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Coupled quantum vortex kinematics and Berry
curvature in real space
Lorenzo Dominici 1✉, Amir Rahmani 2, David Colas3, Dario Ballarini 1, Milena De Giorgi 1,

Giuseppe Gigli1,4, Daniele Sanvitto1, Fabrice P. Laussy 5,6 & Nina Voronova 6,7✉

The Berry curvature provides a powerful tool to unify several branches of science through

their geometrical aspect: topology, energy bands, spin and vector fields. While quantum

defects–phase vortices and skyrmions–have been in the spotlight, as rotational entities in

condensates, superfluids and optics, their dynamics in multi-component fields remain little

explored. Here we use two-component microcavity polaritons to imprint a dynamical pseu-

dospin texture in the form of a double full Bloch beam, a conformal continuous vortex beyond

unitary skyrmions. The Berry curvature plays a key role to link various quantum spaces

available to describe such textures. It explains for instance the ultrafast spiraling in real space

of two singular vortex cores, providing in particular a simple expression–also involving the

complex Rabi frequency–for their intricate velocity. Such Berry connections open new per-

spectives for understanding and controlling highly-structured quantum objects, including

strongly asymmetric cases or even higher multi-component fields.

https://doi.org/10.1038/s42005-023-01305-x OPEN

1 CNR NANOTEC, Istituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy. 2 Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-
668 Warsaw, Poland. 3 Aix Marseille Université, CNRS, Centrale Marseille, LMA UMR 7031, Marseille, France. 4 Dipartimento di Matematica e Fisica E. De
Giorgi, Universitá del Salento, Campus Ecotekne, via Monteroni, 73100 Lecce, Italy. 5 Faculty of Science and Engineering, University of Wolverhampton,
Wulfruna Street, Wolverhampton WV1 1LY, UK. 6 Russian Quantum Center, Skolkovo Innovation City, 121205 Moscow, Russia. 7 National Research Nuclear
University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia. ✉email: lorenzo.dominici@nanotec.cnr.it; nsvoronova@mephi.ru

COMMUNICATIONS PHYSICS |           (2023) 6:197 | https://doi.org/10.1038/s42005-023-01305-x | www.nature.com/commsphys 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-023-01305-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-023-01305-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-023-01305-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-023-01305-x&domain=pdf
http://orcid.org/0000-0002-5860-7089
http://orcid.org/0000-0002-5860-7089
http://orcid.org/0000-0002-5860-7089
http://orcid.org/0000-0002-5860-7089
http://orcid.org/0000-0002-5860-7089
http://orcid.org/0000-0002-7907-7160
http://orcid.org/0000-0002-7907-7160
http://orcid.org/0000-0002-7907-7160
http://orcid.org/0000-0002-7907-7160
http://orcid.org/0000-0002-7907-7160
http://orcid.org/0000-0002-2453-5849
http://orcid.org/0000-0002-2453-5849
http://orcid.org/0000-0002-2453-5849
http://orcid.org/0000-0002-2453-5849
http://orcid.org/0000-0002-2453-5849
http://orcid.org/0000-0002-4522-7933
http://orcid.org/0000-0002-4522-7933
http://orcid.org/0000-0002-4522-7933
http://orcid.org/0000-0002-4522-7933
http://orcid.org/0000-0002-4522-7933
http://orcid.org/0000-0002-1070-7128
http://orcid.org/0000-0002-1070-7128
http://orcid.org/0000-0002-1070-7128
http://orcid.org/0000-0002-1070-7128
http://orcid.org/0000-0002-1070-7128
http://orcid.org/0000-0001-7419-8820
http://orcid.org/0000-0001-7419-8820
http://orcid.org/0000-0001-7419-8820
http://orcid.org/0000-0001-7419-8820
http://orcid.org/0000-0001-7419-8820
mailto:lorenzo.dominici@nanotec.cnr.it
mailto:nsvoronova@mephi.ru
www.nature.com/commsphys
www.nature.com/commsphys


Quantized vortices embody the essence of circular motion
in all fields and fluids that can be described by an oscil-
lating wavefunction, such as superfluids, superconductors,

atomic Bose–Einstein condensates (BECs), and optical fields1–8.
The complex-valued nature of the wavefunction implies an integer
number of phase windings, or wave crests, around the core of such
a vortex, contributing to the intrinsic orbital angular momentum
(OAM)9–11. Unlike classical rigid rotations, the rotating quantum
fluid takes on greater momentum and velocity closer to the core of
rotation12, as in a gravitational orbital motion. In an optical
vortex, this applies to the group velocity, differently from the
phase velocity. An isolated BEC rotating around a single or
multiply charged central vortex can be thought of as a funda-
mental gyroscope13, candidating them as sensitive detectors
for gravitational waves when implemented in an orbiting
laboratory14. At different levels, analogies were drawn, both in the
past and recently, to point-like atoms15,16 or other elementary
particles dressed with two quantum numbers and capable of
tunable pair-wise interactions17,18 in the nonlinear regime.
Quantum vortices have been mostly studied when dealing with
nonlinear fluids and their phase transitions, relevant in their
observed macroscopic degree of coherence19, in quasi-two-
dimensional (2D) as well as in three-dimensional (3D) fields,
giving rise to vortex tubes, networks, rings, and knots20,21. These
entities are called wave dislocations22 or topological defects,
because the phase singularity at their core and the order parameter
winding around it are features of all waves23 at the basis of many
structured objects of nontrivial geometry. When implemented in
photonics, vortices represent a further degree of freedom24,25, for
data multiplexing and for free-air transmission26–28 as well as for
many optical tweezers applications29,30 and structured light
schemes31,32. Further dressed with the spin angular momentum
(SAM) or polarization degree of freedom, they can create complex
textures around their core33,34, subtending 2D skyrmion (baby-
skyrmion) and even 3D particle-like optical skyrmions35–37

eventually evolving in time38 thanks to different interactions with
a material medium. These objects can be of different type, such as
Bloch-, Neel- and anti-skyrmions, or strained into a combination
of multiple subparticles known as merons34. Recently, there is a
rising interest in the generation of optical skyrmion beams35–42,
thanks to their tunability and possible use in data encoding and
transmission. This interest is further motivated by the fact that,
both in condensed matter and in optics, even the most funda-
mental skyrmion in the linear regime can be viewed as a full
Poincaré43 or full Bloch beam44, highlighting their topological
connections.

Full Poincaré or Bloch beams can be created using a combi-
nation of vortical and vortex-free excitation beams, whose
wavefunction simultaneously comprises all the possible quantum
states of the associated Hilbert space44: a sphere of polarizations
or pseudospins. They belong to the class of continuous vortices,
also known as filled-core, bright core, coreless or non-singular
vortices in condensed matter and half-vortices in optics and
polaritons45. The Mermin–Ho46 and Anderson–Toulouse
vortices47 in superfluid 3He-A are also examples of continuous
vortices representing half- and full-texture states, respectively. In
that case, the pseudospin is the local unit vector of relative orbital
angular momentum of a Cooper pair. In a ferromagnetic BEC,
similar structures may exist48, where the texture refers to the unit
vector parallel to the local magnetization49. In these two exam-
ples, the pseudospin vector represents a direction in real space. In
general, in any two-state system, such as, for example, two-
component atomic BECs or polarized optical fields, the associated
Hilbert space is a four-dimensional space50. Apart from the
degrees of freedom represented by the total density and the total
phase, it can be interesting to focus on the remaining spinor order

parameter (two-dimensional Hilbert space of pseudospins). This
expresses the relative amplitude and phase between the two sys-
tem components, that can be associated to the polar θ and azi-
muthal φ angles on a sphere, i.e., in terms of Stokes-like
parameters. Their quantum geometry can be conveniently
described by mapping the sphere texture onto a given parameter
space, such as the real or momentum space. The density of the
mapped texture is represented by the so-called Mermin-Ho
texture46,51 or Berry curvature52, a quantity that, being integrated
over the whole target space, yields the net number of topological
wraps around the sphere, or skyrmion number36,53,54. Compared
to full Poincaré beam, the full Bloch beam changes dynamically,
because its texture is composed of two eigenmodes with different
energies. This results in the coherent oscillations of the two
components (e.g., the strongly coupled exciton and photon fields
of microcavity polaritons), and can be naturally associated with
counter-intuitive physical concepts such as time-varying OAM, a
feature that has recently attracted attention44,55. Indeed, the
coherent exchange of energy and momentum between the com-
ponents also manifests in a dynamical offset of the vortex cores
from the center in these composite beams. This provides a nice
visualization of what happens to the wavefunction in the case of
time-varying OAM, implementing the fact that the mean OAM
per particle is not directly determined by the presence of a given
number of vortices, but depends on their positions, their motion
and the surrounding density56–61. This could be used for the
direct encoding of specific OAM waveforms.

Here, we study a double full Bloch beam, created in a polariton
fluid, and track its evolution that takes the form of spiraling
vortices, driven by a mechanism which we clarify in the following.
Microcavity polaritons are hybrid light-matter quasiparticles
arising from the strong coupling of microcavity (MC) photons
and quantum well (QW) excitons. This makes them a two-
component system (even in the case of homogeneous polariza-
tion). Differently from a polarization pseudospin, the polariton
pseudospin represents the composition of the full wavefunction in
terms of the two normal modes of the system, upper and lower
polaritons (UP and LP, respectively). They inherit nonlinearity
from the excitons, interacting composite bosons62, but show
interesting aspects also in the linear regime. Polaritons provide a
powerful testbed for many quantum-fluids phenomena63 span-
ning from Bose–Einstein condensation, long range order coher-
ence, phase transitions19 and superfluidity, as well as spontaneous
or imprinted vortex structures formation and dynamics64. Their
open-dissipative nature allows for both the resonant excitation by
means of continuous-wave or pulsed laser light, as well as for
detection of their state via the emitted light.

In the present setting, the double vortex is imprinted by a
photon pulse and perturbed by a second pulse which is vortex-
free. This splits the two initially singular vortex into four coreless
vortices (in the polariton pseudospin texture), representing the
initial state. Its evolution is imaged by means of a digital off-axis
holography scheme65 allowing to retrieve both the amplitude and
phase maps of the emission in ultrafast time. The observed
dynamics happens in the linear regime and is enabled thanks to
the natural assets of polaritons, that is their Rabi oscillations65

and radiative decay. In fact, the motion of photonic vortices
inside the composite vortex66 is due to the spatially varying
relative phase and amplitude between the UP and LP mode, and
their drift in time due to the different eigenfrequencies. This is
possible upon associating the photonic vortex core to a specific
pseudospin on the equator of the Bloch sphere of polariton states,
and mapping the pseudospins by means of the Bloch sphere
metric in real space. In the case of a unitary full Bloch beam44

(when the excitation pulse carries a unitary vortex charge),
the mapping is a conformal stereographic projection, and the
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dynamics consists of reshaping Apollonian circles. In the case of a
moving packet67 (when the excitation imprints a moving vortex
upon oblique incidence), the mapping is neither conformal nor
stereographic, but involves vortex pair creation and annihilation
events. Here, we study the dynamical texture of a double full
Bloch beam of polaritons, and show that it is conformal despite
not being a stereographic projection. Consequently, the two
spiraling vortex cores are following reshaping orbits that are not
circular. This complicated motion can be described in terms of
the two orthogonal velocities on the sphere and in real space. We
use this to reveal a general property for the superposition of
Laguerre–Gaussian beams (LGs).

Furthermore, our study is also the first general description, to
the best of our knowledge, of the real-space Berry curvature of a
polariton state, associated to their Bloch sphere pseudospin
mapping. Its integral allows us to show that the topological charge
of the dynamical double full Bloch beam is indeed two and that it
is conserved in time, despite the metric spinning and the Berry
curvature itself constantly reshaping. Conceptually, this brings
the notion of a pseudospin texture manifesting as an observable
point-like object (the photonic vortex core) with a conserved
topological number. Finally, we derive a direct connection
between the rate of change of the polariton state on the Bloch
sphere and the velocity of the pseudospins in real space. This
further simplifies into an elegant and intriguing expression for the
instantaneous speed of the observable vortex cores in real space,
only depending on the complex Rabi frequency and the local
Berry curvature. Such a link is inversely proportional to the
curvature, differently from other more known cases.

Results and discussion
Spiraling of the polariton double vortex. By means of a q-plate
carrying a double topological charge, we shape the photonic pulse
A into a modified Laguerre-Gauss LG02 state18. Its double
winding is translated into two unitary co-winding vortices, whose
initial separation can be controlled by the tuning of the q-plate
device. We exploit this effect to realize a polariton fluid with two
spatially separated phase singularities, introducing the potenti-
ality for an asymmetry factor with respect to the following
dynamics. After the first pulse, the vortex cores are stably located
in the inner region of the spot, split by about 12 μm along an
oblique direction (i.e., they are off-axis with respect to the center
of the beam), as shown in the bottom panels of Fig. 1a, b
reporting the amplitude (a) and phase (b) of the double vortex
state at the time t= 2.0 ps, before the arrival of the second pulse
B, which is a plain Gaussian, LG00. Upon the overlap with the
pulse B, the vortices are displaced even more off-axis in opposite
directions and reach a maximum distance of ≈ 40μm (at
t= 2.32 ps), starting a rotational motion. We note that similarly
to a precession, while the vortices move on the ps time scale, the
field is rotating around each core at the optical frequency in the fs
time scale. They reach a horizontal alignment (t= 2.56 ps) before
coming back to the central region after one Rabi-oscillation
period, which is shown in the top panels (t= 2.80 ps). Their
trajectories, extended into the next Rabi period (t= 2.0–3.6 ps),
are reported as superimposed solid lines (red and blue). In
summary, the two xyt vortex lines start a damped spiraling
motion to end up at two new positions, and this can be clearly
seen when reporting them as a 3D perspective in Fig. 1c.

From the photonic point of view, it is possible to perform a fine
control of the vortex trajectories upon tuning of the optical phase
delay φAB between the pulses A and B (which is directly
controlled by the time-delay tAB between the two pulses).
Figure 2a shows the emitted photon density at a fixed time of
the dynamics (t= 3.7 ps), but for varying φAB spaced by equal

intervals of π/4 (corresponding to λ/8 steps in the physical delay
line for the second pulse). Both vortices describe the same circle
(black/white line) when sweeping the phase delay, exchanging
their positions when changing φAB along a λ/2 length. Although
the distribution of the polariton fluid and the positions of the
vortex cores look invariant through such a change, nevertheless,
the two vortices can be identified by the continuity of their
positions. The “topological bottle” surface in the xyt space
described by the double vortex strings is shown in Fig. 2b, in the
time range of one and a half Rabi-oscillations period
(t= 2.5–3.7 ps). Here the solid spheres represent the position of
the two phase singularities, tracked at time intervals of t= 0.1 ps
(t= 0.05 ps in the last part) and sweeping φAB in π/4 steps. The
red and blue solid tubes are the specific vortex lines associated to
a fixed phase delay (that of the previous figure, sampled with
δt= 0.02 ps), climbing on the surface. The surface apparently
resembles a self-twisting double cylinder, but in reality, two
different topologies are observed, that can be ascribed to the
anisotropy factor given by the initial splitting of the two vortices,
when compared to the cores displacement induced by the pulse B.
In fact, there is a nodal string of the topological bottle
(intersection with a fixed t plane), where the double concentric
cylinder undergoes a metamorphosis into two non-concentric
and separated quasi-cylinders: the projection of such xyφAB line

Fig. 1 Double Rabi spiraling vortex. a, b Experimental amplitude and phase
maps of the photonic emission from the polariton fluid, when exciting with
a double vortex (lA= 2) and after arrival of a plain Gaussian pulse (lB= 0)
at the time tAB= 2.04 ps. The different frames correspond to times t= 2.0,
2.32, 2.56, and 2.80 ps. The instantaneous phase singularities are tracked
as yellow dots in the amplitude maps, and the solid lines represent the
vortex trajectories drawn over two Rabi-oscillations periods (t= 2.0–3.6 ps,
red and blue lines are used to distinguish the two different cores in the
photon emission). c Vortex lines plotted as xyt curves (time range
t= 0.5–10 ps, step δt= 0.02 ps). See also the Supplementary Movie 1.
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onto the xy-plane is a 8-shaped line. The two different situations
are represented in Fig. 2c, where the circular symmetry is present
at given times (e.g., t= 3.0 ps), while the 8-shape is visible at TR/2
time interval from the former (e.g., at t= 2.6 ps and 3.4 ps). These
two situations therefore correspond to the times of the Rabi cycle
when the twin cores are further from and closer to the center,
respectively.

Retrieval of the Bloch sphere metric in real space. In order to
model and discuss the observed spiraling, we first retrieve the
topological texture, or quantum states metric, underlying the struc-
tured vortex dynamics. Figure 3a shows that the time-oscillations of
the photonic density at a given spatial point can be fitted by the
coupled oscillators model (see “Methods”). The two normal modes
(UP and LP fields) are decaying in time differently, while also
undergoing a phase shift with different frequencies. This evolution
can be described by introducing the complex frequencies ωU,L+
iγU,L, so that ψU;LðtÞ ¼ ψU;Lð0Þ expðiωU;LtÞ expð�γU;LtÞ. Because of
the two different eigenfrequencies, the off-axis displacement of the
two vortices induced by the arrival of the pulse B appears to different
azimuthal positions (since φAB for the UP and LP modes is different
for the same time delay tAB). The fitting of the photonic emission ψC
as an interferometric sum of ψU and ψL allows us to retrieve the
spatial maps of the relative phase and amplitude of the two normal
modes (for more details, see Methods section). Since the position of
the phase singularities (after the two-pulse excitation) in one of the

normal modes is shifted with respect to the other component, the
spatial relative phase φLU(x, y)= φU− φL profile has the shape of a
quadrupole, shown in Fig. 3b. While the displaced UP and LP vor-
tices are motionless, the two directly observable photon vortex cores
appear to be moving in round orbits around the singularities of φLU,
in the specific experimental case around those corresponding to the
LP vortex cores (see Fig. 3b).

To track the position of any quantum state from the polariton
Hilbert space (UP, LP, photon, exciton or any other linear
combination), one needs to introduce the polariton Bloch sphere
(shown in the inset of Fig. 3a). This sphere has a metric which in
turn defines a corresponding metric on the real plane. In real
space, we use the local polariton imbalance sðx; yÞ ¼ ðjψUj2 �
jψLj2Þ=ðjψUj2 þ jψLj2Þ ¼ cos θ which, when shown on the Bloch
sphere, is the analogue of the s3 Stokes parameter. Indeed, θ
represents the polar angle of the corresponding polariton state on
the Bloch sphere, while φLU is its azimuthal angle. Thus, in the
spatial relative phase profile, the isophase lines φLU= const (thin
black lines in Fig. 3b) correspond to the meridians on the Bloch
sphere. The north and south poles of the polariton Bloch sphere
represent the pure UP and LP eigenstates (analogously to the
right and left circular polarizations on the Poincaré sphere68),
whereas the equator represents all possible dynamical states of a
pure photon or exciton, which are continuously transforming
into each other at the Rabi frequency ΩR= ωU− ωL. The s(x, y)
map at t= 2.7 ps is shown in Fig. 3c. The two photon vortex

Fig. 2 Phase delay control of vortex lines. a Polariton amplitude maps in the phase delay experiment. The snapshots are taken at t= 3.7 ps, with four
different phase delays φAB spaced by π/4. The phase singularities have been marked with blue/red dots in the amplitude maps, and the black/white line is
the circle fitting their positions. b The specific xyt vortex lines (at a given phase delay) of the two unitary vortices (blue and red tubes) during one and half
Rabi-oscillations period (time range t= 2.5–3.7 ps). The topological bottle surface described by the vortex cores when sweeping the optical phase delay
between the two pulses has been mapped (by spheres) at 100 fs or 50 fs time intervals, spanning φAB in a 15π range by successive λ/8 steps. c Blue points
represent the positions of photonic vortex cores in real space at fixed times, when scanning the phase delay as in (b). At the times when the photon vortex
cores are more distant from the center (e.g., t= 3.0 ps), the phase scan makes their positions rotate with central symmetry, overlapping the fitting circle
(black solid line). When the cores are closer to the center (e.g., t= 2.6 and 3.4 ps), the phase scan makes them describe two ellipses not overlapping
anymore with the fitting circle, but composing a 8-shaped line.
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cores, associated to zeros of the photon intensity, are pure
excitonic states. Furthermore, such zeros can be understood in
terms of a destructive interference between the UP and LP modes,
and hence they have to move along the orbit corresponding to
s(x, y)= 0. The orbits obtained from the fitting of the experi-
mental photon intensity (white loops in panel c) fail to precisely

retrieve the observed photon vortex cores trajectories (red and
blue lines), due to the high sensitivity of the fit in the weak density
areas close to the LP/UP cores, but the agreement is qualitatively
good. While the photonic cores move along the orbits due to the
continuous dynamical drift of the relative phase in time
φLU ¼ φ0

LU þΩRt, the orbits themselves shrink due to the
differential decay between the normal modes γR= γU− γL. From
the maps of s(x, y) and φLU(x, y) one can see that each state
appearing as one point on the Bloch sphere is mapped twice to
the real plane.

Berry curvature link between the two spaces. We now show that
the real-space density of the relative phase and local imbalance
isolines, that comprises the metric of quantum states on the Bloch
sphere, is described by the Berry curvature—the imaginary part of
the quantum geometric tensor52—that can be defined for any
given target space. In condensed matter, the role of momentum-
space and real-space Berry curvatures of magnetization (or in
general, of other vector textures) was recently highlighted in the
anomalous and topological Hall effect (AHE and THE),
respectively69,70, affecting the motion of an electron wavepacket.
For the 2D target spaces, such as the one we are dealing with here
(xy-plane), the generally tensorial Berry curvature becomes a
vector with only one non-zero component Bz. In microcavity
polaritons, such a curvature has been recently used to express the
change of polarization pseudospin (i.e., polarization of only one
of the polariton modes), thus mapping the density of the Poincaré
coordinates in the reciprocal space71,72. That was related to the
AHE of an accelerating wavepacket73. Here instead, we use the
Berry curvature to express the change of the polariton pseudospin
(i.e., composition of the full wavefunction in terms of both the
polariton modes), mapping the density of the Bloch sphere
coordinates to real space:

Bz ¼
1
2
sin θð∂xθ∂yφLU � ∂yθ∂xφLUÞ: ð1Þ

Such an expression can be shown to be equivalent to:

Bz ¼
1
2
S � ð∂xS ´ ∂ySÞ; ð2Þ

where S is the Bloch vector with components
ðsin θ cos φLU; sin θ sinφLU; cos θÞ on the sphere. The functional
form in Eq. (2) was brought into attention in the Mermin-Ho
relations46 and was used to express the topological charge den-
sity, or real-space Berry curvature, of different order parameter
vectors34,36,54,69,70. Since Eq. (1) also embeds a cross product of
two gradients in real space, Bz ¼ 1=2 sin θ j∇θ ´∇φLUj, it is
straightforward to see (at least in the case of a conformal map-
ping between the metrics) that the Berry curvature describes how
much area of the Bloch sphere is covered when a given area
element is spanned in real space. In other terms, the local density
of the sphere surface itself on the real plane can be written as
dAsphere=dAreal ¼ 2Bz . We note that in the present case, each area
element on the sphere has a multiplicity C= 2 in real space (see
the color filled areas in both panels Fig. 3a, b). The Berry cur-
vature therefore plays the role of linking the full-wavefunction
density ∣Ψtot∣2= ∣ψL∣2+ ∣ψU∣2 between the two spaces. In
both cases, the meaning of the full wavefunction is to quantify
the total number of particles in a small area element:
∣Ψtot∣2= dN/dA. Equating the number of particles in a given
real-space area to the corresponding Bloch sphere surface
area, dN ¼ CjΨreal

tot ðx; yÞj2dAreal ¼ jΨsphere
tot ðφ; θÞj2dAsphere, one

gets jΨsphere
tot j2 ¼ CjΨreal

tot j2=ð2BzÞ. In this derivation, we have
assumed a perfect symmetry of the real-space distributions
which is not observed in the experiments, but present in the

Fig. 3 Intensity oscillations fit and the Bloch metric maps. a Photonic
oscillations at a specific point (experimental data) are fitted by the two
interfering LGs model (see “Methods”). The procedure allows to retrieve
the intensities of the two normal modes in time (solid purple and green
lines for the UP and LP modes, respectively) and their relative phase at each
point and moment of time. Repeating the procedure all along the spatial
domain allows to plot their 2D profiles. Inset: the polariton Bloch sphere
with indicated UP, LP states at the poles, photon (C) and exciton (X) states
at the equator, and the sphere metric consisting in the azimuthal angle φLU

(relative phase) and s ¼ cos θ (local UP-LP content imbalance). An
example of area item dAsphere ¼ lplm ¼ sin θdφdθ is marked by the orange
patch. b, c Relative phase map φLU(x, y) and local content imbalance s(x, y)
(at t= 2.7 ps). The superimposed lines (red, blue) represent the
experimental orbits of photonic vortex cores along the second Rabi cycle
after the pulse B arrival (time range t= 2.7–3.5 ps). One clearly observes
their rotation around the two relative phase singularities corresponding to
the two LP-mode vortex cores. The asymmetry manifests itself both in the
fact that the UP mode cores are more distant from each other than the two
LP cores, and that the displacement lines of sight are mutually oblique. The
superimposed orange patches in (b) mark the real-space area elements
dAreal corresponding to a given element on the sphere. d Module of the
total density ∣Ψtot(x, y)∣ (with ∣Ψtot∣2= ∣ψL∣2+ ∣ψU∣2). The shape is a
footprint mainly of the LP mode. e Normalized Berry curvature map in log
scale, retrieved from the maps in (b, c).
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model (see below). For the objects considered in the experiments
(i.e., superpositions of LG00 and LG02 beams), the total density
has a central maximum and two dips, see Fig. 3d, being a foot-
print of the UP and LP states at short and long times, respec-
tively, and rotated at intermediate times. The Berry curvature
assumes the shape of a double peak (centered in the intensity
minima) on top of a less intense surrounding ring, with a neat
central hole corresponding to a saddle point of the isophase lines,
as shown in the experimentally-reconstructed Fig. 3e. Recalling
the previous connection of the total densities between the two
spaces, it is therefore expected that the most populated state on
the Bloch sphere is the one for which the pseudospin is asso-
ciated with the central point of the imprinted LGs in real space
(at any given time).

The integral of the Berry curvature over the surface limited by a
closed loop in real space represents a solid angle on the sphere.
The integral of Bz over the whole plane defines the topological
charge, the number of times the texture wraps over the sphere,
also known as the Chern number53 or skyrmion number36,54:

C ¼ 1
4π

Z
S � ð∂xS ´ ∂ySÞdxdy ¼

1
4π

Z
2Bzdxdy: ð3Þ

Remarkable examples of Chern numbers can be found for a
number of textures in condensed matter. In the case of superfluid
3He-A46,70, the integrand in Eq. (3) represents the topological
density of the texture of the unit vector l̂, that is the relative
orbital angular momentum of Cooper pairs in the chiral
superfluid. In that case, the Mermin-Ho relations establish that
the local vorticity of the continuous vortex is represented by the
texture of such a unit vector. In other terms, they link the
circulation of the superfluid velocity to the solid angle (i.e., area
on the sphere) that is contained inside the real-space loop. The
same can be applied to the current in ferromagnetic BECs where
the integrand instead refers to the density of magnetization
texture in real space. In those cases also the pseudospins represent
physical directions in real space. In our case, the pseudospin
refers to a direction on the auxiliary Bloch sphere of the polariton
state. We have verified that for both the experimental and the
model cases described below, the entire space integral of the Berry
curvature is 4π, associated to the twofold mapping of the sphere,
and remains such at any time despite the reshaping of the
mapping. This is indeed consistent with the integral of Eq. (3)
over the whole parameter space giving a net number of two wraps
on the sphere. In the case of stereographic mapping from the
sphere to the real plane43,44 (i.e., for the single full Bloch beam),
such a wrapping is unitary. In the current realization, instead, the
twofold mapping and the associated Chern number are reflected
in the term double full Bloch beam (or, equivalently, dynamical
double skyrmion) that we use for such states.

LGs model of the dynamical double full Bloch beam. The
essence of the dynamics can be reproduced by means of a model
which starts from the overlapping of the two initial LG beams in the
normal modes and lets them evolve due to the differential decay
and the Rabi oscillations. Theoretically, the quadrupole relative-
phase profile formed of four poles (after the second pulse arrival)
can be that of a square, a rectangle, a rhombus or a parallelogram,
depending on the time-delay tAB which defines the difference in
azimuthal displacement of the UP and LP vortex cores.

Experimentally, there are two effects to be taken into account.
One is that the initial LG02 pulse has always a small LG00

component (due to imperfect tuning of the q-plate or other
residual intensity) and the first pulse then imprints in the
polariton fluid two vortices which are not ideally overlapped and
centered, but have a slight preliminary offset in opposite

directions with respect to the center of the beam. Then, the
arrival of the second pulse induces a further displacement which
may happen along the same or different direction, and this
displacement can also differ for the LP and UP vortex cores due
to the difference in φAB for the two modes. A second factor is that
upon arrival of the second pulse, the differential decay of the
modes will have altered the amplitudes ratio between the two
eigenmodes with respect to the one imprinted by the pulse A. The
lesser content is that of the UP (as this mode decays faster), which
makes this mode more sensitive to the displacement induced by
the second pulse. As a matter of fact, it can be seen in Fig. 3b that
the UP cores are more offset than the LP ones with respect to the
center of the spot. The minimal set to account for the initial
situation after the two pulses is the four-LG model, one LG02 and
one LG00 in both of the normal modes, with the same center and
widths σ but with different amplitudes and phases (see Methods).
The initial displacement of the vortex cores inside each of the
normal modes is then symmetric, but the direction and amount
of such displacement is different between the modes.

A typical (corresponding to experiment) scenario is repro-
duced in Fig. 4a where the more asymmetric condition of the four
poles makes a parallelogram. The vortex quadrupole is shown
together with the relative phase (black) and local imbalance
(white) isolines. It is worth to note the electric-like (conservative)
shape of the isophase lines and the magnetic-like (solenoidal)
shape of the isocontent lines. Interestingly, even while the isolines
s(x, y)= const are not circles, they are still perpendicular to the
relative phase isolines. We express this by using the condition on
the gradients of the Bloch sphere coordinates in real space,
∇θ⊥∇φLU. In other terms, the Bloch sphere’s parallels and
meridians that are by definition orthogonal on the sphere surface,
remain mutually orthogonal in real space, and likewise any other
angle relation is preserved, meaning that the mapping between
the Bloch sphere of polariton states and the real space is fully
conformal. However, it cannot be described simply by a
stereographic projection or a homeomorphism as in a funda-
mental full Poincaré43 or single full Bloch beam case44, since the
one-to-one link is lost (as already mentioned, each pseudospin is
mapped twice to the real space).

The theoretically modeled evolution of the UP-LP local
imbalance map s(x, y) is shown in Fig. 4b for four selected
moments in time. The initially closed orbits (s= 0, white loop
regions) expand until when, approximately at the moment of the
global populations equality, they become two diagonal edge lines
connecting to each other at an infinite distance74, after which they
start to shrink again, forming a single 8-shaped line. Finally, they
separate in the central point leaving two closed orbits again. The
experimentally-retrieved panel Fig. 3c taken at t= 2.7 ps
corresponds to the final panel in Fig. 4b. In essence, the motion of
the cores (as well as of any other pseudospin state) has
two orthogonal components, and its velocity can be expressed
as vrealps ¼ vθ þ vφ, where vθ ¼ ðγR sin θ=j∇θjÞ∇̂θ and vφ ¼
ðΩR=j∇φLUjÞ∇̂φLU (with ∇̂θ ¼ ∇θ=j∇θj and ∇̂φLU ¼
∇φLU=j∇φLUj the unit vectors along the direction of the two
gradients, see also Methods and the blue arrows in Fig. 4a for
their schematic representation, not in scale). Such two compo-
nents are conservative and solenoidal, respectively. The velocity
and the trajectory of a given pseudospin state are further
characterized as following a constant angle α with respect to the
imbalance isolines, defined as tan α ¼ γR=ΩR. This is derived
from the pseudospin of a fixed point in real space evolving on the
Bloch sphere along loxodromes, the curves forming a constant
angle with its parallels, and from the full conformal mapping. The
amplitude of the velocity in real space is shown in a log scale map
in Fig. 4c. The four darker spots represent the four poles of larger
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gradients, where the photon vortex cores move slower (in the
same panel we superimposed also the vortices cores trajectories).
The moving cores can end up their spiral in one of the two final
orbits, depending on which side they are immediately before the
orbits’ separation (which is set by the initial conditions and γR/ΩR

ratio), or eventually cross in the very center. This crossing
possibility is also expressed by the central point being a saddle
point75, which means that the relative phase is defined, but its
isolines have a singularity of their direction. Due to the
conformality of the mapping, the same is valid for the local
imbalance isolines. A full view of the orbit line evolution in time
is presented in Fig. 4d, depicted as two different perspectives for
the sake of clarity, with the central point visible as a 3D saddle
point also of the s= 0 surface in the xyt domain. The steeper
slope of the surface at earlier and later times correspond to the
smaller velocity of the swirling photon vortices cores close to the
LP and UP cores positions.

The time dynamics of the dips in the total density and the
peaks of the Berry curvature consists in drifting from the initial
positions on top of the two UP vortex cores to the positions of the

two LP cores, as shown in Fig. 4e, f, respectively. This reshaping is
only due to the differential decay, since the Rabi rotation is
homogeneously swapping the sphere meridians, without altering
the metric density in real space. In more symmetric cases, the
Berry curvature can as well assume the shape of a perfect ring,
due to orthogonal displacements between the UP and LP vortex
pairs (achievable upon proper phase delay). The two maxima can
also become diverging curvature points when the global
population imbalance is mainly in one of the two modes, i.e.,
when initializing the system at the UP mode energy, or at long
times, when the differential decay leads to the mainly LP content.
Such points can also be thought of as the limit of the projected
sphere contracting to a zero radius, representing two monopoles.
In other terms, this is equivalent to the continuous vortices
becoming two singular vortices (as the system loses its spinorial
degree of freedom and becomes a one-component wavefunction).
As anticipated, using the space integral of the Berry curvature in
Eq. (3) gives a skyrmion number equal to two, which remains the
same during the Rabi spinning and reshaping in time, indicating
the topological conservation of the textures.

Fig. 4 Model of a spiraling double vortex. a Spatial map of the relative phase φLU when starting with a larger UP content. The black lines are phase isolines
(φLU every 30∘), the white lines are isolines of the local imbalance (s from 0.8 to −0.8 with step 0.2). The superimposed orange patches are an example
of real-space area elements corresponding to a given sphere area element. The two arrows (not is scale) depict the velocity components in the motion of
a given pseudospin. b Spatial maps of the local UP-LP imbalance s(x, y) at four different times, with its reshaping due to the differential decay. The
instantaneous orbits of the photon vortex cores (red and blue circles) follow the white contour lines s= 0. Two initial orbits expand till they join at infinity,
then become an eight-shaped line until they finally recoil into two separated petals again. c Spatial map of the amplitude of velocity of the moving vortex
cores (as well as of any other pseudospin state). The trajectory of the vortex cores in the photonic field is tracked (blue and red open circles) at regular
time intervals. d Perspective views of the isocontent s= 0 line evolving in time, drawing a 3D surface with two valleys and two hills. The early (bottom)
cones open out from the position of the UP vortex cores, the later (top) cones wrap into the position of the LP cores. The overlapped red and blue circles
mark the photon vortex cores trajectory. e Absolute value of the full wavefunction jΨtotðx; yÞj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jψLj2 þ jψUj2

q
at the moments of time corresponding to

(b). f Normalized Berry curvature map in log scale for the same times as in b, e. The two dashed black lines mark the UP and LP vortex pairs line of sight.
The scale bar is equal to the width of the beams σ= 16μm in all the panels, the Rabi period TR= 0.785 ps. See also “Methods” and the Supplementary
Movie 2.
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Speed of the photon vortex cores in real space. As a very
interesting property of dynamical full Bloch beams, we derived
also the speed of the polariton pseudospins in real space,
revealing their link to velocities of the polariton states spiraling on
the Bloch sphere, again via the Berry curvature connection of the
metrics (see Methods). Such a relation can be written as

vrealps ¼
vspherepsffiffiffiffiffiffiffi
2Bz

p ¼ sin θffiffiffiffiffiffiffi
2Bz

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2R þΩ2

R

q
: ð4Þ

Here, the spatial map of the velocities remains constant in time
despite Bz(x, y) is reshaping, compensated by the simultaneous
reshaping of the polar angle θ, whereas the second multiplier in
Eq. (4) can be viewed as the absolute value of the complex-valued
frequency eΩR ¼ ΩR þ iγR.

The connection between real-space Berry curvature of a
topological texture and some physical properties has been known
for different systems. In superfluid 3He–A, the celebrated
Mermin–Ho relations link the vorticity (curl) of the superfluid
velocity vs to the texture density of the unit vector l̂46 (or of the
magnetization in ferromagnetic multicomponent BECs49). For
simplicity, in the case of a 2D xy-dependence of the order
parameter, that is, a vorticity parallel to z (as also in the case of
2D polariton fluids), these relations assume the following form76

∇´ vs / l̂ � ð∂x l̂ ´ ∂y l̂Þ; ð5Þ

where the right-hand side is the Bz associated with l̂. We now
point out one main difference between the two expressions. In Eq.
(5), the curl of the total superfluid velocity is directly proportional
to the real-space Berry curvature of the unit vector of the order
parameter. In the case of Eq. (4), the velocity of the pseudospin
states (not its curl) is, instead, inversely proportional to the square
root of the real-space Berry curvature of the polariton Bloch
sphere. Here it is useful to recall that in the case of a
homogenenous l̂ texture, or of a single-component fluid or
condensate, the superfluid velocity is proportional to the gradient
of the phase of the wavefunction. In the language of optics or
exciton-polaritons, it is therefore equivalent to the group velocity
(∣vg∣= ∂ω/∂k∝ k= ∣∇φ∣, in the parabolic approximation for one
component). In these cases, such a velocity is irrotational and its
curl is zero everywhere apart from the diverging point of a
singular vortex core (where, conversely, the density needs to be
zero). In two-component wavefunctions, the concept of phase
needs to be modified, leading to the notion of total superfluid
velocity49,70, and the vorticity may be diffused (i.e., a finite curl of
velocity in an extended area where the total density does not need
to be zero). This is the case of vs appearing in Eq. (5). However, in
our case and the situation described by Eq. (4), we are not looking
at the total phase. The associated total group velocity plays a role,
as it is known, in the motion of the total density, whose reshaping
is further affected in two-component cases by the relative decay
term, or differential radiative losses between the two components.
While the total density is still plotted in our representation, we
are not focusing on its driving terms. Here, we are rather dealing
with the velocity of the pseudospin states themselves moving on
top of the total density. To this end, since the motion of the
pseudospin can be thought of in terms of interference between
the normal modes, their speed is more analog to a phase velocity
(∣vph∣= ω/k∝ k−1= ∣∇φ∣−1). This intuitively explains that the
velocity of the pseudospins is inversely proportional to the Berry
curvature (if one thinks of the latter as the gradient of a 2D-
valued phase). Another difference is that the overall velocity in
Eq. (4), as mentioned before, has both the conservative and the
solenoidal terms linked to the Berry curvature. Furthermore,
when projecting the full wavefunction onto one specific

component (such as the emitted photon field), one can study
the motion of the (singular) vortex cores themselves inside that
component (rather than looking at the group velocities, or fluid
velocities, around the cores, for a fixed vortex configuration, be it
singular or continuous).

At the same time, the velocity described in Eq. (4) is also
different from the terms involved in the AHE and THE, that
represent velocity and force terms that are directly proportional
to the momentum- and real-space Berry curvatures,
respectively69. In the AHE, an accelerated wavepacket acquires
a transverse velocity term too, proportional to the momentum-
space Berry curvature (of magnetization vector in condensed
matter, and of polarization for polaritons73). On the other hand,
the real-space and mixed spatio-temporal Berry curvatures of the
magnetization vector result in the emergent magnetic and electric
fields, respectively77. In the former case, also known as THE, an
electron wavepacket acquires an extra force proportional to the
real-space skyrmion texture54. In the latter case, known as
spinmotive force (and requiring a time derivative of the relevant
vector, e.g., local magnetization), it is the moving skyrmion that
generates a force perpendicular to its moving direction78. Here we
are not dealing with velocities obtained by (or forces exerted on)
external objects, but with the self-evolution of the pseudospin
texture in a two-component wavefunction (externally generated
and then driven by an effective Rabi field, as indicated below).

It is now interesting to focus on the velocity of the observable
photon vortex cores, which represent pure excitonic states that lie
on the equator of the Bloch sphere, i.e., sin θ ¼ 1. In this case, Eq.
(4) reduces to

vrealcore ¼
jeΩRjffiffiffiffiffiffiffi
2Bz

p ; ð6Þ

where the vortices cores’ velocity only depends on the complex
Rabi frequency and is inversely proportional to the (square root
of the) local and instantaneous Berry curvature, changing during
the motion. It can also be seen that there is no mass or any other
prefactor in the right-hand side of Eq. (6) (while this was omitted
in the case of Eq. (5)). This is a general relation that is assumed to
hold also in the case of superposition of two optical LG (or even
differently shaped) beams with different frequencies (when
looking at the dynamics on a plane orthogonal to the propagation
direction).

Conclusions
When dealing with a two-component fluid, its full wavefunction
can be expressed in terms of a total density and total phase, plus a
further pseudospin unit vector or 2D valued phase. Such a
pseudospin is representable on a Poincaré or Bloch sphere, and
can be mapped by the sphere texture (or metric) to the real space.
In a fundamental unitary skyrmion (or single full Bloch beam44

and, analogously, Poincaré beam43) the one-to-one mapping is
possible via a stereographic projection, a conformal home-
omorphism between the sphere metric and real space, while in
more complex cases even the conformal feature is not
maintained67. Our experiments implement dynamical pseudospin
textures going beyond the unitary skyrmion case in a polariton
fluid, based on multiple-vortex configurations. Such textures are
set into a spinning and reshaping dynamics thanks to the
polariton Rabi oscillations and the non-Hermitian feature
imparted by the decay. The Rabi frequency as an operator,
similarly to other Hamiltonians, can be thought of as an effective
magnetic field, as for example was proposed in the optical
Maxwell-Schrödinger formalism79,80 for the dynamics of the
polarization pseudospin on the Poincaré sphere. For the polariton
state, the Rabi field is along the vertical axis ŝ3 of the Bloch
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sphere, resulting in the precession of the polariton pseudospin
around such axis (i.e., along a parallel)

dS
dt

¼ ΩR ŝ3 ´ Sþ ðγR ŝ3 ´ SÞ ´ S; ð7Þ

while the second term adds the decay-induced drift along a
vertical plane (i.e., along a meridian). The two terms result in the
solenoidal and conservative velocities of the pseudospin states in
real space, respectively, as a feature directly inherited from the
associated parallels and meridians on the sphere (and mediated
by the conformal mapping). The form of Eq. (7) is equivalent to
the Landau–Lifshitz (LL)81,82 equation that describes the Larmor
precession of the magnetic moment of an object (or the magne-
tization vector) around the external (or effective) magnetic field
(that is, on the other hand, also analog to the precession of a tilted
mechanical gyroscope in an external, torque-exerting gravita-
tional field). From a physical point of view, the LL equation has a
term that corresponds to the torque exerted by the effective field
on the magnetic moment forcing it to precession, and a second
damping (relaxation) term that represents another torque that
pushes the magnetization in the direction of the field. Also in the
case of 3He–A, there are equivalent and even more complex
equations2, describing how the vector l̂ varies in time due to the
external rotation of the system, the magnetic field in case of
locked spin-orbital configurations, and other torques due to
incoherent fermionic excitations. Here, the two main terms are
represented by the Rabi frequency (responsible of a cyclic con-
version of photons into excitons and so on) and the differential
decays of polaritons (responsible for the unidirectional evolution
from the upper polariton to the lower polariton mode). Fur-
thermore, in the LL case, both the magnetic moment and the
magnetic field are directions in real space. Here, the effective Rabi
field as well as the decay term, are directions on the pseudospin
sphere. The field and decay are assumed to be uniform, and the
pseudospin texture varying in real space (e.g., creating a unitary
or multiply-charged skyrmion). It is this effective field and
associated decay that rules the dynamics of the pseudospin and
reshapes the texture. This results in the observable photonic
vortex cores (being associated to a specific state on the equator of
the sphere) following a peculiar spiraling motion. Such an
effective field preserves the initial conformal feature of the texture
mapping at all times, despite being non-stereographic and non-
homeomorphic. Conversely, it is also possible to show that,
despite the change in intensity and phase of the composing
beams, the transformation maintains the initial ingredients of the
LGs superposition. We empirically devise the conformal feature
as a general property of concentric LG beams of the same width
bearing cowinding charges (of different absolute value).

Furthermore, we apply for the first time to the best of our
knowledge the Berry curvature concept to the polariton Bloch-
sphere mapping to real space, specifically describing it for
dynamical double skyrmions. The Berry curvature here represents
the density of the Bloch-sphere metric (the variation of the
pseudospin) in the target space (real space). As such, its integral
over the whole parameter space represents the number of times
the texture wraps around the Bloch sphere, in our case equal to
two (in both experiments and model cases) and conserved during
time, despite the spinning and reshaping of the texture and of the
curvature itself. One could think of the initial state in the model
as composed by two skyrmions centered in the positions of the
UP mode vortex cores. The decay strains the two initial sky-
rmions into four merons and then transforms them back again
into two skyrmions, centered in the LP vortex cores at later times,
while the Rabi oscillations transform them from Bloch- to Neel-
type continuously. This is consistent with the topological charge
equal to two at all times. It would be possible to use counter-

polarized optical pulses to achieve a four-component fluid and
build a one-to-one mapping of the Bloch and Poincaré spheres,
realizing a dynamical full Poincaré beam. Each polarization
would be present at a given time in a different position, and any
point of space would see a sequence of polarizations in time, too.
In another configuration, having a different (asymmetric content
between the two pulses) superposition (such as for the simplest
full Bloch beam possible, a LG01 in the UP mode and a LG00 in
the LP mode), would lead to the observation of an initial vortex in
the photonic component (emission), spiraling out of the polariton
cloud (and vice versa, spiraling in, when using the opposite
scheme). Similar reasonings pertain to any generic LGs super-
position of two (or more) optical beams with different (complex)
frequencies. These structured beams could be used to drive THE
and spinmotive forces when applied to optically anisotropic
particles. Experimentally, it is interesting to see how a pseudospin
texture can manifest itself into an observable point-like object,
here the photonic vortex cores. Their motion depends on how the
pseudospin trajectories are linked between the two spaces. Along
the sphere, these directions are loxodromes with an angle directly
linked to the ratio of the two components of the complex Rabi
frequency. On the other hand, we show that the same velocity is
projected onto the real plane with a speed defined by the Berry
curvature. Intuitively, the pseudospin gradient in real space can
be further thought of as a pseudomomentum, similarly to the
gradient of a standard phase, which is now a 2D-valued phase.
One of the meanings of the Berry curvature is hence to describe
the amplitude of the pseudomomentum vector. The real-space
velocity of the pseudospins’ motion is inversely linked to such a
pseudomomentum (similar to standard phase velocity being
inversely proportional to the momentum in one-component
fields). This allows us to derive a compact equation for the real-
space velocity of the observable photonic vortex cores, which
ultimately depends only on the complex Rabi frequency and is
inversely proportional to the square root of the local Berry
curvature.

Methods
Experimental methods. The polariton device used here is fabricated by means of
MBE technique and consists in an AlGaAs 2λ MC with three In0.04Ga0.96As
quantum wells of 8 nm placed at the antinodes of the cavity mode field. The cavity
is placed inside two distributed Bragg reflectors made of 21 and 24 pairs of
alternated λ/4 AlAs and GaAs layers. The polariton modes are at 836.2 nm and
833.2 nm (LP and UP mode, respectively), their splitting is 3 nm (5.4 meV) at zero
momentum which converts into a Rabi period of TR= 0.780 ps. The lifetime of the
normal modes is τL= 1/γL ~ 10 ps and τU= 1/γU ~ 2 ps for the lower and upper
modes, respectively. The experiments are performed in a region of the sample clean
from defects. The device is kept at a temperature of 10 K inside a closed-loop He
cryostat. The resonant beam is a 130 fs pulse laser with 80 MHz repetition rate and
a 8 nm bandwidth. The central energy is tuned at approximately 835 nm in order
to overlap both the LP and UP branch energies. The photonic beam is passed
through a q-plate device83,84 with winding charge 2, in order to obtain a double
optical vortex which is sent onto the microcavity sample at normal incidence. Once
imprinted, the polariton vortices just decay and oscillate in intensity in the pho-
tonic component keeping a fixed position. The second pulse is sent by means of a
small Michelson–Morley (MM) scheme interferometer in the excitation side, with
controllable time delay. The second pulse is derived from the unconverted portion
of the beam crossing the q-plate, through polarization filtering. The q-plate is a
patterned Liquid Crystal (LC) device that is driven by a oscillating voltage in the
kHz range. The applied voltage controls the degree of LC tilting along the vertical
direction, hence the anisotropy degree along the patterned directions and ulti-
mately the q-plate conversion efficiency. An impinging LG00 beam with right or left
circular polarization is totally or partially converted into the opposite circular
polarization with a wavefront shaped into an LG02 mode. So there can be a tunable
amount of residual original LG00 beam. Upon using a different polarization fil-
tering scheme in the small MM interferometer arms, such a residual portion can be
both left in the pulse A and used for pulse B. In summary, pulse A will consist of a
LG02 and LG00 beams, whose relative amplitudes control the initial two cores
displacement (the same in the two normal modes), while pulse B will only consist
of an LG00 pulse used to further and differentially split the two cores (i.e., along
different directions in the normal modes). An ultrafast time resolved detection
scheme is based on the off-axis digital holography, where the emission from the
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sample plane is focused on an imaging camera together with a reference beam. The
reference pulse is derived by the resonant laser beam in a Mach–Zehnder scheme
interferometer scheme and is not focused but passed through a small iris, so that it
becomes a homogeneous and flat front when arriving on the camera. The digital
fast Fourier transform (FFT) filtering is applied to the interferograms and this
procedure allows to reconstruct the amplitude and phase of the emitted photonic
wavefunction. The FFT filtering can be applied directly in the laboratory in order to
aid for the setting of the measurements. Further details on the polariton sample or
digital holography technique can be found in previous works44,59,65,85 and
descriptions therein.

Nonlinear regime effects. We checked the changes added in the experiments
when deviating from the linear regime, in this and previous works configurations
and add here a brief note on those. When increasing the power we effectively see
two main effects. First, a differential shift of the oscillations frequency between
spatial regions of low and small density, that we ascribe to the nonlinear energy
increase of the exciton line, mainly reflected in the LP mode blueshift. On the other
hand, the UP mode energy acts for this sample mainly in a self-compensating way,
due to the exciton blueshift and the partial loss of coupling. Second, increasing
further the power we observe the damping of the oscillations amplitude, due to an
increased linewidth of the UP mode, associated to its faster decay and/or
dephasing. This damping of the oscillations converts, in the current vortex
experiments, into a faster damping of the swirling cores orbits.

Interference-fitting procedure for two coupled oscillators. In the linear regime,
it is possible to express the evolution of the observable photon density at each point
in space as a mean value plus a modulation term, i.e., in terms of interference
between the LP and UP eigenmodes:

jψCj2 ¼
jψLj2 þ jψUj2

2
þ jψLjjψUj cosðφ0

LU þΩRtÞ

The numerator defines also the total density, expressed as ∣Ψtot∣2= ∣ψL∣2+ ∣ψU∣2.
The UP and LP modes decay are included upon adding
jψU;LðtÞj ¼ jψU;Lð0Þj expð�γU;LtÞ. Imposing fixed values for γU, γL, and ΩR, and
treating ∣ψL(r, 0)∣, ∣ψU(r, 0)∣, and φ0

LUðrÞ as fitting parameters, we can fit the time
traces at each point (x, y) as in Fig. 3a starting from a time taken after the setting
sequence of both pulses A and B, and retrieve the profiles of the UP and LP
polariton fields (which are not directly observable), as well as their relative phase
spatial profile shown in Fig. 3b. The fitting is performed along seven Rabi periods
(from 2.6 ps to 8.2 ps). The experimental maps in Fig. 3c–e are retrieved by using
the fitted values in the expressions for the local imbalance parameter s, amplitude
of the total density ∣Ψtot∣ and Berry curvature Bz, respectively.

Interfering LGs model. The initial condition and its evolution are reproduced by
use of the four LGs packets model, representing the vortex and Gaussian beam
imprinted in the upper and lower polariton fields. Assuming for simplicity a zero
detuning between the cavity photon to exciton mode, the bare modes are hence
obtained as linear combinations of the normal modes ψC;X ¼ ðψU ±ψLÞ=

ffiffiffi
2

p
. We

write the spatial profiles of the fields in complex polar coordinates (r, ϕ), where
r= ∣x+ iy∣ and ϕ ¼ argðx þ iyÞ. The initial state can be written as a combination of
the four LGs

ψU;Lð0Þ ¼ AU;LLG02 þ BU;LLG00

Expanding the LGs forms and adding the time evolution on the right side, it can be
written

ψU;L ¼ e�r2=2σ2 AU;L
r
σ
ei2ϕ þ BU;Le

iφU;L
AB

h i
eðiωU;L�γU;LÞt

We have used the same width σ and same center in the origin for all the four
components. The four coefficients (real positive) represent the amplitude of the UP
and LP modes set by the two pulses A and B. Despite the two laser pulses have the
same frequencies content, we use BU/BL > AU/AL. In fact, at the time arrival of
second pulse B (about 2 ps time delay), the UP/LP content set by pulse A is already
decreased due to the differential decay. The pulse delay also sets a phase delay
between the plain Gaussian and the vortex packet that is in general different in
each of the two modes, φU

AB≠φ
L
AB . These phase delays control the direction of the

displacement of the vortex cores in each respective (UP or LP) mode. Upon
changing time delay on a few wavelengths scale, the relative displacement
directions of the UP and LP remain the same, meaning they are rotated of the same
amount. For such reason, we use in the previous sections the simplified notation
φAB. This simple model gives the same results than would be derived with a full
coupled Schrödinger equations (cSE) model, apart from neglecting the dispersion
and diffraction effects and the transients from the incoming photon pulses being
injected into the polariton components. We are not interested in the sub-ps
transient and the beams are wide enough in order to neglect any dispersive/
diffraction effects in the 10 ps time scale range. The cSE model was used in order to
verify the behavior of the Rabi-oscillating vortices against the LGs model in
previous configurations44,67. The parameter values used in the model are: AU= 6,
AL= 2, BU= 10, BL= 2, φU

AB ¼ π=2, φL
AB ¼ 0 and σ= 16 μm. The used relative

frequency and decay are: ΩR= ωU− ωL= 8 ps−1 and γR= γU− γL= 0.8 ps−1,
resulting in a ratio γR/ΩR= 0.1. The time frames shown in Fig. 4 are t1,2,3,4= 0.89,
1.38, 1.58 and 2.11 ps, corresponding to a global content imbalance S1,2,3,4= 0.5,
0.16, 0.0 and −0.4, respectively. The global imbalance is defined as

S ¼
R

jψU j2dr�
R

jψL j2drR
jψU j2drþ

R
jψL j2dr

.

Pseudospin evolution on the sphere. We have defined the pseudospin using the
polar and azimuthal angles θ, φ, that define the latitude and longitude on the Bloch
sphere of polaritons, respectively. The polar angle can also be written as a Stokes-

like parameter, the local imbalance s ¼ jψU j2�jψL j2
jψU j2þjψL j2

¼ cos θ while the azimuthal angle

is represented by the relative phase φLU= φU− φL. A point in real space has a
given pseudospin at time t0. Such state will change due to the complex relative (i.e.,
Rabi) frequency. The azimuthal angle of the pseudospin on the sphere will change
according to φLU(t)= φLU(0)+ΩRt. Its arc line speed along a parallel is hence
dlp=dt ¼ ΩR sin θ. The polar angle will change due to the differential decay term.

Combining the expression of the two decays, jψU j
jψL j ðtÞ ¼

jψU j
jψL j ð0Þe

�γR t , that can be

written in terms of the Stokes parameter sðtÞ ¼ tanhf�γRt � atanh½sð0Þ�g. The
initial s(0) is arbitrary, here it depends both on the initialization conditions and on
the specific point in space. The speed of variation of the parameter is ds=dt ¼

�γR
cosh2f�γR t�atanh½sð0Þ�g ¼ �γRð1� s2Þ ¼ �γRsin

2θ (where we used the hyperbolic

derivative and the cosh2 ¼ 1
1�tanh2

relation). Recalling that ds ¼ � sin θdθ, the arc
length speed along a meridian is dlm=dt ¼ dθ=dt ¼ 1

� sin θ ds=dt ¼ γR sin θ. The
pseudospin evolves on the sphere moving at an angle α with respect to the parallels

such that tan α ¼ dlm=dt
dlp=dt

¼ γR=ΩR. The angle is hence constant, describing a so

called loxodrome (we used this in a previous work44, without showing the current
demonstration). The total velocity of the polariton state evolution on the sphere
can be expressed as vsphereps ¼ dl=dt ¼ sin θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2R þ Ω2

R

p
. The term in the squared

root can be thought as the module of a complex Rabi frequency eΩR ¼ ΩR þ iγR.
The evolution holds for the pseudospin state in any point of real space, regardless
of the specific mapping of the Bloch sphere to real space.

Conformal mapping. We have verified that the superposition of LGs with the same
width, center and sign of all the winding charges among the two modes always
convert into a conformal mapping of the pseudospin sphere to real space
(regardless of the packets’ total number, amplitudes, relative phases and absolute
winding charges). Naturally, linearly dependent combinations of coefficients
between the two modes result in a 0D mapping on the sphere, that is the same
pseudospin on the whole space. Conformal mapping means that parallels and
meridians of the Bloch sphere are mapped to two families of curves mutually
orthogonal everywhere on the real plane. Since we did not find a complete refer-
ence treating this property, we point to more specialized bibliography or to a future
work. In our multifrequency LGs models we neglect diffusive and dispersion
effects, the composing LGs only change their relative amplitudes and phase, hence
the conformal feature remains at all times. This feature can be expressed in terms
of the real-space gradients of the two pseudospin angles, ∇θ⊥∇φLU. By application
of the chain rule, we know that the motion of a pseudospin in real space due to,
e.g., the solely Rabi effect happens along the direction of the gradient of φLU with

speed vφ ¼ ∂d
∂t ¼ ∂d

∂φ � ∂φ∂t ¼
� ∂φ
∂d

��1 � ∂φ∂t ¼ ΩR=j∇φLUj (where we used d for the dis-

tance along such a direction, and the compact notation φ= φLU for simplicity).
Applying the same on the other component, and from the evolution speed of the
polar angle, ∂θ∂t ¼ γR sin θ, we end up with the total vector velocity vrealps ¼ vθ þ vφ
being vθ ¼ ðγR sin θ=j∇θjÞ∇̂θ and vφ ¼ ðΩR=j∇φLUjÞ∇̂φLU. The second term does
not change in time, because the relative phase only changes by a homogeneous
dynamical term due to the Rabi frequency, so its gradient is constant. The first term
does not change as well, because our specific mapping is fully conformal, such that
j∇θj ¼ sin θj∇φLUj, so that vθ/vφ= γR/ΩR, so the trajectory of a given pseudospin is
a loxodrome in real space too (with respect to the φLU, θ curvilinear coordinates).
Looking at the expression of the Berry curvature in Eq. (1), it contains the vector
product of the two pseudospin angles gradients in real space,
Bz ¼ 1=2 sin θ j∇θ ´∇φLUj. Such a product represents the sphere areal density
on real space. Since the two gradients are here orthogonal, it is also
Bz ¼ 1=2 sin θ j∇θjj∇φLUj ¼ 1=2 j∇θj2 ¼ 1=2sin2θ j∇φLUj2. The two velocities can
then be written as vθ ¼ 1ffiffiffiffiffi

2Bz

p γR sin θ and vφ ¼ 1ffiffiffiffiffi
2Bz

p ΩR sin θ, while for the module

of the total velocity vrealps ¼ 1ffiffiffiffiffi
2Bz

p sin θ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2R þΩ2

R

p
. It is possible to see that the Berry

curvature is linking the velocities between the two spaces (real plane and Bloch
sphere), recalling that vsphereps ¼ sin θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2R þ Ω2

R

p
. Hence, the speed of the spatial

motion of a pseudospin and of the evolution on the sphere of a spatial point’s
pseudospin are linked by vrealps ¼ 1ffiffiffiffiffi

2Bz

p vsphereps . On the other hand, since the

total density represents the number of total particles in a given area, the Berry
curvature also plays a role in linking the total density between the two spaces,

jΨsphere
tot j2 ¼ C

2Bz
jΨreal

tot j2, where C is the topological multiplicity factor discussed in

the main text.
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Total phase and continuity equation. For the sake of clarity and completeness, we
derive the continuity equation for the total density of particles ntot= nU+ nL,
where nU= ∣ψU∣2 and nL= ∣ψL∣2 are the local densities of particles in the two
components. With this notation the local imbalance reads s ¼ nU�nL

nUþnL
¼ nU�nL

ntot
. It is

also possible to consider the total phase φtot= φU+ φL in parallel with the relative
phase φLU= φU− φL. For convenience, we also introduce the total decay rate
γtot= γU+ γL in addition to the already discussed relative decay γR= γU− γL,
where 2γU and 2γL are the particles decay rates in each component. The continuity
equation can be written as dntot/dt=−∇ ⋅ jU− 2γUnU−∇ ⋅ jL− 2γLnL, where
jU,L= nU,LvU,L are the density flow in each component and vU;L ¼ _

mU;L
∇φU;L the

superfluid velocities, associated to the respective effective masses mU,L and phase
gradients ∇φU,L. The total flow of particles can be written in terms of the total
density and velocity, jtot= jU+ jL= ntotvtot, from which the total superfluid velo-
city is defined as vtot ¼ nUvUþnLvL

nUþnL
. The continuity equation can then be written in

terms of the total and relative quantities, rather than with respect to the single
components,

dntot=dt ¼ �∇ � ðntotvtotÞ � ðγtot þ sγRÞntot:
Also the total superfluid velocity contained in such expression can be written in
terms of the total and relative quantities,

vtot ¼
_

2m
ð∇φtot þ s∇φLUÞ;

where we used the approximation of equal effective masses m=mU=mL (that is
not strictly true for polaritons but valid at small momenta and for small photon-
exciton detuning). It is hence possible to see that the total phase and its gradient is
in general involved in the motion and reshaping of the total density profile,
similarly to what happens in one-component cases. However, the total density is in
principle also affected by the content imbalance, if there is a difference between the
two superfluid velocities (i.e., if vU ≠ vL). Finally, while in one-component cases, a
uniform decay rate is only affecting the absolute density, not its shape, in two-
component cases the total density is also reshaping due to the different decay rates
of the components. The dynamics of the total density in Fig. 4e is in fact only due
to this effect (while the model neglects the density redistribution due to the group
velocities, that is a valid approximation, as said, for the used beams width and time
scales). Apart from the role on the total density, the total superfluid velocity
respects the Mermin-Ho relation in Eq. (5), upon replacing the l̂ vector with the
polariton pseudospin S. It is possible to note that this is due to the second term in
the vtot expression, that has a nonzero curl, thanks to the s factor that appears
before the gradient of the relative phase, while for the first term, its curl is zero. The
circulation of the total velocity has hence a discrete part in 2π multiples, depending
on the total-phase singularities enclosed by the path, and a continuous part that
depends on the relative phase, whose gradient is weighted by the s local imbalance.
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