E Catalysis

Research Article

<pubs.acs.org/acscatalysis>

¹ Efficient and Mild Carbon Dioxide Hydrogenation to Formate ² Catalyzed by Fe(II) Hydrido Carbonyl Complexes Bearing 2,6- ³ (Diaminopyridyl)diphosphine Pincer Ligands

 $_4$ Federica Bertini, $_\perp^\dagger$ Nikolaus Gorgas, ‡ Berthold Stöger, $^\$$ Maurizio Peruzzini, † Luis F. Veiros, $^\parallel$ $_5$ Karl Kirchner, $*$, $*$ and Luca Gonsalvi $*$, $*$

 $^{\circ}$ † Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica dei Composti Organometallici (ICCOM), Via Madonna del Piano ⁷ 10, 50019 Sesto Fiorentino (Firenze), Italy

 $^{\text{\tiny{\textregistered}}}$ Institute of Applied Synthetic Chemistry and $^{\text{\tiny{\textregistered}}}$ Institute of Chemical Technologies and Analytics, Vienna University of Technology, ⁹ Getreidemarkt 9/163-AC, A-1060 Wien, Austria

¹⁰ § Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163-AC, A-1060 Wien, Austria

¹¹ [∥] Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais No. 1, 1049-001 Lisboa, ¹² Portugal

13 **S** [Supporting Information](#page-3-0)

 ABSTRACT: Fe(II) hydrido carbonyl complexes supported by PNP pincer ligands based on the 2,6-diaminopyridine scaffold were found to promote the catalytic hydrogenation of CO₂ and NaHCO₃ to formate in protic solvents in the presence of bases, reaching quantitative yields and high TONs under mild reaction conditions, with pressures as low as 8.5 bar and temperatures as low as 25 °C. NMR and DFT studies highlighted the role of dihydrido and hydrido formate

23 KEYWORDS: $CO₂$ hydrogenation, iron pincer complexes, homogeneous catalysis, mechanistic studies, DFT calculations

24 **NUMBER 24 BY ATTENDANT**

²² complexes in catalysis.

25 The use of $CO₂$ as a C1 source is a matter of great interest due to its high abundance, availability, and low cost. In particular, its reduction to HCOOH or derivatives has attracted significant attention in recent years, since it holds the potential for 29 reversible hydrogen storage.^{[1](#page-4-0)} The reduction of NaHCO₃ is also of interest, as $CO₂$ can be easily trapped in basic solutions and reversible hydrogen storage cycles based on bicarbonate and 32 formate have been proposed.² The most efficient catalysts for $33 CO₂$ hydrogenation are typically based on expensive noble 34 metals such as ruthenium and iridium.³ In the quest for cheaper alternatives, the preparation of well-defined earth-abundant metal catalysts of comparable activity is highly desirable and important progress has been made recently.^{[4](#page-4-0)} Efficient iron- based catalysts supported by tetraphosphine ligands have been 39 reported by Beller^{[4a,b](#page-4-0)} and some of us,^{[4c](#page-4-0)} whereas Milstein 40 reported that the iron pincer complex $[Fe(PNP)(H)₂(CO)]$ (PNP = 2,6-bis(di-tert-butylphosphinomethyl)pyridine) cata- $42 \text{ lyzes } CO_2 \text{ hydrogenation at low pressure.}$ ^{[4d](#page-4-0) More} recently, Hazari and co-workers achieved impressive catalytic activities in 44 Fe-catalyzed $CO₂$ hydrogenation, reaching turnover numbers (TONs) up to 79600 using iron PNP pincer complexes in the 46 presence of Lewis acid (LA) cocatalysts.^{[4e](#page-4-0)} In recent years, some

of us developed a new class of PNP pincer complexes based on ⁴⁷ the 2,6-diaminopyridine scaffold where the $PR₂$ moieties of the $_{48}$ PNP ligand are connected to the pyridine ring via NH, N-alkyl, ⁴⁹ or N-aryl spacers.^{[5](#page-4-0)} Among these, the iron hydrido carbonyl $_{50}$ complexes $[Fe(PNP^H-iPr)(H)(CO)(Br)]$ (1) and $[Fe(PNP^{Me}-₅₁]$ $iPr)(H)(CO)(Br)]$ (2), shown in Scheme 1, were shown to be $_{52 s1}$ active catalysts for hydrogenation reactions.^{[5c](#page-4-0)} Mechanistic $_{53}$ studies showed that the N−H spacer of the PNP ligand in 1 ⁵⁴ can work as a bifunctional catalyst promoting metal–ligand 55 cooperation, $5c, d$ $5c, d$ $5c, d$ while the N–Me spacer in complex 2 prevents 56

Received: February 10, 2016 Revised: March 26, 2016

⁵⁷ such a possibility. In addition, the presence of a labile bromide 58 and strongly σ donating H and CO ligands could give an ideal 59 donor set suitable for catalytic $CO₂$ hydrogenation.^{[4d](#page-4-0)} Thus, we 60 investigated the activities of these complexes for $CO₂$ and 61 NaHCO₃ hydrogenation reactions.

⁶² ■ RESULTS AND DISCUSSION

Catalytic Studies. Initially, the catalytic activities of 1 and 2 64 in NaHCO₃ hydrogenation were tested in different solvents 65 using 0.05 mol % of catalyst at 80 °C, 90 bar of H_2 , and 24 h [\(Table S1](http://pubs.acs.org/doi/suppl/10.1021/acscatal.6b00416/suppl_file/cs6b00416_si_001.pdf) in the Supporting Information). The best results 67 were obtained in $H₂O/THF (4/1)$ mixtures which ensure good solubility of both catalysts and substrate, reaching 98% formate yield and TON = 1964 for 1 and 52% formate yield and TON = 1036 for 2, respectively. In MeOH, TONs and yields decrease by ca. 50% with both catalysts, whereas the reaction does not proceed in neat THF, indicating the need for a protic solvent. In all cases, 1 performed better than 2 under analogous conditions (see the [Supporting Information](http://pubs.acs.org/doi/suppl/10.1021/acscatal.6b00416/suppl_file/cs6b00416_si_001.pdf) for details). On the basis of the solvent screening results, the hydrogenation of 76 NaHCO₃ in H₂O/THF was then studied with 1 under different t1 77 conditions of temperature, pressure, and catalyst loading (Table t_1 78 1). In the presence of only 0.005 mol % of 1, TONs up to 4560

Table 1. Hydrogenation of $NAHCO₃$ to $NaHCO₂$ with 1 at Different Catalyst Loadings, Temperatures, and Pressures^a

$entry^a$	amt of cat. 1 $(mod \%)$	$T({}^{\circ}C)$	P (bar)	TON^b	t(h)	yield ^c $(\%)$
1	0.05	80	90	1964	24	98
\mathfrak{p}	0.005	80	90	4560	24	23
3	0.005	100	90	400	24	$\overline{2}$
$\overline{4}$	0.005	60	90	2360	24	12
5	0.05	25	90	188	72	9
6	0.005	80	60	640	24	3
7	0.005	80	30	80	24	<1
8	0.1	80	8.5	140	16	14

^aGeneral reaction conditions: 20 mmol of NaHCO₃, 0.01–0.001 mmol of catalyst, 25 mL of $H_2O/THF 4/1$, 80 °C, 90 bar, 24 h. b TON $=$ (mmol of formate)/(mmol of catalyst). The disculsion of the second $\frac{1}{2}$ of $\frac{1}{2}$ and $\frac{1}{2}$ are $\frac{1}{2}$ and $\frac{1}{2}$ a integration of ¹H NMR signals due to NaHCO_{22} using DMF as internal standard.

79 could be achieved at 80 °C and 90 bar of H_2 after 24 h (entry 2). Either higher or lower temperatures resulted in lower turnover numbers (entries 3 and 4). It is worth noting that the reaction proceeds even at room temperature, giving TON = 188 83 after 72 h (entry 5). Reducing the H_2 pressure resulted in a drop of TONs (entries 6 and 7), yet at higher catalyst loadings (0.1 mol %) sodium formate was obtained (14% yield) with a 86 TON of 140 at only 8.5 bar of H_2 (Milstein's conditions)^{[4d](#page-4-0)} after 16 h (entry 8).

Next, the hydrogenation of $CO₂$ to formate in H₂O/THF 89 $(4/1)$ in the presence of 1 and NaOH as base was studied 90 (Table 2), reaching TONs up to 1220 with nearly quantitative ⁹¹ yield under the optimized conditions (catalyst/NaOH = 1/ 92 1250, $CO_2/H_2 = 40/40$ bar, 80 °C, 21 h).

 Higher NaOH/catalyst ratios gave worse results regardless of concentration (Table 2, entries 2−4). We then tested the 95 hydrogenation of $CO₂$ with 1 in EtOH in the presence of different amine bases. Quite surprisingly, formate was not formed using either DBU (1,8-diazabicyclo[5.4.0]undec-7-ene) or DMOA (N,N-dimethyloctylamine), whereas in the presence

a General reaction conditions: 12.5 mmol of base, 0.01 mmol of catalyst, 25.0 mL of solvent, 80 $^{\circ}$ C, 80 bar total pressure, 21 h. b 25.0 mmol of base. ^c0.001 mmol of catalyst. ^d0.005 mmol of catalyst. ^eTON $=$ (mmol of formate)/(mmol of catalyst). ^{*f*}Yields calculated from the integration of ¹H NMR signals due to NaHCO_{22} using DMF as internal standard.

of NEt₃ formate was obtained only in low yields (entries $5−7$). 99 The observation that complex 1 fails to catalyze the 100 hydrogenation of $CO₂$ in EtOH in the presence of amine 101 bases such as DBU and DMOA may be attributed to the fact ¹⁰² that EtOH appears to prevent the formation of dihydrides, 5c 5c 5c 103 which are expected to be the catalytically active species in this ¹⁰⁴ reaction. No reaction occurred in EtOH in the absence of base ¹⁰⁵ (entry 8) or in THF with DBU as base due to catalyst ¹⁰⁶ decomposition (entry 9).

A complete screening of the effects of catalyst concentration, ¹⁰⁸ nature of base, solvent, and temperature for $CO₂$ hydrogenation 109 in the presence of 2 was then carried out $(Table 3)$. 110 t3

As for NaHCO₃ hydrogenation, catalyst 2 showed poorer 111 performance in comparison to 1 in the hydrogenation of $CO₂$ 112 in $H_2O/THF(4/1)$ in the presence of NaOH ([Table 3,](#page-2-0) entries 113 1 and 2, vs Table 2, entries 1 and 2). Among the alcohols, ¹¹⁴ reactions in EtOH gave activity comparable to that observed in ¹¹⁵ $H₂O/THF$ (entry 4), whereas worse performance was achieved 116 in MeOH [\(Table 3](#page-2-0), entry 3). On the basis of the solvent ¹¹⁷ screening results, amine screening was then studied for $CO₂$ 118 hydrogenation with 2 in EtOH. To our delight, using DBU as ¹¹⁹ base gave nearly quantitative formate yield (>90%) with a TON ¹²⁰ of 1153 at 80 °C under 80 bar total pressure (entry 5). Using ¹²¹ either DMOA or NEt₃ instead of DBU resulted in lower TONs 122 (entries 6 and 7), and no reaction occurred in the absence of ¹²³ base (entry 8) or with DBU in THF (entry 9) under otherwise ¹²⁴ analogous conditions.

The potential of catalyst 2 was then further explored under ¹²⁶ milder reaction conditions. At first, the effect of lower total ¹²⁷ pressure was determined. In the presence of 0.1 mol % of 2 a ¹²⁸ TON of 480 was reached after 21 h at 80 °C under only 8.5 bar 129 of H_2/CO_2 (1/1) ([Table 3,](#page-2-0), entry 10), an activity comparable 130 to that o[f](#page-4-0) other known iron pincer catalysts. $4d, f$ $4d, f$ Then, 131 temperature effects were studied. At 25 \degree C, catalyst 2 132 manifested a remarkable catalytic activity, affording sodium ¹³³ formate in high yields 6 6 with a TON of 856 after 21 h and of 134 1032 after 72 h under 80 bar initial pressure (entries 11 and 12) ¹³⁵ in the presence of 0.1 mol % catalyst. To the best of our ¹³⁶ knowledge, these are the highest TONs obtained for Fe-catalyzed ¹³⁷ $CO₂$ hydrogenation at room temperature to date. 138

Finally, the effect of catalyst loading was studied. At lower ¹³⁹ catalyst loading (0.01 mol %) sodium formate was still obtained ¹⁴⁰ in excellent yield (98%) with a TON of 9840 after 21 h at 80 ¹⁴¹

Table 3. Hydrogenation of $CO₂$ to Formate with 2 using Different Solvents and Bases⁶

	amt of cat. 2					yield
entry	(mod %)	base	solvent	$T({}^{\circ}C)$	TON ⁱ	$(\%)$
1	0.08	NaOH	H ₂ O/THF	80	680	54
2^b	0.04	NaOH	H ₂ O/THF	80	372	15
3	0.08	NaOH	MeOH	80	220	18
$\overline{4}$	0.08	NaOH	EtOH	80	654	53
5	0.08	DBU	EtOH	80	1153	92
6	0.08	DMOA	EtOH	80	452	36
7	0.08	NEt ₃	EtOH	80	686	55
8	0.08		EtOH	80	Ω	Ω
9	0.08	DBU	THF	80	Ω	$\mathbf{0}$
$10^{c,d}$	0.1	DBU	EtOH	80	480	48
11 ^c	0.1	DBU	EtOH	25	856	86
$12^{c,e}$	0.1	DBU	EtOH	25	1032	103
13^{cf}	0.01	DBU	EtOH	80	9840	98
14	0.01	DBU	EtOH	25	465	5
15	0.005	DBU	EtOH	80	10275	21
$16^{c,g}$	0.001	DBU	EtOH	80	5000	5
$17^{c, f, h}$	0.01	DBU	EtOH	80	620	6
18^a		DBU	EtOH	80	$\mathbf{0}$	$\mathbf{0}$
19^k	0.08	DBU	EtOH	80	1163	93

a General reaction conditions: 12.5 mmol of base, 0.01 mmol of catalyst, 25.0 mL of solvent, 21 h. b^2 25.0 mmol of base. $\frac{6}{10.0}$ mmol of base. $d_{8.5}$ bar $(CO_2/H_2 = 1/1)$ total pressure. $e^{e}Z2$ h. $f_{0.001}$ mmol of catalyst. ${}^{8}0.0001$ mmol of catalyst. h_1 In the presence of LiOTF as Lewis acid additive, $DBU/LiOTf = 7.5$. $iTON = (mmol of format)/(mmol)$ of catalyst). The late of the calculated from the integration of ¹H NMR signals due to NaHCO_2 , using DMF as internal standard. ^kAs for footnote *a*, Hg(0) added.

142 °C (Table 3,, entry 13), whereas a TON of 465 was achieved at 25 °C after 21 h at 80 bar (entry 14). On further reduction of 144 the catalyst loading to 0.005 mol %, $CO₂$ formate was still achieved with a high TON of 10275, albeit in low yield with respect to the base (21%, entry 15). Lowering the catalyst amount further (0.001 mol %) under the same conditions resulted in a lower TON of 5000 (entry 16). We also tested the effect of additives at high substrate to catalyst ratios. Surprisingly, in contrast to what was observed by Hazari et 151 al.,^{[4e](#page-4-0)} the use of a LA cocatalyst such as LiOTf negatively affected the performance (entry 17). Colloidal metal catalysis was ruled out by carrying out a Hg poisoning test, which gave results comparable to those observed in the original run (entry 19 vs 5).

Mechanistic Studies. In order to gain insights into the reaction mechanism, the reactivity of complex 2 was investigated in stoichiometric reactions by NMR techniques. 159 Exposure of an EtOH solution of 2 to H_2 (1 bar) in the presence of KOtBu resulted in the quantitative formation of 161 dihydrides $3a,b$ (cis and trans isomers).^{[5c,7](#page-4-0)} The ³¹P{¹H} NMR spectrum exhibits two singlets at 187.5 ppm (3a) and 189.9 ppm (3b), while the ¹ H NMR exhibits a triplet at −9.57 ppm for 3a and a broad resonance at −13.86 ppm for 3b. When the temperature is lowered to −50 °C, the broad signal starts to split into two separate triplets centered at −8.82 and −17.64 [7](#page-4-0) ppm.⁷ Using DBU as base, NMR analysis revealed that only 40% of 2 was converted into the Fe(II) dihydrides 3, even after prolonged standing under an hydrogen atmosphere, suggesting s2 170 that 2 and 3 are in equilibrium with each other (Scheme 2, step

i). This may be explained by the lower pK_a value of $[DBU-H]_{17}$ in comparison to that of $tBuOH.⁸$ $tBuOH.⁸$ $tBuOH.⁸$ 172

Next, the EtOH/base solution containing in situ formed 3 ¹⁷³ was stirred under an atmosphere of $CO₂$ for 30 min. Regardless 174 of the base used, we observed the formation of the hydrido ¹⁷⁵ formate complex $\left[\text{Fe}(\text{PNP}^{\text{Me}}\text{-}i\text{Pr})(\text{H})(\text{CO})(\eta^1\text{-O}_2\text{CH})\right]$ (4; 176 Scheme 2, step ii) characterized by a triplet at −24.71 ppm ¹⁷⁷ for the hydride and a singlet at 7.96 ppm for the proton of the ¹⁷⁸ formate ligand, which both integrate to 1 in the ¹H NMR 179 spectrum (see the [Supporting Information\)](http://pubs.acs.org/doi/suppl/10.1021/acscatal.6b00416/suppl_file/cs6b00416_si_001.pdf).

Under these reaction conditions, 4 is in equilibrium with 2 ¹⁸¹ due to the presence of bromide anions in solution. As a result, a ¹⁸² broad signal at 8.65 ppm due to free formate salt appeared in ¹⁸³ the corresponding ¹H NMR spectrum. In addition, the cationic 184 hydride complex $[Fe(PNP^{Me}-iPr)(H)(CO)(EtOH)]^{+}$ (5) was 185 present (Scheme 2), exhibiting a ¹H NMR triplet resonance at 186 -25.57 ppm. The ${}^{31}P{^1H}$ NMR chemical shift of 5 is very 187 close to that of formate complex 4. However, no signal for the ¹⁸⁸ free formate counteranion could be found in the ¹H spectrum 189 of 5. It is worth noting that complex 5 was independently ¹⁹⁰ synthesized by treatment of 2 with silver salts in EtOH.^{\prime} In a 191 separate experiment, stirring a mixture of 2 and sodium formate 192 (4 equiv) in EtOH for 1 h also affords a mixture of 2, 4, and 5. ¹⁹³ In another experiment, this time starting from *isolated* 3, the 194 reaction with $CO₂$ in EtOH afforded 5 with minor traces of 4. 195 Evidently, the formate ligand is easily displaced by an excess of ¹⁹⁶ solvent under these conditions. 197

Single crystals of 4 suitable for X-ray diffraction analysis were ¹⁹⁸ obtained by slow diffusion of pentane into a concentrated ¹⁹⁹ solution of the complex in THF under an atmosphere of $CO₂$. 200 The solid-state structure of 4 confirms the geometry proposed ²⁰¹ on the basis of NMR data. A structural view is depicted in ²⁰² [Figure 1](#page-3-0) with selected bond distances given in the caption. 203 f1 Complex 4 adopts a distorted-octahedral geometry around the ²⁰⁴ metal center with the formate and hydride ligands trans to each ²⁰⁵ other and in positions cis to the CO ligand. The hydride could ²⁰⁶ be unambiguously located in the difference Fourier maps. The ²⁰⁷ Fe−H distance was refined to $1.46(2)$ Å.

On the basis of the experimental evidence, a catalytic cycle ²⁰⁹ for $CO₂$ hydrogenation starting from 2 can be proposed, 210 encompassing formation of dihydrides 3 and $CO₂$ insertion to 211 give the hydrido formate complex 4 followed by hydrogenolysis ²¹² and formate elimination giving back 3 in the presence of base. ²¹³ Solvent-assisted formate decoordination in 4 may occur to ²¹⁴ leave a highly reactive, unobserved pentacoordinate cationic ²¹⁵ Fe(II) hydrido carbonyl species, which can be stabilized by ²¹⁶ EtOH coordination to give 5, observed by NMR ([Scheme 3](#page-3-0)). 217 s3

Figure 1. Structural view of 4 showing 50% thermal ellipsoids (most H atoms and a second independent complex omitted for clarity). Selected bond lengths (Å) and angles (deg): Fe1−P1 2.1765(7), Fe1− P2 2.1789(7), Fe1−N1 2.004(2), Fe1−C20 1.737(2), Fe1−O2 2.032(2), Fe1−H1 1.46(2); P1−Fe1−P2 162.57(2), N1−Fe1−C20 175.58(8).

Scheme 3. Proposed Catalytic Cycle for $CO₂$ Hydrogenation with 3a

218 Further mechanistic details on the $CO₂$ hydrogenation ²¹⁹ mechanism were obtained by DFT calculations using 3a as ²²⁰ the initial active species. The free energy profile is shown in 221 Scheme 4. Computational details are presented as [Supporting](http://pubs.acs.org/doi/suppl/10.1021/acscatal.6b00416/suppl_file/cs6b00416_si_001.pdf) ²²² [Information.](http://pubs.acs.org/doi/suppl/10.1021/acscatal.6b00416/suppl_file/cs6b00416_si_001.pdf) The model used in the calculations included one

a The free energy values (kcal/mol) are referenced to the initial reactants, and relevant distances (Å) are indicated.

explicit water molecule that provides H-bond stabilization of ²²³ the intermediates. The highlights of the calculated mechanism ²²⁴ are presented in Scheme 4 with relevant intermediates and the ²²⁵ $corresponding$ free energy values. $\frac{9}{226}$ $\frac{9}{226}$ $\frac{9}{226}$

In the first step of the calculated mechanism, from A to B, ²²⁷ the hydride attack from complex $3a$ to a $CO₂$ molecule results 228 in a H-bonded formate complex. This is a facile process with a ²²⁹ barrier of 7.8 kcal/mol. In the resulting intermediate (B) the ²³⁰ formate ion is stabilized by a H-bond with the water molecule. ²³¹ From B, formate can coordinate the metal, giving complex 4 ²³² (H in Scheme 4), where the formate ligand is bonded through ²³³ the O atom. This intermediate represents the potential well of ²³⁴ the mechanism; thus, it may be viewed as the catalyst resting ²³⁵ state. Alternatively, the formate ion dissociates from the metal ²³⁶ in B to give C, opening one coordination position that is ²³⁷ occupied by a molecule of H_2 in the following step. Both 238 processes are competitive with barriers within 2 kcal/mol. The ²³⁹ reaction pathway proceeds with H_2 addition to C, yielding the 240 dihydrogen complex F. This process has an energy barrier of 14 ²⁴¹ kcal/mol, corresponding to the highest barrier of the entire ²⁴² mechanism. In the final step, the formate ion is protonated by ²⁴³ F, regenerating the initial complex 3a and producing formic ²⁴⁴ acid. Given the excess of base present in the reaction medium ²⁴⁵ under experimental conditions, the acid formed will then be ²⁴⁶ deprotonated in an acid−base reaction that provides the final ²⁴⁷ driving force for the entire process. Importantly, the free ²⁴⁸ formate ion (the reaction product under the experimental ²⁴⁹ conditions) is stabilized by a H bond with the nearby water ²⁵⁰ molecule in intermediates E/F .^{[9](#page-4-0)} This facilitates the opening of 251 the coordination position that will be used by H_2 in the 252 following step of the mechanism, justifying the need for a protic ²⁵³ solvent in the catalytic reaction. A similar reaction mechanism ²⁵⁴ was recently proposed for the selective hydrogenation of ²⁵⁵ aldehydes in EtOH with 3 as catalyst^{[7](#page-4-0)} and by other authors on 256 related systems. 10^{10} 10^{10}

■ CONCLUSIONS 258

In conclusion, selected Fe(II) pincer-type complexes of 2,6- ²⁵⁹ diaminopyridylbis(diisopropylphosphine) gave high activities as ²⁶⁰ catalysts for $CO₂$ and NaHCO₃ reduction to formate under 261 very mild to moderate conditions, even at room temperature. ²⁶² Mechanistic details were obtained by NMR techniques, ²⁶³ highlighting the role of dihydride and hydrido formate ²⁶⁴ complexes. DFT calculations indicate an outer-sphere mecha- ²⁶⁵ nism with a hydrido formate complex as the catalyst resting ²⁶⁶ state and suggest that the overall reaction is pushed forward by ²⁶⁷ the acid−base reaction between the product (formic acid) and ²⁶⁸ the excess base present in solution. Protic solvents promote ²⁶⁹ catalysis by stabilizing the reaction intermediates and assisting ²⁷⁰ formate elimination from the coordination sphere of the metal. ²⁷¹

ASSOCIATED CONTENT 272

\bullet Supporting Information 273

The Supporting Information is available free of charge on the ²⁷⁴ [ACS Publications website](http://pubs.acs.org) at DOI: [10.1021/acscatal.6b00416.](http://pubs.acs.org/doi/abs/10.1021/acscatal.6b00416) ²⁷⁵

General materials and methods, synthetic procedures, ²⁷⁶ NMR experiments and spectra, Cartesian coordinates of $_{277}$ the computed structures, crystallographic data for the X - $_{278}$ ray structure of 4, and additional catalytic data ([PDF\)](http://pubs.acs.org/doi/suppl/10.1021/acscatal.6b00416/suppl_file/cs6b00416_si_001.pdf) ²⁷⁹ Crystallographic data for the X-ray structure of 4 [\(CIF\)](http://pubs.acs.org/doi/suppl/10.1021/acscatal.6b00416/suppl_file/cs6b00416_si_002.cif) ²⁸⁰

ACS Catalysis
281 | AUTHOR INFORMATION

Corresponding Authors

*E-mail for K.K.: [karl.kirchner@tuwien.ac.at.](mailto:karl.kirchner@tuwien.ac.at)

*E-mail for L.G.: [l.gonsalvi@iccom.cnr.it.](mailto:l.gonsalvi@iccom.cnr.it)

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

 Financial contributions by the CNR and ECRF through projects EFOR and HYDROLAB-2.0, respectively, are grate- fully acknowledged. This work was also supported by COST Action CM1205 CARISMA (Catalytic Routines for Small 292 Molecule Activation). L.F.V. acknowledgesthe Fundação para a Ciencia e Tecnologia, grant UID/QUI/00100/2013. N.G. and ̂ K.K. gratefully acknowledge financial support by the Austrian Science Fund (FWF) (Project No. P24583-N28).

■ REFERENCES

297 (1) (a) Joó, F. ChemSusChem 2008, 1, 805−808. (b) Enthaler, S.; von Langermann, J.; Schmidt, T. Energy Environ. Sci. 2010, 3, 1207− 1217. (c) Loges, B.; Boddien, A.; Gartner, F.; Junge, H.; Beller, M. ̈ Top. Catal. 2010, 53, 902−914.

301 (2) (a) Papp, G.; Csorba, J.; Laurenczy, G.; Joó, F. *Angew. Chem., Int.* Ed. 2011, 50, 10433−10435. (b) Boddien, A.; Gartner, F.; Federsel, ̈ C.; Sponholz, P.; Mellmann, D.; Jackstell, R.; Junge, H.; Beller, M. Angew. Chem., Int. Ed. 2011, 50, 6411−6414.

 (3) Wang, W.-H.; Himeda, Y.; Muckerman, J. T.; Manbeck, G. F.; Fujita, E. Chem. Rev. 2015, 115, 12936−12973.

 (4) (a) Federsel, C.; Boddien, A.; Jackstell, R.; Jennerjahn, R.; Dyson, P. J.; Scopelliti, R.; Laurenczy, G.; Beller, M. Angew. Chem., Int. Ed. 2010, 49, 9777−9780. (b) Ziebart, C.; Federsel, C.; Anbarasan, P.; Jackstell, R.; Baumann, R.; Spannenberg, W. A.; Beller, M. J. Am. Chem. Soc. 2012, 134, 20701−20704. (c) Bertini, F.; Mellone, I.; Ienco, A.; Peruzzini, M.; Gonsalvi, L. ACS Catal. 2015, 5, 1254−1265. (d) Langer, R.; Diskin-Posner, Y.; Leitus, G.; Shimon, L. J. W.; Ben- David, Y.; Milstein, D. Angew. Chem., Int. Ed. 2011, 50, 9948−9952. (e) Zhang, Y.; MacIntosh, A. D.; Wong, J. L.; Bielinski, E. A.; Williard, P. G.; Mercado, B. Q.; Hazari, N.; Bernskoetter, W. Chem. Sci. 2015, 6, 4291−4299. (f) Rivada-Wheelaghan, O.; Dauth, A.; Leitus, G.; Diskin-Posner, Y.; Milstein, D. Inorg. Chem. 2015, 54, 4526−4538.

 (5) (a) Bichler, B.; Glatz, M.; Stö ger, B.; Mereiter, K.; Veiros, L. F.; Kirchner, K. Dalton Trans 2014, 43, 14517−15419. (b) de Aguiar, S. R. M. M.; Ö ztopcu, Ö.; Stö ger, B.; Mereiter, K.; Veiros, L. F.; Pittenauer, E.; Allmaier, G.; Kirchner, K. Dalton Trans 2014, 43, 14669−14679. (c) Gorgas, N.; Stö ger, B.; Veiros, L. F.; Pittenauer, E.; Allmaier, G.; Kirchner, K. Organometallics 2014, 33, 6905−6914. (d) Bichler, B.; Holzhacker, C.; Stö ger, B.; Puchberger, M.; Veiros, L. F.; Kirchner, K. Organometallics 2013, 32, 4114−4121. (e) Benito- Garagorri, D.; Becker, E.; Wiedermann, J.; Lackner, W.; Pollak, M.; Mereiter, K.; Kisala, J.; Kirchner, K. Organometallics 2006, 25, 1900−

 1913. (f) Benito-Garagorri, D.; Wiedermann, J.; Pollak, M.; Mereiter, K.; Kirchner, K. Organometallics 2007, 26, 217−222. (g) Benito-

 Garagorri, D.; Puchberger, M.; Mereiter, K.; Kirchner, K. Angew. Chem., Int. Ed. 2008, 47, 9142−9145.

 (6) Over-quantitative yields of formate have been reported with DBU as base; see: Hsu, S.-F.; Rommel, S.; Eversfield, P.; Muller, K.; Klemm, E.; Thiel, W. R.; Plietker, B. Angew. Chem., Int. Ed. 2014, 53, 7074− 7078. See also ref 4e and references cited therein.

 (7) Gorgas, N.; Stö ger, B.; Veiros, L. F.; Kirchner, K. ACS Catal. 2016, 6, 2664−2672.

339 (8) The p K_a for DBU is ca. 11.5−11.9; see: Kaupmees, K.; Trummal, 340 A.; Leito, I. Croat. Chem. Acta 2014, 87, 385-395. The pKa for tBuOH in water is 17.

 (9) Free energy values were obtained at the B3LYP/VDZP level using the Gaussian 09 package. All calculations included solvent effects (THF) using the PCM/SMD model. A full account of the computational details and a complete list of references are provided 345 as [Supporting Information.](http://pubs.acs.org/doi/suppl/10.1021/acscatal.6b00416/suppl_file/cs6b00416_si_001.pdf) 346
(10) Yang. X. *Inorg. Chem.* 2011. 50. 12836–12843. 347

(10) Yang, X. Inorg. Chem. 2011, 50, 12836–12843.