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ABSTRACT

Skeletons are common patterns of parallelism like, e.g., farm and pipeline that can
be abstracted and offered to the application programmer as programming primitives. We
describe the use and implementation of skeletons in a distributed grid environment, with
the Java-based system Lithium as our reference implementation. Our main contribution
are optimization techniques based on an asynchronous, optimized RMI interaction mech-
anism, which we integrated into the macro data flow (MDF) evaluation technology of
Lithium. We report experimental results that demonstrate the achieved improvements
through the proposed optimizations on various testbeds.

1. Introduction

The term algorithmic skeleton has been used since Cole’s work [5] to denote
commonly used patterns of parallel computation and communication. The idea is to
employ skeletons as pre-implemented, ready-to-use components that are customized
to a particular application by supplying suitable parameters (data or code) [10,12].

This paper deals with the use of parallel skeletons in the emerging grid envi-
ronments [8]. An inherent property of computational grids is a varying latency
of communication between involved machines, i.e. clients and high-performance
servers. Moreover in grid environments it is difficult to make definite assumptions
about the load and the availability of the computers involved. This brings new,
challenging problems in using and implementing skeletons efficiently on grids, as
compared to traditional multiprocessors.

Our contribution is a set of new optimization techniques that aim at solving
some of the performance problems originating from the latency characteristics of
grid architectures. In particular, we developed the optimizations in the context of
Lithium, a Java-based skeleton programming library [3]. Apart from “embarrass-
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ingly parallel” programs, distributed applications often involve data and control
dependencies that need to be taken into account by the skeletons’ evaluation mech-
anism. As Lithium exploits Java-RMI [11] to coordinate and distribute parallel ac-
tivities, we are interested in integrating new optimizations of RMI [4] into Lithium.
The techniques discussed here for RMI can also be applied to other structured par-
allel programming systems, e.g. ASSIST [1]. As an example, we are considering
the adoption of these techniques in ASSIST [1], a system that exploits in part the
experiences gained from Lithium and that runs upon different middleware (plain
TCP/IP and POSIX processes/threads, CORBA [9] and the Globus Toolkit [7]).

Section 2 of this paper introduces the Lithium programming library, and in Sec-
tion 3 we introduce an asynchronous interaction mechanism in RMI that improves
the performance of grid applications as compared to using standard RMI commu-
nication. We show how a mechanism of this kind can be adapted to Lithium and
we explain how it helps reducing idle times during program execution in Section 4.
Section 4.3 discusses how Lithium’s load balancing features can be exploited in
the grid context, also taking advantage of the introduced RMI optimizations. We
describe our experiments in Section 5, where we study the performance of an im-
age processing application based on a pipeline. Our experimental results compare
the effects of the proposed optimizations. We conclude and compare our results to
related work in Section 6.

2. Skeleton-based Programming in Lithium

Lithium is a Java-based skeleton library that provides the programmer with a set
of nestable skeletons, modeling both data and task/control parallelism [3]. Lithium
implements the skeletons according to the macro data flow (MDF) execution model
[6]. Skeleton programs are first compiled into a data flow graph: Each instruction
(i. e. each node) in the graph is a plain data flow instruction. It processes a set of
input tokens (Java Object items in our case) and produces a set of output tokens
(again Java Object items) that are either directed to other data flow instructions in
the graph or directly presented to the user as the computation results. The output
tokens may represent large portions of code, rather than only simple operators or
functions (therefore the term macro data flow).

The set of Lithium skeletons includes the Farm skeleton, modeling task farm
computations, the Pipeline skeleton, modeling computations structured in inde-
pendent stages, the Loop and the While skeleton, modeling determinate and indeter-
minate iterative computations, the If skeleton, modeling conditional computations,
the Map skeleton, modeling data parallel computations with independent subtasks,
and the DivideConquer skeleton, modeling divide and conquer computations. All
these skeletons are provided as subclasses of the JSkeleton abstract class.

Lithium users can encapsulate sequential portions of code in a sequential skeleton
by creating a JSkeleton subclass® Objects of the subclass can be used as parameters
of the other skeletons. All the Lithium skeletons implement parallel computation

*A JSkeleton object has a run method that represents the skeleton body
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patterns that process a stream of input tasks and compute a stream of results. As
an example, a farm with a worker that computes the function f, processes an input
task stream with data items x;, producing the output stream with the corresponding
data items equal to f(x;), whereas a pipeline with two stages computing function
f and g, respectively, processes stream of x; and computes g(f(z;)).

In order to write a parallel application, the Lithium programmer first defines
the skeleton structure. As an example, a three-stage pipeline with a task farm as
second stage requires the following code:

JSkeleton s1 = new s1(...);
JSkeleton w = new w(..);

Farm s2 = new Farm(w);
JSkeleton s3 = new s3(...);
Pipeline main = new Pipeline();
main.addStage(s1);
main.addWorker(s2);
main.addWorker(s3);

Then, the programmer declares an application controller, possibly specifying the
machines that have to be used:

Ske eval = new eval();

eval.setProgram(main) ;

eval.addHosts (machineNameStringArray) ;
the user can specify the tasks to be computed issuing a number of calls such as:

eval.addTask(objectTask) ;
and request the parallel evaluation by issuing the following call:

eval.parDo();
The program is then executed using the machines whose names were specified in the
machineNameStringArray, and the programmer can retrieve the results by issuing
a number of calls such as:

Object res = eval.getResult();
The skeleton program is transferred into an MDF graph as a consequence of the
eval.setProgram call. Lithium implements the so-called normal form optimiza-
tion: The normal form of a Lithium program is a semantically equivalent program
obtained by means of source-to-source transformations [2]: it consists of a Farm
evaluated on a sequential program. Any Lithium program can be reduced to the
normal form by transforming it to a sequential program composed of the juxtaposi-
tion of parallel parts (in the correct order) and farming out the result. The normal
form can be computed both statically and just-in-time [3]. The normal form is
produced in the eval.setProgram code. In our sample case, the data-flow graph
is a simple chain of three macro data flow instructions (MDFi) is shown in Fig. 1
a), while its normalized version is shown in Fig. 1 b).
For each of the input tasks x; computed by the program (i.e. for each one of the
Objects used as argument of a eval.addTask call), an MDF graph such as the one
presented before is instantiated. The skeleton program is then executed by setting
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Figure 1: A simple data flow graph (a) and its normal form (b).
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Fig. 2. Lithium implementation outline.

up a task pool manager on the local machine and a remote server process on each
of the available remote hosts. The task pool manager creates a new MDF graph
for each new input task added via the eval.addTask call and dispatches fireable
MDFi (that is, MDFi with all the input tokens available) to the remote servers.
The remote servers compute the fireable MDFi in the graph(s) and dispatch the
results back to the task pool manager. The task pool manager stores the results
in the proper place: intermediate results are delivered to other MDFi (that, as a
consequence, may become fireable); final results are stored, such that subsequent
eval.getResult calls can retrieve them.

Remote servers are implemented as Java RMI servers [11]. The Lithium sched-
uler forks a control thread for each remote server. Such a control thread obtains a
reference to one server, then it sends the MDF graph to be executed and eventually
enters a loop. In the loop body, the thread fetches a fireable instruction from the
taskpool, asks the remote server to compute the MDFi and deposits the result in
the task pool (see Figure 2).
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3. RMI Optimizations

Using the RMI (Remote Method Invocation) mechanism in distributed program-
ming in general and on grids in particular, has the important advantage that the
network communication involved in calling methods on remote servers is transparent
for the programmer: remote calls are coded in the same way as local calls.

3.1. The Idea of Optimizations

Since the RMI mechanism was developed for traditional client-server systems, it
is not optimal for systems with several servers where also server/server interaction
is required. We illustrate this with an example of a Lithium Pipeline application:
here, the result of a first call evaluating one stage is the argument of a second call
(lithiumServerl and lithiumServer?2 are remote references):

partialResult = lithiumServerl.evalStagel(input);

overallResult = lithiumServer2.evalStage2(partialResult);
Such a code is not directly produced by the programmer, but rather by the run-time
support of Lithium. In particular, any time a Pipeline skeleton is used, this code
will be executed by the run-time system of Lithium to dispatch data computed by
stage i (partialResult) to stage ¢ + 1.

When executing this example composition of methods using standard RMI, the
result of the remote method invocations will be sent back to the client. This is
shown in Fig. 3 a). When evalStagel is invoked (arrow labeled by @), the result
is sent back to the client (@), and then to LithiumServer2 (®). Finally, the result is
sent back to the client (®). For applications consisting of many composed methods
like multistage pipelines, this schema results in a quite high time overhead.

! s

Fig. 3. Method composition: a) using plain RMI, and b) using future-based RMI.

b)

To eliminate this overhead, we have developed so-called future-based RMI. As
shown in Fig. 3 b), an invocation of the first method on a server initiates the
method’s execution. The method call returns immediately (without waiting for the
method’s completion) carrying a reference to (future) execution result (®). This
future reference can be used as a parameter for invoking the second method (®).
When the future reference is dereferenced (@), the dereferencing thread on the server
is blocked until the result is available, i. e. until the first method actually completes.
The result is then sent directly to the server dereferencing the future reference
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(®). After completion of the second method, the result is sent to the client (®).
Compared with plain RMI, the future-based mechanism can substantially reduce
the amount of data sent over the network, because only a reference to the data
is sent to the client, while the result itself is communicated directly between the
servers. Moreover, communications and computations overlap, thus hiding latencies
of remote calls.

3.2. Implementation of Future-Based RMI

In future-based RMI, a remote method invocation does not directly return the
result of the computations. It rather returns an opaque object representing a (re-
mote, future) reference to the result. The opaque object has type RemoteReference,
and provides two methods:

public void setValue(Object o) ...;

public Object getValue() ...;
Let us suppose fut is a RemoteReference object. The fut.setValue (o) method
call triggers the availability and binds Object o to fut, which has been previously
returned to the client as the result of the execution of a remote method. The
fut.getValue() is the complementary method call. It can be issued to retrieve the
value bound to fut (o in this case). A call to getValue() blocks until a matching
setValue (o) has been issued that assigns a value to the future reference.

The getValue () method can be issued either by the same host that executed
setValue(...) or by a different host, therefore RemoteReference cannot be im-
plemented as remote (RMI) class. It is rather implemented as a standard class
acting as a proxy. There are two possible situations. First, if matching methods
setValue(...) and getValue() are called on different hosts, the bound value
is remotely requested and then sent over the network. In order to remotely re-
trieve the value, we introduce the class RemoteValue (having the same methods as
RemoteReference), accessible remotely. Each instance of RemoteReference has a
reference to a RemoteValue instance, which is used to retrieve an object from a
remote host if it is not available locally. The translation of remote to local refer-
ences is handled automatically by the RemoteReference implementation. Second,
if matching methods setValue(...) and getValue() are called on the same host,
no data is sent over the network to prevent unnecessary transmissions of data over
local sockets. A RemoteReference contains the IP address of the object’s host and
the (standard Java) hashvalue of the object, thus uniquely identifying it. When
getValue () is invoked, it first checks if the IP address is the address of the lo-
cal host.If so, it uses the hashvalue as a key for a table (which is static for class
RemoteReference) to obtain a local reference to the object. This reference is then
returned to the calling method.

4. Optimization Techniques Applied to Lithium

In this section, we describe three optimization techniques for Lithium which are
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based on the RMI-optimizations presented in the previous section. All three en-
hancements are transparent to the application programmer, i. e. an existing Lithium
application does not require any changes to use it.

4.1. Task Lookahead on RMI servers

We call our first optimization technique “task lookahead”: a server will not
have to get back to the task pool manager every time it is ready to process a new
task. The immediate return of a remote reference enables the task manager to
dispatch multiple tasks instead of single tasks. When a server is presented with a
new set of tasks, it starts a thread for every single task that will process this task
asynchronously, producing a future result. This is particularly important if we use
multi-processor servers, because the multithreaded implementation will exploit all
available processors to compute the future results. However, even a single-processor
server benefits from look-ahead, because transferring multiple tasks right at the
beginning avoids idle times between consecutive tasks.

A Lithium program starts execution by initializing the available servers and
binding their names to the local rmiregistry. Then the servers wait for RMI calls.
In particular, two kinds of calls can be issued to a server:

e A setRemoteWorker call is used to send a macro data flow graph to a server.
The information in the graph is used to properly execute the MDF1i that will
be assigned later to the server for execution.

e An execute call is used to force the execution of MDFi on a remote node.

In the original Lithium, each control thread performs the following loop [3]:
while (!taskPool.isEmpty() && !end) {
tmpVal = (TaskItem[])taskPool.getTask();
taskPool.addTask(Ske.slave[im] .execute(tmpVal));
}
i.e.it looks for a fireable instruction (a task according to Lithium terminology),
invokes the execute method on the remote server and puts the resulting task back to
the task pool for further processing. Actually, each control thread and its associated
server work in sequence; the behavior is sketched in Fig. 4. Therefore, each Lithium
server has an idle time between the execution of two consecutive tasks.

The lookahead-optimization aims at avoiding idle times at the servers. Servers
are made multithreaded by equipping them with a thread pool. As soon as a server
receives a task execution request, it selects a thread from its pool and starts it on
the task. After this invocation (and before the thread completes the task), the
server returns a handle to its control thread, thus completing the RMI call. In this
way, the control thread may continue to run, possibly extracting another task from
the task pool and delivering it to the same server. During this time, some of the
server’s threads may be still running on previous tasks.

As a result, we can have many threads running at the same time on a single
server, thus exploiting the parallelism of the server. In any case, we eliminate
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Fig. 4. Server’s idle time in original Lithium implementation.

control thread idle time by overlapping useful work in each server and its control
thread. Task lookahead is an optimization that improves both normal form and
non-normal form program execution times, provided that the machine hosting the
task pool (and therefore the control threads) does not become the bottleneck.

4.2. Server-to-Server Lazy Binding

Our second optimization technique is called “lazy binding”: a remote server will
only bind a new MDFi from the graph if necessary, and analogously the task pool
manager will not wait for a remote reference to produce the future result unless it
is needed. Here, we use remote references to avoid unnecessary communications be-
tween control threads and remote servers. Our implementation of remote references
uses hash-tables as local caches, which leads to the caching of intermediate results
of the MDF evaluation. The system may identify sequences of tasks that depend
on previous ones and make sure that such sequences will be dispatched to a single
remote machine. Thus, a sequence of dependent tasks can be processed locally on
one server which leads to a further reduction of communication. We will show that
the lazy binding technique can be compared to the normal form mechanism.

4.2.1. Normal Form Computation

Let us comnsider the evaluation of the sequence of two functions, f and g, on a
stream of data. In Lithium, the program can be expressed by a two-stage Pipeline,
whose stages evaluate f and g, respectively. The behavior of the original Lithium
system on this program is shown in Fig. 5 a):

(i) The control thread fetches a fireable MDF-instruction and sends it to the as-
sociated server (®). The MDF-instruction includes a reference to the function
1 f and the input data x;.
(ii) The Lithium server computes the instruction and sends the resulting data y;
back to the control thread (@).
(iii) The control thread deposits the result in the task pool that makes another
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MDF-instruction 1 ¢g(y;) fireable. It will be then fetched by either the same
or another control thread and sent to the server (®).
(iv) After the evaluation, the whole execution z; = g(f(x;)) is completed (@).

LithiumServer LithiumServer
MDF (multithreaded) MDF  (multithreaded)

Fig. 5. Communications among Task Pool and Servers. a) Original Lithium. b) Optimized
implementation.

The goal of the optimization is reducing the size of communications @ and ®.
These communications carry both the reference to the function to be executed and
its input data, the latter being the large part. Since the input data might be
computed in a previous step by the same server, we can communicate a handle
(the RemoteReference) for the input/output data instead of their actual values.
In this way, each server retains computed values in its cache until these values are
used. If they are used by the same server, we greatly reduce the size of round
trip communication with the control thread. If they are used by another thread,
we move the values directly between servers, thus halving the number of large-size
communication. The optimized behavior is shown in Fig. 5 b):

(i) The control thread fetches an MDF-instruction and sends it to a server (@).

(ii) The Lithium server assigns the work to a thread in the pool and, immediately,
sends back the result handle T y; (®). The message may be extended with the
completing token ¢; for a previously generated handle j (¢ > j) in order to
make the control thread aware of the number of ongoing tasks.

(iii) The control thread deposits the result in the task pool that makes another
MDF-instruction 7g(1y;) fireable. This will be fetched by either the same or
another control thread and sent to its associated server (®). Let us suppose
the instruction is fetched by another control thread.

(iv) The server immediately returns the handle to the control thread (@).

(v) To evaluate 1g(Ty;), the server invokes a getValue() method on Ty; (@).

(vi) The value y; arrives at the server (@), thus enabling the evaluation of g(y;).

Note that if f and g are evaluated on the same server, then the communications @
and @ do not take place at all, since references are resolved locally.

The described process can be viewed as a dynamic, runtime version of the normal
form optimization. Normal form transforms sequences of calls into an equivalent,
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Fig. 6. Execution of a Data Parallel skeleton: a) original Lithium; b) optimized version.

single MDFi. With the proposed optimization, we recognize such sequences at the

remote server and perform the computations locally.

4.2.2. Data-Parallel Computation

Lazy binding helps to reduce network traffic, which affects also simple data-

parallel computations, which are carried out in Lithium as follows:

e a task (data item) z is divided into a set of (possibly overlapping) n subsets
L1 T

e cach subset is assigned to a remote server;

e the results of the computation of all the subsets are used to build the overall
result of the data-parallel computation.

This implies the following communication overhead (see Fig. 6 a):

e n communications from the task pool control thread to the remote servers are
needed to dispatch subsets;

e n communications from the remote servers to the task pool control threads
are needed to collect the subsets of the result;

e one communication from the control thread to a remote server is needed to
send the subsets in order to compute the final result;

e one communication from the remote server to the task pool control thread is
needed to gather the final result of the data-parallel computation.

The suggested optimization is as follows (see Fig. 6 b):

e each time a data-parallel computation is performed, the task pool control
thread generates and dispatches all “body” instructions, i. e. instructions that
compute a subset of the final result. The remote servers immediately return
handles Ty; -+ Ty, (RemoteReferences) representing the values still being
computed;
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e after receiving all handles, the control thread dispatches the “gather” MDFi
(i. e. the instruction packing all the sub-results into the result data structure)
to the remote server hosting the major amount of references to sub-results.
When this instruction is computed, the result is sent back to the task pool.

In this way, we avoid moving the intermediate results back and forth between the
task pool threads and the remote servers during execute and gather phases (see 6).

4.3. Load Balancing

In this section, we describe how we adapted the load-balancing mechanism of
Lithium to the optimized evaluation mechanisms, in order to achieve a stable level
of parallelism on all servers. This is accomplished by measuring the number of
active threads on the servers.

Our asynchronous communications lead to a multithreaded task evaluation on
the servers. The scheduler can dispatch a task by sending it to a server, which
is already evaluating other tasks. This server will start evaluating the new task
in parallel. We implemented this server-side multithreading using a thread pool,
which is more efficient than spawning a new thread for each task. However, tasks
may differ in size, and machines in a Grid are usually heterogeneous. Without a
suitable load-balancing strategy, this may lead to an awkward partitioning of work.

idle thread \ active thread w

—

Lithium Task W iask [LJ O O O O @
Pool Scheduler i e

Lithium Server 1

Control Thread

Control Thread ‘:::::_'_‘V:_'W_Eii"ffr DDODOO

n 6 threads active Lithium Server 2
. .
(]
Control Thread n dispatcp, New t, :
ask
4 thr
€ads active

Lithium Server n

Fig. 7. Communication schema for the load balancing mechanism.

To balance the load in the system, we must measure the current load of each
server. One possibility would be to use a new remote method, which, however,
is inefficient since it implies more remote communication. Instead, we exploit the
fact that the scheduler already communicates frequently with the remote servers by
sending tasks, i.e.data records with a reference to a future value. We extend each
data record by a number that reports to the scheduler the actual work-load on the
server. So, every time the scheduler sends a task to a server, it gets the number of
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threads currently running on that server. The scheduler can re-check this number
and, if there is already much load on this server, it can decide to release the task
again and wait instead. Accordingly, another scheduler thread will process the task
by sending it to another server. So, dispatching tasks and measuring work-load
can be done in one remote communication like shown in Fig. 7: Here, we have
a maximum number of 6 active threads per server. Dispatching tasks to server
1 and server n yields the actual work-load (5 active threads at server 1, 6 active
threads at server n), which means that the scheduler can continue to dispatch tasks
to these servers. But for a server that has already reached the maximum number
of active threads (server 2 in the figure), the scheduler waits until the number of
active threads has fallen below the limit.

With many remote servers and, correspondingly, control threads running in the
scheduler, the measured value may already be obsolete when we send the next task.
However, since asynchronous communication causes tasks to be dispatched with a
high frequency, the suggested technique is precise enough for an efficient load bal-
ancing. This has also been proved by our experiments that included checkpointing.

5. Experiments

For the evaluation of our optimizations, we conducted performance measure-
ments on three different distributed platforms.

(i) A dedicated Linux cluster at the University of Pisa. The cluster hosts 24
nodes: one node devoted to cluster administration and 23 nodes (P3@800Mhz)
exclusively devoted to parallel program execution. Described in Sec. 5.1.

(ii) A distributed execution environment including Linux and Sun SMP machines.
The client runs on a Linux machine in Miinster and the servers run on a set
Sun SMP machines in Berlin. Described in Sec. 5.2.

(iii) A Grid-like environment, including two organizations: the University of Pisa
(di.unipi.it) and an institute of the Italian National Research Council in Pisa
(isti.cnr.it). The server set is composed of various different Intel Pentium
and Apple PPC computers, running Linux and Mac OS X respectively (The
detailed configuration is shown in Fig. 10 left). The comparison of computing
power of machines is performed in terms of BogoPower, i.e.the number of
tasks per second which a given machine can compute running the sequential
version of the application (described in Sec. 5.3).

The three testing environments represent significantly different scenarios:

(i) is characterized by uniform computing power and high-bandwidth communica-

tions across the whole system (client and servers);

(ii) has low latency and high bandwidth for server-to-server communication, while

the client is connected to the servers with a fairly slow connection.

(iii) shows a heterogenous distribution of computing power and connection speed.
The image processing application we used for our tests uses the Pipeline skeleton,

which applies two filters in sequence to 30 input images. All input images are true-
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color (24 bit color depth) of 640x480 pixels size. We used filters from the Java
Imaging Utilities that add a blur effect and an oil effect. The filters were configured
to involve 5 neighboring pixels in each calculation. load-balancing for the future-
based version was adjusted to the maximum of 6 concurrent threads per node. The
lower limit was set to 2 threads. All the experiments have been performed using
the J2SE Client VM SDK version 1.4.1.

As described below, the optimized Lithium version shows a clear time advantage
over the standard version along all tested configurations.

5.1. Dedicated Cluster

Figure 8 (left) shows the measured time in seconds, for both the original Lithium
and the optimized version running on the dedicated cluster in Pisa. The speedup
in the right part of the figure is calculated with respect to the sequential version of
the application running on the same cluster. The plots show that the future-based
version performed approximately twice as fast as standard Lithium.

700 L ‘opt. Lithium —— 16 ‘ opt.‘Lithiu‘m —
600 | orig. Lithium - 1 14 - orig. Lithium -
12 | ideal - -
& 500 %
(8] Y o L
S 400} g 12
e | I
= 200t al
100 ¢ 2 b
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
Cluster Nodes (including 1 client node) Cluster Nodes (including 1 client node)

Fig. 8. Measured execution times and speedup on the Pisa cluster (i).

Task lookahead allows to overlap communication, computation, and data I/O
time, while lazy binding ensures that all data transfer between the stages of the
pipeline takes place on the server side without client interaction.

5.2. Distributed Environment

Figure 9 shows the measured time in seconds, for both the original Lithium and
the optimized version running in the environment (ii). These tests demonstrate a
clear increase in performance due to the proposed optimizations. By introducing
a server-to-server communication, data exchange between client and servers is re-
duced considerably. This feature exactly matches the strength of environment (ii)
in communicating using the fastest paths.

5.8. Grid-like Environment

As shown in Fig. 10, the optimized version performs better than the standard
one, also in a very heterogenous environment.
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ordered server set.

To take the varying computing power of the different resources into account, the
performance increase is documented by mean of the BogoPower measure, which
enables the comparison between application’s actual parallel performance and ap-
plication ideal performance (see Fig. 10 right). A speedup graph usually measures
the aggregate power of a system by the bare number servers, which does not satisfy
the conditions given in Grid-like environments. The BogoPower-measure enables
the description of the aggregate BogoPower of a heterogeneous distributed system
as the sum of each box individual BogoPower contribution (see. Fig. 10 left). Ap-
plication ideal performance curve is evaluated w.r.t. a system exploiting a given
BogoPower rank and assuming both an optimal scheduling of tasks and zero com-
munication costs.

We use environment (iii) for demonstrating to what extent the requirements of
a Grid system are met by our improved load balancing strategy.

The Lithium runtime system continuously monitors the servers’ states and raises
or drops the number of threads running on the servers in respect of the current
status. To demonstrate the dynamic load balancing behaviour of the scheduler,
we performed two identical experiments in environment (iii) with differing load on
one of the involved machines. Fig. 11 shows the results of these experiments. In
Fig. 11 right) less tasks are dispatched to the most powerful machine because in
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Fig. 11. Detailed history of tasks scheduling Left) All machines are dedicated to the experiment.
Right) One of the machine is externally overloaded from time 10 to 70.

this experiments, this machine was charged heavily by another application. Fig. 12
shows the history of threads issued to the overloaded machine. As evident from
the figure, when the machine load grows too much, the scheduler drops the number
of active threads. This decision is supported by system-wide historical statistics
maintained by the load balancing module of the client.

16 T matime s ™ W N o Toen 16 6. Conclusions
14 | been artificially Service Time 14 .
1 | etioaded herg 112 We have described several novel op-
— © . . . . .
2 101 140 § timization techniques aimed at an effi-
3 EL . )
T 8 18 £ cient implementation of parallel skele-
: o
E 8 W 16 Z tons in distributed grid environments
4 14 with high communication latencies. As
2 12 . .
" T o a reference implementation, we took the
0 20 40We3(|)I Cslso k1 ;)__o 12(08140)160 180 200 Lithium programming system and stud-
all Clock Time (Secs . . .
ied the effects of three different opti-
Fig. 12. Throttling in task scheduling. mizations based on the asynchronous,

future-based RMI mechanism: (1) dispatching batches of tasks, rather than sin-
gle tasks, to remote servers (“task lookahead”); (2) caching intermediate results
on the remote servers, thus allowing to reduce the communication overhead (“lazy
binding”); (3) adapting the load-balancing strategies to the multithreaded evalua-
tion mechanism initiated by the “task lookahead” and implementing it without an
increase in remote communication.

Server-to-server communication in RMI programs can also be found in [13],
where RMI calls are optimized using call-aggregation and where a server can directly
invoke methods on another server. While this approach optimizes RMI calls by
reducing the amount of data, the method invocations are not asynchronous as in
our implementation: They are delayed to find as many optimization possibilities as
possible.

Note that all three techniques have been integrated into Lithium transparently to
the user, i.e. applications developed on top of the original framework can directly
use the optimized version without any changes in the code. The presented opti-
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mization techniques can easily be applied to grid environments other than Lithium.
Furthermore, they are not restricted to RMI as a communication mechanism.
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