
Modelling, Verifying and Testing
the Contract Automata Runtime
Environment with UPPAAL

Davide Basile

(COORDINATION 2024)

Overview

• Background: Contract Automata Runtime Environment, UPPAAL

• Formal model: abstractions, adequacy

• Formal analysis:
• parameters tuning, statistical / exhaustive model checking

• Conclusion

• Contract automata are FSA enhanced with:
• Partitioned alphabet of actions:

• offers !a (Ao) and requests ?a (Ar)
• special idle action (- not in Ao ∪ Ar)

• rank : the number of services in the contract
• States are list of basic states
• Labels are list of actions and are constrained to be:

• offers: (-, -, -, !a)
• requests: (-, ?a, -, -)
• matches: (-, ?a, -, !a)

(only between two)

• size(list) = rank

• Orchestrator abstracted away

Contract Automata

Runnable OrchestratorRunnable Orchestrated Contract

Service
Implementation

Contract
Automaton

Orchestration
Automaton

Contract Automata Runtime Environment

Basile, D. and ter Beek, M.H. A runtime environment for contract automata. In FM 2023

https://github.com/contractautomataproject/CARE
https://github.com/contractautomataproject/CARE/tree/master/src/spec/uppaal

https://github.com/contractautomataproject/CARE
https://github.com/contractautomataproject/CARE/tree/master/src/spec/uppaal

UPPAAL

• Toolbox for the verification of real-time systems
• Dialect of stochastic priced timed automata (probabilistic choices, probability

distributions for delays)
• Communications: broadcast channels, shared variables
• Exhaustive model checking of a dialect of CTL properties

• Statistical model checking:
• statistically estimate the probability of a formula
• to hold by running a sufficient number of simulations,
 based on parameters (precision, confidence)
• Independent of the size of the state-space

• Templates, Test generation, Simulation, etc…

Formal model: Network of UPPAAL Automata

Formal model: Network of UPPAAL Automata

Formal Model: Java TCP/IP Sockets

• Asynchronous with FIFO buffers, blocking

Global Declarations Runnable Orchestrated Contract Runnable Orchestrator

Formal Model: Java TCP/IP Sockets

• Source locations: neither urgent nor committed
• otherwise, there could be deadlocks

• Unbounded delays: timeout model

Formal Model: Java TCP/IP Sockets

• Source locations: neither urgent nor committed
• otherwise, there could be deadlocks

• Unbounded delays: timeout model

Runnable OrchestratorRunnable Orchestrated Contract

Contract
Implementation

Contract
Automaton

Orchestration
Automaton

CARE Model: abstractions

Other abstracted aspects:
• payload of communications,
• conditionals,
• match/offer

Adequacy: Traceability

Adequacy: Traceability

Adequacy: Testing

• each transition that involves enqueuing or
dequeuing messages produces test code for
writing to or reading from a socket,
respectively,

• when running a simulation, whenever a
transition is fired, the corresponding test code
is appended to the abstract test case being
generated.

Abstract test

• Test generation from queries of the form E<>
• encode specific simulation traces that are relevant to

the specific orchestration employed in the tests
• Additional variables utilized to encode the desired

simulation in the query

Adequacy: Testing

• model_testing_orc.xml used for testing the
RunnableOrchestration
• the runnable contracts are the testers

• model_testing_roc.xml used for testing the
RunnableOrchestratedContract
• the tester is only the orchestrator

Models Concrete tests

Abstract test

Concrete test

Adequacy: Testing

• the generated tests cover all transitions of
the model and all interactions between the
orchestrator and the services

• the code coverage indicates that the tests
derived from the model cover a significant
portion of the source code

• the model is not excessively abstract
compared to the actual implementation.

coverage

Analysis: modelling phase

• Validation through modelling:
• an undetected issue in the source code was identified during the modelling

phase, related to the majoritarian choice

• The orchestrator was waiting for a message also from the services not
involved in the choice

• The issue was undetected because in all tests all services were involved in a
choice

Analysis: parameters tuning

• Delays in reading and writing, timeout, buffer size, probability weights

• Goals:
• realistic modelling: low probability of filling the buffers, timeout, excessive

delays

• improved verification performances: reducing the state-space of the model
for the exhaustive verification

• Probability weights (e.g., pchoice, paction,..) can be fine tuned to
model an orchestration or a set of orchestrations

Parameters tuning: buffer size

• Goal: prevent unnecessary growth in the state space whilst reducing
the probability of filling the buffers
• Default size of Java TCP/IP Sockets is 8 KB

• With buffer size=10, the formula evaluates to ~ 4.5
• The buffer size can be safely reduced in the model

• Evaluates to [0,0.00996915] with buffer size set to 5
• The buffer size is set to 5 for the subsequent experiments

Parameters tuning: timeout

• Selected configuration of rates and timeout

• Goals: low probability of timeout, high probability of terminating within a
given timeframe, lower timeout threshold

• Exhaustive model checking: (#services, buffer size) either set to (4,5) or
(5,3). The configuration (5,4) remained inconclusive.

Formal verification

• Termination

• P - - > Q is a shortcut for A[](p imply A<>q)

• Absence of deadlocks

• no error state is ever reached
• an error in the model has been detected and fixed by model checking this formula

Formal verification

• Absence of orphan messages

• No dummy execution

Formal Verification

• No interference in matches

Formal Verification

• Mismatching configurations

Conclusion

• Modelling, Verification and Testing of CARE
• model-based testing and traceability for validating the adequacy of the model

• Statistical model checking and exhaustive model checking for fine-tuning the
parameters and perform the verification

• Future work:
• automatic alignment of artifacts,

• managing configurations (UPPEX).

Conclusion

• Modelling, Verification and Testing of CARE
• model-based testing and traceability for validating the adequacy of the model

• Statistical model checking and exhaustive model checking for fine-tuning the
parameters and perform the verification

• Future work:
• automatic alignment of artifacts,

• managing configurations (UPPEX).

• Thanks for your attention

	Slide 1: Modelling, Verifying and Testing the Contract Automata Runtime Environment with UPPAAL
	Slide 2: Overview
	Slide 3: Contract Automata
	Slide 4: Contract Automata Runtime Environment
	Slide 5
	Slide 6: UPPAAL
	Slide 7: Formal model: Network of UPPAAL Automata
	Slide 8: Formal model: Network of UPPAAL Automata
	Slide 9: Formal Model: Java TCP/IP Sockets
	Slide 10: Formal Model: Java TCP/IP Sockets
	Slide 11: Formal Model: Java TCP/IP Sockets
	Slide 12: CARE Model: abstractions
	Slide 13: Adequacy: Traceability
	Slide 14: Adequacy: Traceability
	Slide 15: Adequacy: Testing
	Slide 16
	Slide 17: Adequacy: Testing
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Analysis: modelling phase
	Slide 23: Analysis: parameters tuning
	Slide 24: Parameters tuning: buffer size
	Slide 25: Parameters tuning: timeout
	Slide 26: Formal verification
	Slide 27: Formal verification
	Slide 28: Formal Verification
	Slide 29: Formal Verification
	Slide 30: Conclusion
	Slide 31: Conclusion
	Slide 32

