
following compatibility condition

D(βΓ) ⊆ D(β) and |β◦(r)| ≤ η|β◦
Γ(r)|+ C

for some η, C > 0 and every r ∈ D(βΓ), (1.6)

where β◦(r) and β◦
Γ(r) are the elements of β(r) and βΓ(r), respectively, having minimum

modulus. Roughly speaking, condition (1.6) is opposite to the one postulated in [11]. On
the contrary, it is the same as the one introduced in the paper [18], which however deals
with the Allen � Cahn equation.

The above assumptions are su�cient for satisfactory well-posedness results. In order
to present them with a simpli�ed notation, we set

V := H1(Ω), H := L2(Ω), HΓ := L2(Γ) and VΓ := H1(Γ), (1.7)

V := {(v, vΓ) ∈ V × VΓ : vΓ = v
Γ
} and H := H ×HΓ, (1.8)

and endow these spaces with their natural norms. Furthermore, the symbol ⟨ · , · ⟩ stands
for the duality pairing between V ∗, the dual space of V , and V itself. In the following, it
is understood that H is embedded in V ∗ in the usual way, i.e., such that ⟨u, v⟩ =

∫
Ω
uv dx

for every u ∈ H and v ∈ V .
At this point, we can describe the state problem. For the data, we assume that

g ∈ L2(0, T ;H) and gΓ ∈ L2(0, T ;HΓ), (1.9)

g ∈ H1(0, T ;H) if τ = 0, (1.10)

y0 ∈ V, y0 Γ
∈ VΓ , β̂(y0) ∈ L1(Ω) and β̂Γ(y0 Γ

) ∈ L1(Γ), (1.11)

m0 := (y0)Ω lies in the interior of D(βΓ). (1.12)

Our problem consists in looking for a quintuplet (y, yΓ, w, ξ, ξΓ) such that

y ∈ H1(0, T ;V ∗) ∩ L∞(0, T ;V ) ∩ L2(0, T ;H2(Ω)) and τ ∂ty ∈ L2(0, T ;H), (1.13)

yΓ ∈ H1(0, T ;HΓ) ∩ L∞(0, T ;VΓ) ∩ L2(0, T ;H2(Γ)), (1.14)

yΓ(t) = y(t)
Γ

for a.a. t ∈ (0, T ), (1.15)

w ∈ L2(0, T ;V ), (1.16)

ξ ∈ L2(0, T ;H) and ξ ∈ β(y) a.e. in Q, (1.17)

ξΓ ∈ L2(0, T ;HΓ) and ξΓ ∈ βΓ(yΓ) a.e. on Σ, (1.18)

and satisfying for a.a. t ∈ (0, T ) the variational equations

⟨∂ty(t), v⟩+
∫
Ω

∇w(t) · ∇v = 0, (1.19)
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Ω

w(t)v =

∫
Ω

τ ∂ty(t) v +

∫
Γ

∂tyΓ(t) v +

∫
Ω

∇y(t) · ∇v +

∫
Γ

∇ΓyΓ(t) · ∇Γv

+

∫
Ω

(
ξ(t) + π(y(t))− g(t)

)
v +

∫
Γ

(
ξΓ(t) + πΓ(yΓ(t))− gΓ(t)

)
v (1.20)

for every v ∈ V and every v ∈ V, respectively, and the Cauchy condition

y(0) = y0 . (1.21)

The light notation τ∂ty stands for ∂t(τy). In particular, it means zero if τ = 0. Clearly,
equations (1.19) � (1.20) are the variational formulation of the boundary value problem

∂ty −∆w = 0 and w ∈ τ ∂ty −∆y + β(y) + π(y)− g in Q, (1.22)

∂nw = 0, yΓ = y
Σ

and ∂ny + ∂tyΓ −∆ΓyΓ + βΓ(yΓ) + πΓ(yΓ) ∋ gΓ on Σ. (1.23)

We notice that the duality pairing that appears in (1.19) can be replaced by a usual
integral if τ > 0 thanks to the last (1.13), while it has to be kept as it is in the opposite
case due to the low level of regularity of ∂ty.

Remark 1. It is worth to note a fact that is typical for Cahn � Hilliard equations. To this
end, if u ∈ V ∗ and u ∈ L1(0, T ;V ∗), we de�ne their generalized mean values uΩ ∈ R and
uΩ ∈ L1(0, T ) by setting

uΩ :=
1

|Ω|
⟨u, 1⟩ and uΩ(t) :=

(
u(t)

)Ω
for a.a. t ∈ (0, T ). (1.24)

Clearly, the relations in (1.24) give the usual mean values when applied to elements of H
or L1(0, T ;H). By testing (1.19) by the constant 1/|Ω|, we obtain

(∂ty(t))Ω = 0 for a.a. t ∈ (0, T ) and y(t)Ω = m0 for every t ∈ [0, T ] (1.25)

with the notations (1.24) and (1.12). Thus, the mean value of y is conserved during the
evolution. For that reason, this model has to be included in the class of the so-called
conserved models for two phase systems.

Now, we present a number of results proved in [21]. As far as uniqueness and continuous
dependence are concerned, we have (see [21, Thm. 2.2]):

Theorem 1. Assume (1.1) � (1.5) and let (gi, gΓ,i, y0,i), i = 1, 2, be two sets of data

satisfying (1.9) and such that y0,1, y0,2 belong to V and have the same mean value. Then,

if (yi, yΓ,i, wi, ξi, ξΓ,i) are any two corresponding solutions to problem (1.13) � (1.21), the
inequality

∥y1 − y2∥2L∞(0,T ;V ∗) + τ∥y1 − y2∥2L∞(0,T ;H) + ∥yΓ,1 − yΓ,2∥2L∞(0,T ;HΓ)

+ ∥∇(y1 − y2)∥2L2(0,T ;H) + ∥∇Γ(yΓ,1 − yΓ,2)∥2L2(0,T ;HΓ)

≤ c
{
∥y0,1 − y0,2∥2∗ + τ∥y0,1 − y0,2∥2H + ∥y0,1 Γ

− y0,2 Γ
∥2HΓ

+ ∥g1 − g2∥2L2(0,T ;H) + ∥gΓ,1 − gΓ,2∥2L2(0,T ;HΓ)

}
(1.26)
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holds true with a constant c that depends only on Ω, T , and the Lipschitz constants of

π and πΓ. In particular, any two solutions to problem (1.13) � (1.21) have the same

components y, yΓ and ξΓ. Moreover, even the components w and ξ of such solutions are

the same if β is single-valued.

The above theorem is proved in [21] and is quite similar to the results stated in [11,
Thm. 1 and Rem. 9]. In the latter paper (see [11, Rem. 4 and Rem. 8]), it is also shown
that partial uniqueness and conditionally full uniqueness as in the above statement are
the best one can prove. As for existence, here is our general result [21, Thm. 2.3].

Theorem 2. Assume (1.1) � (1.6) and (1.9) � (1.12). Then, there exists a quintuplet

(y, yΓ, w, ξ, ξΓ) satisfying (1.13) � (1.18) and solving problem (1.19) � (1.21).

Next goal is regularity. First, we want to prove that the components y and yΓ of the
solution to problem (1.19) � (1.21) given by the above theorems also satisfy

y ∈ W 1,∞(0, T ;V ∗) ∩H1(0, T ;V ) ∩ L∞(0, T ;H2(Ω)) and τ∂ty ∈ L∞(0, T ;H), (1.27)

yΓ ∈ W 1,∞(0, T ;HΓ) ∩H1(0, T ;VΓ) ∩ L∞(0, T ;H2(Γ)), (1.28)

whence also
y ∈ L∞(Q) and yΓ ∈ L∞(Σ). (1.29)

To this aim, we make further assumptions on the data. Namely

g ∈ H1(0, T ;H) and gΓ ∈ H1(0, T ;HΓ), (1.30)

y0 ∈ H2(Ω) and y0 Γ
∈ H2(Γ), (1.31)

there exists ξ0 ∈ H such that ξ0 ∈ β(y0) a.e. in Q, (1.32)

there exists ξΓ,0 ∈ HΓ such that ξΓ,0 ∈ βΓ(y0 Γ
) a.e. on Σ, (1.33)

and, if τ = 0, we reinforce (1.32) by requiring that

the family {−∆y0 − βε(y0)− g(0) : ε ∈ (0, ε0)} is bounded in V (1.34)

for some ε0 > 0. In (1.34), the symbol βε stands for the Yosida regularization of β at level ε
(see, e.g., [36, p. 28]). Clearly, in order to ensure (1.34), one can assume that∆y0+g(0) ∈ V
and that βε(y0) remains bounded in V for ε small enough. A su�cient condition for the
latter is the following: there exist r±, r

′
± ∈ R such that r′− < r− ≤ y0 ≤ r+ < r′+ a.e. in Ω,

(r′−, r
′
+) ⊂ D(β) and the restriction of β to (r′−, r

′
+) is a single-valued Lipschitz continuous

function.
Here is our �rst regularity result (see [21, Thm. 2.4]). It regards general potentials and

both the viscous and pure cases.

Theorem 3. Assume (1.1) � (1.6) on the structure and suppose that the data satisfy

(1.30) � (1.33) and (1.12). Moreover, assume either τ > 0 or (1.34). Then, there exists a

solution to problem (1.19) � (1.21) that also satis�es (1.27) � (1.29) as well as

w ∈ L∞(0, T ;V ), ξ ∈ L∞(0, T ;H), ξΓ ∈ L∞(0, T ;HΓ) . (1.35)

The next result regards the viscous case, only, but it still allows general potentials
(see [21, Thm. 2.6]).

Âåñòíèê ÞÓðÃÓ. Ñåðèÿ ≪Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå
è ïðîãðàììèðîâàíèå≫ (Âåñòíèê ÞÓðÃÓ ÌÌÏ). 2017. Ò. 10, � 1. Ñ. 5�21

11



P. Colli, G. Gilardi, J. Sprekels

Theorem 4. In addition to the assumptions of Theorem 3, suppose that τ > 0 and that

g ∈ L∞(Q), gΓ ∈ L∞(Σ) and β◦(y0) ∈ L∞(Q). (1.36)

Then, there exists a solution to problem (1.19) � (1.21) that also satis�es (1.27) � (1.29),
(1.35) and

w ∈ L∞(0, T ;H2(Ω)) ⊂ L∞(Q) and ξ ∈ L∞(Q). (1.37)

It is worth noting an interesting consequence that holds in the following case:

D(β) and D(βΓ) are the same open interval I. (1.38)

This condition is ful�lled if f and fΓ are, for instance, the same everywhere de�ned smooth
potential (0.2) or the same logarithmic potential (0.3). On the contrary, potentials whose
convex part is an indicator function like (0.4) are excluded. However, (1.38) still allows
multi-valued operators β and βΓ. We observe that, if I is not the whole of R and r0 is
an end-point of it, then β◦ has an in�nite limit at r0 since the interval I is open. Hence,
the second property in (1.37) yields that y(x, t) remains bounded away from r0. Moreover,
if I is unbounded, one can account for (1.29). As D(βΓ) = D(β) properties of this type
for ξ and y imply similar properties for ξΓ. Therefore, if (1.38) holds, the next statement
(see [21, Cor. 2.7]) easily follows from the results already presented. Let us recall (1.4)�(1.5)
before stating it.

Corollary 1. In addition to the hypotheses of Theorem 3, assume τ > 0 and (1.38) on the

structure and (1.36) on the data. Then, there exists a solution (y, yΓ, w, ξ, ξΓ) to problem

(1.13) � (1.21) that also satis�es (1.27) � (1.29), (1.35), (1.37) and

y(x, t) ∈ K for a.a. (x, t) ∈ Q and some compact subset K ⊂ I,

ξΓ ∈ L∞(Σ).

Moreover, if β and βΓ are single-valued, the unique solution also satis�es

β′(y) ∈ L∞(Q), β′
Γ(y) ∈ L∞(Σ)

as well as, if f and fΓ are C2 functions in addition,

f ′′(y) ∈ L∞(0, T ;V ) and f ′′
Γ(y) ∈ L∞(0, T ;VΓ) .

2. Control Problems

In dealing with control problems, it might be easy to prove the existence of an optimal
control, while, in general, it is more di�cult to establish �rst-order necessary conditions
for optimality. To this aim, one often needs that the state corresponding to the optimal
control under attention is very smooth. For that reason, we reinforce our assumptions on
the structure. In particular, we also assume that β and βΓ satisfy (1.38) and are single-
valued smooth function on their common domain. Here are the precise assumptions we
add to (1.1) � (1.6):

D(β) = D(βΓ) = (r−, r+) with −∞ ≤ r− < 0 < r+ ≤ +∞, (2.1)
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f, fΓ are C3 functions on (r−, r+), (2.2)

|f ′(r)| ≤ η |f ′
Γ(r)|+ C for some η, C > 0 and every r ∈ (r−, r+), (2.3)

lim
r↘r−

f ′(r) = lim
r↘r−

f ′
Γ(r) = −∞ and lim

r↗r+
f ′(r) = lim

r↗r+
f ′
Γ(r) = +∞. (2.4)

Clearly, (2.3) and (2.4) follow from (1.1) � (1.6) if both r− and r+ are �nite. Notice that,
once more, the choices f = freg and f = flog corresponding to (0.2) and (0.3) are allowed.
On the contrary, the double-obstacle potential (0.4) is excluded. It is understood that all
the assumptions (1.1) � (1.6) and (2.1) � (2.4) on the structure are in force throughout
the whole section.

If the data satisfy (1.30) � (1.33) and (1.12), then the solution is unique and enjoys
the following regularity

y ∈ W 1,∞(0, T ;V ∗) ∩H1(0, T ;V ) ∩ L∞(0, T ;H2(Ω)), (2.5)

τ∂ty ∈ L∞(0, T ;H), (2.6)

yΓ ∈ W 1,∞(0, T ;HΓ) ∩H1(0, T ;VΓ) ∩ L∞(0, T ;H2(Γ)), (2.7)

r− < inf ess
Q

y ≤ sup ess
Q

y < r+, (2.8)

w ∈ L∞(0, T ;H2(Ω)). (2.9)

In particular, all the components y, yΓ and w are bounded, as well as f (i)(y) and f
(i)
Γ (yΓ) for

i = 1, 2, 3. We notice that the assumptions on y0 included in (1.31) and (1.36) mean that

y0 ∈ H2(Ω), y0 Γ
∈ H2(Γ) and r− < y0(x) < r+ for every x ∈ Ω (2.10)

in the present case.
At this point, we can address the corresponding control problem. The state system is

(1.13) � (1.21) with g = 0 and the control is gΓ, which we term uΓ now. We rewrite the
full system for clarity:∫

Ω

∂ty(t) v +

∫
Ω

∇w(t) · ∇v = 0, (2.11)∫
Ω

w(t) v = τ

∫
Ω

∂ty(t) v +

∫
Γ

∂tyΓ(t) vΓ +

∫
Ω

∇y(t) · ∇v +

∫
Γ

∇ΓyΓ(t) · ∇ΓvΓ

+

∫
Ω

f ′(y(t)) v +

∫
Γ

(
f ′
Γ(yΓ(t))− uΓ(t)

)
vΓ, (2.12)

y(0) = y0, (2.13)

where (2.11) and (2.12) hold for a.a. t ∈ (0, T ) and for every v ∈ V and every (v, vΓ) ∈ V,
respectively. We call (y, yΓ) the state corresponding to the control uΓ, and this is the most
important part of the solution. Indeed, the other components are completely determined
by it. The control box Uad is given by

Uad :=
{
uΓ ∈ H1(0, T ;HΓ) ∩ L∞(Σ) :

uΓ,min ≤ uΓ ≤ uΓ,max a.e. on Σ, ∥∂tuΓ∥2 ≤ M0

}
(2.14)

where the constant M0 and the functions uΓ,min and uΓ,max satisfy

M0 > 0, uΓ,min, uΓ,max ∈ L∞(Σ) and Uad is nonempty. (2.15)
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Finally, given the functions and the constants

zQ ∈ L2(Q) , zΣ ∈ L2(Σ) and bQ, bΣ, b0 ∈ [0,+∞), (2.16)

we set

J(y, yΓ, uΓ) :=
bQ
2

∥y − zQ∥2L2(Q) +
bΣ
2
∥yΓ − zΣ∥2L2(Σ) +

b0
2
∥uΓ∥2L2(Σ) (2.17)

for, say, y ∈ C0([0, T ];H), yΓ ∈ C0([0, T ];HΓ) and uΓ ∈ L2(Σ). At this point, the control
problem consists in minimizing the cost functional (2.17) subject to the constraint uΓ ∈ Uad

and to the state system (2.11) � (2.13). The following result holds true (see [22, Thm. 2.3]
for the viscous case and [23, Thm. 2.5] for the pure one):

Theorem 5. Assume (2.10). Then, there exists uΓ ∈ Uad such that

J(y, yΓ, uΓ) ≤ J(y, yΓ, uΓ) for every uΓ ∈ Uad, (2.18)

where y, yΓ, y and yΓ are the components of the solutions (y, yΓ, w) and (y, yΓ, w) to the

state system (1.13) � (1.21) corresponding to the controls uΓ and uΓ, respectively.

Once such an existence result is established, one looks for necessary conditions for a
given uΓ to be an optimum control. The natural strategy is the introduction of suitable
Banach spaces X and Y with the following properties: i) the control box Uad is a closed
subset of X; ii) for every uΓ in some neighbourhood U of Uad, the state system has a unique
solution and the corresponding pair (y, yΓ) belongs to Y; iii) the map S that associates
such a pair (y, yΓ) to the arbitrary uΓ ∈ U is Fr�echet di�erentiable.

This project is di�cult to realize in the general case, due to the low regularity of the
time derivative of the state, which only belongs to L2(0, T ;V ∗) (see (2.5)). The situation
is di�erent in the viscous case due to (2.6).

So, we split our discussion in two parts, and we �rst assume that τ > 0. Then, the
results corresponding to the above program are proved in [22] with the following choice of
the spaces:

X := H1(0, T ;HΓ) ∩ L∞(Σ) and Y := H1(0, T ;H) ∩ L∞(0, T ;V). (2.19)

Moreover, U is an arbitrary open neighbourhood of Uad (see [22, Prop. 2.4 and Thm. 4.2]).

Then, since the functional to be minimized is Uad ∋ uΓ 7→ J̃(uΓ) := J(S(uΓ), uΓ) and Uad

is convex, the natural necessary condition is the following: ⟨DJ̃(uΓ), vΓ−uΓ⟩ ≥ 0 for every

vΓ ∈ Uad, where DJ̃(uΓ) ∈ X∗ is the Fr�echet derivative of J̃ at uΓ. However, because of
the chain rule, this contains the value at hΓ := vΓ − uΓ of the Fr�echet derivative DS(uΓ),
which turns out to be the solution to the problem obtained by linearizing (1.13) � (1.21)
around uΓ and taking hΓ in the linear term that corresponds to the position of the control
in the nonlinear problem (see [22, Prop. 6.1 and formula (2.42)]). This can be eliminated
by introducing a proper adjoint problem. We set for brevity

φQ = bQ(y − zQ) and φΣ = bΣ(yΓ − zΣ), (2.20)

where (y, yΓ) is the state associated to the optimal control uΓ under attention. Then,
the adjoint problem is the following: �nd a triplet (p, q, qΓ) that ful�lls the regularity
requirements

p ∈ H1(0, T ;H2(Ω)) ∩ L2(0, T ;H4(Ω)), (2.21)
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q ∈ H1(0, T ;H) ∩ L2(0, T ;H2(Ω)), (2.22)

qΓ ∈ H1(0, T ;HΓ) ∩ L2(0, T ;H2(Γ)), (2.23)

qΓ(t) = q(t)
Γ

for a.a. t ∈ (0, T ), (2.24)

and solves the variational equations∫
Ω

q v =

∫
Ω

∇p · ∇v a.e. in (0, T ) and for all v ∈ V , (2.25)

−
∫
Ω

∂t
(
p+ τq

)
v +

∫
Ω

∇q · ∇v +

∫
Ω

f ′′(y) q v

−
∫
Γ

∂tqΓ vΓ +

∫
Γ

∇ΓqΓ · ∇ΓvΓ +

∫
Γ

f ′′
Γ(yΓ) qΓ vΓ =

∫
Ω

φQ v +

∫
Γ

φΣ vΓ

a.e. in (0, T ) and every (v, vΓ) ∈ V (2.26)

and the �nal condition∫
Ω

(p+ τq)(T ) v +

∫
Γ

qΓ(T ) vΓ = 0 for every (v, vΓ) ∈ V. (2.27)

We have the following result (see [22, Thm. 2.5]):

Theorem 6. Assume (2.10) and τ > 0, and let uΓ and (y, yΓ) = S(uΓ) be an optimal

control and the corresponding state. Then the adjoint problem (2.25) � (2.27) has a unique

solution (pτ , qτ , qτΓ) satisfying the regularity conditions (2.21) � (2.24).

Finally, the necessary condition involving the linearized problem takes a particularly
simple form if the solution of the adjoint problem is used. Namely, we have (see [22,
Thm. 2.6])

Theorem 7. Assume (2.10) and τ > 0, and let uΓ be an optimal control. Moreover, let

(y, yΓ) = S(uΓ) and (pτ , qτ , qτΓ) be the associate state and the unique solution to the adjoint

problem (2.25) � (2.27) given by Theorem 6. Then we have∫
Σ

(qτΓ + b0uΓ)(vΓ − uΓ) ≥ 0 for every vΓ ∈ Uad. (2.28)

Remark 2. In particular, if b0 > 0, (2.28) says that

uΓ is the orthogonal projection of −qτΓ/b0 on Uad (2.29)

with respect to the standard scalar product in L2(Σ).

The next step is to treat the pure Cahn � Hilliard system, i.e., the case τ = 0, and
this is done in [23]. The idea is to take the limit as τ ↘ 0 in the above results.

Even though the adjoint problem (2.25) � (2.27) involves a triplet (pτ , qτ , qτΓ) as
an adjoint state, only the third component qτΓ enters the necessary condition (2.28) for
optimality. On the other hand, qτ and qτΓ are strictly related to each other. Hence, we
mention the result proved in [22] that deals with the pair (qτ , qτΓ). To this end, we recall
a tool, the generalized Neumann problem solver N, that is often used in connection with
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the Cahn � Hilliard equations. With the notation for the mean value introduced in (1.24),
we de�ne

domN := {v∗ ∈ V ∗ : vΩ∗ = 0} and N : domN → {v ∈ V : vΩ = 0} (2.30)

by setting, for v∗ ∈ domN,

Nv∗ ∈ V, (Nv∗)
Ω = 0, and

∫
Ω

∇Nv∗ · ∇z = ⟨v∗, z⟩ for every z ∈ V . (2.31)

Thus,Nv∗ is the solution v to the generalized Neumann problem for−∆ with datum v∗ that
satis�es vΩ = 0. Indeed, if v∗ ∈ H, the above variational equation means that −∆Nv∗ = v∗
and ∂nNv∗ = 0. As Ω is bounded, smooth, and connected, it turns out that (2.31) yields
a well-de�ned isomorphism. Furthermore, we introduce the spaces HΩ and VΩ by setting

HΩ := {(v, vΓ) ∈ H : vΩ = 0} and VΩ := HΩ ∩ V , (2.32)

and endow them with their natural topologies as subspaces of H and V, respectively. We
have the following result.

Theorem 8. Assume τ > 0. Then, with the notation (2.20), there exists a unique pair

(qτ , qτΓ) satisfying the regularity conditions

qτ ∈ H1(0, T ;H) ∩ L2(0, T ;H2(Ω)) and qτΓ ∈ H1(0, T ;HΓ) ∩ L2(0, T ;H2(Γ)) (2.33)

and solving the following problem:

(qτ , qτΓ)(t) ∈ VΩ for every t ∈ [0, T ], (2.34)

−
∫
Ω

∂t
(
N(qτ ) + τqτ

)
v +

∫
Ω

∇qτ · ∇v +

∫
Ω

f ′′(y τ ) qτ v

−
∫
Γ

∂tq
τ
Γ vΓ +

∫
Γ

∇Γq
τ
Γ · ∇ΓvΓ +

∫
Γ

f ′′
Γ(y

τ
Γ) q

τ
Γ vΓ

=

∫
Ω

φQv +

∫
Γ

φΣvΓ a.e. in (0, T ) and for every (v, vΓ) ∈ VΩ, (2.35)∫
Ω

(
Nqτ + τqτ

)
(T ) v +

∫
Γ

qΓ(T ) vΓ = 0 for every (v, vΓ) ∈ VΩ. (2.36)

Moreover, the pair (qτ , qτΓ) is the same as the couple of components of the unique solution

(pτ , qτ , qτΓ) to the adjoint problem (2.25) � (2.27) given by Theorem 6.

Remark 3. It is worth to notice that our presentation does not follow [22] in the detail.
Indeed, [22] uses this problem to solve the adjoint problem (2.25) � (2.27) as follows. From
one hand, the system (2.34) � (2.36) can be seen as a backward Cauchy problem in the
framework of the Hilbert triplet (VΩ,HΩ,V

∗
Ω) (see [22, formula (5.25)]). Thus, one proves

that it can be solved (see [22, pp. 21�22]). On the other hand, if (q, qΓ) is its unique
solution, one shows that on can reconstruct p in order that the triplet (p, q, qΓ) solves
problem (2.25) � (2.27) (see [22, Thm. 5.4], in particular formulas [22, (5.10) � (5.11)]).
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At this point, we let τ tend to zero in (2.34) � (2.36) rather than in (2.25) � (2.27). By
doing that, we do not care about the limit of pτ . To this end, we need some more tools.
We introduce the spaces

W := L2(0, T ;VΩ) ∩
(
H1(0, T ;V ∗)×H1(0, T ;V ∗

Γ )
)
, (2.37)

W0 := {(v, vΓ) ∈ W : (v, vΓ)(0) = (0, 0)} (2.38)

and endow them with their natural topologies. Moreover, we denote by ⟨⟨ · , · ⟩⟩ the duality
product between W∗

0 and W0. We have the following representation result for the elements
of the dual space W∗

0 (see [23, Prop. 2.6]):

Proposition 1. A functional F : W0 → R belongs to W∗
0 if and only if there exist Λ and

ΛΓ satisfying

Λ ∈
(
H1(0, T ;V ∗) ∩ L2(0, T ;V )

)∗
and ΛΓ ∈

(
H1(0, T ;V ∗

Γ ) ∩ L2(0, T ;VΓ)
)∗
, (2.39)

⟨⟨F, (v, vΓ)⟩⟩ = ⟨Λ, v⟩Q + ⟨ΛΓ, vΓ⟩Σ for every (v, vΓ) ∈ W0 , (2.40)

where the duality products ⟨ · , · ⟩Q and ⟨ · , · ⟩Σ are related to the spaces X∗ and X with

X = H1(0, T ;V ∗) ∩ L2(0, T ;V ) and X = H1(0, T ;V ∗
Γ ) ∩ L2(0, T ;VΓ), respectively.

However, this representation is not unique, since di�erent pairs (Λ,ΛΓ) satisfying (2.39)
could generate the same functional F through formula (2.40).

At this point, we can state our last result. The following theorem gives both a
generalized solution to a proper adjoint problem with τ = 0 and a �rst-order necessary
condition for optimality similar to (2.28) (see [23, Thm. 2.7]).

Theorem 9. Assume (1.1) � (1.6) and (1.9) � (1.12), and let J and Uad be de�ned by

(2.17) and (2.14) under the assumptions (2.15). Moreover, let uΓ be any optimal control

related to the state system with τ = 0. Then, there exist Λ and ΛΓ satisfying (2.39), and
a pair (q, qΓ) satisfying

q ∈ L∞(0, T ;V ∗) ∩ L2(0, T ;V ), (2.41)

qΓ ∈ L∞(0, T ;HΓ) ∩ L2(0, T ;VΓ), (2.42)

(q, qΓ)(t) ∈ VΩ for a.e. t ∈ [0, T ], (2.43)

as well as∫ T

0

⟨∂tv,Nq⟩+
∫ T

0

⟨∂tvΓ, qΓ⟩Γ +
∫
Q

∇q · ∇v +

∫
Σ

∇ΓqΓ · ∇ΓvΓ

+ ⟨Λ, v⟩Q + ⟨ΛΓ, vΓ⟩Σ =

∫
Q

φQ v +

∫
Σ

φΣ vΓ for every (v, vΓ) ∈ W0 , (2.44)

such that ∫
Σ

(qΓ + b0uΓ)(vΓ − uΓ) ≥ 0 for every vΓ ∈ Uad. (2.45)

Remark 4. In particular, if b0 > 0, (2.45) says that

uΓ is the orthogonal projection of −qΓ/b0 on Uad (2.46)

with respect to the standard scalar product in L2(Σ).
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One recognizes in (2.44) a problem that is analogous to (2.35) � (2.36). Indeed, if Λ, ΛΓ

and the solution (q, qΓ) were regular functions, then its strong form should contain both
a generalized backward parabolic equation like (2.35) and a �nal condition for (Nq, qΓ) of
type (2.36), since the de�nition of W0 allows its elements to be free at t = T . However, the
terms f ′′(y τ )qτ and f ′′

Γ(y
τ
Γ)q

τ
Γ are just replaced by the functionals Λ and ΛΓ and cannot

be identi�ed as products, unfortunately.

Acknowledgements. PC and GG gratefully acknowledge some �nancial support
from the MIUR-PRIN Grant 2015PA5MP7 "Calculus of Variations" and the GNAMPA
(Gruppo Nazionale per l'Analisi Matematica, la Probabilit�a e le loro Applicazioni) of
INdAM (Istituto Nazionale di Alta Matematica).

References

1. Bai F., Elliott C.M., Gardiner A., Spence A., Stuart A.M. The Viscous Cahn � Hilliard
Equation. Part I: Computations. Nonlinearity, 1995, vol. 8, pp. 131�160.

2. Cahn J.W., Hilliard J.E. Free Energy of a Nonuniform System I. Interfacial Free Energy. The
Journal of Chemical Physics, 1958, vol. 28, issue 2, pp. 258�267. DOI: 10.1063/1.1744102

3. Elliott C.M., Stuart A.M. Viscous Cahn � Hilliard Equation II. Analysis. Journal of

Di�erential Equations, 1996, vol. 128, issue 2, pp. 387�414. DOI: 10.1006/jdeq.1996.0101

4. Elliott C.M., Zheng S. On the Cahn � Hilliard Equation. Archive Rational Mechanics and

Analysis, 1986, vol. 96, issue 4, pp. 339�357. DOI: 10.1007/BF00251803

5. Novick-Cohen A. On the Viscous Cahn � Hilliard Equation. Material Instabilities in

Continuum Mechanics. (Edinburgh, 1985�1986). N.Y., Oxford Science Publishing, Oxford
Univesity Press, 1988, pp. 329�342.

6. Cher�ls L., Miranville A., Zelik S. The Cahn � Hilliard Equation with Logarithmic Potentials.
Milan Journal of Mathematics, 2011, vol. 79, issue 2, pp. 561�596. DOI: 10.1007/s00032-011-
0165-4

7. Colli P., Gilardi G., Podio-Guidugli P., Sprekels J. Well-Posedness and Long-Time Behaviour
for a Nonstandard Viscous Cahn � Hilliard System. Society for Industrial and Applied

Mathematics Journal on Applied Mathematics, 2011, vol. 71, issue 6, pp. 1849�1870.
DOI: 10.1137/110828526

8. Fried E., Gurtin M.E. Continuum Theory of Thermally Induced Phase Transitions Based on
an Order Parameter. Physica D: Nonlinear Phenomena, 1993, vol. 68, issue 3-4, pp. 326�343.
DOI: 10.1016/0167-2789(93)90128-N

9. Gurtin M. Generalized Ginzburg � Landau and Cahn � Hilliard Equations Based on a
Microforce Balance. Physica D: Nonlinear Phenomena, 1996, vol. 92, issue 3-4, pp. 178�192.
DOI: 10.1016/0167-2785(95)00173-5

10. Podio-Guidugli P. Models of Phase Segregation and Di�usion of Atomic Species on a Lattice.
Ricerche di Matematica, 2006, vol. 55, issue 1, pp. 105�118. DOI: 10.1007/s11587-006-0008-8

11. Gilardi G., Miranville A., Schimperna G. On the Cahn � Hilliard Equation with Irregular
Potentials and Dynamic Boundary Conditions. Communications on Pure Applied Analysis,
2009, vol. 8, issue 3, pp. 881�912. DOI: 10.3934/cppa.2009.8.881

12. Chill R., Fa�sangov�a E., Pr�uss J. Convergence to Steady States of Solutions of the Cahn �
Hilliard Equation with Dynamic Boundary Conditions. Mathematische Nachrichten, 2006,
vol. 279, issue 13-14, pp. 1448�1462. DOI: 10.1002/mana.200410431

18 Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming
& Computer Software (Bulletin SUSU MMCS), 2017, vol. 10, no. 1, pp. 5�21



ÌÀÒÅÌÀÒÈ×ÅÑÊÎÅ ÌÎÄÅËÈÐÎÂÀÍÈÅ

13. Miranville A., Zelik S. Robust Exponential Attractors for Cahn � Hilliard Type Equations
with Singular Potentials.Mathematical Methods in the Applied Sciences, 2004, vol. 27, issue 5,
pp. 545�582. DOI: 10.1002/mma.464

14. Pr�uss J., Racke R., Zheng S. Maximal Regularity and Asymptotic Behavior of Solutions for
the Cahn � Hilliard Equation with Dynamic Boundary Conditions. Annali di Matematica

Pura ed Applicata, 2006, vol. 185, issue 4, pp. 627�648. DOI: 10.1007/s10231-005-0175-3

15. Racke R., Zheng S. The Cahn � Hilliard Equation with Dynamic Boundary Conditions.
Advances in Di�erential Equations, 2003, vol. 8, no. 1, pp. 83�110.

16. Wu H., Zheng S. Convergence to Equilibrium for the Cahn � Hilliard Equation with
Dynamic Boundary Conditions. Journal of Di�erential Equations, 2004, vol. 204, pp. 511�531.
DOI: 10.1016/j.jde.2004.05.004

17. Gilardi G., Miranville A., Schimperna G. Long Time Behavior of the Cahn � Hilliard Equation
with Irregular Potentials and Dynamic Boundary Conditions. Chinese Annal of Mathematics,

Series B, 2010, vol. 31, issue 5, pp. 679�712. DOI: 10.1007/s11401-010-0602-7

18. Calatroni L., Colli P. Global Solution to the Allen�Cahn Equation with Singular Potentials
and Dynamic Boundary Conditions. Nonlinear Analysis: Theory, Methods and Applications,
2013, vol. 79, pp. 12�27. DOI: 10.1016/j.na.2012.11.010

19. Colli P., Sprekels J. Optimal Control of an Allen � Cahn Equation with Singular Potentials
and Dynamic Boundary Condition. Society for Industrial and Applied Mathematics Journal

on Control and Optimization, 2015, vol. 53, issue 1, pp. 213�234. DOI: 10.1137/120902422

20. Colli P., Farshbaf-Shaker M.H., Sprekels J. A Deep Quench Approach to the Optimal Control
of an Allen�Cahn Equation with Dynamic Boundary Conditions and Double Obstacles.
Applied Mathematics and Optimization, 2015, vol. 71, issue 1, pp. 1�24. DOI: 10.1007/s00245-
014-9250-8

21. Colli P., Gilardi G., Sprekels J. On the Cahn � Hilliard Equation with Dynamic Boundary
Conditions and a Dominating Boundary Potential. Journal of Mathematical Analysis and

Applications, 2014, vol. 419, issue 2, pp. 972�994. DOI: 10.1016/j.jmaa.2014.05.008

22. Colli P., Gilardi G., Sprekels J. A Boundary Control Problem for the Viscous Cahn � Hilliard
Equation with Dynamic Boundary Conditions. Applied Mathematics and Optimization, 2016,
vol. 73, issue 2, pp. 195�225. DOI: 10.1007/s00245-015-9299-z

23. Colli P., Gilardi G., Sprekels J. A Boundary Control Problem for the Pure Cahn � Hilliard
Equation with Dynamic Boundary Conditions. Advances in Nonlinear Analysis, 2015, vol. 4,
issue 4, pp. 311�325. DOI: 10.1515/anona-2015-0035

24. Colli P., Farshbaf-Shaker M.H., Gilardi G., Sprekels J. Optimal Boundary Control of a Viscous
Cahn � Hilliard System with Dynamic Boundary Condition and Double Obstacle Potentials.
Society for Industrial and Applied Mathematics Journal on Control and Optimization, 2015,
vol. 53, issue 4, pp. 2696�2721. DOI: 10.1137/140984749

25. Colli P., Fukao T. Cahn � Hilliard Equation with Dynamic Boundary Conditions and Mass
Constraint on the Boundary. Journal of Mathematical Analysis and Applications, 2015,
vol. 429, issue 2, pp. 1190�1213. DOI: 10.1016/j.jmaa.2015.04.057

26. Colli P., Fukao T. Equation and Dynamic Boundary Condition of Cahn � Hilliard Type with
Singular Potentials. Nonlinear Analysis: Theory, Methods and Applications, 2015, vol. 127,
pp. 413�433. DOI: 10.1016/j.na.2015.07.011

27. Hinterm�uller M., Wegner D. Distributed Optimal Control of the Cahn � Hilliard System
Including the Case of a Double-Obstacle Homogeneous Free Energy Density. Society for

Industrial and Applied Mathematics Journal on Control and Optimization, 2012, vol. 50,
issue 1, pp. 388�418. DOI: 10.1137/110824152

Âåñòíèê ÞÓðÃÓ. Ñåðèÿ ≪Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå
è ïðîãðàììèðîâàíèå≫ (Âåñòíèê ÞÓðÃÓ ÌÌÏ). 2017. Ò. 10, � 1. Ñ. 5�21

19



P. Colli, G. Gilardi, J. Sprekels

28. Wang Q.-F., Nakagiri S.-I. Optimal Control of Distributed Parameter System Given by Cahn
� Hilliard Equation. Nonlinear Functional Analysis and Applications, 2014, vol. 19, pp. 19�33.

29. Zheng J., Wang Y. Optimal Control Problem for Cahn � Hilliard Equations with State
Constraint. Journal of Dynamical and Control Systems, 2015, vol. 21, issue 2, pp. 257�272.
DOI: 10.1007/s10883-014-9259-y

30. Zhao X.P., Liu C.C. Optimal Control of the Convective Cahn � Hilliard Equation. Applicable
Analysis, 2013, vol. 92, issue 5, pp. 1028�1045. DOI: 10.1080/00036811.2011.643786

31. Zhao X.P., Liu C.C. Optimal Control for the Convective Cahn � Hilliard Equation
in 2D Case. Applied Mathematics and Optimization, 2014, vol. 70, issue 1, pp. 61�82.
DOI: 10.1007/s00245-013-9234-0

32. Rocca E., Sprekels J. Optimal Distributed Control of a Nonlocal Convective Cahn �
Hilliard Equation by the Velocity in Three Dimensions. Society for Industrial and Applied

Mathematics Journal on Control and Optimization, 2015, vol. 53, issue 3, pp. 1654�1680.
DOI: 10.1137/140964308

33. Colli P., Farshbaf-Shaker M.H., Gilardi G., Sprekels J. Second-Order Analysis of a
Boundary Control Problem for the Viscous Cahn � Hilliard Equation with Dynamic
Boundary Condition. Annals Academy of Romanian Scientists. Series on Mathematics and

its Applications, 2015, vol. 7, no. 1, pp. 41�66.

34. Hinterm�uller M., Wegner D. Optimal Control of a Semidiscrete Cahn � Hilliard � Navier
� Stokes System. Society for Industrial and Applied Mathematics Journal on Control and

Optimization, 2014, vol. 52, issue 1, pp. 747�772. DOI: 10.1137/120865628

35. Wang Q.-F. Optimal Distributed Control of Nonlinear Cahn � Hilliard Systems with
Computational Realization. Journal of Mathematical Sciences, 2011, vol. 177, issue 3,
pp. 440�458. DOI: 10.1007/s10958-011-0470-z

36. Brezis H. Op�erateurs maximaux monotones et semi-groupes de contractions dans les espaces

de Hilbert. Amsterdam, North-Holland, 1973.

Received November 30, 2016

ÓÄÊ 517.9 DOI: 10.14529/mmp170101

ÏÎÑËÅÄÍÈÅ ÐÅÇÓËÜÒÀÒÛ ÄËß ÓÐÀÂÍÅÍÈß
ÊÀÍÀ � ÕÈËËÈÀÐÄÀ Ñ ÄÈÍÀÌÈ×ÅÑÊÎÉ ÃÐÀÍÈÖÅÉ

Ï. Êîëëè, Äæ. Äæèëàðäè, Þ. Ñïðåêåëñ

Â ñòàòüå ðàññìàòðèâàåòñÿ óðàâíåíèå Êàíà � Õèëëèàðäà ≪÷èñòîå≫ èëè ñ âÿçêî-

ñòüþ ñ âîçìîæíî ñèíãóëÿðíûìè ïîòåíöèàëàìè è äèíàìè÷åñêèìè ãðàíè÷íûìè óñëîâè-

ÿìè. Îáñóæäàåòñÿ êîððåêòíîñòü ñîîòâåòñòâóþùåé íà÷àëüíîé çàäà÷è. Èçó÷àåòñÿ çàäà÷à

ãðàíè÷íîãî óïðàâëåíèÿ äëÿ ñèñòåìû Êàíà � Õèëëèàðäà ñ âÿçêîñòüþ è íàõîäÿòñÿ íåîá-

õîäèìûå óñëîâèÿ îïòèìàëüíîñòè ïåðâîãî ïîðÿäêà. Êðîìå òîãî, ñòàâèòñÿ àíàëîãè÷íàÿ

çàäà÷à ãðàíè÷íîãî óïðàâëåíèÿ äëÿ ≪÷èñòîé≫ ñèñòåìû Êàíà � Õèëëèàðäà, ðåçóëüòàòû

ïîëó÷àþòñÿ ïîìîùüþ ïðåäåëüíîãî ïåðåõîäà â ñëó÷àå ñèñòåìû Êàíà � Õèëëèàðäà ñ

âÿçêîñòüþ, êîãäà êîýôôèöèåíò âÿçêîñòè ñòðåìèòñÿ ê íóëþ.

Êëþ÷åâûå ñëîâà: óðàâíåíèå Êàíà � Õèëëèàðäà; äèíàìè÷åñêèå ãðàíè÷íûå óñëîâèÿ;

ðàçäåëåíèå ôàç; êîððåêòíîñòü; îïòèìàëüíîå ãðàíè÷íîå óïðàâëåíèå; óñëîâèÿ îïòè-

ìàëüíîñòè.
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