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Abstract— Recent advances in Artificial Intelligence (Al)
in healthcare are driving research into solutions that can
provide personalized guidance. For these solutions to be
used as clinical decision support tools, the results provided
must be interpretable and consistent with medical knowl-
edge. To this end, this study explores the use of explainable
Al to characterize the risk of developing cardiovascular
disease in patients diagnosed with chronic obstructive pul-
monary disease. A dataset of 9613 records from patients
diagnosed with chronic obstructive pulmonary disease was
classified into three categories of cardiovascular risk (low,
moderate, and high), as estimated by the Framingham Risk
Score. Counterfactual explanations were generated with
two different methods, MUIti Counterfactuals via Halton
sampling (MUCH) and Diverse Counterfactual Explanation
(DIiCE). An error control mechanism is introduced in the
preliminary classification phase to reduce classification
errors and obtain meaningful and representative explana-
tions. Furthermore, the concept of counterfactual confor-
mity is introduced as a nhew way to validate single coun-
terfactual explanations in terms of their conformity, based
on proximity with respect to the factual observation and
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plausibility. The results indicate that explanations gener-
ated with MUCH are generally more plausible (lower implau-
sibility) and more distinguishable (higher discriminative
power) from the original class than those generated with
DiCE, whereas DiCE shows better availability, proximity and
sparsity. Furthermore, filtering the counterfactual explana-
tions by eliminating the non-conformal ones results in an
additional improvement in quality. The results of this study
suggest that combining counterfactual explanations gener-
ation with conformity evaluation is worth further validation
and expert assessment to enable future development of
support tools that provide personalized recommendations
for reducing individual risk by targeting specific subsets of
biomarkers.

Index Terms— explainable Al (XAl), counterfactual expla-
nations, conformal predictions, chronic disease prevention

|. INTRODUCTION

HE extensive development of eXplainable Artificial In-
T telligence (XAI) techniques has paved the way for data-
driven clinical decision support systems that aim at incorpo-
rating transparency in automated decision pathways, beyond
ordinary levels of performance [1]. Nevertheless, there are
several challenges to the practical implementation of these
tools, particularly in relation to concerns around privacy, scal-
ability, fairness and accountability, which have the potential
to erode the trustworthiness of the system [2], [3]. Moreover,
several of the currently available XAI techniques struggle to
produce explanations that are interpretable in human terms and
that can be used to provide readily applicable and actionable
interventions [4], [5].

Counterfactual explanations [6], falling under the umbrella
of local post-hoc XAI techniques, can help bridge this gap.
Specifically, counterfactual explanations aim to clarify why a
particular decision was made by an Al model by showing how
changing the input data would lead to a different result, i.e.,
a different output. Counterfactual explanations from tabular
data are typically recovered through the minimization of a loss
function, incorporating measures of the distance between the
original instance and the candidate counterfactual explanation,
as well as the distance between the candidate explanation and
its target class [6]. More complex terms may be incorporated
into the process, for example, to promote diversity of the
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retrieved explanations [7], to foster causal consistency [8] or
to maintain correlations between features [9]. As an alternative
approach, gradient-free optimization based on heuristic search
strategies (e.g., genetic algorithms [10]) or reinforcement
learning [11] have been proposed in the context of non-
differentiable models. Despite the search typically occurring
in the original feature space, recent efforts have been made
to recover counterfactual explanations in a transformed latent
space, with optimized dimensions, in binary classification
problems [12]. Application of this technique in healthcare has
shown promising results [13], [14], [15], [16], yet its practical
use remains limited. An important issue is the lack of common
benchmark criteria for assessing the quality of counterfactual
explanations as the definition of quality criteria may be highly
dependent on the clinical goal [17]. Generally, counterfactual
explanations are designed to satisfy different properties [18].
For example, counterfactual explanations must be classified
into a different class than the original one while remaining as
close as possible to it. Additionally, each explanation should be
representative of the target destination class. All the relevant
and distinct characteristics of this XAl technique should be
considered in comprehensive quality metrics. Furthermore,
particularly relevant is the concept of reliability, i.e., the
amount of confidence an XAl-based model is capable of
providing, ensuring an output that is not just interpretable but
also trustworthy.

In this regard, the present study proposes a novel approach
in the field of counterfactual explanations for personalized dis-
ease prevention by introducing substantial methodological and
application-oriented advancements, that can be summarized as:

« the introduction of an algorithm to control the classifica-
tion error of multi-class Support Vector Data Descriptors
(MC-SVDD, [19]);

« the introduction of an original “counterfactual confor-
mity” measure, leveraging conformal predictions (CPs,
[20]) guarantees to filter counterfactual explanations that
do not reach the desired level of confidence;

« the application of the proposed methods and state-of-
the-art methods to real-world data in an original health-
related application, i.e., creating personalized risk reduc-
tion strategies to reduce the risk of developing cardiovas-
cular diseases (CVDs) in patients diagnosed with Chronic
Obstructive Pulmonary Disease (COPD).

Il. MATERIALS AND METHODS

This section is structured as follows. Section II-A describes
the extraction of a dataset of routinely collected biomark-
ers from patients diagnosed with COPD receiving primary
care services, with the aim of estimating the individual 10-
year CVD risk. Sections II-B-II-E thoroughly describe the
methodological pipeline, according to the workflow summa-
rized in Figure 1. First, a multi-class classifier is optimized
and trained on the training set, as detailed in Section II-B.
Then, a set of counterfactual explanations is generated based
on observations from the test set that have been predicted
as high risk of developing CVDs. Two distinct generators of
explanations are compared, namely, MUIti Counterfactuals via
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Halton sampling (MUCH, [19]) and Diverse Counterfactual
Explanations (DiCE, [7]), as described in detail in Section II-
C. At last, a novel measure of the conformity of counterfactual
explanations, as formulated in Section II-E, is computed to
evaluate the quality of the explanations and to provide a way
to discard explanations that do not reach the desired level of
confidence. Related codes are available at [21].
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Fig. 1: Methodological workflow: multi-class classification,
generation and evaluation of counterfactual explanations.

A. Dataset extraction

The study dataset was ad hoc extracted from part of the
Canadian Primary Care Sentinel Surveillance Network (CPC-
SSN) [22] that includes de-identified electronic health records
collected by primary care providers between 2000 and 2015.
A waiver of ethics review (reference number: REB 2013-
261) was granted by the Review Ethics Board of Toronto
Metropolitan University (formerly Ryerson University) as
this portion of CPCSSN database includes de-identified and
anonymized records. A sample of patients older than 20 years
and diagnosed with COPD was extracted and the following
features were considered: age at COPD onset, sex assigned at
birth, body mass index (BMI), systolic and diastolic blood
pressure (sBP and dBP, respectively), fasting blood sugar
(FBS), low-density lipoprotein (LDL), high-density lipoprotein
(HDL), triglycerides (TG), total cholesterol (totChol), smoking
(yes, no, ex), presence of hypertension and/or diabetes, if
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diagnosed up to 6 months before the onset of COPD. The
extracted biomarkers refer to the medical encounter closest to
COPD date. Values collected up to 6 months before COPD
diagnosis were considered to account for possible uncertainty
in the diagnosis date. Using these extraction criteria, a sample
of 9613 records with no missing values (one record for each
subject) was extracted from an initial set of 37504 subjects
diagnosed with COPD. The output variable considered in this
study is the Framingham Risk Score (FRS), a sex-specific
multivariable indicator that can be used to estimate the 10-
year-risk of developing CVDs. The rationale was to identify
an output variable that could be used to generate counterfac-
tual explanations with the final aim of guiding personalized
preventive actions, e.g., by reducing the individual 10-year-
risk of CVDs in patients with COPD. The importance of
such measures has been suggested, for example, in [23].
The FRS for each subject was calculated, converted into a
percentage risk value, and then grouped into three classes
using the Framingham Risk Score Worksheet provided by
the Canadian Cardiovascular Society [24]: low risk (10-year
CVD Risk< 10%, 3944 records), moderate risk (10% <10-
year CVD Risk< 19%, 3274 records), and high risk (10-
year CVD Risk> 20%, 2395 records). A summary of the
distribution of the dataset features as a function of the output
risk class is shown in Table I. Each feature is marked as
modifiable, partially modifiable or not modifiable depending
on its ability to be manipulated for the sake of risk reduction
(e.g., through lifestyle interventions). For each modifiable
feature, the maximum acceptable value shown in Table I is the
value used as an upper bound when generating counterfactual
explanations, as described in Section II-C. Partially modifiable
features, like smoking habits, are permitted to vary only in
certain directions. For example, an individual who smokes
(Smoke="y”’) may be able to cease smoking (Smoke = “ex”
but cannot transition to the category Smoke = “n” which
represents those who have never been smokers.

B. Muilti-class classification

The process of counterfactual explanations generation be-
gins with the classification of data samples. Two state-of-the-
art generators of counterfactual explanations were used in this
study (i.e., MUCH and DiCE). MC-SVDD was used as the
underlying classifier because, as shown in [19], it is flexible,
reliable and easily controllable, thus making generation of
explanations fast and accurate. Moreover, as shown in Section
II-B.2, a new method to control the percentage of unclassified
points in the MC-SVDD prediction is introduced to help derive
counterfactual explanations that are highly representative of
the class they are meant to target. DiCE demonstrated to work
well with both non-differentiable and differentiable models
[7] implemented with common Python frameworks such as
sklearn, TensorFlow, or PyTorch. However, the MC-SVDD
algorithm is not yet compatible with these frameworks and
cannot be directly applied to DiCE in its current form. To
facilitate a direct comparison of the reported results, we
employed a surrogate Support Vector Machine (SVM) model
that emulates the input/output behavior of the MC-SVDD,
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TABLE I: Features distribution as a function of the output
class, degree of modifiability, and maximum acceptable value.
Numerical features: median (inter-quartile range); categorical
features: number of samples for each category.

Low risk Moderate . b risk . Max
Feature (N=3944) risk (N=2395) Modif acceptable
= (N=3274) value
Age 56 66 73 No ;
[years] (49-64) (59-73) (67-78)
Sex at f: 3010 f: 1673 f: 360 N /
birth m: 934  m: 1601  m: 2035 ©
n:3185 n:1704 n:1635
HIN y:759 y:1570 y760 O /
. n:3320 n:2487 n:1630
Diabetes y:624 y:787 y:765 No /
n: 859 n: 709 n: 563
Smoke ex: 1082  ex: 1106 ex: 961  Partial /
y: 2003 y: 1459 y: 871
sBP 120 130 140
mmHg] (110-128) (122-140) (130-150) ¢ 140
dBP 73 77 78
mmHg]  (68-80)  (70-82)  (70-84) ' %0
BMI 27.0 28.2 28.0 Yes 35
kg/m?  (23.0-32.5) (24.3-32.7) (25.0-32.0)
FBS 52 55 5.6 Yes .
[mmol/L] (4.8-5.8) (5.0-6.1)  (5.2-6.4)
LDL 2.65 2.61 242 v s
[mmol/L] (2.00-3.33) (1.93-3.35) (1.78-3.20) '°°
HDL 1.44 1.30 1.34 Ves )5
[mmol/L] (1.19-1.75) (1.06-1.60) (1.13-3.66) :
TG 1.21 1.35 1.39 Yes 5
[mmol/L] (0.87-1.72) (1.92-7.67) (1.00-1.99)
totChol 476 4.69 4.40 Yes -
[mmol/L] (4.02-5.50) (3.88-5.56) (3.56-5.33) :

as indicated in the workflow in Figure 1. The scikit-learn
implementation of the SVM classifier was chosen to surrogate
the MC-SVDD, given their inherent similarities [25]. A 70:30
ratio was used to separate train and test data. Max scaling
was applied to normalize data between O and 1. Tuning of
the MC-SVDD hyperparameters was performed by 3-fold
cross-validation on 50% of the training data as in [19]. A
grid search with 3-fold cross-validation was performed to
tune the regularization parameter and the kernel of the SVM
(best model parameters: C=7, gamma="auto”, kernel="rbf”).
Besides accuracy, the capacity of the SVM model to surrogate
the original MC-SVDD model was assessed using the Co-
hen’s Kappa coefficient [26]. This coefficient assumes values
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between -1 and 1, with -1 indicating total disagreement, O
indicating random chance agreement and 1 indicating total
agreement between the two models.

1) Multi-class Support Vector Data Description (MC-SVDD):
The SVDD [27] is a state-of-the-art algorithm for outlier detec-
tion able to enclose labeled target points within a hypersphere
with center and radius computed on the training data points. Its
generalization to the multi-class case (MC-SVDD) is briefly
described below; a comprehensive description of the algorithm
can be found in [19].

Given a training set {(x;,y;)}._; € X X Vi composed
by m classes of objects of different sizes ni,na,..., Ny,
(n1+ne+...+n, = n), labeled and ordered according to their
class y = [ 1 12 ... 2 ... m m]T,
MC-SVDD allows to search for the smallest hyperspheres that
separate data, i.e.

min F(Ry;ar) = » Ry (1a)
k=1

st |le@h) —ag|ls < B2, i € [m], ¥k, (1b)

o) —anlls = B}, i € [l,vh £k, (o)

where ¢ : XY — V is a feature map from the space of the
input features € X to an higher dimensional inner product
space )V that allows to identify more flexible descriptions
exploiting kernels K; ; = K(z;,z;) = o(x;) p(x;), i €
[n],j € [n] that satisfy the Mercer’s theorem [28].

Once a relaxed version of (1) has been solved (i.e. introducing
slack variables, as detailed in [19]) and the centers a; and radii
Ry, have been computed for all k € [m], the classification re-
gions S;, i € [m] are defined. A new test sample & is classified

based on its distance from each center d, = || — ay|:

1) If dy,<Ryj and dp> R}, Vh #k, then & belongs to Class k;

2) If d, < Ry for several k € [m] then x belongs to
class k' = argmingegdy, where K = {k € [m] |
drp, < Ry}s

3) If dp>Ri Vk or #{k' |k = argmingexdr} > 1,
then & is unclassified.

In simple words, the distance between all samples in each
class and the center of that class should be smaller than the
radius of the corresponding hypersphere, and the distances
between all samples in each class and the centers of all
the other classes should be larger than the radius of the
corresponding hyperspheres. If a given sample belongs to more
than one hypersphere, the sample is assigned to the class that
lies at minimum distance. In any other case, the sample is
unclassified.

2) False Positive Rate control for SVDD: In this study, we
extended the algorithm to control the classification error of
the binary SVDD (originally proposed in [29]) to the multi-
class case with the aim of obtaining well-defined and reli-
able classification regions, highly representative of the target
class (Algorithm 1). The algorithm is based on a one-vs-
all approach. First, a given class is selected and its false-
positive rate (FPR) is optimized by training successive negative
SVDDs (i.e., SVDDs with a single target class [27]) until
the number of misclassified points for that class is below
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a predefined threshold 7 (here set equal to 0.1) or until a
maximum iteration limit Kpaxper (€.2., 1000) is achieved. We
indicate with SVDD(+) the operator that executes the (trained)
negative SVDD algorithm, i.e.

SVDD: X — X x )Y
x— (z,y)
Given a dataset D C X, we indicate with SVDD(D) the

application of the negative SVDD algorithm to the dataset D.
The procedure is repeated for all the remaining classes.

Algorithm 1 MC-SVDD FPR control

Input 54, S5s,...,S,, regions from multi-class SVDD,
threshold on FPR 7, maximum number of iterations
kmaxltep

Output FPR reduced regions S7,55,...,5;

me

1: For all i € [m]:
1.2:  For all x € X, assign

! if zes;
T —y = .
-1 otherwise
and build a dataset
Sip ={(z,y) | € X,y e {-1,+1}}.

1.3:  Compute S} = SVDD(S,,).

1.4: Setk=1.

1.4.1: While FPR(S;;) > 1 AND k < Enaxiter
S =SVDD(S? )
k=k+1.

L5 S;=S}

In disease risk prediction applications, a large number
of misclassifications could lead a potential clinical decision
support system to miss patients in need of a treatment or
to unnecessarily treat healthy patients. In this perspective, it
would be advisable to not assign a sample to any class if
its classification is uncertain and handle it as an outlier, thus
abstaining from providing an automated decision in case of
doubtful samples. Therefore, FPR control increases the relia-
bility of MC-SVDD, by distinguishing points classified with
high confidence from points whose classification is uncertain.

C. Generation of counterfactual explanations

Counterfactual explanations aim to find a "what-if" scenario
in the target class while manipulating only the subset of
input features that can be changed through internal or external
interventions (modifiable and partially modifiable features, de-
noted as u, for example clinical biomarkers) and constraining
those that are immutable (non-modifiable features, denoted as
z, for example, age and diagnosed chronic diseases). More
specifically, given an observation xy, = (u,z)y, (the factual)
predicted as belonging to a certain class 4, the search for its
counterfactual explanation m(}ff for a class j # ¢ consists
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in determining the minimum joint variation Au* of the set
of modifiable and partially modifiable features necessary to
obtain the closest observation that belongs to class j:

afl = (u+ Aut,2)FP 2)

The generators of counterfactual explanations used in this
study, namely MUCH and DiCE, share some common fea-
tures, for example: the capability to handle tabular datasets
with mixed data (either continuous or categorical), the pos-
sibility to specify a set of modifiable and non-modifiable
features, and the capability to provide constraints on during
generation, that is, to provide a range of admissible values for
each feature. To generate explanations that aim to improve or
otherwise non-worsen the patient health status, a maximum
acceptable value for each modifiable feature (Table I) is
specified as an upper limit during counterfactual explanations
generation. As it can be observed from Table I, these values
indicate cut-off values that normally determine a clinically
relevant worsening of the patient’s health status (e.g., class
2 obesity or worse for BMI over 35 kg/m?, hyperlipidemia
for total cholesterol above 6.2 mmol/L).

1) MUCH: MUIti Counterfactuals via Halton sampling [19]
is an algorithm to generate counterfactual explanations from
Halton sampling of the output class distributions of any
machine learning classifier. Specifically, for a given factual
xf,, Au* is estimated by solving the following minimization
problem for all j € [m],j # i:

. . cfj

g dsGesns) O
- f . 2

subject to H(u + Au,z)}7 —a; H2 <R (3b)
2

|+ auzf —a =R Go

with k € [m] and k # j,

where dist(-,-) is the selected distance metrics (e.g., the
Euclidean norm), (3b) constraints m;f’ to lie inside S; and

(3c) constraints m;f 7 to lie outside all the regions Sy # Sj.
It is worth noting' that, for each factual x; € S;, a set
Cy = {xjcij | j € [m];j # i} of m — 1 counterfactual
explanations is found, that is, one for each class j different
from 4. In other words, for a set of factuals F; C S; we
obtain a set of counterfactual explanations Cg, with maximum
size equal to (m — 1)|F;|. Since the solution of (3) is not
always feasible, a quasi-random sampling (Halton sequence)
research in the output-class space is implemented, obtaining an
approximate numerical solution of the optimization problem.
Therefore, each w;f 7 is searched within the finite set of points
in the sampled region S;, aiming to minimize the distance
with respect to xy, .

2) DICE: Diverse Counterfactual Explanation [7] is a state-
of-the-art algorithm for the generation of counterfactual ex-
planations. It is based on an optimization procedure such
that, given a machine learning classifier, it is possible to
find the minimal variation of the input features to change
the output of the classification by minimizing a suitable cost
function that allows for the possibility of returning more than
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one counterfactual explanation m;f’ for each class j # i.
An additional regularization term ensures diversity in the set
of returned explanations, while keeping proximity with the
factual. To allow for a fair comparison with MUCH, the
total number of returned counterfactual explanations for each
factual was set to 1. The optimization problem in the model
agnostic framework can be solved using three different search
methods, namely an independent random sampling of features,
a genetic algorithm, or a K-dimensional tree. In this study, the
heuristic genetic algorithm was selected as search method due
to its faster convergence. However, using approximate search
algorithms, there is no guarantee that DiCE will converge to
a solution. Additionally, the obtained solution is, in general,
sub-optimal as the algorithm is likely to get stuck in a local
optimum.

D. Evaluation of counterfactual explanations

Counterfactual explanations were evaluated in this study
based on several criteria: the percentage of returned coun-
terfactual explanations (availability), the ability to distinguish
the set of counterfactual explanations from the factual class
(discriminative power, as computed in [19]), the average
percentage of features changed (sparsity, as computed in [7]),
the average distance from the factual observation (proximity),
the average distance from real target observations (implausi-
bility), and the average distance among the generated set of
explanations (diversity). The last three metrics were computed
as described in [12]. For sparsity, a tolerance of 0.1 was used.
For implausibility, the barycenter of the target class, calculated
from the training set, served as the reference. Higher values
of availability, discriminative power, sparsity, and diversity
indicate better counterfactual explanations, while lower values
are preferable for proximity and implausibility.

The Wilcoxon Signed-Rank Test for paired samples was
applied to assess possible statistical differences between coun-
terfactual explanations and the corresponding factuals, whereas
the Mann-Whitney U test was used to assess possible dif-
ferences in counterfactual explanations generated with the
two methods. The same test was used to compare counter-
factual explanations generated from subpopulations of pa-
tients with/without comorbidities (hypertension, diabetes). A
significance level a = 0.05 was considered for statistical
comparisons and Bonferroni correction was applied to correct
for multiple comparisons.

E. Counterfactual conformity

Providing predictions that can guarantee a sufficiently high
level of reliability is crucial in safety-critical areas like health-
care [30]. Likewise, offering reliable explanations is also
fundamental to improve trustworthiness. With this aim, we
introduce a measure of counterfactual conformity by adapting
and expanding the concept of Conformal Prediction (CP) [20].
The rationale is to quantify the uncertainty of counterfactual
explanations with respect to their ideal properties. According
to CP theory [31], once defined:

e a calibration set X, x ). with size n. (typically, the size

is greater than 500 observations [31]),
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o a desired error level € € (0,1),
« a real-valued score function s: X x Y — R measuring
how much a label y is conformal to the sample x,

for any € X, we can determine the following prediction set
at level of confidence 1 — ¢

Ce(x) = {9 | s(x,9) < s:} € 23}» “4)

where s. is the [(n. + 1)(1 — €)]/n. quantile of the score
values computed on the calibration set. Hence, CP measures
the uncertainty of predictions of machine learning models with
a certain confidence level.

In this section, we draw inspiration from the CP framework
to develop a new metric to evaluate the goodness of coun-
terfactual explanations. This preliminary approach will not
adhere strictly to the formalism of CPs since we are interested
in quantifying the uncertainty related to the generation of
counterfactual explanations rather than the prediction of a
model, as CP do. Specifically, given an instance x, we “sub-
stitute” the conformal label with the conformal counterfactual
explanation, relying on the idea that a counterfactual uniquely
belongs to its target class. The definition of counterfactual
conformity here introduced assumes that the quality of a
counterfactual explanation can be measured considering [18]:

1) the distance between the counterfactual explanation and
its factual (i.e., the smaller the distance, the better the
counterfactual, considering that the optimal counterfac-
tual explanation should be, by definition, the minimal
variation of the input parameters that realizes a change
in the prediction label); and

2) the distance between the counterfactual explanation and
the center of the corresponding counterfactual class (i.e.,
the smaller the distance, the more representative the
counterfactual explanation is for the class).

The combination of these two requirements leads to a trade-
off between the properties of proximity (i.e., the counterfactual
explanation should be close to the classification boundary) and
implausibility (i.e., the counterfactual explanation should be
representative of the new class).

As a measure to assess, concurrently, the two properties, we
defined a new score function as the weighted combination of
the distances between the counterfactual explanation w?f 7 and
its factual x s, and between the counterfactual explanation :c;f I
and the barycenter of the counterfactual class wjo (computed
on the training set), respectively:

s(xy,, w;fj) =7 - mix_dist(z,, a:;f’) +

o ep &)
(1-71) ~m1X_dISt(CUf{J , w?)
where 7 € (0,1) is a real valued weight and
mix_dist(z, y) = ). Hamming(z, y) +
a+ 3 ©)

(a f_ 5) - Cosine(z, y)

is a mixed distance borrowed from [12], with « being the
number of categorical input features and 3 being the number
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of numerical input features. In this study, 7 was set to 0.5 to
give equal importance to the two contributions. Then, given
a factual =y, the conformal counterfactual set of xy is the
set of all the counterfactual explanations m;lf 7 such that the

score value s(x fi,m;fj) is less than or equal to the almost
(1 — e)—quantile s. computed on the calibration set, i.e.

Colmy,) = (x5 | sz, 257) <52} (7)

With this interpretation of conformity, an empirical error is
made whenever the conformal set of a factual does not contain
the counterfactual explanation related to a certain class, as
defined in the followings:

_ #lag ¢ Co(p)le)

#{w")
The term “fully conformal counterfactual” applies when the
computed counterfactual explanations for a certain factual x ,
(.e., m;f’) for all the classes j #* 4, adhere to the afore-
mentioned conformity criterion. Conversely, the term “non-
conformal counterfactual” is used when none of the computed
counterfactual explanations for a certain observation meet
the aforementioned criterion. The term “partially conformal
counterfactual” is used in any other case.

The score function for counterfactual conformity was cali-
brated on 80% of the test set and the error was computed on

the remaining 20%. Calibration was performed separately for
MUCH and DiCE.

e}

err; = Pr{z{ ¢ C.(zy,) (8)

I1l. RESULTS

The MC-SVDD classifier achieved an accuracy of 76.0%
on the training set with 0.07% of unclassified points. The
accuracy on the training set increased to 85.6% when FPR
control (Algorithm 1) was applied, bringing the amount of
unclassified points up to 10%. The approach taken by FPR
control proves to be more reliable because it prefers to not
classify the data points rather than misclassify them (before
control: FPyoy risk = 49, FPoderate risk = 212, I:Pl'nigh risk = 1342;
after FPR control: FPjow risk = 41, FPmoderate risk = 125, FPhigh risk
= 103). The classification performance on the test set was
slightly lower yet satisfactory. The accuracy was 70.2% (4.2%
of unclassified points) before FPR control, which increased
to 78.6% (11.1% of unclassified points) after FPR control.
The class-specific sensitivity after FPR control was equal to
88.2% for low risk, 75.0% for moderate risk, and 95.9% for
high risk on the training set; 83.3% for low risk, 69.0% for
moderate risk, and 83.4% for high risk on the test set. The
surrogate SVM model achieved high accuracy in predicting
the output of the MC-SVDD (96.9% accuracy on the training
set and 92.6% accuracy on the test set). The Cohen’s Kappa
coefficient was equal to 0.89, suggesting a satisfactory level
of agreement between the MC-SVDD and the surrogate SVM
models.

The set of factuals here considered included only those
elements of the test set that were predicted as belonging to
the high-risk class by the underlying classifier. This resulted
in a factual set with 682 test records for MUCH and 690 for
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DiCE. For each factual ¢, , , , two counterfactual explanations
were generated, i.e. one from high to moderate risk class
(w;’;g;det) and one from high to low risk class (:c}f ’“gh)
Table II shows the performance of MUCH and DiCE in
terms of availability, discriminative power, proximity, sparsity,
implausibility and diversity. The two methods yielded a high
percentage of explanations despite constraints in the genera-
tion process, with MUCH having an average availability of
84.6% and DiCE reaching 98.2%. Both methods produced
counterfactual explanations that could be discriminated from
points of the factual class with a satisfactory level of accuracy
(i.e., discriminative power >77%, with MUCH performing
better than DiCE). MUCH is slightly superior than DiCE
in terms of implausibility, and diversity. Conversely, DiCE
exhibits better proximity and sparsity compared to MUCH.
Counterfactual explanations in the moderate risk class have
worse discriminative power and slightly worse diversity but
better proximity, sparsity and slightly better implausibility than
those in the low risk class, for both methods.

Table III summarizes the error and size of the non-
conformal, partially conformal and fully conformal counter-
factual explanations sets of the two methods as a function
of e. From the first column of the table, we can notice that
both the algorithms are well calibrated since the average error
in the evaluation set (i.e., 20% of the test set) is close to
the desired error level ¢, hence representing a quasi-linear
relationship. According to our definition of “counterfactual
conformity”, the higher the number of fully conformal coun-
terfactual explanations, the more reliable the counterfactual
extraction procedure is. Both methods here considered, for
small values of ¢, output a sufficiently high number of fully
conformal counterfactuals, meaning that both counterfactual
explanations m?{ ‘v and m;{L mederete are representative of the
target class while maintaining, by definition, also a minimal
distance from the factual. In the following analysis, ¢ = 0.1
was selected as a compromise between the severity of the
conformal check and the number of retained counterfactual
explanations. Furthermore, in healthcare applications such as
the one presented here, the use of a higher ¢ (i.e., a more
selective filtering process with respect to counterfactual expla-
nations) may assist in identifying more realistic explanations
with regard to the necessary changes in features to determine
a change in output class. In Table IV, conformal and non-
conformal counterfactual explanations are compared in terms
of desired properties. Conformal explanations exhibit superior
quality in comparison to non-conformal ones (i.e., lower
proximity and implausibility, higher diversity and sparsity).
Non-conformal explanations demonstrate higher discrimina-
tive power, which can be attributed to their greater distance
from the factual points (i.e., poorer proximity), thereby making
them more readily distinguishable from the factual points. The
comparison between the entire set of retrieved counterfactual
explanations (Table II) and the conformal explanations (Table
IV) shows improved quality after discarding non-conformal
explanations, as suggested by the values of proximity, sparsity
and implausibility observed, while diversity and discriminative
power remain similar.

Regarding the use of the generated counterfactual explana-
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TABLE II: Quality measures computed on counterfactual ex-
planations generated with MUCH and DiCE methods: full set
of explanations. 1: Higher values indicate better quality; |:
Lower values indicate better quality.

Availability? gvsvirﬁ Proximity| Sparsity? Implausibility| Diversity!

MUCH
100.0%  94.6%  0.080  0.590 0.629 0.551
69.1%  98.8%  0.002 0454 0.643 0.557

DiCE
e 980 % 770% 0002 0792 0.749 0.545
o 984%  923% 0009 0658 0.757 0.549

TABLE lll: Error and size of the non-conformal, partially-
conformal, and fully conformal sets at varying desired error
levels (¢).

Error Size

Average High — Moderate High — Low
error error error

Non Partially Fully
conformal conformal conformal

MUCH
e=0.01 0.006 0.000 0.011 0.000 0.011 0.989
e=10.05 0.050 0.044 0.056 0.022 0.056 0.922
e=0.10 0.117 0.122 0.111 0.067 0.100 0.833
DiCE
e=0.01 0.011 0.015 0.008 0.008 0.008 0.985
e=0.05 0.050 0.053 0.046 0.046 0.008 0.947
e=0.10 0.141 0.160 0.122 0.084 0.114 0.801

tions for the reduction of CVD risk in patients with COPD,
a closer inspection revealed that non-conformal explanations
are primarily associated with the generation of explanations
with unrealistically high changes in feature values compared
to the observed factual. As an example, Table V presents one
conformal and one non-conformal factual-counterfactual pair
(high to low risk transition) generated using MUCH. The two
factuals shown in Table V describe male patients who are
overweight, are aged between 60-65 years, and are diagnosed
with diabetes and chronic hypertension. Notably, the non-
conformal explanation (E2) is associated with higher changes
in feature values compared to the conformal one (E1), some of
which are unrealistic. For example, a lift in BMI from Class 1
obesity to Class 2 obesity and an increase in triglycerides are
usually associated with increased CVD risk, and a decrease of
about 40 mmHg in systolic blood pressure can be difficult to
achieve from a clinical point of view.

Figure 2 shows the distributions (median, 25% and 75%
percentiles) of the average changes requested by MUCH and
DiCE to pass from the high risk class to the moderate risk class
(panel 2a) and to the low risk class (panel 2b). To ensure a fair
comparison between the two methods, only common factuals
and only fully conformal counterfactuals were considered
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TABLE IV: Quality of counterfactual explanations generated
with MUCH and DiCE methods: conformal vs non-conformal

explanations (e

= 0.1). 1: Higher values indicate better
quality; |: Lower values indicate better quality.

Type llf,‘fvi'n Proximity| Sparsity! Implausibility| Diversityt
MUCH
o Coﬂgﬁmm 99.49%  0.133 0.559 0.925 0.004
R Full
Conformal 94-34% 0077 0591 0.576 0545
. Coﬂggml 99.85%  0.143 0.461 0.932 0.002
m Full
Conformy 9843% 0080 0.454 0.599 0.558
DiCE
. Coﬂ;’fmal 9731%  0.003 0.736 1151 0227
Fun
Coﬁ;‘élr{nal 77.27%  0.002 0.801 0.692 0526
o Coﬂg;ml 98.47%  0.012 0.613 1.162 0.229
Thigh
cO?fl:)lgml 92.65%  0.009 0.664 0.700 0529

TABLE V: Examples of conformal (E1) and non-conformal
(E2) counterfactual explanations generated using MUCH and
setting € = 0.1.

sBP dBP BMI FBS LDL HDL TG totChol
[mmHg] [mmHg] [kg/m? [mmol/L] [mmol/L] [mmol/L] [mmol/L] [mmol/L]

zy,, 150 78 319 80 47 0.9 2.7 6.8
El

afr 124 720 297 69 45 2.0 25 32

zy,, 138 72 321 85 3.0 1.1 13 48
B2

xfor 97 81 377 62 1.37 2.1 2.8 1.3

Shign

(N=337, € = 0.1). Counterfactual explanations generated with
MUCH and DiCE differ in terms of changes in modifiable
characteristics requested for moving from high to moderate
risk and from high to low risk, with MUCH suggesting larger
variations than DiCE. Statistically significant changes (i.e.,
variations in feature values statistically different from 0) were
observed in transitions from high to moderate risk in terms of
sBP, BMI, LDL, HDL, TRIG, totChol, and FBS for MUCH,
and in terms of sBP, BMI, HDL, TRIG, and totChol for DiCE.
In transitions from high to low risk, statistically significant
changes in terms of all modifiable features, except FBS and
LDL were observed using MUCH, and statistically significant
changes in terms of all modifiable features were observed
using DiCE.

The counterfactual explanations obtained with MUCH are
statistically different from those obtained with DiCE for sBP,
LDL, HDL, TRIG, totChol, and FBS when analysing high
to moderate risk transitions (Figure 2a) whereas all features
distributions except for BMI and LDL are statistically different
when comparing MUCH and DiCE in terms of high to low
transitions (Figure 2b). The changes suggested by MUCH
to reduce the risk class are associated, on average, with a
reduction in sBP and dBP, BMI, and totChol and an increase
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(b) Transition from high to low risk.

Fig. 2: Distributions of conformal counterfactual explanations
(¢ = 0.1) simulating transitions from high to moderate (2a)
and from high to low (2b) CVD risk, obtained using MUCH (in
orange) and DiCE (in blue), respectively. Solid lines: medians
of the distributions; dashed lines: 25% and 75% percentiles.

in HDL. These trends are coherent with a general improvement
in the patients’ health status and a reduction in cardiovascular
risk, i.e., decreased blood pressure, lower weight, and better
lipidic profile. The counterfactual explanations generated by
the two methods were also consistent with the individual
characteristics, for example in relation to the comorbidities
here considered (diabetes and hypertension). Specifically, by
comparing conformal counterfactual explanations with their
factuals, we observed a greater median decrease in sBP for pa-
tients with stage 2 hypertension compared to non-hypertensive
ones considering both high to moderate risk transitions (21.00
mmHg higher with DiCE, p = 3.48 x 107%%; 1.91 mmHg
higher with MUCH, p = 1.83 x 10~?) and high to low risk
transitions (39.00 mmHg higher with DiCE, p = 2.44 x 10733,
25.77 mmHg higher with MUCH, p = 1.43 x 10729),
Similarly, a significantly higher median decrease in FBS is
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observed for diabetic patients compared to non diabetic ones
considering both high to moderate (0.90 mmol/L higher with
DiCE, p = 7.70 x 107'2; 1.17 mmol/l higher with MUCH,
p = 2.50 x 10~7) and high to low transitions (1.40 mmol/L
higher with DiCE, p = 1.48 x 10710 ; 1.09 mmol/l higher with
MUCH, p = 8.89 x 10711),

IV. DISCUSSION

This study investigated multi-class counterfactual expla-
nations as an original, interpretable data-driven method to
support the design of tailored disease prevention strategies.
Furthermore, a new metric named counterfactual conformity
was introduced to ensure reliability for the end user by
providing a confidence value for each explanation produced
and enabling rejection of non-conformal explanations.

The proposed approach has been applied to estimate per-
sonalized recommendation for reducing the 10-year CVD risk
in COPD patients. The importance of reducing CVD risk in
patients with COPD is well documented in the literature (e.g.,
[34]), and COPD patients may present a two to five times
higher likelihood of CVD occurrence with respect to non-
COPD subjects [35]. Cardiovascular conditions in patients
with COPD can lead to further complications and more
difficult disease management and CVD prevention is key to
reduce the individual risk. Currently, the presence of CVDs in
patients with COPD is mainly treated following general CVDs
guidelines [36], [23]. However, the use of personalized strate-
gies derived specifically on patients with COPD could lead to
more effective disease prevention and patient management.

Generation of counterfactual explanations. Counterfactual
explanations retrieved from a set of common factual observa-
tions using MUCH and DiCE showed differences in terms of
suggested changes for most of the features. The higher changes
and higher discriminative power observed using MUCH (Fig-
ure 2, Table II) are largely attributable to the reliance of
MUCH on the shape of the classification regions provided
by MC-SVDD, which are further refined and narrowed by the
FPR control algorithm. In general, DiCE has better proximity
(i.e., the generated counterfactual explanations are closer to
the factual) compared to MUCH, and this metric is further
improved once the non-conformal counterfactuals are filtered
out, keeping only the conformal ones (Table IV). The better
proximity is reflected in the less pronounced variation trend,
especially in transitions from high to moderate risk (Figure
2a). DiCE provides a higher availability of explanations in
the low risk class whereas the two methods have similar
availability of explanations in the moderate class.

In both methods, the number of retrieved explanations is
reduced compared to a theoretical value of 100% due to two
types of constraints related to the design of the generation
algorithms, specifically: (i) non-modifiability of a subset of
features and (ii) rejection of candidate explanations with one
or more features exceeding the maximum acceptable values in
Table I. In general, the performance of the algorithms depends
on the design criteria and the more constraints are imposed
(e.g., the higher the number of non-modifiable features and/or
the lower the maximum acceptable values), the more challeng-
ing it is to find a solution during the optimization phase.
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The use of counterfactual explanations in clinical applica-
tions holds potential as a data-driven method for identifying
personalized minimum viable changes to decrease the individ-
ual risk [14]. However, there is not a one-size-fits-all solution
as there may be differences in the explanations generated using
different algorithms that should be evaluated by the physician
on a case-by-case basis, based on patient characteristics and
clinical feasibility. For example, some counterfactual explana-
tions might suggest a significant change in biomarkers (e.g.,
blood pressure, BMI, triglycerides, as shown in the Example
E2 in Table V) that could be deemed unrealistic or unfeasible
to achieve in practice, even with the help of medications and
intensive lifestyle interventions.

Counterfactual conformity. To facilitate a semi-automatic
approach for selecting counterfactual explanations, we in-
troduced the concept of counterfactual conformity, a novel
quality metric for filtering out explanations that are not
compliant with the desired properties. The definition of a
score function as in (5) combines the measurement of two
key properties: proximity and plausibility. Analyzing how the
produced explanations are statistically distributed with respect
to these properties can help understand the global quality
of the generated counterfactual explanations. Furthermore, by
using counterfactual conformity, each explanation is accom-
panied by a local reliability value. Table IV effectively shows
that counterfactual explanations deemed conformal exhibit
better quality compared to non-conformal ones in terms of
desired properties, demonstrating how this value provides the
physician with additional information to determine whether to
consider or discard the specific output.

Limitations and future research. This study evaluates coun-
terfactual explanations from a computational perspective using
a range of quality measures and the newly introduced confor-
mity metric. However, it is subject to certain limitations. De-
spite the high agreement between MC-SVDD and its surrogate
SVM (Cohen’s Kappa coefficient equal to 0.89), it is important
to acknowledge that the comparison between MUCH and
DICE may be slightly influenced by the differences between
the two underlying classifiers. Additionally, to ensure the ef-
fective application of this approach in practice, it is essential to
guarantee the clinical feasibility of the proposed interventions.
Preliminary findings suggest that conformal counterfactual
explanations may be more realistically applicable than non-
conformal ones. To fully achieve the goal of estimating vi-
able recommendations for disease prevention, further research
should focus on incorporating medical knowledge into the
counterfactual generation process and into the definition of
counterfactual conformity, for example by defining expert-
driven dynamic bounds that indicate a plausible range of
acceptable changes for each subject.

Although preliminary, the counterfactual conformity mea-
sure here introduced is a step towards a more precise method-
ology for assessing the quality of counterfactual explanations.
However, an optimal value of ¢ has not yet been defined. In
the future, it will be necessary to establish criteria for selecting
€ by balancing the trade-off between the number of discarded
points and desired characteristics, defined by a combination
of quality metrics and expert knowledge. Moreover, further
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research should include a deeper investigation of counterfac-
tual conformity on a wider range of datasets and applications
and in relation to various measures of counterfactual quality.

V. CONCLUSION

This study presented an XAI based methodology for the
extraction of target risk-reduction strategies from electronic
medical data in the form of counterfactual explanations. The
parallel use of MUCH and DiCE demonstrated the potential
of creating high quality explanations with respect to standard
criteria such as discriminative power, proximity, plausibility,
and sparsity using different classifiers and generators. More-
over, by introducing the counterfactual conformity measure,
we ensured the possibility to discard all those counterfac-
tual explanations that did not guarantee the desired level
of compliance in terms of target properties. The results of
this study are promising and may have implications in the
field of personalized medicine, specifically offering clinicians
actionable suggestions to reduce the risk of developing car-
diovascular complications in patients already diagnosed with
COPD. These explanations, being accompanied by global
and local quality metrics, can provide an additional tool to
choose among potential alternative strategies based on the
desired requirements. However, further validation is necessary
to confirm these findings. In the future, the proposed procedure
may potentially generalize to other chronic diseases and it may
be integrated in clinical decision support tools.
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