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 Executive Summary 
 
This Technical Informative Note describes the progress of the activity of Work Package 2 / Task 
2.3 in the months 12-17 of the project 4SECURail.  
The final results of Task 2.3 will be described in Deliverable 2.5, due at month 20 (end of July 
2021).  This Technical Informative Note is likely to already contain most of the interesting results 
that will appear in the final deliverable, together with other less important internal progress 
details that for readability issues will not appear in the final version.  
The overall final purpose of the whole experimentation is the observation of the impact, in our 
specific case, i.e. applying our specific tools and methodologies1 to our specific case study2, of 
the adoption of formal methods towards the improvement of the quality of the system 
specifications under construction. 
 
The activity of Task 2.3 builds upon a preliminary application3 of the same demonstrator 
prototype to an initial fragment of the case study. 
The activity performed within these first five months of Task 2.3 has been centred on three main 
issues: 
1)  A revision of the modelling and analysis process adopted for the initial fragment of the case 

study. In particular, the main points of this revision concern: 
- The choice to complement the initially selected formal method with a second one. 
- The choice to mechanically generate formal models from their semi-formal description. 
- The definition of a structured logical framework inside which to experiment the formal 
analysis activity.  

2)  A revision/refinement extension of the initial fragment of the case study progressing toward 
its full modelling and analysis. 

3) The experimentation of formal verification approaches based upon the definition of selected 
scenarios for the stimulation of the subsystems (or group of subsystems) of interest. 

 
In this Technical Informative Note we also describe some early observations resulting from this 
demonstration activity. In particular, from our perspective, the most important takeaway 
concern: 
- The way in which UML/SysML artifacts can be effectively used as a complement to the 

specification of system requirements. 
- The importance of multiple, mechanical generation of formal models of different types. 
- The observation of the effective impact of semi-formal modelling and formal analysis on the 

identification of weaknesses in the initial natural language system requirements definition. 
- The observation of the difficulties and the limits in which the exploitation of formal methods in 

 
1 the selected tools and methodologies constituting the "formal development demonstrator prototype" are initially 
defined in Task 2.1/Deliverable 2.1, and here refined, 
2 the selected case study is described in Task 2.2/Deliverable 2.3. 
3 described in Deliverable 2.2 of Task 2.1 
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the requirement specification phase may incur. 
- The importance of a consistent and integrated set of rigorous natural language descriptions, 

UML-based semi-formal artifacts, and formal models, to consolidate the overall quality of 
system requirements specification. 

 
In defining the structure of this document, we have tried to keep separate, as far as possible, the 
formal technical details of the points raised by this demonstration activity from the conceptual 
issues to which they are related. As far as possible, all the technical details have been moved 
inside the Annexes. 
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 Abbreviations and acronyms  
 
 

Abbreviation / Acronyms Description 
CBA Cost-Benefit Analysis 
CSL Communication Supervision Layer 
EA Enterprise Architect 
EC Execution Cycle 
ER EuroRadio 
FIFO First-In-First-Out 
FM Formal Methods 
IM Infrastructure Manager 
LTS Labelled Transition System 
MAAP Multi-Annual Action Plan 
MBSD Model Based Software/System Development 
NRBC Neighbour RBC 
OMG Object Management Group 
RBC Radio Block Centre 
SAI Safe Application Intermediate sub-Layer 
SFM Safe Functional Module 
SoS Systems of Systems 
TD Technology Demonstrator 
TTS Triple Time Stamp 
UML  Unified Modelling Language 
UNISIG Union industry of signalling 
WP Work Package 
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 Background  
 
The present document constitutes a preliminary version of Deliverable D2.5 "Formal development 
Demonstrator prototype" of Task 2.3 of WP2 "Demonstrator Development for the use of Formal 
Methods in Railway Environment" of the project 4SECURail (GA 881775) in the context of the open 
call S2R-OC-IP2-01-2019, part of the “Annual Work Plan and Budget 2019”, of the programme 
H2020-S2RJU-2019. 
 
The challenge to which 4SECURail is deemed to deal, and its relation with the Shift2Rail Technology 
Demonstrator D2.7 "Formal methods and standardisation for smart signalling systems" is well 
described in the call S2R-OC-IP2-01-2019, as shown below: 
 
“Shift2Rail has identified the use of formal methods and standard interfaces as two key concepts 
to enable reducing the time it takes to develop and deliver railway signalling systems, and to 
reduce costs for procurement, development, and maintenance. Formal methods are needed to 
ensure correct behaviour, interoperability and safety, and standard interfaces are needed to 
increase market competition and standardization, reducing long-term life cycle costs.” 
 
For our purposes, the project scenario considers the Infrastructure Managers (IM) applying formal 
and semi-formal methods to build robust and verifiable specifications of system requirements, 
which will make the procurement of systems and equipment - compliant with legal requirements 
and needs of operators - possible and suitable for easy integration in the existing railway 
subsystems. This will contribute to moving towards an open market for maintenance (availability 
of spare parts) and future enhancements (implementation of new functions and/or performance 
exploiting open and standardized interfaces).  
The idea of IMs is to have modular systems and to define standardized interfaces to integrate 
these modules (this approach is supported by the Eulynx initiative [EULYNX]). In this context of 
modular systems, the use of formal methods is a solid support to the definition of more standard 
interfaces. 
 
According to [MAAP2019], the Shift2Rail Innovation Programme 2 (IP2) will focus on innovative 
technologies, systems, and applications in the fields of telecommunication, train separation, 
supervision, engineering, automation, and security to enhance the overall performance of all 
railway market segments. 
The Technology Demonstrator TD2.7 aims to contribute to the enabling of two Innovation 
Capabilities (IC) of the Shift2Rail Innovation Programme 2 (IP2):  

● IC7 “Low-Cost Railway” 
● IC12 “Rapid and Reliable R&D Delivery” 

through the Building Block achievement BB2.7_1 “Formal and semi-formal methods for 
requirement capture, design, verification, and validation, proposing open standards”. 
 
4SECURail will contribute to the above Building Block achievement with the demonstration and 
evaluation of techniques based on formal methods to reduce life-cycle costs and improve the 
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global availability of the railway systems. 
 

 Objective/Aim  
 
One of the objectives of the 4SECURail project is to perform a costs and benefits analysis for the 
adoption of formal methods in the railway environment by prototyping a formal method 
Demonstrator to be exercised with a selected case study. The use of formal methods in the railway 
context covers many distinct aspects, from the definition of verifiable requirements to the 
construction of a more affordable and efficient development process. 
The objective of Task 2.3 is to exercise the process of system requirements definition that exploits 
the use of semi-formal and formal methods to improve the quality of the specifications written by 
the railway IM. The definition and overall structure of this process have been initially given in D2.1 
of Task 2.1.  The purpose of this deliverable is to check and apply the specification process 
described in D2.1  to the signalling system case study defined in D2.2 of Task 2.3. 
This activity is aligned with the objective of TD2.7 [MAAP2019] Formal Methods and 
standardisation for smart signalling, which focuses on applying Formal Methods and Standard 
Interfaces in application Demonstrators and the business case study for using them. 
 

 The Exercising of the Formal Development Demonstrator 
 
The goal of our formal methods demonstrator is to illustrate a possible impact of the 
introduction of formal methods inside the system requirements definition process of the IM.  
This is done by observing, in our specific case, the effects of applying our specific tools and our 
specific case study. I.e., we take the point of view of an Infrastructure Manager that intends to 
define the system requirements specification document to be used in tenders, exploiting the use 
of formal methods for improving the confidence that the document clearly and unambiguously 
reflects the intentions of the designers and that the implementations eventually deriving from it 
will correctly interoperate with the other system components with which the system is expected 
to interact.  
Notice that we are talking of two very different kinds of goals: the first one is related to the 
precision (clarity/completeness/consistency/safety) of a specific subsystem specification 
targeted to become a specific tender to the providers. The second one is the goal of improving 
the confidence that what is specified is precisely what is needed, i.e., something that really 
corresponds to the designer ideas and that which we can expect will correctly interoperate with 
the other components of the railway framework, which is essentially a system of systems. 
 
The activity described in this document is strictly correlated with three previous deliverables: 
- Deliverable 2.1 [D21] describes the planned structure of our formal development demonstrator 

process and the rationale behind it. 
- Deliverable 2.3 [D23] describes the planned case study for testing the application of the formal 

development demonstrator process. 
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- Deliverable 2.2 [D22] presents a first attempt to apply the demonstrator process to an initial 
fragment of the case study, to gain some early experience, possibly leading to the 
improvement of the process itself. 

 
The planned structure of the formal development demonstrator process initially described in 
D2.1 is based on two main steps:  
- A first step in which, starting from the initial natural language requirements of the system, is 

developed a SysML operational model, where each system component is described by an 
appropriate UML state machine. 

- A second step where the SysML model is encoded/translated into formal notation suitable for 
formal analysis.  The initially selected formal notation is the “B" notation of the ProB tool. 

 
The experience gained in the early application of the process to the case study fragment had led 
to several improvements of our demonstrator process: 
- It has been recognized the actual need to rely on mechanical translations between the SysML 

models and the formal notations. This point is discussed in Section 5.1.2 and Annex 8.1. 
This mechanical translation effort has been made possible by the direct generation of SysML 
designs with the UMC tool bypassing the Sparx-EA modelling steps. 

- It has been recognized the usefulness to take into consideration also an alternative formal 
modelling approach based on process algebras, which can exploit advanced state-of-art 
model reduction and compositional verification techniques. This point is discussed in Section 
5.1.1 and Annexes 8.1 and 8.2. 

- It has been recognized the need to define in a more structured way the process of performing 
the formal analysis steps, classifying the kind of verifications which can be exploited using the 
selected formal methods (push-button, model reductions, logical encoding of properties), the 
way in which the verification scenarios can be built, and the kind of feedback which can be 
expected from the process. These aspects are described in Sections 5.1.3, 5.2, 5.3, and 
Annexes 8.3, 8.4, 8.5, 8.6. 

 
The initial fragment of the case study taken into consideration in D2.2 is moreover being 
extended towards the goal of the modelling and analysis of the full case study. This aspects are 
described in Section 5.2. 
  

5.1 Improving the initial modelling and analysis process  
 
Our demonstrator process (see D2.1) is supposed to start from a requirements definition 
document written in natural language, to associate to it an initial semi-formal model described in 
a standardized notation like SysML/UML, and finally to generate from it one or more formal 
specifications to be used for formal analysis. 
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5.1.1 Revisiting the formal notations used for the system design and 
analysis 

 
As already mentioned in previous deliverables, there is no single formal notation, method, or 
tool that can act as a silver bullet for satisfying the verification needs about all the desirable 
properties.  
The world of formal verification is extremely variegated, based on very different mathematical 
concepts, and supported by different - often not much interacting - communities.  
In the case of requirements designs, the starting point is likely not to be a precise specification 
but a more abstract, parametric, often generic, natural language description, sometimes 
enriched with graphical artifacts, as exemplified by our initial requirements in [D2.3].  
In this case, formal methods based on model construction and model checking may be easier 
and more effective to apply than formal methods based e.g. on theorem proving, that fits well 
the case of an already precise and correct specification to be refined and implemented.  
 
A novelty introduced in Task 2.3 is the experimentation of a second approach (beyond the initial 
one based on "B" state machine notation) for the formalization of our UML designs. This second 
approach is based on the LNT [LNT] specification language of the CADP [CADP] toolset. One 
interesting aspect of this second approach is that the mathematical representation used for the 
model is based on process algebras and can exploit the rich theory around Labelled Transition 
Systems (LTS) for supporting the verification process. The goal of this second experimentation is 
to observe if and how a compositional approach can be of help in reducing the risk of state 
explosion, improving the overall scalability in the analysis of the system properties. 
Another interesting aspect of the CADP framework is that the structure of models of which it 
makes use is based on events, and in particular of communication actions. The logic used to 
reason on these models is a very powerful, action-based branching-time logic. This creates 
another point of view from the one supported by ProB, which is more state-oriented. 

5.1.2 Revisiting how formal models are generated 
 
Once we have associated our initial requirements with one (or more) operational UML models, in 
order to reason on all the possible behaviours of the system in a rigorous way, it is necessary to 
transform the UML model into a formal specification amenable to formal analysis.  
Many possible target specification languages can be selected, and even once the target notation 
has been chosen, many different translation schemes can be adopted. This translation step may 
involve a further level of abstraction and approximation of the system as already occurred when 
firstly defining our initial UML operational model. The result is finally a system description which 
is based on a mathematical notation for which it is possible to express and verify properties of 
interest. 
During the activity of Task 2.1, the translation from the UML model into the selected formal 
notation (B machine) has been performed manually, and this has proved to be a very time-
consuming and error-introducing activity. Moreover, since the initial UML design is not 
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necessarily a stable one (as experimented in our trial application of the demonstrator), the 
translation effort had to be continuously repeated, raising even more the effort needed and the 
risk of introducing errors. 
In these first months of T2.3, we have opted for the development of a tool for the automatic 
translation of the UML model (in the UMC format) into our selected formal notations. This has 
allowed greater flexibility in the maintenance of the UML models and much greater reliability of 
the generated encodings.  
Also in the case of CADP/LNT has been developed a tool for the automatic translation of source 
UML models. This "diversity in formal methods application" has allowed us to solve also the issue 
of improving the confidence in the correctness of the performed translations because, starting 
from an initial UML model, we can generate two different models using different notations and 
formally verify that the two target frameworks operate on the same model. 
Actually, the formal frameworks which can be proved to agree on precisely the same model 
might be considered to be three, if we consider also the UMC framework, despite its prototypical 
status, as a legitimate tool for system analysis. 
More details on the mechanical UMC to ProB and UMC to LNT translation are given in Annex 8.1. 
The developed models and the source code of the developed translators are publicly accessible 
from [ZenodoWP2]. 
 

5.1.3 A more structured approach to the formal analysis 
 
When first applying the formal methods demonstrator process to our initial fragment of the case 
study (Task 2.1/D2.2), the greatest attention has been posed to how an operational UML model 
of the system might have been designed, how this model might have been translated into a B-
machine, how the various tools could have been composed, the role that the semiformal SPARX-
EA tool might play in the process, and how the formal analysis phase on the system being 
specified might be carried on.  In this section, we would like to discuss in a more structured way 
what might be the IM interest in applying formal methods to the process of construction / 
analysis of a system requirements document. 
 
In our case, the input of the analysis has been the set natural language requirements (and 
associated graphics) for the various components of the case study as described in D2.3. 
From this input, a semiformal operational model in terms of UML state machines has been 
defined, formally encoded, and analyzed.  
We believe, however, that the initial system requirements designers should be provided not only 
with the technical artifacts in terms of the generated formal models and formal properties, but 
possibly also with an alternative natural language description of the various subsystems strictly 
connected with the structure of the formal models, that might represent the main feedback in a 
natural user friendly, but still rigorous, notation of the results of the formal analysis (see Fig 1). 
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Figure 1 Input and Outputs of Formal Analysis Process 

 
In particular, such natural language description for each system component under design should 
describe in a precise way: 
1) - The parametric aspects of the component 
2) - The interface towards the outside of the component (i.e., the messages sent and received) 
3) - The assumptions on the external environment which underlie the component definition 
4) - The requirements on the internal behaviour of the component 
5) - The guarantees that the component should ensure towards the external environment. 
 
Most of this information is somewhat already present also in our initial input requirements, but 
often in a not-well-structured or unclear form. This rigorously structured natural language 
system specification plays a relevant role during formal analysis by stating the properties that are 
expected to be satisfied by the system, still using the natural language, but in a form more 
amenable to confirmation by formal analysis. 
The produced natural language feedback might be enriched with easily readable graphics (e.g. 
state machines, sequence diagrams), in a way similar to the graphics initially provided with the 
input requirements, but in this case also backed/confirmed by the underlying formal modelling 
and analysis effort. 
 
In Annex 8.2 we present an example of such feedback related to the two CSL components, which 
have been the first target of the formal modelling and analysis during Task 2.1 and the initial part 
of Task 2.3.  This example of feedback includes graphical overviews in terms of UML state 
machines of the behaviour of the CSL components. 
 
We should note that almost all the requirements on the internal behaviour of the CSL component 
have the form: 
 

 < When a certain event occurs,  

formal analysis
Formal Model

+
Formal Properies

Initial Natural Language
Requirements 

+
Informative Pictures

semiformal SysML/UML 
operational model

INPUT

OUTPUT

Rigorous Natural Language
 Requirements  +

Rigorous Diagrams



 

  

                             

Project Acronym – GA 881775                                                                                                          10 | 49 
 

     and certain local conditions hold,  
    then certain effects should occur> 
 

 and are directly reflecting the structure of the formal/semi-formal models.  
 I.e. for each transition in the UML design, activated under certain conditions and generating 
certain effects, there is a corresponding requirement that specifies precisely that relation 
between condition and effects without ambiguities, redundancies, or inconsistencies. 
This aspect is illustrated in more detail in Annex 8.4 ("Analysing the internal behaviour of the CSL 
component"). 
In the case of the initiator CSL, the initial CSL requirements do not explicitly mention any 
particular assumption on the external environment. The description presented in Annex 8.3 is 
instead far more precise than the initial requirements, clarifying the expected behaviour of the 
communications between the components, and the expected constraint on the behaviour of the 
external components. 
The initial natural language requirements are also not very clear about the expected guarantees 
of the CSL components towards the other parts of the system. 
We can, however, exploit formal verification techniques either to extrapolate them from the 
model and check if they correspond to what is implicitly expected, or to formally verify if the 
formal model satisfies them. 
The assumptions made by component A upon component B should be matched by 
corresponding guarantees of component B towards component A. 
 
The different kinds of guarantees that can be associated with a system component are well 
exemplified by the SAI component.  
From one side we have a set of expected guarantees related to the expected high-level purpose 
of the component like: 

- To accept requests to establish or terminate a safe connection with the other side. 
- While the connection is active, to transmit all the requested data upon this connection, and 

return all the incoming data from the connection discarding all the data that arrives with 
excessive delay, duplicated, or out of order. 

- To communicate back the failure when such a safe connection is lost. 
From the other side we have a set of more technical/behavioural guarantees that match the 
expected assumptions about the interoperability with respect to the other components  like: 

- Once a connection has been established, a confirmation is sent back. 
- When a termination request is received, a notification is sent back.  

 
- When a message with an excessive delay is received, the delivery of the message is replaced 

by the notification of an error.  
It is not uncommon that guarantees of this kind are sometimes left implicit and overshadowed 
by the other explicit internal behavioural requirements. 
These aspects are further discussed in Annexes 8.4 ("Analysing the external behaviour of the CSL 
component") and 8.5 ("Analysing the external behaviour of the whole CSL layer"). 
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5.2 Refining the initial fragment of the case study 

5.2.1 Overall Structure and Assumptions 
 
Our case study (see D2.3) deals with the communications between two RBCs during the 
execution of the RBC-RBC-Handover protocol.  Its overall structure is shown in Figure 2.  
From the point of view of the communications, we have an "initiator" side and a "called" side.  It 
is likely that the two RBC sides are developed by different providers, so this case study fits well 
the need of having a case study reflecting the point of view of an infrastructure manager 
interested not only in the fact that the implementation of the two sides satisfies their system 
requirements but also on the fact that the system requirements are sufficiently precise and 
guaranteeing the correct interoperability of the two delivered products. 

 
Figure 2 The signalling case study structure 

 
In our case study we have seven logical components:  
 - The two sides of the "RBC" components handling the RBC-RBC-handover transactions,  
 - The two sides of the "Communication Supervision Layer" (CSL) responsible for the creation 
    and supervision of RBC communications. 
-  The two sides of the "Safe Application Interface" (SAI) handling the creation and maintenance  
   of the safe connection on the top of the EuroRadio layer 
- The underlying EuroRadio layer abstracting the physical communication line between  
    the two RBC sides. 
 
Only the CSL and SAI components are the object of the requirements specifications to be 
analysed, for which we have an initial natural language description in [D2.3].  
The RBC and EuroRadio components act as elements of the execution environment that are 
needed to stimulate and receive data from our system components. More than one version of 
these environment elements can be imagined, allowing us to model and analyse different 
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scenarios in which our CSL and SAI components might have to operate. 
 
All these components will be modelled as UML state machines that execute concurrently and 
asynchronously, and the following assumptions are supposed to hold4: 
- All the pairwise communications between all these state machines (EuroRadio included) are 
nonblocking and occurring through unbounded FIFO message queues (we have one memory 
buffer for each component).  
- There are no delays, message loss, duplication issues in the communications between these 
state machines5. 
- The frequency of messages being sent by the RBC_User components is bounded. 
- Every message accepted by the EuroRadio layer, if delivered, is delivered (possibly more than 
once) within a maximum time. 
 
Our preliminary instantiation of demonstrator in Task 2.1 has been focused only on the two CSL 
subsystems, leaving the detailed modelling and analysis of the SAI components to the 
subsequent Task2.3.  
To allow the analysis of the interactions between the CSL components, the lower SAI and 
EuroRadio components and the upper RBC-Users components have been simulated in Task 
2.1/D2.2 by initial very approximate abstract stubs, as shown in Figure 3. 
An additional "Timer" component has been added to allow an asynchronous modelling of the 
concurrent execution of the various components while preventing excessive variation or relative 
speed among them. This is one of the aspects which have been approximated in the model with 
respect to the real system, another being the precise structure and format of the communication 
messages being exchanged through the communications lines. 

 
Figure 3 D2.2 modelling of the case study fragment 

 

5.2.2 Revisiting the (initiator) CSL disconnection process 
 

 
4 In  D2.2 is also mentioned the assumption that the RTC steps of the semiformal UML state machines should be 
considered globally atomic (i.e. non overlapping)  with respect to whole system. This assumption has been removed 
because considered too strong. 
5 Therefore loss, duplication or delay of messages are modelled internally inside the Euroradio component. 

Approximate
stubs
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In the (initiator) CSL design of D2.2, if the communication line is active but a receive-timeout 
expires (i.e., too much time is passed without receiving any message), the CSL moves to a "no 
communications" state (notifying the RBC of this change of status and requesting to the SAI the 
termination of the connection) and immediately tries to re-activate the communication line. 
 
After further interactions with the requirements designers, it has been discovered that the 
current design is not what is desired. What was really intended by the designers is that the CSL, 
after moving to the "no communications" state, should wait for a notification from the SAI side 
that the connection has been terminated before trying to re-activate it. 
This behavior is not explicitly requested by the CSL requirements in D2.3, and only hinted at by a 
sequence diagram associated with requirements, reported here as Figure 4. 
We can observe in Figure 3 that the "SAI_CONN.req" message is actually sent by CSL after 
receiving a "SAI_DISCONN.ind". The picture "seems to suggest" that this is a mandatory behavior 
(not precisely prescribed in the natural language requirements) and not just one of the allowed 
behaviors. We have the impression that this is a nice example of both "incomplete 
requirements", "ambiguous diagram", and "mismatch between textual and graphical notations". 
In any case, the ambiguity has been resolved in a meeting with the designers, and the semi-
formal and formal designs correspondingly updated. 
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Figure 4 Loss of communication (Fig 8 from D2.3) 

 

5.2.3 Towards the refinement of the SAI layer 
 
In the D2.2 modelling of the case study, as shown in Figure 3, the SAI layer was represented by a 
pair of approximate stubs. Moving towards more detailed modelling, we have refined that 
design by explicitly introducing the EuroRadio component and accordingly refining the SAI 
models(see Figure 5). The current version of the SAI components is still an abstract one that still 
needs to be appropriately structured according to the detailed D2.3 requirements, activity which 
is still in progress. In particular, the current version still does not model the introduction of 
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sequence numbers and cycles count information in the messages and models just a dummy 
initialisation phases of the safe connections. As a consequence, the SAI component at the 
current stage is not able to evaluate the actual "invalidity" of a message (when it arrives with an 
excessive delay) or the excessive sequential loss of messages (causing the termination of the 
connection). These checks are therefore modelled as nondeterministic choices. 
Several versions of the EuroRadio environment component can now be separately designed to 
stimulate the system in different scenarios. 

 
Figure 5. Second refinement of case study with explicit SAI/EuroRadio layers 

 

5.3 Definition and analysis of the verification architectures  
 

5.3.1 Defining the architectures 
 
When reasoning on our CSL components, we have (at least) two ways to build verification 
architectures for our analysis. The first one (see Figure 6) is to build an architectures in which a 
single system component (CSL) interacts with abstract models of the environment (RBC and SAI), 
which satisfy just the minimal set of required assumptions to be consistent with the CSL design 
and which stimulate all the possible interactions. This kind of architecture remembers the "single 
component stress testing" of a module, with the difference that with model checking all the 
possible component behaviors are analysed. 
 

 
Figure 6 Testing CSL component in isolation 
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This kind of scenarios has the advantage of being simple and is useful to check the consistency, 
safety and robustness of the design. The environment, in this case, might also behave in ways 
that in practice might not occur when replaced by the actual software and hardware 
components.  
In order to analyse the interacting behaviour of the two (initiator and called) CSL components, 
we need more complex architectures that integrate all the needed components as shown, for 
example, in Fig. 3 and Fig. 7. 

 
Figure 7 A full integrated scenario for the analysis of the CSL components 

 
If we model all the needed components as UML state machines (therefore instantiating in some 
way of the parametric aspects of the components), we can exploit the mechanical 
transformation of the architecture into a verifiable formal scenario without any further effort. In 
principle, however, it is also possible to translate in the formal model only the system 
components of interest and take advantage of the environment modelling features supported by 
the specific formal framework considered. This second approach is likely to be more efficient but 
is also likely to be more prone to the introduction of mistakes and to require much bigger 
expertise in the use of formal methods. Our choice is that of modelling all the scenarios as 
UML/SysML designs. 
 
The following is a partial list of some scenarios that have been so far generated and used for the 
first steps of model analysis. Notice that being the SAI level not fully modelled. The obtained 
results may give just a rough idea of the system behaviour (but already sufficient to find early 
design errors or inconsistences). 
Notice that all the components are heavily parametric. For each kind of scenario, several 
versions can be given according to the actual values of the parameters being used. 
 
 
SC0_nodata_V27  (e.g. 16.477.549 states, with CSL rec-limit=2, send-limit=1, conn-limit=2) 
This is a fully integrated scenario, where the two RBC environment components are "silent", i.e. 
they do not exchange RBC_User messages but just accept incoming indications on the 
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communications status. Therefore, the only exchanged messages between the two CSL 
components are life-signs. The SAI components are still partially modelled, and do not 
completely represent the connection initialization phase, and do not handle the message 
sequence numbering and model nondeterministically the effects of delays or message loss. 
The EuroRadio level introduces arbitrary delays and message loss, but no reordering or 
duplications, and is limited to have e memory of no more than two messages in transit from one 
side to the other. 
 
SC1_nice_nodata_V27 (e.g. 47.369 states, with CSL rec-limit=6, send-limit=1, conn-limit=5) 
This is a fully integrated scenario like the previous one. The main difference being the EuroRadio 
model, which introduces only very small delays (one time slot) and does not lose messages, and 
the SAI level, which does not nondeterministically reintroduce the modelling of delays or loss of 
messages. 
 
Scenario SC1_niceER_irbcdata_V27 (e.g. 791.675 states, with M=2, CSL rec-lim=6, send-lim=1, conn-lim=5)) 
This is again a fully integrated scenario with the same "nice" EuroRadio component. In this case 
the initiator RBC, once received the notification of active connection, sends at most M different 
messages. The receiver RBC checks that no reordering in the arrived messages actually occurs. 
 
Scenario SC2 immediateroundtrip  (30.876.725 states, with CSL rec-limit=2, send-limit=1, conn-limit=2) 
This is a fully integrated scenario where the initiator RBC, after receiving the notification of the 
activation of the communication line, sends one message and waits for a reply from the called 
RBC. The called RBC wait for an incoming message and replies to it. 
The EuroRadio component may lose or delay messages. 
 
ICSLtesting_V27_continuosdata:  (90.751 states, with CSL rec-limit=2, send-limit=1, conn-limit=2) 
This is a single component testing scenario. The initiator RBC waits for a connect_indication and, 
as long as connected, continuously sends the same message with a given frequency. 
The abstract ISAI  always accepts incoming requests, replying with DISCONNECT_indication to 
DISCONNECT_requests. Periodically sends to the CSL either e Life-Sign, or some RBC data, or 
disconnection indications or error reports. 
No EuroRadio or called side components are modelled. 
 
 Scenario ICSLtesting_V26_rbcdata (350.984  states, with M=10, CSL rec-limit=2, send-limit=1, conn-limit=2) 
This is single component testing scenario. The initiator RBC waits connect_indication and, as long 
as connected, continuously sends M different messages with a given frequency. 
The abstract SAI behaves as in the previous case. 
No EuroRadio or called side components are modelled. 
 

5.3.2 Analysing the Scenarios 
 
Once the scenario of interest has been designed and formalized, several kinds of analysis can be 
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carried over on it.  In this section we summarise the main points, referring to Annexes 8.4 and 
8.5 for a more detailed presentation.  
 
 
Push Button Checks 
The simplest check consists in analyzing the full statespace looking for the presence of deadlocks, 
violation of invariants (in our case related to the types of variables), loss of events (in our case 
the presence of a not-handled message causes a deadlock). This can be done in ProB with just 
the pushing of a button ("Model Check ..."). The same can be done in LNT and UMC by just 
requesting the generation of the full statespace. 
This simple check already allows finding many simple encoding and design errors. When the 
translations towards the ProB and LNT encoding were done manually, this simple check was able 
to find most of the mistakes introduced by the translation.  Fortunately, this whole category of 
errors has been later removed by exploiting the mechanical translations of the models. 
 
Temporal Logics Encodings 
A second kind of formal analysis can be done by formally evaluating the validity of properties 
expressed in terms of logical formulas. This task may require some more advanced knowledge of 
the theory behind the used formal methods.  
 
In some cases, the encoding of a property in terms of logical formulas can be simple.  
E.g. for a simple reachability property like: 
 "eventually, in at last one execution, the initiator CSL receives the notification of the 
establishment of a safe connection" can be encoded  
in UMC as:    EF {ISAI_Connect_confirm}6 
in ProB as:   not G not [R4_ICSL_userconnind]7 
in LNT as:    <true*.ISAI_Connect_confirm>true 
The verification of reachability properties like the above also allows (in the ProB and UMC cases) 
to display one of the requested execution paths in terms of a user-friendly sequence diagram 
usable for documentation purposes. 
 
In some other cases, the property of interest may be directly reflecting one of the system 
functional requirements, and can be expressed in logical terms by composing state and event 
predicates.  E.g. the property  
"it never happens that the CSL send a data_request to the SAI when not in state COMM" 
can be expressed: 
in UMC  as:  not EF (not inState(ICSL_COMM) and <ISAI_DATA_request>) 
in ProB as :  not F (not {ICSL_STATE=COMM} and [R8_ICSL_saidatareq]) 
in LTL:  not expressible. 
In most cases like this one, however, using model checking for verifying the property can be just 
overkilling, because just a plain observation of the CSL state machine diagram (see Fig. Z in 

 
6 ISAI_Connect_confirm is the event correspond the delivering of the notification 
7 R4_ICSL_userconnind is the label of the CSL transition (operation name in prob) accepting the notification 
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Annex 8.3.1) allows to easily check that the only transition triggering an ISAI_DATA_request is 
the transition R8 which has COMM as source state. 
 
In further cases, the property of interest cannot be directly associated with the structure of the 
model, and its encoding can require rather advanced formalization capabilities. 
E.g. let us consider the property: 
 "the messages received by the called RBC contain a continuously growing value" (i.e. no 
reordering occurs). This can be expressed  
in UMC as:  
       AG ( [CRBC_User_Data_Indication($v1)]  
                not EF {CRBC_User_Data_Indication($v2)} (%v2  <= %v1) ) 
in LNT as:  
       mu X (n : nat := 0). 
          ( [ true ] false 
              or  ( [ { CRBC_User_Data_Indication(?m:nat)} ] if m >= n then X(m+1) else false end if 
                    and  [ i ] X (n)  )  ) 
in ProB:   not expressible. 
 
Explicit Observers 
In many cases, like the one mentioned above related to the check of the growing values in 
arriving messages, the simplest solution is that of building a specific scenario where the 
environment acts as an "observer" of the intended property.  This is what is done, for example, 
in the scenario Scenario SC1_niceER_irbcdata_V27 previously mentioned.  In this case, we just 
need to define a (called) RBC_User environment element which saves the last value received and 
compared it with the current one each time a new message arrives, notifying the error if the 
check fails. 
In this way, the complex to encode property becomes a simple to write/understand reachability 
property. This solution might not always be feasible, but when possible solves the problem of 
hard to generate and logical properties, and also the problem of ensuring that the given 
encoding is actually the correct one (encoding a complex logical property can really be a very 
error-prone task). 
 
Minimized information flows 
 
While reasoning on the possible behaviour of a system component, it is sometimes useful to just 
observe all the possible information flows, regarding a small set of selected messages, that may 
occur, e.g. at the interface between two components.  
For example, let us suppose that we want to observe, at the interface between the CSL and the 
RBC_User at the initiator side, all the possible sequences of messages flowing from the CSL to 
the RBC.  Starting from the formal description of the whole system (in a given scenario), it is 
possible to mechanically extract and visualize all the possible streams of this kind, as briefly 
described in Annex 8.2 (Model reduction techniques). More specifically, if, in the context of the 
scenario ICSLtesting_V27_continuosdata, we request to visualize all the possible streams of 
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CONNECT, DISCONNECT and DATA indications, we obtain the picture shown in Fig. 8. 

 
Figure 8: all the possible messages flows from CSL and RBC (initiator side) 

 
By just observing this picture, several properties of the scenario can be observed.  
E.g: 
 - It is possible that no connection ever occurs  (self-loop in the initial state) 
- A disconnection indication is always preceded by a previous connection indication. 
- Data indications may arrive only after a connection, in no disconnection has occurred in the 
meanwhile. 
- Data indications might never arrive. 
- Disconnect indications might never arrive (the CSL remains connected forever). 
- After a disconnection, there is no guarantee that a new connection will follow. 
 
All these properties might also be explicitly verified by encoding them as logical formulas and 
evaluating them in this scenario, but the mechanical extraction of the description of the possible 
sequences of interest (model reduction) might be a more friendly approach to the system 
analysis. 
The advantage of the full model checking approach with respect to the model reduction 
approach, is that in the first case we might also ask for an explanation of the result of the 
verification and obtain, for example, a detailed sequence diagram that shows how it can happen 
that the system is never successful in establishing a communication line. Further examples are 
shown in Annex 8.5. 
 

5.4 Observations and considerations 
 
In this section, we summarize the "takeaways" that we have observed and found relevant during 
this first part of the demonstration activity. 
 
"All models are wrong, but some are useful" 
The above is a famous quote [BOX] from the statistician George E.P. Box. 
The meaning of the quote is that models are, necessarily, an abstraction and an approximation 
that fails to represent reality in all its details. This means that from a rigorous point of view, 

IRBC_User_Data_indication

IRBC_User_Connect_indication

IRBC_User_Disconnect_indication
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models are all wrong. This does not exclude, however, that in their abstraction they allow 
reasoning in a simpler way on specific aspects of the system, getting useful insights and 
confirmations or counterexamples about the expected behaviour of the system. However, we 
should be careful not to consider them as a "gold standard", forgetting the implicit assumptions 
and abstractions which are at their base. 
In our demonstrator, starting from the initial natural language requirements, we progress by 
designing operational UML models of the system. In doing that, it is important to state explicitly 
all the assumptions and abstraction that underlie the model design. Moreover, we should not 
forget that the designed model is just one of the possible models that could be designed, as the 
natural language requirements are usually and intentionally at a higher level of abstraction (and 
ambiguity) than the specific operational design that if being modelled.  
The operational UML models of the system constitute the base from which verifiable formal 
specifications are derived. 
The correct question we should ask about these specifications is therefore: "Is our formal model 
good enough for reasoning on the properties of the real system on which we are interested?".  
The answer to the question in parts depends on the available verification functionalities 
provided by the selected formal framework, in part depends on the various steps of abstraction 
and approximations performed from the initial system requirements, but also depends on the 
"correctness" of the translation and encoding of the model into the formal specification 
notation. 
 
"The real goal of our demonstrator" 
Once we have associated our initial requirements with one or more UML models, translated 
them into rigorous formal specifications, and started making rigorous analysis upon them, our 
realistic goal cannot be the complete "validation" of the initial system requirements or a generic 
"proof of correctness" of the formal design. 
The realistic goal of the 4SecuRail demonstrator is just to show if and how certain tools and 
methods can improve our confidence that specific properties (about safety, interoperability, 
functionality) are guaranteed by our formal models and, therefore, likely supported by our 
system requirements. Moreover, considering the role of the demonstrator inside the whole 
project, we can see that in our case we are not much interested in answering all the questions 
that can be formally checked on our signalling systems, but rather show the kind of question we 
can check, the kind of answer we can obtain, the difficulty of the process and the kind of 
feedback returned to the user by this activity. 
 
"System requirements definition and analysis is very different from system implementation " 
Notice that the activity of transforming the designer intentions into a system requirements 
document is an activity that is very different from the activity of taking a system requirement 
document and developing from it an executable system. In particular, the role that formal and 
semi-formal methods play is very different in these two different activities. 
For the development phase, the focus is likely to be on the "correctness" of the developed 
product with respect to its requirements. If formal methods are adopted in this development 
phase, they will be focused on the guarantee of the correct transformation of a semi-formal 
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design into executable code (e.g. by formal refinements). 
For the requirement construction phase, the focus is likely to be on two other aspects: 
- the precision (i.e. completeness, non-ambiguity, safety, internal consistency) of the 
requirement document. 
- the external consistency (i.e. interoperability) of the system specification with respect to the 
other systems with which it must interact. 
In the absence of precise and consistent requirements, any effort on the developer side the 
adopt formal methods during the development phase risks being useless or counter-productive 
because a rigorous implementation of misleading or non-interoperable requirements will likely 
eventually cause a failure of the system.  
 
"The need of UML design guidelines to support simple, well defined UML design" 
Indeed, as widely recognized in many papers (many of them already cited in D2.1 and D2.2) and 
project results (e.g. X2RAIL2), the use of UML as a specification language for System of Systems 
can be very problematic because of its generality. Too many "hidden" assumptions are concealed 
within the UML designs that might have a very strong impact on the expected behaviour of the 
system. Our demonstrator has shown that this problem can be overcome if: 
- We take care of explicitly stating all the otherwise hidden assumptions in the design. 
- We possibly restrict the use of UML feature to those which currently have a clear semantics and 
for which there is a clear and simple way to be translated into a (one or more) formal notation. 
 
"The need of mechanical generation of formal models" 
Mechanical translations from UML designs to formal specification languages are not just highly 
preferable (as already stated in D2.1 and D2.2), but mandatory for any serious exploitation of 
formal methods from semiformal UML designs. From our point of view, the ideal source for this 
transformation should not be a vendor-specific XMI representation of the UML design as 
generated by any commercial MBSE framework (PTC, Sparx-EA, IBM-Rapsody, ...) but a human-
oriented, vendor-independent textual description of the system8. We consider the absence of a 
standard OMG definition for such a human-oriented platform-independent textual 
representation of the models to be another weakness of the current OMG standardization 
activity. 
 
"Inadequacy of existing MBSE frameworks to support formal analysis of system requirements" 
With the experience of the demonstrator gained so far, the role of the selected Sparx-EA MBSE 
platform is limited to providing some help in the generation of readable, well-formatted 
documentation. From the point of view of usability towards purposes of modelling high-level 
requirements and performing a rigorous analysis or verification of them, this MBSE platform, 
despite its "animation capabilities", has resulted rather useless. The situation is likely to be the 
same also with other platforms like Magic Draw or PTC, until eventually all these platforms are 
enriched with mechanical facilities to translate UML model designs into formal notations. 

 
8 Indeed, the problems with XMI are twofold: 1) it is apparently a standard format, while in practice makes 
impossible the migration of models among different frameworks, and 2) it is not a human oriented format usable to 
directly communicate in a simple, textual, easily reusable way a model design. 
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"There are many degrees in which semi-formal and formal methods can be exploited" 
We have observed that many of the weaknesses present in a plain natural language system 
requirements document, mostly related to ambiguity or imprecision of the requirements, can 
already be revealed by the initial attempt to generate a semi-formal operational model of the 
system. The formal modelling and analysis steps greatly improve the depth of analysis on the 
system, allowing to discover further hidden design defects potentially leading to non-uniformity 
of implementations and interoperability problems. Formal analysis can be done with different 
levels of effort resulting in different levels of confidence about the correctness of the design.  
The three verification platforms that have been used (UMC, Prob, CADP) are frameworks upon 
which we already had some experience in other projects and our professional careers. 
Nevertheless, for lack of time and experience, only a small fraction of the features made 
available by these frameworks have been exploited. Becoming an expert in the use of any formal 
method and its supporting framework is a task that goes much further than simply being able to 
play with it. However, it is not necessary to become a real expert to (partially) benefit from the 
gains that formal methods can give. While it is recognized the difficulty (and error proneness) of 
translating requirements and properties into temporal logics properties for formal verification, 
there are semi-automatic verification approaches dealing with deadlocks, coverage, consistency 
checking, absence of runtime-errors, invariants preservation, abstraction of the system 
behaviour at the interfaces, that may greatly improve the confidence on the design with a 
relatively low effort. 
 
"Usefulness of formal methods diversity" 
Another confirmation that we have had from our demonstration activity is that the "diversity of 
approaches" in formal modelling and verification improves the flexibility of the analysis and the 
reliability of the results.  Many errors in the translation programs have been quickly put in 
evidence when different behaviours and different statespaces resulted from the translation of 
the UML model into the different ProB / LNT / UMC notations. And different point views can be 
exploited in the analysis of the expected properties of the system under design. 
 
"From natural language to formal models and back" 
If the used UML features are appropriately constrained, it might also become possible to re-
associate to the semi-formal and formal models of the systems a rigorous, clear, well-structured 
natural language description that communicates in a natural way to the developers the intended 
internal behavior of the system, the properties that it is supposed to guarantee to the other 
components, and the assumptions about the other components behavior on which it depends. 
 
"Formal methods are not a silver bullet: many difficulties still exist." 
The introduction of formal methods in the system requirements specification phase still has to 
face several technical difficulties. Our - still preliminary - fragment of case study has already 
clearly put in evidence three main difficulties: 

 

- Statespace explosion:  This typically arises when we have to deal with the integration of 
different subsystems or with operations carrying wide range data. 
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- Parameterized specification: The adopted model checking approach can only work on non-
parametric systems; indeed we had to resort to the definition of specific scenarios upon 
which we have made our analysis, e.g. fixing values for the various parameters of the system 
components. But this analysis does not cover the full range of system configurations. 
 

- Interfaces with wide-range data values: When is system is composed by subsystem 
interacting through messages containing data values (in our case, the CSL exchanging 
DATA_requests/ Data_indications), the benefits of a compositional approach may be severely 
endangered. The possible statespace describing of a CSL-standalone can be larger than the 
statespace of the integrated system where the CSL component is composed of specific 
(limited) data producers. 

 
 
 

 Conclusions 
 
The choice of the selected case study, and the choice of the structure of the formal methods 
demonstrator process, have proved to be very effective for illustrating, in a qualitative way, the 
advantages that can be obtained by the adoption of semi-formal and formal methods in the early 
phase of system requirements specification, as well as the difficulties that can be encountered in 
this activity.   
The selected fragment of the case study chosen in Task 2.1 appears to already have sufficient 
complexity to have stimulated most of the results that can likely be expected from the full case 
study, whose analysis is still in progress. 
The current picture that starts to arise from the experience of applying the 4SECURail form 
methods demonstrator process to our case study is the following: 
 
1) UML designs, if not associated with explicit descriptions of all the implementation-dependent 
aspects (e.g. those related to the communications between state machines), are not rigorous 
specifications and constitute a dangerous ground allowing implementations to adopt different 
interpretations that may result, in the end, in interoperability and validation problems. On the 
contrary, a constrained use of UML leading to a clear and rigorous operational model of the 
system can already be of great help in reducing the defects in a system specification. This 
constrained use of UML can be the base for simple, mechanical, translations from the UML 
designs to various, different formal notations, allowing the observation and the analysis of the 
system from different points of view. 
 
2) Formal analysis of the UML designs may be of help in discovering consistency problems, 
incompleteness issues, or aspects that do not reflect the behaviour actually intended by the 
designer. Formal analysis can be applied with different levels of expertise, efforts, and gains. 
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 Annexes 
 

8.1 Model transformations 
 
Several programs have been developed to facilitate the integration of the various tools used in 
the demonstrator.   In Section 5.1.5 we have already mentioned the translator that mechanizes 
the transformation of UMC [UMC1, UMC2] models into ProB [PROB] and LNT [LNTR] models. 
 
The overall schema of the translation from UMC to Prob (umc2prob) has already been presented 
in Section 5.3.3 of Deliverable D2.2 of the project. We remember that the adopted translation 
schema was based on the construction of a single Prob state machine embodying the behaviour 
of all the state machines included in the UMC model. Each transition of each UMC state machine 
was translated into a Prob OPERATION, whose name was given by the corresponding UMC 
transition label. All the UMC state-machines event pools, modelled as FIFO buffers, are mapped 
into local variables of the Prob state machine, and all operations are conditioned on, retrieve and 
push data on them as shown below: 
 
      UMC transition           Event-B Operation 
 
R4_ICSL_userconnind     R4_ICSL_userconnind = 
NOCOMMSconnecting -> COMMS   PRE 
 { ISAI_CONNECT_confirm /     ICSL_buff /= [] & 
   RBC_User.IRBC_User_Connect_indication;    first(ICSL_buff) = ISAI_CONNECT_confirm &  
   receive_timer := 0;                      ICSL_STATE = ICSL_NOCOMMSconnecting 
   connect_timer := max_connect_timer;    THEN  
   send_timer := 0; }                      IRBC_buff := IRBC_buff <- IRBC_User_Connect_indication; 
      ICSL_connect_timer := ICSL_max_connect_timer; 
   ICSL_receive_timer := 0; 
    ICSL_send_timer := 0; 
   ICSL_buff := tail(ICSL_buff) 
             ICSL_STATE = ICSL_COMMS 
 END; 
 
The schema adopted for the translation into the LNT language (umc2lnt) is instead quite 
different. In this case, each UMC state machine is associated with an independent LNT process. 
All the processes do not share any memory and interact through synchronous actions in the 
typical style of process algebras. Each process handles a local event pool modelled as a FIFO 
buffer and is always available to accept synchronizations from other processes willing to push a 
new message. Beyond accepting incoming messages, the LNT process can internally evolve, 
performing internal steps that transform the local status of synchronizing with other processes 
when sending messages towards other state machines. 
The final system is finally obtained by composing in parallel all the processes which synchronize 
the corresponding actions of sending and receiving a message. 
The code below shows a sample fragment of the LNT transformation. 
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      UMC state machine           LNT process 
 
Class ICSL is process ICSL [..] is 
  ...  ... 
  ... var mybuff: ICSL_BUFF, ...  in 
Behaviour   loop 
   ...     select 
R4_ICSL_userconnind      -- R4_ICSL_userconnind  
NOCOMMSconnecting -> COMMS         only if 
 { SAI_CONNECT_confirm /        mybuff /= nil and 
   RBC_User.IRBC_User_Connect_indication;       head(mybuff) = ISAI_CONNECT_confirm and 
   receive_timer := 0;       STATE = NOCOMMSconnecting 
   connect_timer := max_connect_timer;      then 
   send_timer := 0; }       RBC_User_Connect_indication; 
   send_timer := 0; }       connect_timer := ICSL_max_connect_timer; 
   ...       receive_timer := 0; 
end;       send_timer := 0; 
          mybuff := tail(mybuff); 
       STATE = COMMS 
     end if 
  [] 
     ... 
  end select 
   end loop 
     end var 
   end process 

 
It is outside of the project goals the generic implementation of translators for full UML (or full 
UMC subset). For the purpose of this project our goal is limited to the translation of the set of 
features used in our models. This initial approach may constitute the base for further 
developments.  
Due to the drastic simplifications which have been made in defining the subset of features to be 
used in the initial UML designs (e.g. no composite states, no parallel states, no deferred events, 
no competition between triggered and completion transitions), the final effect of the 
transformations is the generation of formal models which have almost the same readability than 
the original UML model; this is helped by the fact that also the original comments present in the 
UMC code are preserved in the generated ProB and LNT encodings. 
 
The transformation of UMC models into ProB and LNT models are not the only programs that 
have been developed. In order to compare and reason upon the formal semantics of the 
generated formal models, several other translators have been considered useful.  There is, in 
particular, an explicit format of Labellel Transition Systems (LTS) that fits well the need of cross-
platform analysis: this is the .aut format, invented at INRIA(FR) and widely recognized by several 
frameworks. 
The Kandisti/UMC framework allows to save the statespace of a model in the .aut format, and 
the same occurs in the CADP[CADP] framework for the LNT language. What was missing is just 
the possibility to save the Prob statespace of a system model in the same .aut format. Since ProB 
already allows to save the model statespace in a simple textual format, we have developed a 
probspace2aut program that just transforms that native Prob statespace in the .aut format. 
These three translations have allowed us, starting from an initial UMC model, to compare the 
statespaces of the UMC, ProB, LNT formal models and formally verify their equivalence. 
 
Several other auxiliary tools, still operating on the .aut format have been developed to support 
the formal analysis process: e.g. 



 

  

                             

Project Acronym – GA 881775                                                                                                          29 | 49 
 

- aut2fmc -- - transformation of explicit LTS statespace into code for Kandisti/FMC model checker 
- plainaut2dot -- graphical visualization of LTS with the .dot Graphvix [GRA] notation. 
- wtprepare    -- transformation of explicit LTS with the identification of deadlocks and  
                            infinite loops of non-observable actions. 
 
These tools complement the already mentioned: 
- umc2prob 
- umc2lnt 
- procstatespace2aut 
and the probtrace2sd tool (mentioned in D2.2) that can be used to display a ProB history trace in 
the more user-friendly form of a message sequence diagram. 
 
All these tools will be freely available, open-source, and retrievable from the Zenodo 
[ZenodoWP2] repository containing all the WP2 complementary material (including all the 
developed models in the various notations). 
 

8.2 Model reduction techniques 
 
The possibility of representing all the possible evolutions of a system in the form of an explicit 
LTS (e.g. in the .aut format) paves the way to the exploitations of the many results that have 
been accumulated through the years upon these structures. 
 
The most basic to minimize a single LTS is to reduce it according to the so-called strong 
bisimulation. This minimization essentially reduces the statespace removing duplicated branches 
but preserving the same logical structure.   
An example of this equivalence/reduction is shown in the Figure 9. 
 

 
 

Figure 9 two strongly equivalent LTS 
 
The nice property of strong equivalence [STRONG] is that the two behaviours are completely 
equivalent, i.e. there is no property reasoning on the labels of the LTS that is satisfied by one 
model but not by the other. All action-based temporal logics are adequate w.r.t. this equivalence. 
Moreover, this equivalence is also a congruence w.r.t. parallel composition [Compositional]. This 
means that we have a system composed as P1 // P2, we can separately minimize P1 and P2, and 
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the resulting system P1min // P2min is still strongly equivalent to P1 // P2. 
In our case, we can prove that the UMC, ProB, and LNT models are strongly equivalent9. 
 
Much greater reductions can be obtained if not all the possible labels are relevant for the 
evaluation of a certain property. In this case, we might "hide" (i.e. replace the actual label with 
an unobservable symbolic label "i" or "tau") all the irrelevant labels and minimize the system 
even more. A bisimulation/minimization which is particularly well-fitting for this purpose is the 
so-called divbranching bisimulation [DBR].  Figure Y shows an example of the use of divbranching 
minimization: suppose that on the process of the side we want to check the property that is "it is 
always eventually possible to generate an event aa or an event bb. We might first "hide" all the 
irrelevant labels cc and dd, obtaining the LTS in the middle, and then applying the divbranching 
minimization obtaining the LTS of the right. 
 

 
 
However, not all properties are preserved by this divbranching minimization. Some of the action-
based temporal logic that can be safely used for this purpose are ACTL-X[ACTLX], Lmu-db[LDBR], 
and various weak fragments of UCTL, LTL, PDL. 
An example of the application of this process within the CADP framework is shown by the 
following SVL [SVL] script: 
  
 "minimizedsystem.bcg" = divbranching reduction of 
 hide all but  aa, bb in  
   "originalsystem.bcg" 
 end hide; 
 
 property AA_BB_ALWAYS_EVENTUALLY_POSSIBLE 
   "it is always eventually possible to generate an event aa or an event bb"  
 is  
 "minimizedsystem.bcg"  |=  
     with evaluator4 
     library actl_x.mcl end_library 
         AG((AF(aa) and (AF(bb)); 
     expected TRUE 
 end property 

 
Further improvements of this approach, which extend the set of properties that can be verified, 
have been introduced with the introduction of sharp bisimulations [SHARP] and by the possibility 
to mix different compatible bisimulations during the final parallel composition of the 
components of a system [Combining]. 
 
Finally, there is a last minimization that might be taken into consideration, at least for 
documentation purposes. This is the complete-divergence-sensitive-weak-trace minimization. 

 
9 one we appropriately align the labels in the LTS, and eventually skip additional initial setup steps. 
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Actually, no framework directly supports this minimization, but it can be obtained by applying 
the classical weak-trace minimization to an LTS which has been enriched with explicit 
information about deadlocks and infinite self-loops of hidden actions. The program wtprepare 
mentioned in Appendix 8.1.2 has precisely the purpose of preparing an LTS in .aut format for 
such minimization. The result of this minimization is an LTS that describes in the most compact 
way all the possible execution traces of the system, completely removing all hidden transitions 
except those leading to infinite self-loops. 
A simple example of this minimization is shown in the Figure 10: 
 

 
Figure 10: example of complete-div-sensitive-weak trace minimization 

 
Since the graph of all the possible sequences of events occurring at an interface with a system is 
usually information of interest to a system designer, this minimization can be very useful for 
documentation purposes. However, since the original branching structure of the system is lost, 
only a few formal temporal properties (e.g. weak action-based LTS fragments) are preserved by 
this minimization. 
 

8.3 Towards a CSL specification based on the (semi)formal models 
 
As shown in Figure 1, in our case study we have a pair of CSL components, one on the so-called 
initiator side (I_CSL) and one on the called side (C_CSL). 
 
CSL-layer high level goals 
 
The pair of CSL components have the task to create and maintain an active communication line, 
using the SAI interface, that can be used by the RBC to handle the RBC to RBC handover 
protocol. 
When the communication line is active, the two CSL forward NRBC data messages received from 
the local RBC to the SAI (without loss, duplication, reordering, or delay) for final delivery to the 
other RBC. 
When the communication line is active, the two CSL forward NRBC data messages received from 
the other RBC through the SAI (without loss, duplication, reordering, or delay) to the local RBC. 
When the communication line gets lost, the I_CSL takes the initiative to restore it as soon as 
possible. 
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Both CSL keeps the RBC informed about the changes in the status (active / non-active) of the 
communication line. 
 

8.3.1 Specification of the Initiator CSL component 
 
Configuration 
 
The I_CSL has the following parameters: 
•   a connection timeout; 
•   a send timeout; 
•   a receive timeout. 
 
External Interactions: 
 
The I_CSL can receive from the Initiator RBC the following messages: 
•   RBC_User_Data_request (userdata); 
and can send to the Initiator RBC the messages: 
•   RBC_User_Connect_indication; 
•   RBC_User_Disconnect_indication; 
•   RBC_User_Data_indication(userdata). 
 
The I_CSL  can receive from the Initiator SAI component the following messages: 
•   SAI_Connect_confirm; 
•   SAI_Disconnect_indication; 
•   SAI_Data_indication(saidata);  
•   SAI_Error_report; 
and can send to the Initiator SAI the following messages: 
•   SAI_Connect_request; 
•   SAI_Disconnect_request;  
•   SAI_Data_request (saidata). 
 
CSL states 
 
The I_CSL can be in two main states: 
•   COMMS, when the communication is active; 
•   NOCOMMS, when the communication is inactive.  
the NOCOMMS state of the I_CSL contains three substates: 
•   NOCOMMSwait; 
•   NOCOMMSready; 
•   NOCOMMSconnecting. 
 
external assumptions 
 
•   I_ISAI must always respond with DISCONNECT_indication to a DISCONNECT_request. 
•   The frequency of messages being sent from I_RBC component to I_CSL and from I_SAI to  
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      I_CSL is limited by an upper bound. 
•   All the communications between RBC CSL and SAI are nonblocking and occurring through 
    unbounded FIFO message queues (we have one memory buffer for each component).  
•   There are no delay, message loss, duplication issues in the communications between these  
    components. 
 
behavioural requirements 
 
R1: At startup, the I_CSL is in NOCOMMSready state. 
 
R2: When in NOCOMMSready state, the I_CSL immediately forwards a SAI_Connect_request to 
the SAI, moves to NOCOMMSconnecting state, and starts the connection timer. 
 
R3: When in NOCOMMSconnecting state and the connection timer expires, the I_CSL moves to 
NOCOMMSready state. 
 
R4: When in NOCOMMSconnecting state is received a SAI_Connect_confirm, the I_CSL moves 
to COMMS state and starts both a send timer and a receive timer. 
 
R5: When in COMMS state the receive timer expires, the I_CSL moves to NOCOMMSwait state 
and forwards both a SAI_Disconnect_indication to the SAI and a 
RBC_User_Disconnect_indication to the RBC_User.   
 
R6: When in NOCOMMSwait state is received a SAI_Disconnect_indication, the I_CSL moves 
to NOCOMMSready state. 
 
R7: When in COMMS state the send timer expires, the I_CSL forwards a 
SAI_Data_request(saidata) with a life-sign to the SAI. 
 
R8: When in COMMS state is received a RBC_User_Data_request(userdata), the I_CSL forwards 
a SAI_Data_request(userdata) with the same data to the SAI. 
 
R9: When in COMMS state is received a SAI_Data_indication(saidata) with RBC_User data, the 
I_CSL forwards an RBC_User_Data_indication(userdata) with such user data to the RBC_User 
and restarts the receive timer. 
 
R10: When in COMMS state is received a SAI_Data_indication(saidata) with a life-sign, the 
I_CSL restarts the receive timer. 
 
R11: When in COMMS state is received a SAI_Disconnect_indication, the I_CSL moves to 
NOCOMMSready state and forwards a RBC_User_Disconnect_indication to the RBC_User. 
 
R12: When a message is received in a condition for which the previous requirements do not 
specify the required behaviour, the message is discarded. 
In particular, this happens when: 
•   RBC_User_Data_request (userdata) is received and I_CSL is not in the COMMS state. 
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•   SAI_Connect_confirm is received and I_CSL is not in the NOCOMMSconnecting state. 
•   SAI_Disconnect_indication is received in NOCOMMSready or NOCOMMSconnecting state. 
•   SAI_Data_indication is received and I_CSL is not in the COMMS state. 
•   SAI_Error_report is received. 
 
An overview of the I_CSL behaviour UML in state-machines terms is shown in Figure 11: the 
gray labels associated with the transitions directly match the corresponding behavioural 
requirement. 
 

 
Figure 11: Overview of the I_CSl state machine 

 
 
 
CSL external guarantees 
 
•   The frequency of messages being sent by I_CSL to  I_RBC is limited by an upper bound. 
•   The frequency of messages being sent by I_CSL to  I_SAI is limited by an upper bound. 
•   I_CSL sends to RBC_Data_indication message only after an RBC_Connect_indication  
     not followed by RBC_Disconnect_indication. 
•   I_CSL sends to RBC a RBC_Disconnect_indication message only after a 
     RBC_Connect_indication  message not already followed by RBC_Disconnect_indication. 
•   The first message (possibly) send to I_RBC is a  RBC_Connect_indication  message 
•   ICSL sends to I_RBC a RBC_Connect_indication message only as first messages or after a 
     RBC_Disconnect_indication  not already followed by RBC_Connect_indication. 
•   I_CSL periodically sends to I_SAI either SAI_Connect_request or SAI_Data_request 
messages. 
•    ... 
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8.3.2 Specification of the Called CSL component 
 
Configuration 
 
The C_CSL has the following parameters: 
•   a send timeout; 
•   a receive timeout. 
 
External Interactions: 
 
The C_CSL can receive from the Called RBC the following messages: 
•   RBC_User_Data_request (userdata); 
 
and can send to the Called RBC the following messages: 
•   RBC_User_Connect_indication; 
•   RBC_User_Disconnect_indication;  
•   RBC_User_Data_indication(userdata). 
 
The C_CSL  can receive from the Called SAI the following messages:  
•   SAI_Connect_indication; 
•   SAI_Disconnect_indication; 
•   SAI_Data_indication(saidata);  
•   SAI_Error_report. 
 
and can send to the Called SAI the following messages: 
•   SAI_Connect_request; 
•   SAI_Disconnect_request;  
•   SAI_Data_request (saidata). 
 
States 
 
The C_CSL can be in two states: 
•   COMMS, when the communication is active; 
•   NOCOMMS, when the communication is unactive.  
 
External assumptions 
 
•   The frequency of messages being sent from C_RBC component to C_CSL and from C_SAI to  
      C_CSL is limited by an upper bound. 
•   All the communications between RBC CSL and SAI are nonblocking and occurring through  
    unbounded FIFO message queues (we have one memory buffer for each component).  
•   There are no delays, message losses, duplication issues in the communications between these  
    components. 
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Behavioural requirements 
 
R1: At startup, the C_CSL is in NOCOMMS state. 
 
R2: When in NOCOMMS state is received a SAI_Connect_indication, the C_CSL moves to COMMS 
state and starts both send timer and receive timer. 
 
R3: When in COMMS state is received a RBC_User_Data_request(userdata) with data, the C_CSL 
forwards a SAI_Data_request(saidata) with such data to the SAI. 
 
R4: When in COMMS state the send timer expires, the C_CSL forwards a SAI_Data_request 
(saidata) with a life-sign to the SAI. 
 
R5: When in COMMS state is received a SAI_Data_indication(saidata) containing RBC_User data, 
the C_CSL forwards a RBC_User_Data_indication(userdata) to the RBC and restarts the receive 
timer. 
 
R6: When in COMMS state is received a SAI_Data_indication(saidata) containing a life-sign, the 
C_CSL resets the receive timer. 
 
R7: When in COMMS state is received a SAI_Disconnect_indication, the C_CSL moves to 
NOCOMMS state and forwards a RBC_User_Disconnect_indication to the RBC_User.  
 
R8: When in COMMS state the receive timer expires, the C_CSL moves to NOCOMMS state and 
forwards a SAI_Disconnect_request to the SAI and a RBC_User_Disconnect_indication to the 
RBC_User. 
 
R9: When in COMMS state is received a SAI_Connect_indication, the C_CSL restarts both send 
timer and receive timer. 
 
R10: When a message is received in a condition for which the previous requirement do not 
specify the required behaviour, the message is discarded. 
In particular, this happens when: 
•   RBC_User_Data_request is received and C_CSL is not in the COMMS state. 
•   SAI_Disconnect_indication is received in NOCOMMS state. 
•   SAI_Data_indication is received and I_CSL is not in the COMMS state. 
•   SAI_Error_report is received. 
 
An overview of the C_CSL behaviour UML in state-machines terms is shown below: 
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  Figure 12: Overview of the C_CSl state machine 
 
External guarantees 
 
•   The frequency of messages being sent by C_CSL to C_RBC is limited by an upper bound. 
•   The frequency of messages being sent by C_CSL to C_SAI is limited by an upper bound. 
•   C_CSL sends to RBC RBC_Data_indication message only after an RBC_Connect_indication  
     not followed by RBC_Disconnect_indication. 
•   C_CSL sends to I_RBC a RBC_Disconnect_indication message only after a 
     RBC_Connect_indication  not already followed by RBC_Disconnect_indication. 
•   The first message (possibly) send to I_RBC is a RBC_Connect_indication message 
•   C_CSL sends to RBC a RBC_Connect_indication message only as first messages or after a 
     RBC_Disconnect_indication  not already followed by RBC_Connect_indication. 
•    ... 
 

8.4 Analysing the internal behaviour of the CSL component 
 
The process of creating the operational semi-formal UML model of the system is an incremental, 
manual, error-prone activity. The presence of advanced static analysis features in the UML 
design tool surely helps in reducing most of the trivial manually introduced mistakes. Consistency 
errors like missing requirements or conflicting requirements can only be detected by more 
advanced formal reasoning of the system behaviour. 
We have the possibility to mechanically translate the semiformal model into a formal one and 
perform on it all the analysis supported by the target framework. 
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8.4.1 Defining the scenarios 
 
In order to construct a verifiable system, we have to compose the ICSL component under 
analysis with other "testing" components that provide the necessary stimuli and handle the 
returned messages. The composition of the system component with the testing components is 
called a verification scenario, and they can have a growing degree of complexity. 
The simplest scenario under which the I_CSL has been tested is the scenario 
ICSLtesting_V27_nodata in which the RBC_User just accepts incoming ICSL connect/disconnect 
indications without never sending data messages. On the SAI side, this scenario is based on a 
"chaos-like" SAI component that sends to ICSL any possible message (error_reports, 
disconnection indications, lifesign messages, connection confirmations) except RBC_user data. 
This scenario represents the case in which the two RBC do not have any data to exchange, but 
the system still has the task to create, check and keep alive the communication line. This 
scenario is very small, as it contains just 5.224 states but is useful during the first step of 
prototyping. 
 
The second scenario of interest is the one in which the Initiator RBC periodically (but forever) 
sends a message to be delivered to the other side (through the SAI component), and the SAI 
component adds the sending of RBC_User messages to its "chaos-like" behaviour.  In this case 
(ICSLtesting_V27_continuosdata scenario) the messages being sent are supposed to be all equal 
just to avoid the otherwise inevitable state explosion. 
 
Finally, we have generated a third scenario (ICSLtesting_V27_incrdata) in which the messages 
being sent from the RBC and the SAI are all different and contain a numerical value that is 
incremented at every sending operation. This allows to perform verifications on the possible 
evolutions of specific messages (e.g. to check the non-occurrence of reordering). This is the most 
interesting scenario, but to limit the state explosion we need to put a limit also to the number of 
messages which are exchanged. Increasing the number of messages, however, does not seem to 
add any greater depth to the analysis of the system. The following table summarizes the sizes of 
the various scenarios. 
 
ICSLtesting_V27_nodata  
   receivetimeout=2, sendtimeout=1, connecttimeout=2  States: 5224 
   receivetimeout=.., sendtimeout=.., connecttimeout=..  States: ... 
 
ICSLtesting_V27_continuosdata 
   receivetimeout=2, sendtimeout=1, connecttimeout=2  States: 90.751 
   receivetimeout=.., sendtimeout=.., connecttimeout=..  States: ... 
 
ICSLtesting_V27_incrdata  (receivetimeout=2, sendtimeout=1, connecttimeout=2)  
    3 messages each for RBC and SAI     states      801.712  
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    5 messages each for RBC and SAI     states  2.253.934 
  10 messages each for RBC and SAI     states  9.060.669  
 

8.4.2 Standard checks 
 
The first easy checks to be performed are some default tests like the absence of runtime errors 
(e.g. caused by numerical calculation, operations on lists), absence of events for which no rule 
specifies the appropriate management, absence of deadlocks.  
These checks can be activated: 
-  In ProB by just selecting the default "Verify -> Model_Check..." command. (see the left side of 
Figure ZZ). 
-  In CADP by just generating the statespace and using the command "bcginfo", or by evaluating  
     on-the-fly the formula "[true*] <true> true". 
- In UMC with the command "umcstats" or evaluating the formulas "EF FINAL" and  
   "EF {lostevent}". 
In case of failure of these tests it is possible to observe the execution trace that leads to the 
failure (and in the case of Prob and UMC also visualize it as a message sequence chart). 
We have observed that already these simple checks allow us to detect most of the errors present 
in the UML model. 
 

                
Figure 13: a result of standard ProB checks. 

 
Another rather standard check is the analysis of the coverage of the UML transitions (i.e. the 
coverage of the Prob operations). With ProB this can be obtained directly, once performed the 
previous model checking, with the command Analyse -> Coverage -> Operation Coverage. 
Activating this check on the ICSLtesting_V27_nodata  we obtain the result shown in Figure 13 
(right side), from which we can see that there are several transitions that are never triggered, 
but this is precisely what we would expect given the no data request or data indication messages 
are ever generated. 
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8.4.3 Double-check of the behavioural requirements 
 
Let us now consider the behavioural requirements of this I_CSL component, as specified in the 
revised specification shown in Annex 8.2. We know that the behavioural requirements have been 
"extracted" from the formal model and should precisely reflect its internal structure. Would it 
make sense to try to encode these requirements as logical formulas for further verification? 
Let us consider, for example, requirement R11: 
 
R11: When in COMMS state is received a SAI_Disconnect_indication, the I_CSL moves to 
NOCOMMSready state and forwards a RBC_User_Disconnect_indication to the RBC_User. 
 
This requirement corresponds to the operation R11_ICSL_userdisconnind of the UMC model: 
 
R11_ICSL_userdisconnind: 
  COMMS -> NOCOMMSready  
     {ISAI_DISCONNECT_indication / 
        RBC_User.IRBC_User_Disconnect_indication; 
        receiveTimer := 0; 
        sendTimer := 0; }  
 
It would seem rather evident that this requirement is going to be satisfied by just performing a 
double-check in terms of code inspections. And this check is independent of the specific values 
of the parameters for this component. 
Nevertheless, we might still be interested in checking this fact again, e.g. in one of the specific 
scenarios described in Section 8.3.2, for example in scenario ICSLtesting_V27_nodata. 
 
The above requirement R11 can indeed be encoded as a Prob LTL property like: 
 
"G({size(ICSL_buff)>0 & first(ICSL_buff)=ISAI_DISCONNECT_indication & ICSL_STATE=ICSL_COMMS}  
    => 
   (e(R11_ICSL_userdisconnind) U ([R11_ICSL_userdisconnind] & X{ICSL_STATE = ICSL_NOCOMMS}))) 

 
This encoding cannot be done in a mechanical way because the ProB encoding is at a more 
detailed/specific level than the requirement; a detailed knowledge of the formal model is 
needed.  
E.g. the condition "message received" should become "the message is in the first position in the 
buffer";  the consequence of this condition is that the operation triggering the state transition 
should be enabled (e(R11_ICSL_userdisconnind), and remain enabled until the operation is finally 
executed [R11_ICSL_userdisconnind]; after that, the state should become the one requested 

X{ICSL_STATE= ICSL_NOCOMMS}. 
 
Another requirement that can easily be verifying to hold, either by code inspection or by formal 
proof in some scenario is requirement R8. 
 
Let us now consider the richer scenario ICSLtesting_V27_continuosdata. 
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In this scenario, we might want to double-check if the requirement R8 holds (this requirement 
was trivially satisfied in the previous scenario because there was no data exchange at the RBC 
level). 
 
 R8: When in COMMS state is received a RBC_User_Data_request(userdata), I_CSL forwards a 
SAI_Data_request(userdata) with the same data to the SAI. 
 
"G ({size(ICSL_buff) > 0 & first(ICSL_buff)=IRBC_User_Data_request & ICSL_STATE=ICSL_COMMS}  
   => (e(R8_ICSL_saidatareq) U ([R8_ICSL_saidatareq] & X{ICSL_STATE = ICSL_COMMS})))" 

 
The encoding of this formula is similar to the previous one, and its evaluation, despite the larger 
size of the model, can be completed in a few seconds after the model statespace has been 
generated. 
 
Verifying the same requirement R8 in scenario ICSLtesting_V27_incrdata (3msgs) is more 
complex because we have to express also the fact that the RBC data, whichever it is, remains 
unchanged until the operation R8_ICSL_saidatareq is triggered. So far, we have not been able to 
find a precise encoding for this property, which can instead be expressed in UMC and CADP 
exploiting logics supporting actions with parametric values or parametric fix-points.  
 
Despite the complexity of the task of encoding system properties in formal terms of temporal 
logical formulas, a possible reason for trying (as far as possible) this effort might be their 
inclusion inside the ProB model as explicit LTL assertions. 
This would allow, in case of refinements of the initial ProB model into even more detailed state 
machines, to continue to verify the conformity of the refined model to the initial behavioural 
requirements.  
 
In the case of ProB, the encoding and verification of internal behavioural requirements might 
perhaps be easier if instead of modelling a UML-based scenario composed of three state 
machines we considered a scenario composed by the ICSL state machine alone, removing the 
buffer-related operations from it, and adding CSP processes as stimulating external environment.  
A similar approach is also feasible in the case of CADP.  
So far, however, these possibilities have not been explored further. 
 

8.5 Analysing the external behaviour of the ICSL component 
 
Once we are confident that the operational model correctly reflects the intended internal 
behavioural requirements, we might proceed in verifying that the stated behavioural 
requirements (i.e. the formal model) imply the stated external guarantees of the system 
component. 
 
Let us consider again the scenario ICSLtesting_V27_continuosdata, which is rather complete but 
still of a small size. 
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In this scenario, all the I_CSL transitions appear to be eventually triggered (i.e. we have achieved 
a 100% coverage), even if when the I_CSL is integrated with all the other, more realistic, system 
components, several transitions might no more appear as reachable. 
 
One way to observe the external behaviour of the component in one scenario is just to observe 
all the possible traces of messages flowing between the components. 
For example, if we want to observe all the possible message flows from the ICSL towards the 
RBC, we can take the LTS describing all possible evolutions of with our scenario, hide all the 
labels not belonging to the set of interactions we want to observe, and minimize the resulting 
LTS (as shown in Section 8.1.3) with weak (complete, divergence sensitive) trace equivalence. 
The result of the process can be carried out within the CADP framework10 with the SVL script 
shown in Figure 14, is given in Figure 15. 
 
 % umc2lnt ICSLtesting_V27_continuosdata.umc continuosdata.lnt; 
 "continuousdata.bcg" =  
         generation of "continuosdata.lnt"; 
 "continuous_rbcflow_dbmin.bcg" =  
         divbranching reduction of 
     gate hide all but  
       IRBC_User_Connect_indication,  
       IRBC_User_Disconnect_indication,  
       IRBC_User_Data_indication 
    in  "continuousdata.bcg"; 
 % bcg_io continuous_rbcflow_dbmin.bcg continuous_rbcflow_dbmin.aut; 
 % wtprepare -i continuous_rbcflow_dbmin.aut continuous_rbcflow_wtready.aut 
 % bcg_io continuous_rbcflow_wtready.aut continuous_rbcflow_wtready.bcg 
 "continuous_rbctraces.bcg" =  
           weak trace reduction of  
           multiple rename  
               "IRBC_USER_DATA_INDICATION !.*"  -> "IRBC_USER_DATA_INDICATION "  
           in "continuous_rbcflow_wtready.bcg"; 
 % bcg_io continuous_rbctraces.bcg continuous_rbctraces.aut; 
 % aut2dot continuous_rbctraces.aut continuous_rbctraces.dot 
 % dot -Tsvg continuous_rbctraces.dot -o continuous_rbctraces.svg 
 

Figure 14: A   SVL script for generation of ICSL-RBC traces 
 

 
 

Figure 15:   A  ICSL->RBC message flow in the scenario ICSLtesting_V27_continuosdata  

 
10 The same result can be obtained using the umc2aut and ltsconvert tools from the free KandISTI 
/UMC and mCRL2 frameworks. 
 

IRBC_User_Data_indication

IRBC_User_Connect_indication

IRBC_User_Disconnect_indication
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We can see how this simple picture shows the satisfaction of several ICSL external guarantees 
(see Sect 8.1.3) like: 
•   ICSL sends to I_RBC a RBC_Data_indication message only after a RBC_Connect_indication  
     not followed by RBC_Disconnect_indication. 
•   ICSL sends to I_RBC a RBC_Disconnect_indication message only after     
     a RBC_Connect_indication  not already followed by RBC_Disconnect_indication. 
•   The first message (possibly) send to I_RBC is a RBCConnect indication message 
•   ICSL sends to I_RBC a RBC_Connect_indication message only as first messages or after     
     a RBC_Disconnect_indication  not already followed by RBC_Connect_indication. 
 
Other properties that can be observed from these traces are that in this scenario there is no 
guarantee that a communication line is ever established, and that even if established, there is no 
guarantee that any message arrives, and no guarantee that the connection is eventually 
terminated. 
 
We might have verified the above properties by translating them into temporal logic formulas 
and verifying them with CADP, ProB, or UMC, but with a relatively greater effort. 
When the graphical representation of all the possible message flows becomes bigger, the 
approach of just observing the picture might not be feasible, and the formal encoding and 
verification of the formulas risks to remain the only reliable approach. 
 
 
For example, if we want to directly check in this scenario whether is it true that, e.g. from the 
IRCB side,  after receiving a connect_indication, it is necessary to receive a disconnect_indication 
before receiving a second connect_indication, this property can be verified in UMC with the 
formula: 
 
  AG [IRBC_User_Connect_indication]  
       A[{not IRBC_User_Connect_indication} W {IRBC_User_Disconnect_indication} ] 

 
The same property can be verified in ProB with the model checking of the LTL formula: 
 
  G ([R8_ICSL_userconnind] =>  
       X((not [R8_ICSL_userconnind]) W  
          ([R16_ICSL_userdisconnind] or [R17b_ICSL_userdisconnind])) )  

 
And the same can be verified with CADP using the formula: 
 
not <(true)*. 
   IRBC_USER_CONNECT_INDICATION. 
   (not IRBC_USER_DISCONNECT_INDICATION)*. 
   IRBC_USER_CONNECT_INDICATION> true 

   
Suppose we want to analyze the other "external I_CSL" guarantee: 
 
•   ICSL periodically sends to I_SAI either SAI_Connect_request or SAI_Data_request messages. 



 

  

                             

Project Acronym – GA 881775                                                                                                          44 | 49 
 

 
We might repeat the same process described above for observing all the possible message flows 
from I_CSL towards ISAI involving Data or Connect requests. 
 

 
 

Figure 16:   A ICSL->SAI message flow in the scenario ICSLtesting_V27_continuosdata 
 
As we can easily see, there is no unlabelled loop (originated by hiding of actions different from a 
DATA or e CONNECT request) in the computed messages flow. 
 
The ProB LTL formulas directly checking this property would be instead: 
 
-- UMC-UCTL:   AG AF {ISAI_DATA_request or ISAI_CONNECT_request} true 

-- PROB-LTL:  G F ( [R8_ICSL_saidatareq] or [R7b_ICSL_saidatareq] or [R2_ICSL_connecting]) 
 
let us now analyze the flow of messages between RBC and SAI (just looking at ICSL s black box). 
We want to observe also the identity of messages to check that no repetitions or misordering are 
introduced by the CSL. Messages are sent by RBC only after having received a connection 
indication not followed by a disconnection indication.  For this, we are using the scenario  
ICSLtesting_V27_incrdata. observing only the exchange of the RBC data messages (no lifesign, or 
connect/disconnect events). Figure 17 shows the generated flow of such messages. 

ISAI_Connect_request ISAI_Data_request

ISAI_Conect_request
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Figure 17: Flow of RBC Data requests messages through the ICSL 

 
Two interesting things can be easily observed in this picture: 
 
- There is no guarantee that any message is sent (see the loop in the initial node).  
   Indeed, there is no guarantee that the ICSL ever has succeeded in establishing an active  
    communication line. 
 
- Even if active communication line is established, and a message sent (i.e. after the RBC has 
received a connection indication and before receiving any disconnect indication), there is no 
guarantee that the message is passed to the SAI!   
 
At first, this might look surprising and in contrast with the ICSL REQ8: 
 
 R8: When in COMMS state is received a RBC_User_Data_request(userdata), I_CSL forwards a 
SAI_Data_request(userdata) with the same data to the SAI. 

IRBC_USER_DATA_REQUEST(1)

ISAI_DATA_REQUEST(2,1)

IRBC_USER_DATA_REQUEST(2)

IRBC_USER_DATA_REQUEST(3)

ISAI_DATA_REQUEST(2,3)

IRBC_USER_DATA_REQUEST(2)

ISAI_DATA_REQUEST(2,2)

IRBC_USER_DATA_REQUEST(3)
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But this is a possible valid behaviour because the current RBC view of the ICSL status might not 
precisely reflect the reality. The ICSL might pass in the NOCOMM state just before receiving the 
RBC_Data_request, which can be sent just before receiving the Disconnect indication from the 
CSL. In this case, the RBC_Data_request might arrive when ICSL is in the NOCOMM state, and 
the Data_Request message would be discarded. 
 
This can be checked, in the UMC framework, with the evaluation of the formula: 
 
       EF {R12a_ICSL_discuserdata or R12aa_ICSL_discuserdata} 

 
which states that eventually one of two transitions discarding the Data_request message is 
triggered. 
The formula is satisfied, and the following trace is presented as explanation11 12: 
 

 
 

Notice that the RBC_User will surely receive the disconnect indication ... but a little later. 
This may help in understanding whether a RBC_User message has been surely sent or not. 
 

8.6 Analysing the external behaviour of the whole CSL layer 
 
Three scenarios have been defined for analysing the behaviour of the whole CSL layer. 

 

 
11 We have removed from the trace the interactions with the Timer object. 
12 Notice that no assumption prevents our "chaos" SAI  model to randomly send connection confirmations. 

IRBC

IRBC

ICSL

ICSL

ISAI

ISAI

R2 ISAI_CONNECT_request;

R2a ISAI_CONNECT_confirm;

R4 IRBC_User_Connect_indication;

R2a ISAI_CONNECT_confirm;

R2b ISAI_DISCONNECT_indication;

R2c IRBC_User_Data_request(1);

R11 IRBC_User_Disconnect_indication;

R2 ISAI_CONNECT_request;
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The scenario SC0 has already been mentioned in Section 5.13. In this case the two RBC 
components just act as observers, receiving the connection/disconnection indications, but without 
sending any message. This scenario can be used for analysing the relative views that the two sides 
of the RBC have about the current status of the communication line. 
 
We can observe that the behaviour of the I_RBC - I_CSL interface (i.e. all the possible flows of 
sequences of messages) is the same already seen when observing the I_CSL component alone 
(interacting with a chaos-like I_SAI) as illustrated below. 

 
 
Now that we have a model of the whole system, we can also observe relations between events 
occurring at different sides of the RBCs, and check the expected properties (or properties to be 
guaranteed). 
For example, we might intuitively expect that both RBC observers may loop between the 
connected/disconnected view, and if one side remains for a long time in the disconnected view, 
also the other will eventually move into the disconnected view. 
 

I_CSL C_CSL

Abstract
I_SAI

Abstract
C_SAI

Abstract Euradio

I_RBC C_RBC

Observed System

Observing  / Stimulating Components

  Abstract EuroRadio  
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We have been a little surprised to see the following system behaviour instead when observing just 
the traces of  RBC_User_connect_indication messages outgoing from the whole CSL layer: 

 
 
It seems, in fact, that there are execution paths in which the called RBC always receives 
connect_indications (i.e. having the view of an always connected system) while on the initiator 
RBC has the view of an always disconnected system. 
 
Asking UMC to visualize a path in with two consecutive CRBC_User_Connect_Indication and 
without any IRBC_User_Connect_indication has revealed the following sequence of events: 
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I.e.  The initiator side continuously tries to make new connections, which have a partial success in 
the sense that the called side accepts and confirms the request, but the last confirmation is always 
lost13. As a consequence, the initiator retries the connection, which is accepted and notified to the 
called RBC_User again, still without having ever notified to the initiator RBC any kind of 
connection indication. 
 
In scenario SC1 the two RBC also try to send a limited number of messages.  
If we suppose that the EuroRadio level never loses messages, introduces at most limited delays, 
we can see that no disconnections ever occur and all messages arrive at their destination and in the 
correct order14. 
< in progress> 
 
In scenario SC2, one RBC sends one message and waits for a reply from the other side. 
This third scenario is useful for having an estimation of the maximum delay, after which if the 
reply has not been received, we can trust it will no longer arrive (i.e. either the initial message or 
the reply has gone lost).  
< to be done> 
 
 

 
13 In the current abstraction of the SAI levels we have not modelled the initialization phase of the safe connection. 
This aspect is not essential and the same situation is likely to occur even even if we a add an exchange of 
initialization messages. This will be checked when further refinements of the model will be made. 
14 notice that at this prototypal abstract level of modelling the EuroRadio level still does not introduce repetitions 
and reorderings, and the SAI component do not need to mitigate these problems 


