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Abstract. The paper gives a simple derivation of the relaxed energy W %€ for
the quadratic double-well material with equal elastic moduli and analyzes W%
in the transversely isotropic case. We observe that the energy W is a sum of a
degenerate quadratic quasiconvex function and a function that depends on the
strain only through a scalar variable. For such a W, the relaxation reduces to a
one-dimensional convexification. W9 depends on a constant g defined by a three-
dimensional maximum problem. It is shown that in the transversely isotropic case
the problem reduces to 2 maximization of a fraction of two quadratic polynomials
over [0, 1]. The maximization reveals saveral regimes and explicit formulas are given
in the case of & transversely isotropic, positive definite displacement of the welis.

1 Introduction

In the theory of phase transitions in crystalline solids, within the small de-
formation theory, one minimizes the energy functional

I(u) =/§7W(\'f"9u),dx

where 2 C V is an open bounded subset of an n-dimensional physical space
V,u: 2 — Vis a displacement with the symmetric gradient (the linear strain
tensor) B = Vfu := $(Vu+ ZuT) and W : Sym — R is the stored energy
defined on the set Sym of ail symmetric second-order fensors (matrices).

The stored energy W has two or several relative minima corresponding
to the phases of the material. In such situations, the effective energy of the
crystal is given by the relaxation of I, i.e., by

I(u) = f W9e(Vn) dx,
2]
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where TV 9¢ is the quasiconvex hull of W, i.e., the largest quasiconvex function
not exceeding W. See [1], I11], [8], [6], and [12}. Recall that a continuous
function W : Sym — R is said to be quasiconvex [5] i

\BIW(E) < [E W(E + Vv(x)) dx

for each £ € Sym, each open E ¢ V and each v &€ W, ™ (E); here |Ej is the
Lebesgue measure of E. The idea behird relaxation is that the macroscopic
deformation E may be a result of an averaging of a complicated microstruc-
ture consisting of different phases that may reduce the energy. Related to but
gimpler than 74¢ is the rank 1 convex hull W7¢ defined as the largest rank 1
convex function not exceeding 1. Recall that W is said to be rank 1 convex
if
W({(1-F +tG) < (1 -t)W(F) +tW(G),

for each F, G € Sym,t € [0,1] such that

G—-F=a@©n (1)

for some a,n € V, wherea®n:= 3(a®n+n®a). It is well-known that the
guasiconvexity implies rank 1 convexity; hence

Wee < W (2)
Moreover, if one introduces W' by
WEo(B) := inf{ (1 — HW(F) + (W (G},

[3], where the infimum is taken over all F,G € Sym, ¢ € [0, 1] satisfying (1)
and E = (1 — ¢)F + G, then clearly

wre < T,"_;ID. (3)

There are not so many examples where W9 can be calculated explicitly.
In Proposition 2.1, Section 2 we point out that W9 is obtained elementarily
if W = F+ (@ is a sum of a degenerate quasiconvex function F and a function
(' that depends on E only through a scalar variable z = E - N where N is a
fixed direction in the space Sym. Namely,

WeE=Wre=We=p+@G

where G is the convex hull of G. The hypothesis covers the quadratic double—
well energy with equal elastic moduli by Lurie & Cherkaev {4], Kohn [2],
and Pipkin [9], the latter reference contains implicitly the result in the form
Wee=F4+d.

The relaxed energy W9 depends on a constant g defined by a three—
dimensional auxiliary maximum problem introduced by Kohn and Pipkin
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which involves the tensor of elastic constants of the material and the dis-
placement tensor C between the bottoms of the wells. The constant g is
discussed in detail by Kohn for isotropic materials, with references. In the
second part of the paper we examine g for a transversely isotropic material.
To calculate g, one has to determine the inverse of the (isothermal) acoustic
tensor D{n) (Section 3). Next we pass to the case when C has the transversal
symmetry a3 well. It is shown that the problem reduces to a maximization of
a fraction of two quadratic polynomials over {0,1], and the problem of maxi-
tnum is reduced to solving a quadratic equation. Surprisingty, and fortunately,
the discriminant is a full square and thus the roots are given by rational ex-
pressions (no square roots) in the five elastic modufi o, Qxp, &3, 04, &g, Of the
transversely isotropic material and the data of C. The problem reduces to
determining whether or not the root(s) fall in [0,1]. This leads to several
regimes in which g is given by different expressions. We calculate g explicitly
for the case of C transversely isotropic and positive semidefinite and special-
ize the results to the cases C = e®e,C = 1—e®e, C = 1 where e is the
preferred unit vector of transversal symmetry.

2 The quadratic double well energy with equal moduli

Let Lin be the space of all linear transformations (tensors) on V, and write
A B =tr(ATB),|A| = VA A, A,B € Lin, for the inner product and norm
on Lin, with A” the transpose of A and tr the trace. For a,b € V, let a®@ b
be the tensor defined by (a@b)v = (b-v)a,v £V,

Proposition 2.1. Let W : Sym = R be of the form
W(E)=F(E)+G(z), Ee€Sym, (4)

where x 1= N-E, F is a guasiconves function, N € Sym and G : R = R.
Assume that F is degenerate in the sense that there exist b,c € V such that
N.(bh®c)#£0 and

F(E+ )b ®c) = F(E) {5}
for all BE € Sym, A € R, Then W = W = Wi gnd
WI*(E} = F(B) + G(z), E < Sym, (6)

where G is the convezification of G.

Froof. Let H denote the function on the right-hand side of (6). Since F is
guasiconvex and E — G(N -E) convex, H is quasiconvex and since H < W,
we have H < W9, By (2), (3), the proof will be complete if we show that
Wi < H. Tet E € Sym and ¢ > 0. By the definition of G there exist 1hzEeER
and ¢ € (0,1) such that

z=N-E=(1-1t)y+tz, {7)
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(1 - $)Gy) +1G(2) < G(z) + e (8}

Let b, ¢ be as in the hypothesis and set A=b@ec. By N-A # 0 and (7} there
exists a A € R such that

y=x+(1~1)"IAN-A, z=z—tTTAN-A

Let
F=E+(1—t)"'2A, G=E-t1)4A,

5o that B = (1 - )F + tG and hence W9(E) < {1 — )W (F) + tW(G). By (5)
we have F(F) = F() = F(E) and hence

W(F) = F(E)+Gly), W(G)=F(E)+G(z)
Consequently,

(1= )W (F) + tW(G) = F(E) + (1 - )Gly) + tG(2) < F(E} + Gl&) + &

thus Wio(E) < F(E) + G(z) +e = H(E} +«. 0

‘The quadratic double well energy W with equal elastic moduli ([4], [2],
19]) is defined by
W(E) = min{Wo{E), W, (E)},
Wo(E) =iCE-E, Wi(E) = ;CE-C)-(E-C)+4d,
E € Sym, where C,C, and d are as follows. C is a fourth-order tensor of elastic

moduli, interpreted as linear transformation on Sym, and it is assumed that
C is symmetric and positive definite, i.e.,

A-CB=B.-CA, ABe€Sym,
and
E-CE>0, E€Sym, E#D

Furthermore, C € Sym, C # 0, is a constant tensor, the displacement between
the relative minima of W, and d € R the difference between the minima. We:
abbreviate
N:=CC, C:=N-C,
B(a,n):=Cla®n) -(a®n), antV,

and recall that the acoustic tensor D = D{n) € Sym corresponding to n €
S:={neV:|n =1} is defined by

Dnb=Chonn beV (9)

The positive definiteness of C implies that D(n) is positive definite and hence
invertible.



Relaxed energy for transversely isotrapic two-phase materials 5

Theorem 2.2. [2] We have W = W™ = W where

Mr/QC(E)_ %CEE_(QQ}_I(NE_E)z 3f§<NE<E+g,
S w (E) otherwise,
g:=max {(Nn-a)’/B(a,n) : |a| = o] = 1}, (10)

£:i=1C+d-1g (11)

‘The constant g has been introduced by XouN [2], via (20} (below): we also
refer to [2] for a detailed discussion of the behavior of 134,

Proof. We use Proposition 2.1. If g > 0 is arbitrary and F,G are defined by
F(E)=i{CE-E- (29)"'(N-E)?,

G(z) = min{(29)7'4®, (20) "' (z — g)* + £}

where £ is as in (11), then a calculation proves the structural formula (4).
"The second differential of I is

D?*F{E)(B,B)=CB-B — g"}(N.B)?

for any E,B € Sym. We now want to choose g is such a way that all the re-
maining hypotheses of Proposition 2.1 are satisfied. Thus F must be quasicon-
vex, which for a quadratic function is equivalent to the Legendre-Hadamard
condition D*F(E)(a @ n,a @ n) > 0 for all a,n, E, which is eguivalent to

Bla,n) — g~ (Nn-a)* > 0 (12)

for all a,n. Furthermore, W must be degenerate in some rank 1 direction (5)
which means here
Bb,c) — g7 (Ne - b)? =0 (13)

for some nonvanijshing b, ¢. The only possibility to satisfy (12) and {13) is to
set (10). Indeed the definition gives immediately (12) and b, ¢ are realized as
the maximizers in (10). Note that C # 0 implies g > 0 and N- (b ®¢) # 0.
Thus Proposition 2.1 requires us to calculate the convexification of G. Since
o) (2g)712? fr<iC+d
) =
(29) M w—g)*+£ Hr>3C+d,

the convexification of (3 is

. {(29)'15(%—5) fg<z<f+g,
Glz) =
G{z) otherwise.
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This can be determined by the common tangent construction: G is replaced
by the common tangent to the graph of G in the interval from z := £ to
1y := ¢ + g, determined from

G'(y) =G'(x), Gly)=GClz)+G'(e)y —=).

The formula (6) now provides the result. o

The following three remarks deal with the properties and alternative def-
initions of g. We say that a C € Sym is compatible with 0 if C = b @ n for
somebe V,neB.

Remark 2.3. We have
0<g«C (14)

and g = C if and only if C is compatible with 8.

Proof. The inequality g >> 0 is obvious. By Schwarz’s inequality for the scalar
product on Sym induced by C,

(Nn-a)? = (CC-(a®n))? < (N-C)Cla®n} (a ®n) = CB(a,n)

for any a,n € V, which by (10} implies (14),. Moreover, the equality holds if
and only if C and a ©n are proportional. This shows that g = ' if and only
if C is compatible with 0. : O

Remark 2.4. For cachn € S let

bin) = D7 {n)Nn, (15)
s0 thet b(n) is the unique solution of
C(b(n) ®n)n = N {(16)
the function b: S — V is infinitely differentiable and we have
g = max{h{n):n¢ 5} 1

where

h(n) = Nn-b{n) = B(b{n),n) = D" {n) - (Nn @ Nn). {18)

Proof. We recall that D(n) is positive definite and hence invertible. Thus
the definition (15) is meaningful and simple considerations show that b is
infinitely differentiable. Alternatively, for each fixed n, f)(n) is the unique
point of minimum of the strictly convex function r : ¥ — R defined by

r(a) == 1B(a,n) —Nn-a, aeV.
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The equality of the three expressions in {18) is ohvious and the existence of
the maximum in (17) follows from the continuity of A. Let

s(a,n) ;= (Nn-a)?/B(a,n)
for each a # 0 # n. Using (16), we find that

s(b(n),n) = B(b(n),n)

and thus if we denote by g the maximum in (17), we have ¢ > 7. To prove
g < g, it suflices to prove that

s(a,n) < s(b(n),n) = B(b(n),n) (19)

for all a # 0,n € S. Let n be fixed. Since b := b(n) iz a minimizer of r and
r(b) = —1Nn- b the inequality r(a) > —3Nn- b gives

iB(a,n)—Nn-a+ 3Nn-b > 0.
Replacing a by Aa, A € R, we obtain
£B(a,m)3* —Nn-ax + iNn-b > 0.

Thus the discriminant of the quadratic form is nonpositive. This gives (19).
O

Remark 2.5. For eachn € S let
Vin) ={a@neSym:acV}

and for each subspace M C Sym let Pps : Sym — Sym be the orthogonal
projection onto M. Then

g = max{|Pg: /2y C/2C* : n € S}. (20)

This is KouN’s original definition of g.

Proof. Let n € §, denote P := Pg1jayy; C/2C and write P = C/2(b O n).
One has
(P —CY2C).CY*(a®n) =0

for each a € V, which gives (C/*P)n = Nn and hence
C(b ®n)n = Nn.
In the notation of Remark 2.4 thus b = b(n). Furthermore,
IPeis2ymCH2C1R = C2 (b @n) - C/%(b © n) = B(b,n)

and a reference to Remark 2.4 completes the proof. 0
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3 Transversely isotropic elasticity tensor

Assume n = 3 henceforth. The elasticity tensor C is said to be transversely
isotropic if there exists a unit vector e € V (the preferred direction of trans-
verse isotropy} such that

C(RERT) = R{CE)R”

for all B € Sym and all orthogonal tensors satisfying Re = e, To describe
the form of the transversely isotropic elasticity tensor succinctly, for any
A,B € Sym we denote by A ® B and A ® B the linear transformations on
Sym defined by

(A®B)H = (B-H)A, (ARB)H=}(AHB+BHA), HeSym.

In [13] and [10] it has been proved that a linearly hyperelastic, transversely
isotropic material is specified by only five elasticities as foliows. Let P = e®e
be the orthogonal prejection onto the line spanned by e and Q =1 - P the
projection onto the orthogonal complement of e, and let C1,Cy,C3,C4,Cs
be the linear transformations on Sym defined by

C1=P®P1
C2=Q®Q1
Ci=P®Q+QsP, (21)

Cy=2PHQ,
T =2QRQ - Cs.
A € is an elasticity tensor of a transversely isotropic material if and only if
C=cC + 0l + 3Ty + auCs + s Cs, (22)

for some o, ¥z, ara, &g, o5 € R The tensor basis €, €y, Cy, Cy, €y used here
coincides with the basis Py,Ps,Ps,E1, Es in [10]. The tensor € is positive
definite if and cnly ¥ [13], [7]

oy > D, as >0, o +209 >0, ciog-— G.'g >0, {23)
which we assume throughout. We abbreviate
Qg 7 Qg + 5, O = Oy Qg

Note that (23) imply an > O,as > 0,0 > 0; thus only as and a7 can
be negative. Furthermore, (23) specify an open convex subset of quintuples
(0,00, 0,04, 05) in R®.
The explicit expression for b can be obtained from {21). It is convenient
{0 express n in cylindrical coordinates with the z-axis in the direction e. That
is, we write
n=zet+p, z=n-e p=Qn (24)
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also denote p = |p|. The acoustic tensor D(n) (see (9)) is
Din) = (212 + 40" )P + a2p @ p + 20720 @ p + (s2® + asp?)Q.  (25)

To calculate D~1{n), let us consider the case Pn #0and p #0. Let vy, vy, vy
be the orthonormal basis

Vi=e, viy=pfp vi=viAva
We have
D{n)vi = r11v1 + K12v2, D{n)vy = k1avi + kzzvy, D{n)vs = Kagva,

where
- 2 2 _ 2 2
Bl =ouz® +oypt, Koy = gz’ + agp”,

_ L2 2
K13 = Q7zp, K3z = @42 +asp .

Due to the positive definiteness of C and the equality z%+ p? = 1, the scalars
£33, K11 and kgo are greater than zero whenever inj =1and

D(n) = R11VI @ V1 + KooV @ Vo + 2K19V1 © Vo + Kazvz @ vs.
Hence
D'l(n) = W kgov1 @ v + Ky Ve ® Vo — 2812V @ va) n§31va @ vy, (26)
where w = Ki1K20 ~ ks, ie.,
W= agegp + agag2t & (onog — of — 2agay)p2

By (23}, w > 0 for each [n| = 1. Alternatively,

-1 Koo Ras P +op©p—2orzK33e @ p -+ wQ
D™ m) = Whag

where
o= (0F — )2 — apayp®

and it is noted that wksg > 0 for each n # 0. Introducing &; = s (n) = Nn.v;,
we find from (13) and (26) that

b(n) = w ™t (ko281 — K1a82)v: + W (k1183 — K1281)Va H,3_3153V3
and hence

h{n) = w™ (k9987 — 2r138180 + Kazsh) + regyt 82, (27)
From

N=0o(P-CP+a(Q -C)Q+a:((Q-C)P + (P-C)Q)
+ 204(PCQ + QCP) + a5 (2QCQ - (Q - ©)Q},
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it is found that
sy = {aP - C+ asQ - Cjz + 2a4pvy - Cvy,
8g = (QQQ - C+ caP - C)p + 2e042vy - Cvo + (l5p(2'V2 +Cve — Q- C), {28)
8y = 2(eazvy - Cvy + Qg OV - Cvg).

To calculate the maximum (17) with k as in (27) seems to be a difficult task
in general and the following section deals with a natural special case.

4 The fransversely isotropic displacement of the wells

We consider the case when C has the transversal symmetry, Le.,
RCRT =C
for each orthogonal tensor R such that Re = e. Hence C must be of the form
C =8P +5,Q (29)
for some real 8., 8,. The insertion of (29) into (28) shows that
81 ="7:2, &2=7, & =0
where we define
v = a1 + 2038, v = aafl: + 202f,. (30)
Thus (27) provides
2,2 _

(ep® + a1 22)viz

2 Qs VPt et + (22 g pP)vE p?
ha) = : Y5 Y0P (e 4P )vop .

W

If we make a substitution z = z? and use 2% + p® = |n|* = 1, we find from
(17) that

g =max{h(x):0<z <1} (31)
where
h=Z,
g
p= (ag(1—w)+a4w}’yf:c—-2a7'y£'yp(1—-:c)sc-l—(aw—!—m(l—x))(l—m)*yﬁ, (32)
g= (mz+ ol - 12)) {as(l — 1) + auz) — af(l - )z (33)

The above considerations show that g(z) > 0 for any x € [0, 1]. The maximum
in (31) is realized either at the endpoints 0,1 or at some interior point of [0, 1]
in which case #'(z) = Q0 which is equivalent to

M(z) =0, (34)
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where
M=p'qg-py.
One finds that
M(z) = ay(az’® + bz + ) (35)

where
o= (g — 1 = o7}y, + (g — s + @7) %)

x ({ar = ag —ar)yp + (08 — @4 ~ 07)7:)
b= 2(::{:1 - a? ] cu,;)'yﬁ + 2(agevy — ag)'rf + 4o Yoz
¢ = ag(owYy + Qs — aryp) (- u, + teYe — a7Y,).

To discuss (34), assume first that a # 0 so that (34) is a quadratic equation.
Its discriminant is

2
A = daf{agery? + mary? + (0 — o — crae)vay,)
and hence (34) has always two real roots. We write
Ar g = 2oy (QSQTT? + a'la'—fyg + (af — a% - alas)'y;'yp) (36)

so that A%, = A but A,/ can be both positive, zero, or negative. We denote
1/2 1/2 p A
the roots by z4+ and assign them by the convention

. —b :l: A1/2
Ty = % 3
explicitly,
gy — OgYp — A7Yp
Ty = ;
(o1 —ag — o)y, + (g — s — a7)7; a7
r = Qgys - Yy — 07y
T {as—ar—ar)y, + {as - o+ on)v
The values of h at these rocts are
- QG’Y? — 2077, — 2047y + 05172
hy == hizg) = - 5 - ,
Ol — o — 2aray — oy (38)
. CpYE = QY Yn + D04V, + Y
he = bz )= 67z Yz Yp 4Y=Yp : 1"1,9.

kgl — ﬂ% + 207y - s 51

respectively, The roots x4+ may but need not fall in the interval [0,1]; this
depends on the concrete values of ;,7,. This will be discussed below. Note
further that if z = x4 is a root then

T - ]\4”(3::{:} _ ﬂl/2
Wiee) = Flos) - Plas) (39)




12 C. Padovani, M. Silhavy

and hence only one of the roots can correspond to a local maximum of h. We
denote by ¢ the root x for which M'{z) > 0 and note that this is unambiguous
since x4 = z_ if Ay, = 0. We furthermore write f; for the value of hoatt,
which is one of the two values in (38). Next assume that a = 0 but b # 0 s0
that (34) becomes a linear equation with the sclution

QoY — O37p + (5Yz
G37s + O5Ys — Q1Y T Q2Y: — X3,

and the correspoending value of h is

p 23370 T O57 + 0ez + oy
.=

o — 0F + o ay

To summarize, we have defined the quantity # in the cases a # 0 and ¢ =
0,b # 0, Otherwise, we leave t undefined. Further, note that the values of A
at z = 0,1 are

2

2 2
ho:l& By o= 22

CI:E’ 1= (23]
and denote by My, My the values of A at 0,1, respectively:
Mo = au(oay, + asvy: — aryp){@ey: — aeyp — o7vp) (40)

My = ay (aay: — oy, + o77:) (0¥, + 04y — @172) - {41}
The following proposition outlines a pessible strategy for determining the
maximum.

Proposition 4.1. Assume that (23) hold. Then

@ if
My>0, My<0 (42)
then t € (0,1] and
g = hy; {43)
(ii) if at least one of the two inequalities in (42) does not hold and Myhf; <0
then
g = max{hg, h1}, (44)

(i) if MoM,y > O then either none or two roots are in (0,1); in the former
case (44) holds, in the latier case

g = max{hy, h} {45)

where
{hl if My > 0,
by =

Tl ho if M <O.

The procedure is based on determining the signs My and M;; in view of the
factorized form of the expressions (4C) and (41) this is relatively easy. Note
that (i), (ii), and (iii) are mutually exclusive and cover all possibilities.
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Proof. Note first that for any = € [0, 1] we have

R'(z) = (46)

where we use that g(z) # 0 on [0,1). {The function h may have singularities
outside of [0,1].) Assume first that a # 0 so that M is quadratic ad we have
two possibly coinciding roots. (i): Assume that (42) hold. If My = M) = 0
then the two roots are 0,1, and (43) follows. If My > 0, My = 0 then one of
the two roots is 1. (a) If the other root w is in (0,1) then My > 0,M; =0
imply that M(z) > 0 for z € (0,w) and M(z) < 0 for z € {w,1). From this
we obtain that M’(w) < 0 and A{w) > hy, h{w) > hy. Thus z = ¢ and (43)
follows. (b) If there is no root in (0,1) then M (z) > 0 on {0,1} and hence
M'(1) < 0. Thus ¢t = 1 and (43) follows again. The case My = 0, My < 0 and
the case Mp > 0, M7 < 0 is similar. (if): If at least one of the two inequalities
in {42) does not hold and My, < 0 then either

My <0, M;>0, (47)

or
My >0, M;<O. (48)

Consider the case (47). There can be at most one root in (0,1). If w is such a
root then w is not a point of maximum of A since My < 0 implies M’ (w) > 0.
Thus (44) follows. If there is no root in (0,1), equation (44) follows as well.
The case (48) is similar. (iii): By MyM; > 0 we have that My, My are either
both positive or both negative. Since M is quadratic, the assertion about the
roots foliows. If there are no roots, then (45} follows. Assume that the two
roots are in (0, 1) and My > &. Denote them by Z.,, Tas With £, < zps. Then
h increases on (0, @), decreases on {Ty, Tir) and increases on {zar,1). Thus
the only points of maximum can be z,,, 1 and the assertion follows. The case
Mg < 0 is similar. This completes the proof in the case @ # 0. f o = 0 then
M is linear and the above considerations simplify accordingly; the results are,
however, formally the same. ]

5 'The positive definite displacement of the wells

Note that C as in (29) is positive semidefinite if and only if 8,, #; are non-
negative. Proposition 3.1, below, gives an explicit form of g in this case. The
following inegualities play role in the formulation of the result:

(49)

agY: — QaYp — aryp 2 0,
ey —ai1Yp+ arye <0
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Proposition 5.1. Assume that (23} hold and let §,, 5. = 0. Then if

asY. — a3y, > 0, (50}
we have
eVE = LY, — 204YT, + QYR
67z it ');p 47=Yp : 175 i (49) hold,
Qgte; — QF — 2oy — 0
9= - (51)
max { jﬂ, —’L-} otherwise;
L. 1 {}:6 .0:1
if
agY: — a3Yp <0, (52)
then y R
_ae; — 20077+ 2 T au; (53)
- aga — o2 + 2aray — af ’
Proof. Let us first give the proof under the assumption 5, > 0. Then
a1y, — a3ny: > 0 (54)

since the left-hand side is equal to 2{ayan — af) 3, and we have (23). Assume
that (50) holds. By (37) we have

=T
where n'= agvy: —azy, > 0 by (50)andd=n—p where p = a3y, —azvy: >0
by (54). From this we conciude that z_ is outside of the interval [0, 1]. Assume
that, the inequalities (49) hold. Then combining (40}—(41) with (49) we find
that My > 0, M; < 0 and Proposition 4.1(3) tells us that t € [0,1] and g = hs.
As z_ ¢ [0,1], necessarily ¢ = z4 and (51), follows. If at least one of the
inequalities in (49) does not hold and MyM; < G then we have (51), by
Proposition 4.1(ii). If at least one of the inequalities in (49) does not hold
and My, > 0 then Proposition 4.1(}ii) says that either none or both the two
roots are in (0,1); as z.. € [0, 1], necessarily the former case occurs and then
we have (51), by Proposition 4.1(ili). Assume that (52) holds. This reads
(a0 — 0f)B: + 057 < 03

combining (23} with 8. > 0 we conclude that
v- < 0. (55)

Furthermore, let us prove that
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To prove it, note that (55) reads

@18, < -—2(13,6,;, (57)

while the opposite of (56) reads
202, < —azf;. (58)

From (57) we conclude that «z < 0 and thus we can multiply (37) and (58)
to obtain, after canceling the positive term £,4., that aycs < of which
contradicts {23). Thus (56) holds. Let us use this inequality to prove that
My = 0. This requires us to prove that

§ 1= gY: — 04, — @7Yp < 0

and we have
8= (Q'G"t’z - 053'Yp) - 2\'14’}';)3

the term in brackets is nonpositive by {52) and the second term is negative
by (56). Next prove that M; < 0. This requires to prove

8= gy, — oY, oy <0

We have
5= —(17p — a37:) + 20475

the term in the brackets is nonnegative by (54) and the second term is non-
positive by (85). Thus sincs Mg < 0, M; > 0, Proposition 4.1(3) says that
g = hy. We have

o

Iy = E‘
where n = agy, — asv, — 2ay4y, which is negative by (52} and v, > G. The
denominator is d = n + p where

=017y, — (054 +ar)y: = (al'}”p - aﬂ'}'z) — 2047, >0

where we use (54) and v. < 0. Thus zo ¢ [0,1]. Hence ¢+ = z_ and (53)
foliows from g = ke, This completes the proof in the case £, > 0.

The case 8, = 0 is much simpler since we have C = 4.P and thus C is
compatible with 0. We have the solution given by Remark 2.3: g = ¢ = C-CC
and hence

g=flo (59)

and the only thing we have to prove is that the description in the proposition
gives the same value. We have

Yo = Gy Yp = Q3.
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Using this, one finds that (50) holds while (49), is violated. Thus by (51},

2

2 2
g = max ﬁ,ji}

and this coincides with (59). ]

We conclude this section with calculations of g in some particular cases.
Note that when g is considered as a function of C, written then g is a homo-
geneous function of degree 2, ie., for any A € R we have g{AC} = Ag(C). A
direct specialization of Propesition 5.1 gives the following examples. . .

Special Case 1: C=7P. Then
g = Q3.
Special Case 2: C =1Q. Note that for C=Q we have 8, = 0,3, = 1in (29)

and hence v, = 20,7, = 202 by (30). Distinguish the cases whether or not
the inequalities

Qates > 20004, Q10 — 0.’% > 2030, (6{]}
hold. For aa > 0,

oi0d — dagazoy — 0das + ajas

if (60) hold
oo + onas — 4of — dagay — of if (60) hold,

2 2l

o ol .

max q —2—, —2 ctherwise,
G + s " Q)

g=4

while for ag <0,
B 40:104% + afag ~ a0}

Qg + Q5 — ag '

Special Case & € = 1. The following inequalities will play role in the
formulation of the result:

ayom — oF > doges + Qom0 — onos — 2azos, } (61)

Qg = CL% > o + 2ago.
The resuls reads: if
o — o + ayes + 2azas > 0

then
(cen + 20i10)0d + asaf — dawapoag

of — da? — dogas + mas

if {61) holds,
g =

— { (053 + 2(:‘:!'3)2 (011 + 20!3)2

, } otherwise,
O + o5 oy
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while if

2
oGy — a3+ apos + 2ogas <0

then

_ daz0f + (1 +4es)(0f + onas) + daz0d
Q‘g + oy

where we abbreviate

2
Qg = (g — a%, o = a1 + 2a3,  ayp = 2ap + a3.

Acknowledgment. The work of M. Silhavy was supported by Consorzio Pisa
Ricerche and Grant 201/00/1516 of the Grant Agency of the Czech Repub-
lic. Also the financial support of the Progetto Finalizzato Beni Culturali of
C.N.R. is gratefully acknowledged. The authors are indebted Fernando P.
Duda for reading a previous version of the manuscript.

References

1

2.

10.

11,

12,

13.

Dacorogna, B. Direct methods in the calculus of variations Berlin: Springer
1989

Kohn, R. V. The relazation of ¢ double-well energy Continuum Mech. Ther-
modyn. 3 (1991) 193-236

. Kohn, R. V., Strang, G. Optimal design and relazation of varietional problems,

£, 11, I Comm. Pure Appl. Math. 38 {1886 113-137, 139-182, 353-377
Lurie, K. A., Cherkaev, A. V. On a certain variational problem of phase equi-
tibrium In Material Instabilities in Continuum Mechanics J. M. Ball {ed). pp.
257-268 Oxford: Clarendon Press 1987

Morrey, Jr, C. B. Multiple integrals in the calculus of variotions New York:
Springer 1966

. Miiller, 5. Variational models for microstructure and phase transitions In Col

culus of veriations and geometric evolution problems {Cetraro, 1996) Lecture
notes in Math. 1713 pp. 85-210 Berlin: Springer 1999

Padovani, C. Specirel decomposition and strong ellipticity of transversely
isotropie elasticity tensors Report CNUCE-B4-2000-013 (2000)

- Pedregal, P. Parametirized measures and variational principles Basel Boston

Berlin: Birkhiauser 1997

- Pipkin, A. C. Blastic moteriols with two preferred states Quart. J. Mech. Appl.

Math. 44 (1991) 1-15

Podio-Guidugli, P., Virga, E. G. Transuersely isotropic elasticity tensors. Proc.
R. Soc. Lond. A411 (1987) 85-03

Roubitek, T. Relozation in optimization theory and variationel caleulus Berlin:
W. de Gruyter 1997

Sithavy, M. The mechanics and thermodynamics of confinuous medic Berlin:
Springer (1997)

Walpole, L. J. Fourth-rank fensors of the thirty-two erystal classes: multiplica-
tton tebles. Proc. R. Soc. Lond. A391 (1984) 145-179







