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Fe65 protein interacts with the cytosolic domain of the amyloid
precursor APP. Its possible involvement in gene regulation is
suggested by numerous observations, including those demonstrat-
ing that it activates transcription. Here, we show that the Fe65
transcription activation domain overlaps with the WW domain
of Fe65 and binds to the nucleosome assembly factor SET. This
protein is required for the Fe65-mediated transactivation of a
reporter gene. Two-step chromatin immunoprecipitation experi-
ments demonstrate that a complex including Fe65/AICD/Tip60
and SET is associated with the KAI1 gene promoter. Suppression
of SET levels by RNA interference shows that this protein is
required for full levels of basal transcription of the KAI1 gene.
These results further support the function of Fe65 and APP in
gene regulation and show a new role for the SET factor.
Keywords: APP; Tip60; chromatin immunoprecipitation; KAI1;
Alzheimer
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INTRODUCTION
Fe65 is a multidomain protein having a WW domain in the amino-
terminal half and two PTB domains (PTB1 and PTB2) in the
carboxyl-terminal half. Numerous results have given support to
the possible role of this protein in gene regulation. In fact, it was
demonstrated that Fe65 is present in the nucleus (Minopoli et al,
2001), where it interacts with the histone acetyl transferase Tip60
(Cao & Sudhof, 2001) and was found to be associated with and to

regulate the expression of the KAI1 gene promoter (Baek et al,
2002). Nuclear localization of Fe65 was also confirmed by cell
immunostaining, showing the presence of Fe65 in intranuclear
speckles (Muresan & Muresan, 2004; Von Rotz et al, 2004).

Fe65 interacts with the b-amyloid precursor protein APP (Fiore
et al, 1995). The latter is a type I membrane protein involved in the
pathogenesis of Alzheimer’s disease because it is the precursor
of the main constituents of Alzheimer’s senile plaques. The
b-amyloid peptides are generated from APP through the action
of two proteases named b- and g-secretase (Haass, 2004). The
cleavage of APP by secretases generates a peptide, named AICD
(APP intracellular domain), which is released from the membrane
and is found in the nucleus (Gao & Pimplikar, 2001; Kimberly et al,
2001; Von Rotz et al, 2004). Intact APP functions as an
extranuclear anchor for Fe65, thus preventing Fe65 nuclear
translocation (Minopoli et al, 2001). The cleavage of APP
probably allows Fe65 to reach the nucleus. This regulatory
mechanism resembles that controlling the function of other
transcription factors, such as those involving N-cadherin cleavage
and the CREB-binding protein or Notch (Marambaud et al, 2003;
Schweisguth, 2004). Recently, a direct involvement of Fe65 in
transactivation events through its WW domain has been proposed
(Cao & Sudhof, 2004). Here, we show that Fe65 is able to activate
transcription depending on a small region of the protein
encompassing part of its WW domain. This region binds the
nucleosome assembly protein SET, and the activation of transcrip-
tion mediated by Fe65 is dependent on SET. An oligomeric
complex immunoprecipitated by antibodies against Fe65, APP,
Tip60 or SET targets the KAI1 gene promoter, and SET is required
for the basal transcription of this gene.

RESULTS AND DISCUSSION
The transcription-activating element of Fe65
The ability of the WW domain of Fe65 to activate transcription
when fused to the Gal4 DNA-binding domain (Dbd) could be due
to the interaction of this domain with certain cofactors. According
to this possibility, when a fusion protein, including the Gal4 Dbd
and the full-length Fe65 (Gal4–Fe65f.l.; Fig 1A), was
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Fig 1 | SET interacts with Fe65. (A) The Gal4 Dbd was cloned upstream of the full-length Fe65 (Fe65f.l.) complementary DNA or various deletion

mutants of this cDNA. Striped box in the m8 construct indicates a 19-amino-acid-long region in which the same 19 residues present downstream

of the WW domain in the m6 construct are arranged in a scrambled sequence. The Fe65 sequence covered by the crucial constructs m6, m7, m9

and m10 is indicated along with that of the WW domain. (B) The deletion mutants of Fe65 fused to the Gal4 Dbd described in (A) have been

co-transfected in HeLa cells with the G5BCAT vector. CAT expression is reported as fold increase compared with that observed in cells transfected

with the Gal4 Dbd alone. The values are the meanþ s.d. of triplicate experiments. The western blot (WB) of one representative experiment is shown

below. (C) Proteins eluted from the mutant (mut) or wild-type (wt) peptide columns (fractions E1–E3) were resolved on 10% SDS–polyacrylamide gel

electrophoresis (SDS–PAGE) and the gel was silver stained. The arrow indicates the 35 kDa band, which was identified as SET by mass spectrometry.

(D) Proteins eluted from the mutant or wt peptide columns (fractions E1–E3) were resolved on 10% SDS–PAGE and analysed by western blot with

a-SET antibody. The lysate of HEK293 cells transfected with SET expression vector was loaded as a control. (E) Proteins from HEK293 cells

transfected with Myc-Fe65 were immunoprecipitated with a-Myc monoclonal antibody or with mouse IgGs. Immunoprecipitated proteins were

analysed by western blot with SET antibody. (F) Proteins from HEK293 cells transfected with HA-SET were immunoprecipitated with a-HA antibody

or with mouse IgGs. The western blot with Fe65 antibody of the immunoprecipitated proteins is shown. (E,F) 50 mg of the input lysate was loaded

in the first lane as a migration control. The arrowheads indicate the bands of SET and Fe65.
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co-transfected with the G5BCAT reporter vector and with various
constructs encoding fragments of Fe65, we observed that only the
region including the WW domain has a marked inhibitory effect
(supplementary information online). This suggests that it is titrating
an endogenouss limiting factor.

To determine the optimal amino-acid sequence for use as bait
to purify this factor by affinity chromatography, we dissected the
Fe65 region responsible for the activation of transcription when
fused to the Gal4 Dbd (Fig 1A). The deletion of both PTB domains
of Fe65 results in an increased transactivation efficiency, in
agreement with the hypothesis that they have an inhibitory role
in the context of the intact molecule (Cao & Sudhof, 2004). On the
contrary, the deletion mutants containing the WW domain
strongly activate the transcription of the reporter gene (Fig 1B),
but the WW domain alone does not act as a transcription
activation domain (construct m7). In fact, at least 19 residues at
the C-terminus of the WW domain (constructs m4, m5 and m6)
are needed to observe a significant CAT gene expression. This
19-residue-long stretch contains some specific sequence informa-
tion because it cannot be replaced by a scrambled sequence
(construct m8).

The m9 protein, lacking the first nine amino acids of the
N-terminus of the WW domain, activates transcription to the same
extent as the m4 protein, whereas a further deletion of ten amino
acids (m10 construct) is completely devoid of activity. These ten
residues contain the YYW motif (underlined in Fig 1A) that is
necessary for AICD–Fe65-mediated transactivation (Cao & Sudhof,
2001). Thus, it seems that the transcriptional function of Fe65 does
not coincide with its WW domain. Accordingly, the minimal region
of Fe65 that activates transcription (m9) does not interact with
Mena, which on the contrary interacts with the Fe65 WW domain
(supplementary information online; Ermekova et al, 1997).

The WW overlapping region of Fe65 interacts with SET
Thus, we have decided to use this WW overlapping region (WOR)
as bait to affinity-purify the factors mediating Gal4–Fe65-induced
transactivation. HEK293 cell extract was first used to challenge a
peptide in which the YYW motif, necessary for transactivation, is
changed to AAA, and then to challenge a second, wild-type (wt)
synthetic peptide. This experimental approach allowed us to
purify one protein band eluted from the second chromatography
(Fig 1C). Mass spectrometry (MS) analysis of the tryptic digestion
of the protein indicated that it is SET, a protein belonging to the
family of nucleosome assembly proteins (von Lindern et al, 1992).
Western blot analysis with an a-SET-specific antibody confirmed
identity (Fig 1D).

The existence of an Fe65–SET complex is further confirmed
by co-immunoprecipitation experiments. In fact, Myc-tagged Fe65
immunoprecipitates with endogenous SET (Fig 1E) and, conver-
sely, haemagglutinin (HA)-tagged SET immunoprecipitates with
endogenous Fe65 (Fig 1F).

The WW domain is a protein–protein interaction module
consisting of a triple-stranded antiparallel b-sheet characterized
by several conserved residues, including the two Trp that give the
name to the domain (Sudol & Hunter, 2000). On the basis of the
sequence of the m9 construct, it seems that the minimal module
needed to interact with SET only contains the second and third
strands of the b-sheet and a stretch of amino acids flanking
the third strand at its N-terminus. This minimal structure does not

retain the ability to interact with Mena, suggesting that the WW
domain is able to interact with its partners in two ways: one
requires the complete three-stranded b-sheet, whereas only two
b-strands followed by a C-terminal stretch are necessary for the
second type of interaction. This possibility suggests that the WW
region is available for the binding of two sets of ligands or that a
conformational change of this region could switch the affinity of
the domain from one set of ligands to another. This hypothesis
could explain the different functions proposed for Fe65, which
include cytoskeleton remodelling and cell motility (Sabo et al,
2001) and gene regulation.

SET is responsible for Gal4–Fe65-mediated transactivation
To evaluate whether SET is required for transcription activation
induced by Gal4–Fe65 fusion proteins, we analysed the effects of
SET overexpression or suppression on the transcription activation
mediated by Gal4–Fe65 proteins. SET overexpression increases
by several-fold the CAT expression induced by Gal4–Fe65f.l.
or by the m6 mutant, whereas it has no effect on the activation
of transcription induced by the transfection of Gal4 holoprotein
(Fig 2A). Furthermore, SET overexpression has no effect on
transcription when the cells are transfected with Gal4–Fe65
deletion mutants that are devoid of activity, such as m3, m7, m8
and m10 (Fig 1A), indicating that SET overexpression has no
nonspecific effect on transcription (Fig 2A, m10 mutant). Accord-
ingly, these deletion mutants do not immunoprecipitate together
with SET (supplementary information online).

Silencing of endogenous SET expression by RNA-mediated
interference (RNAi) decreases the levels of SET protein to about
50% of the levels present in the cells transfected with the control
double-stranded oligonucleotide (green fluorescent protein
(GFP)-targeting short interfering RNA (siRNA)). This is accompa-
nied by a significant decrease of CAT expression in cells
transfected with either Gal4–Fe65f.l. or m6 construct (Fig 2B).
SET RNAi has no effect on the robust transcription activation
driven by the Gal4 holoprotein.

The KAI1 promoter is a target for the Fe65–SET complex
It has been demonstrated that Fe65, together with Tip60 and
AICD, can be recruited on transfection to the KAI1 gene promoter
(Baek et al, 2002). Therefore, we addressed the question of
whether a complex containing both Fe65 and SET is similarly
associated with the same KAI1 promoter. To this aim, HEK293
cells were transfected with Fe65, SET and/or APP, and Tip60 and
chromatin immunoprecipitation (ChIP) assays were performed
by using antibodies directed against these proteins. As shown in
Fig 3A, when Fe65, SET and APP are co-transfected, a robust
protein–DNA complex containing all these proteins was observed
even in the absence of Tip60; hence, SET must exert a stabilizing
influence similar to that of Tip60. In cells co-transfected with
Fe65, SET, APP and Tip60, ChIP showed that all these proteins
are present on the KAI1 gene promoter. To examine possible co-
recruitment, two-step ChIPs were performed using a-Tip60/a-SET,
a-SET/a-Tip60, a-APP/a-Fe65 and a-Fe65/a-APP antibody combi-
nations. These experiments demonstrated that the four proteins
can be present simultaneously on the same promoter. APP
overexpression is clearly required to obtain complexes containing
Fe65/SET or Fe65/SET/Tip60, supporting the hypothesis that
interaction with APP renders Fe65 suitable for binding to other
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ligands (Cao & Sudhof, 2004). a-APP antibodies directed against
C-terminal epitopes of the protein immunoprecipitate chromatin
complexes; by contrast, we failed to obtain any ChIP using
antibodies directed against the extracellular–intraluminal domain
of APP (data not shown), suggesting that only the C-terminal
domain of the protein is present in the complex.

The KAI1 gene is under the control of homodimeric p50–p50
NF-kB. Interleukin-1b induces exchange of the N-CoR/TAB2/
HDAC3 co-repressor complex with a Tip60-containing coactiva-
tor complex (Baek et al, 2002). The same promoter is also
activated by a complex containing Tip60, Fe65 and AICD. HAT
activity of Tip60 might be required for the observed transcription
activation, but in some cases Tip60 may not be required. In
fact, Gal4–Fe65 fusion proteins lacking the PTB1 domain, the
highest affinity binding site for Tip60, are potent transcription
activators (Cao & Sudhof, 2004; Fig 1B). Furthermore, PTB1
domain overexpression did not titrate any limiting factor neces-
sary for Gal4–Fe65-dependent transactivation (supplementary
information online), and Tip60 overexpression did not affect
Gal4–Fe65 activity (supplementary information online). Conver-
sely, SET is required for Gal4–Fe65-dependent transactivation, as
shown by its overexpression or suppression by RNAi. Therefore,
we addressed the possible role of SET in the regulation of
transcription of the KAI1 gene. To this aim, we measured the
level of KAI1 mRNA in cells transfected with siRNAs targeting
SET mRNA. As shown in Fig 3B, the suppression of SET expres-
sion significantly decreases KAI1 mRNA levels, demonstrating
that, under basal conditions, SET is quantitatively important for
KAI1 gene transcription.

Although the role of SET-containing complexes in caspase-
independent apoptosis has been recently shown (Fan et al, 2003),
its involvement in the regulation of gene transcription is still
unclear. There are several results indicating that SET might have
additional activities and functions, as it interacts with p300/CBP
histone acetyltransferase. The consequences of this interaction
could be either an increase (Shikama et al, 2000) or inhibition (Seo
et al, 2001) of the transcription of p300/CBP target genes. The
results reported in this paper suggest that Fe65 is the adaptor
molecule that assembles SET and Tip60 on chromatin, possibly
leading to the regulation of transcription. We have also dem-
onstrated that APP is necessary for formation of the complex and
that the C-terminal tail of APP is part of the chromatin complex.
The possible role of secretase-driven APP cleavage in the
regulation of the observed phenomena is of significant interest,
as altered APP processing could result in a change of gene
expression. A link between SET functions and presenilin-depen-
dent secretase activity is suggested by the observation that Spr-2,
one of the suppressors of Sel-12 presenilin defects in Caenorhab-
ditis elegans, is the nematode orthologue of SET (Wen et al, 2000).
This relationship should be explored further.

METHODS
Recombinant constructs and proteins. Vectors for Gal4 Dbd–
Fe65 fusions were generated by cloning the appropriate Fe65
cDNA fragments, amplified by PCR, in-frame with the Gal4 Dbd
in the pRcCMV plasmid (Invitrogen, Carlsbad, CA, USA). The
sequences of PCR primers are available on request. Full-length
human SET cDNA was obtained by reverse transcription–PCR
using total RNA from HEK293 cells. HA-tagged SET was generated
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by using a reverse primer containing the HA-coding epitope
sequence at the 30 end, in the pRcCMV vector.
Cell cultures, transfections and co-precipitations. HeLa and
HEK293 cells were grown at 37 1C in the presence of 5% CO2

in Dulbecco’s modified Eagle’s medium, supplemented with 10%
fetal bovine serum (Invitrogen), 100 U/ml penicillin and 100 mg/ml
streptomycin (HyClone, Logan, UT, USA). HeLa cells were
transfected by calcium phosphate with 3 mg G5BCAT vector and
with 3 mg of the plasmids expressing the fusion proteins. CAT

expression was measured by using colorimetric CAT enzyme-
linked immunoadsorbent assay (Roche Molecular Biochemicals,
Mannheim, Germany). HEK293 cells were transfected with
Lipofectamine 2000 (Invitrogen) in 100 mm dishes. SET double-
stranded 21-mer RNAs and control double-stranded RNA targeting
GFP (Fan et al, 2003) were synthesized by Qiagen, and transfected
in HEK293 with Lipofectamine 2000. Protein extracts were
prepared as described (Gianni et al, 2003). For immunoprecipita-
tions, 5 ml of antibodies was incubated with 1.5 mg of protein
lysates for 2 h at 4 1C, followed by a 1 h incubation with Protein
A–Sepharose. Immunoprecipitates were washed three times in
lysis buffer. Proteins released by boiling in SDS sample buffer
were separated by Novex Bis–Tris 4–12% polyacrylamide gels
(Invitrogen) and analysed by using SET (1:1,000) or Fe65 (1:2,000)
antibodies.
Purification of WOR ligands. The peptides used for affinity
purification were synthesized by Tufts University Core Facility
(Boston, MA, USA). Both peptides carry the Strep-Tag sequence at
their C-termini: wild-type peptide, WSHPQFEKGAGGVQDTSGT
YYWHIPTGTTQWEPPGRASPSQGNSPQEESQLTWTGFAH; mutant
peptide, the underlined sequence is changed to AAA. Peptides
(100 nmol) was dissolved in 1 ml of 100 mM Tris (pH 8.0),
150 mM NaCl and 1 mM EDTA and applied on columns con-
taining 1 ml of Strep-Tactin matrix (IBA, Göttingen, Germany;
Skerra & Schmidt, 2000). Affinity chromatography was performed
with HEK293 lysates in 100 mM Tris (pH 8.0), 150 mM NaCl,
1 mM EDTA, 1% Triton X-100, 50 mM NaF, 1 mM sodium
vanadate and protease inhibitors. The lysate was precleared on
a column containing Strep-Tactin matrix, then on the mutant
peptide column. The flow-through was then applied on wild-type
peptide column. Proteins were eluted with 50 mM ammonium
bicarbonateþ 2.5 mM desthiobiotin and run on 10% SDS–
polyacrylamide gel electrophoresis (SDS–PAGE). Bands were
excised from the gel, digested with trypsin and the peptide
mixtures were analysed by MALDI-TOF mass spectrometry as
previously reported (Gianni et al, 2003).
Real-time PCR. Total RNA was prepared from HEK293 cells by
using the RNeasy Mini Kit (Qiagen, Hilden, Germany) and
subjected to cDNA synthesis with random hexanucleotide primers
and MultiScribe Reverse Transcriptase (Applied Biosystems, Foster
City, CA, USA) at 48 1C for 1 h. The cDNA (1ml) was then
amplified for 40 cycles using SYBR Green PCR master mix
(Applied Biosystems) and template-specific primers in an ABI
Prism 7900 system (Applied Biosystems). Relative quantification
of gene expression was performed using the comparative thres-
hold (CT) method. Changes in mRNA expression levels were
calculated following normalization to b-actin or c-Abl transcripts.
The ratios obtained following normalization are expressed as fold
change over calibrator samples. The primer sequences are as
follows: KAI1, 50-AGGATGCCTGGGACTACGTG and 50-GCTCA
GCGTTGTCTGTCCAGT; b-actin, 50-TCGTGCGTGACATTAGGAG
and 50-GTCAGGCAGCTCGTAGCTCT; c-Abl, 50-GGTATGAAGG
GAGGGTGTACCA and 50-GTGAACTAACTCAGCCAGAGTGTTGA.
ChIP. ChIP assays were performed as described (Shang & Brown,
2002). Subconfluent HEK293 cells (100-mm dishes) were fixed
with 1% formaldehyde for 10 min at 20 1C and then quickly rinsed
with ice-cold PBS. Diluted chromatin solution was precleared in
45 ml slurry 50% Protein A–Sepharose (Sigma, St Louis, MO, USA)
and 2 mg of sheared salmon sperm DNA (Invitrogen) for 2 h at 4 1C.
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The supernatants were immunoprecipitated overnight with 2 mg
of the following antibodies: a-Fe65 (I-12), a-APP (CT695, Zymed
Laboratories, San Francisco, CA, USA), a-SET (Abcam,
Cambridge, MA, USA) and a-Tip60 (Upstate Biotechnology).
The antibodies recognizing the extracellular/intraluminal domain
of APP were 6E10/4G8 (Abcam). A 2 mg portion of rabbit or goat
IgG (Santa Cruz Biotechnology) was used as a control.

Protein-bound immunoprecipitated DNA was reverse cross-
linked at 65 1C overnight and then purified by using a PCR
purification kit (Qiagen). A 2 ml portion of DNA solution was used
for PCR amplification (30 cycles). Primer sequences were as
follows: KAI1, 50-GACAGGGTTTCATCCTGTTGC and 50-GAGGA
TAGCCTGGCCCTAGC; Hes1, 50-CTCAGGCGCGCGCCATTGGCC
and 50-GCTTACGTCCTTTTACTTGACTTTC. PCR products were
run on a 1.0% agarose gel and analysed by ethidium bromide
staining. For two-step ChIPs, the immunocomplexes were eluted
by adding 100 ml of MCP beads (Pierce, New York, NY, USA)
to the pelleted Sepharose beads and by shaking for 1 h at 20 1C.
The supernatants were collected and diluted tenfold in 1 ml final
volume with dilution buffer. A 2 mg portion of second antibody
was added and the immunoprecipitations were performed again
as described above.
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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