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Abstract: The combination of the unique physical properties of molybdenum disulfide (MoS2) with
those of gallium nitride (GaN) and related group-III nitride semiconductors have recently attracted
increasing scientific interest for the realization of innovative electronic and optoelectronic devices.
A deep understanding of MoS2/GaN interface properties represents the key to properly tailor the
electronic and optical behavior of devices based on this heterostructure. In this study, monolayer (1L)
MoS2 was grown on GaN-on-sapphire substrates by chemical vapor deposition (CVD) at 700 ◦C. The
structural, chemical, vibrational, and light emission properties of the MoS2/GaN heterostructure
were investigated in detail by the combination of microscopic/spectroscopic techniques and ab
initio calculations. XPS analyses on as-grown samples showed the formation of stoichiometric MoS2.
According to micro-Raman spectroscopy, monolayer MoS2 domains on GaN exhibit an average
n-type doping of (0.11 ± 0.12) × 1013 cm−2 and a small tensile strain (ε ≈ 0.25%), whereas an intense
light emission at 1.87 eV was revealed by PL analyses. Furthermore, a gap at the interface was
shown by cross-sectional TEM analysis, confirming the van der Waals (vdW) bond between MoS2

and GaN. Finally, density functional theory (DFT) calculations of the heterostructure were carried
out, considering three different configurations of the interface, i.e., (i) an ideal Ga-terminated GaN
surface, (ii) the passivation of Ga surface by a monolayer of oxygen (O), and (iii) the presence of an
ultrathin Ga2O3 layer. This latter model predicts the formation of a vdW interface and a strong n-type
doping of MoS2, in closer agreement with the experimental observations.

Keywords: MoS2; GaN; interface; DFT; vdW heterostructures; wide-band gap

1. Introduction

In the last decade, molybdenum disulfide (2H-MoS2) emerged as the most investigated
two-dimensional (2D) semiconductor material of the transition metal dichalcogenides
(TMDs) family, due to its unique physical properties, combined to a good chemical stability
and its abundance in nature [1]. MoS2 crystals (and in general all TMDs) are characterized
by strong in-plane bonds between the chalcogen (X) and the transition metal (M) atoms and
weak van der Waals (vdW) interactions between the stacked layers [2–5]. In particular, the
2H-MoS2 polytype exhibits a tunable bandgap as a function of the thickness, i.e., an indirect
bandgap of 1.2 eV in the bulk form and a direct bandgap of 1.8–1.9 eV for a monolayer (1L)
MoS2 [6,7]. One layer and few-layers MoS2 have been employed as channel materials in
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field-effect transistors (FET), showing very promising performances in terms of the on/off
state current ratio (≥108) and decent mobility values (up to ~200 cm2/Vs under proper
conditions) [1]. These properties make MoS2 one of the potential replacements of Si for
the continuation of the Moore scaling law in digital electronics [8]. Furthermore, 2H-MoS2
is very appealing for a wide range of More-than-Moore applications [1,9–12], including
sensing [13,14], photocatalysis [15,16], photovoltaics [17,18], and photonics [19,20] until
reaching the more exotic spin-valley physics [21–23].

In this context, the dangling bonds-free MoS2 surface allows the creation of several
vdW heterostructures by the combination of various 2D materials (2D/2D vdW heterostruc-
tures) [24–27], by integration of MoS2 with semiconductor nanowires (1D core-shell het-
erostructures) and with bulk semiconductors (2D/3D vdW heterostructures) [1,28–32].
In particular, increasing research efforts have been directed in the last years to the inte-
gration of MoS2 with wide-bandgap (WBG) semiconductors, including silicon carbide
(SiC), gallium nitride (GaN), and related group-III nitrides (AlN and AlGaN alloys). The
combination of the unique physical properties of MoS2 with the robust properties of highly
mature WBG semiconductors (such as high breakdown field and electron saturation ve-
locity [33,34]) set the basis for the realization of new heterojunction diodes that exploit
the vertical current at the MoS2/WBG interface [35–37] and of advanced photodetectors
covering both the UV and the visible spectral range [38–40].

2H-MoS2 exhibits a very low lattice constant mismatch with the basal planes of 4H-SiC
(~2.9%) [41] and 2H-GaN (<1%) [42] crystals, which represents a favorable condition for
highly oriented epitaxial growth of MoS2 on these hexagonal substrates [43]. Further-
more, the small difference between the thermal coefficient expansion of the MoS2/GaN
heterostructure (αMoS2 − αGaN ≈ 0.97 × 10−6 K−1 [40,44,45]) permits the reduction of the
residual strain induced by the cooling of the system from the higher growth conditions
to the room temperature [40]. The promising performances of devices obtained by the
integration of MoS2 on GaN have been demonstrated by several research groups [46,47].
As an example, innovative heteroepitaxial devices have been recently reported, such as
vertical heterojunction devices [48], Esaki tunnel diodes obtained by the combination of
degenerate p+-MoS2 on n+-GaN/Si [49], self-powered broadband (UV–vis–NIR) photode-
tectors [50–54], light emitting diodes [55], and photovoltaics applications [56].

Nevertheless, understanding and controlling the interface properties of the MoS2/GaN
heterostructures represent the key steps to optimize the performances of demonstrated de-
vices and, eventually, to demonstrate new ones. In fact, the interface of such vdW systems
plays a crucial role in terms of electronic transport and carrier transfer. As an example,
Poudel et al. reported an increase in photoluminescence (PL) emission from MoS2 and a
consequent decrease from GaN, which was attributed to electron–phonon coupling and en-
ergy transfer at the MoS2/GaN interface [57]. Furthermore, angle-resolved photoemission
spectroscopy (ARPES) measurements performed on n-MoS2 flakes transferred on p-doped
GaN displayed a modification of the band structure caused by the formation of an interface
dipole of 0.2 eV [58]. Recently, Zhang et at. [59] performed a nitridation of the GaN surface
by N2 plasma treatment before transferring MoS2 on top of GaN. A modification of the
MoS2/GaN band structure with respect to a not-nitridated surface and a corresponding
enhancement of photo-catalytic properties of the heterojunction were demonstrated, which
can be exploited for hydrogen generation.

Besides experimental studies, several theoretical investigations based on the density
functional theory (DFT) approach have been performed during the last few years to predict
the interfacial properties and energy band-alignment in MoS2/GaN heterostructures. Most
of these simulation studies considered an ideal lattice-matched interface between mono-
layer MoS2 and the Ga-terminated GaN(0001) surface, which resulted in the prediction
of a covalent-like bond at the interface [57,59]. These theoretical results contradict the
experimental evidence of a van der Waals (vdW) bond between MoS2 and GaN, reported
by different authors [36,37,42]. Clearly, studies combining experimental investigations and
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more refined modeling of the interface are necessary to better understand the properties of
this heterostructure.

In this paper, we combined experimental characterizations and DFT calculations to
provide a detailed evaluation of the MoS2/GaN interface structure and the strain, doping,
and the optical emission properties of MoS2 domains grown by CVD on GaN. X-ray photo-
electron spectroscopy (XPS) displayed the formation of stochiometric MoS2 ([S]/[Mo] ≈ 2)
without the presence of Mo-oxide (MoOx) components. Raman mapping showed that the
MoS2 domains mainly consisted of monolayers, with a small bilayer fraction, consistently
with the intense light emission peak revealed by micro-photoluminescence (µ-PL) mapping.
Furthermore, an average n-type doping of (0.1–0.2) × 1013 cm−2 and a very low tensile
strain of ~0.25% was evaluated by the correlative plot of the E’ and A’1 Raman peaks. The
obtained strain was in perfect agreement with the one derived by the exciton peak posi-
tions obtained by µ-PL spectra. Cross-sectional scanning transmission electron microscopy
(STEM) measurements confirmed both the monolayer MoS2 thickness, the presence of a
van der Waals (vdW) gap at the interface with GaN, and a modification of the topmost GaN
layers with respect to the bulk crystal. Finally, we employed DFT calculations to better
understand the structural and electronic properties of the interface between 1L of MoS2
and GaN. In particular, three configurations of the GaN surface were considered within
this heterostructure: (i) an ideal Ga-terminated GaN(0001) surface, (ii) the passivation of
Ga terminations with a monolayer coverage of oxygen (O) atoms, and (iii) the presence
of an ultrathin Ga2O3 film on the GaN surface. The first two configurations resulted in
a strong covalent bond at the interface, very different from the experimentally observed
vdW interaction. On the other hand, the formation of a vdW gap of 3.05 Å and a significant
n-type doping of 1L of MoS2 was predicted in the presence of an ultrathin Ga2O3 film at
the MoS2/GaN interface, which is in close agreement with the experimental results.

2. Materials and Methods

The starting material for these experiments was an unintentionally doped GaN(0001)
template grown on a c-sapphire substrate. The pristine GaN surface showed a low root
mean square (RMS) roughness of ~0.3 nm, evaluated from the AFM image in Figure S1 of
the Supplementary Materials.

MoS2 was grown on a GaN/c-sapphire substrate by single step CVD at a temperature
of 700 ◦C for 10 min at atmospheric pressure. The process was carried out in a quartz
tube furnace with two-heating zones, the first employed for the evaporation of the sulfur
powders (7–10 mg) at 150 ◦C, and the second for the evaporation of the MoO3 powders
(2–3 mg) at 700 ◦C. The GaN substrate was placed in the second zone of the furnace above
the MoO3 crucible. The reaction between the S vapors (transported by an Ar flux of
100 sccm) and MoO3 vapors occurred in the gas phase close to the GaN surface, resulting
in the nucleation and growth of MoS2 domains.

The MoS2 domain coverage on GaN was evaluated by scanning electron microscopy
(SEM) using a ThermoFisher Scios 2 dual-beam microscope. X-ray photoelectron spec-
troscopy (XPS) analysis was carried out by using Escalab Xi+ equipment by Thermo Fisher
(Waltham, MA, USA), with a monochromatic Al K X-ray source (energy = 1486.6 eV). The
spectra were collected at a take-off angle of 90◦ relative to the sample surface and pass
energy of 20 eV. The instrument resolution was 0.45 eV (FWHM of the Ag 3d5/2 peak).
The spectra were aligned using C1s (285 eV) as a reference.

High-resolution transmission electron microscopy (HR-TEM) and high-angle annu-
lar dark field scanning transmission microscopy (HAADF-STEM) were carried out with
an aberration-corrected Titans Themis 200 microscope by Thermo Fisher. For the cross-
sectional analysis, a focused ion beam (FIB) was used to prepare lamellas from the sample.

Micro-Raman (µ-Raman) spectra were acquired employing both WiTec Alpha equip-
ment by WiTec (Ulhm, Germany) and a Horiba Raman system with a confocal microscope
(100×) and with a laser excitation wavelength of 532 nm. The second Raman setup was
also employed to acquire the micro-photoluminescence (µ-PL) spectra changing the grating
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from 1800 L/mm to 600 L/mm. In all the configurations, the laser power was filtered with
a neutral density (ND) filter at 1%.

Calculations of the MoS2/GaN(0001) interface were performed within the density func-
tional theory (DFT). We used the plane-wave Quantum Espresso code [60] with Hamada’s
van der Waals exchange-correlation functional [61] and standard solid-state pseudopo-
tentials [62,63]. The latter was based on the Perdew–Burke–Ernzerhof functional [64]. To
have a broader comparison with the experiment, monolayer MoS2 interfaces with ideal
Ga-terminated GaN surfaces and with oxidized GaN surfaces were considered. A slab
model comprising 16 bilayers of Ga-N, whose bottom termination was passivated with
hydrogen, was used to model the GaN substrate. On the top termination instead, the
Ga-terminated GaN(0001) surface interacted with the MoS2 layer. The quasi-commensurate
lattice constants of MoS2 with respect to the surface vectors of GaN(0001) allowed for the
construction of an interface model with unit-cell periodicity. This (1 × 1) interface model
resulted in a small tensile strain for the MoS2 layer (1.7%), whereas the GaN substrate was
unstrained. The plane-wave cut-off kinetic energy was set to 50 Ry and the augmented
charge density cut-off was set to 400 Ry, respectively. A (12 × 12 × 1) Monkhorst-Pack
grid [65] was used for the sampling of the Brillouin zone. To avoid spurious interactions
between the periodic replicas of the system perpendicular to the interface, a vacuum space
of 20 Å was inserted in the simulation supercell.

3. Results

The nucleation and growth of MoS2 on the GaN surface was preliminarily investigated
by SEM images collected immediately after the deposition of the samples on different
areas. Figure 1 shows a representative image on a 6 µm × 6 µm area, which demonstrates
a very dense coverage with MoS2 domains (dark contrast). The insert of Figure 1 allows us
to better distinguish the domain’s size and coverage, with typical sizes ranging from 50
to 150 nm and an estimated surface coverage ~35%. Furthermore, the typical triangular
shape of these domains can be deduced clearly by a plan view TEM image, as reported in
Figure S2 of the Supplementary Materials.
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Figure 1. Overview SEM image and magnification (insert) of CVD-grown MoS2 domains on GaN.

XPS analyses provided surface-sensitive chemical information on the stoichiometry of
MoS2 domains. A near-stoichiometric [S]/[Mo] ≈ 2 ratio was deduced by a preliminary
elemental analysis. To obtain more detailed information on the Mo oxidation state and
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Mo-S bonding, the Mo 3d5/2, Mo 3d3/2, and S 2s core-level spectra (located at 229.3, 232.5,
and 226.5 eV, respectively) were collected, as reported in Figure 2. In particular, the Mo 3d
spectrum confirms that Mo atoms exhibit only the Mo4+ oxidation state associated with
the 2H-MoS2 [66], without any contribution at higher oxidation states correlated with the
presence of MoO3 [67].
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Figure 2. XPS spectra of Mo 3d and S 2s core levels were collected on the as-grown MoS2 on GaN.
The binding energies of the S 2s peak (226.5 eV), Mo3d3/2 (232.5 eV), and Mo3d5/2 (229.3 eV) peaks
associated with Mo atoms with Mo4+ oxidation are indicated.

Subsequently, Raman spectroscopy was exploited to evaluate the vibrational features
of the MoS2/GaN heterostructure. In particular, the characteristic Raman peaks of GaN,
i.e., E2 low-high energy and A1(LO), and of MoS2, i.e., E2g and A1g, can be observed
in the wavenumber range between 100 and 1000 cm−1, as shown by the blue and red
lines in Figure 3a. The very narrow and intense A1(LO) peak is consistent with the low
n-type doping (~1016 cm−3) of the GaN substrate [36]. Focusing on the wavenumber region
between 365 and 425 cm−1 reported in Figure 3b, a baseline subtraction and a normalization
of the A1g peak were applied with the purpose of extrapolating detailed information on the
crystal quality of the CVD-grown MoS2 flakes. Despite a low-medium A1g/E2g intensity
ratio (~0.5), the two main Raman modes could be fitted by narrow single Gaussian peaks.
In addition, the deconvolution analysis revealed the presence of a small LO(M) component
near the E2g mode, associated with defects or with the domain boundaries [68].

To obtain statistically relevant information, a wide number of Raman spectra were
collected in a 10 µm × 10 µm sample. From this array of spectra, we evaluated the
homogeneity of the MoS2 number of layers, by extracting the wavenumber difference of the
A1g and E2g Raman modes (∆ω = ωA1g −ωE2g), which is known to be dependent on MoS2
thickness [69]. In particular, the statistical distribution of the MoS2 thickness was obtained
from the ∆ω histogram in Figure 3c, which shows a mean value of ∆ω = 20.9 cm−1 with a
standard deviation of 0.9 cm−1. This distribution shows that the MoS2 mainly consisted of
monolayers, with a small percentage of bilayers.

In addition to the thickness assessment, the A1g and E2g Raman peak positions provide
information on the strain and doping of the thin MoS2 domains, according to the procedure
discussed in several recent papers [9,35,70,71]. These doping and strain effects can be due
to the CVD growth conditions and to the interaction with the GaN substrate. Figure 4a
shows a correlative E2g vs. A1g plot, where the graph is separated in four quadrants by
the intersection of the ideal strain (red) and doping (black) lines. The intersection point
represented by the light blue square corresponds to the ideal (E2g, A1g) Raman modes
of unstrained and undoped monolayer MoS2. To this aim, the literature values of the
(E2g,A1g) peak positions (ωE2g = 385 cm−1 ; ωA1g = 405 cm−1) for suspended MoS2
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flakes [5,72] were taken as the best approximation to this ideal condition, since the effects
of the interaction with substrate are excluded in that case.
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Figure 3. (a) Raman spectrum of the 2D/3D van der Waals heterostructures, showing the GaN
and MoS2 vibrational modes by blue and red lines, respectively. (b) Detail on the MoS2 peaks
after a deconvolution analysis, which pointed out the presence of a further LO(M) peak at lower
wavenumbers. (c) Histogram of the difference between the two peaks (∆ω = ωA1g − ωE2g).

The red and black arrows indicate the directions of tensile strain and n-type doping
regions, respectively, while the opposite side of the red and black lines correspond the
compressive strain and p-type doping. The n-type doping region was indicated by the
yellow area to better distinguish it from the p-type region (white) in the upper-side of
the graph. The experimental values of the peak positions from the same array of Raman
spectra used in Figure 3 are reported by the empty circles in the graph of Figure 4a. The
corresponding histograms of the E2g and A1g peak values are also reported on the upper-
side and right-side of the graph (grey bars). In Figure 4a, the blue and green points
correspond to the peaks’ positions obtained in the 1L and 2L (or multilayer) regions,
respectively, as determined in the histogram of Figure 3c. For 1L of MoS2, an average
tensile strain of around 0.2% and light n-type doping (<0.1 × 1013 cm−2) is deduced from
the correlative plot in Figure 4a. A more precise evaluation was obtained by evaluating the
strain and doping for each data point of 1L-MoS2 and by building the histograms of the
strain and doping distribution, as reported in Figure 4b,c. A tensile strain of 0.25 ± 0.10%
and a n-type doping of (0.11 ± 0.12) × 1013 cm−2 were deduced from the mean value and the



Nanomaterials 2024, 14, 133 7 of 14

standard deviation of these two distributions. Notably, nearly unstrained monolayer MoS2
on GaN has been recently reported also under different CVD growth conditions, resulting
in the formation of micrometer size triangular domains [42] or continuous monolayer MoS2
films [36,42]. These observations confirm the key role played by the low mismatch of
the in-plane lattice constants (<1%) and of thermal expansion coefficients between MoS2
and GaN. Furthermore, the low n-type doping is consistent with the typically reported
unintentional n-type doping of MoS2 obtained by exfoliation from bulk crystals, probably
induced by the presence of native defects (such as sulfur vacancies) [73,74]. On the other
hand, n- or p-type doping behavior has been reported for MoS2 grown by CVD approaches,
depending on several factors, such as the content of MoO3 residues in the films (typically
responsible for p-type doping) or the peculiar interaction with the underlying substrate.
In this regard, the average n-type doping of the CVD-grown MoS2 on GaN in the present
work is consistent with the absence of MoO3 residues, as indicated by XPS analyses in
Figure 2.
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Figure 5a shows a representative PL spectrum of the MoS2/GaN obtained with a laser
excitation wavelength of 532 nm. The intense PL emission is a further confirmation of the
good MoS2 crystal quality achieved by CVD. In fact, a high density of defects in MoS2 films
would involve non-radiative recombination of excitons, causing PL quenching [75,76].

Nanomaterials 2024, 14, x FOR PEER REVIEW 8 of 15 
 

 

good MoS2 crystal quality achieved by CVD. In fact, a high density of defects in MoS2 films 
would involve non-radiative recombination of excitons, causing PL quenching [75,76].  

 
Figure 5. (a) Photoluminescence spectrum of MoS2 on GaN, where the two excitons (A0 and B) and 
trion (A−) components were extracted after deconvolution analysis. (b) Distribution of the A0 exciton 
peak positions evaluated at different points of the sample. (c) A0 peak positions as a function of the 
tensile strain. 

In detail, a deconvolution analysis performed on the spectrum of Figure 5a revealed 
the coexistence of three components. The A0 and B peaks located at 1.87 eV and 1.91 eV 
correspond to the excitonic emissions due to the spin-orbit coupling splitting of the MoS2 
valence band [77]. Differently, the red-area convoluted peak at lower energy (1.79 eV) is 
related to the trion (also known as charged exciton) contribution, consisting of the bound 
state between an electron (or hole) and an exciton [78,79]. This deconvolution analysis 
confirms the absence of the defect-related peak XD, typically located at lower energy with 
respect to the trionic component. After a statistical analysis of different MoS2/GaN areas, 
we built a histogram of the excitonic peak energy A0, as reported in Figure 5b. This distri-
bution showed a standard deviation of 10 meV around a mean value of 1.87 eV, indicating 
a spatially uniform PL emission from the sample surface. The energy of the main PL peak 
(A0) has been shown in the literature to be dependent on the strain of MoS2, with a red 
shift of the peak at increasing strain with a rate of −99 meV/% [72]. By applying this linear 
relation, the values of the tensile strain were calculated from the experimental values of 
the A0 peak energy, as reported in Figure 5c. From this analysis, strain values in the range 
between 0.08 and 0.3% were deduced, with a mean value of ε = 0.19 ± 0.05%, in good 
agreement with the previous estimation by Raman measurements. 

The interface properties of the 2D/3D vdW heterostructure were characterized by 
cross-sectional transmission electron microscopy analyses. Figure 6a is an overview HR-
TEM image, showing a monolayer MoS2 conformal to the crystalline GaN substrate, sim-
ilarly to other reports for MoS2 grown by CVD approaches on GaN or other crystalline 
hexagonal substrates [36,37,80,81]. Furthermore, the presence of a vdW gap between the 
single layer of MoS2 and GaN surface is clearly demonstrated by the high-resolution 
HAADF-STEM image in Figure 6b. This is a direct indication of a weak bond between 
MoS2 and the underlying GaN crystal. Notably, this high-resolution STEM analysis re-
veals a different structure of the first crystalline planes of GaN with respect to the under-
lying bulk crystal. As reported in previous structural investigations of CVD MoS2/GaN 
heterostructures [37], such differences can be attributed to partial oxidation of the GaN 
surface during the MoS2 growth process or some form of surface reconstruction. 

Figure 5. (a) Photoluminescence spectrum of MoS2 on GaN, where the two excitons (A0 and B) and
trion (A−) components were extracted after deconvolution analysis. (b) Distribution of the A0 exciton
peak positions evaluated at different points of the sample. (c) A0 peak positions as a function of the
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In detail, a deconvolution analysis performed on the spectrum of Figure 5a revealed
the coexistence of three components. The A0 and B peaks located at 1.87 eV and 1.91 eV
correspond to the excitonic emissions due to the spin-orbit coupling splitting of the MoS2
valence band [77]. Differently, the red-area convoluted peak at lower energy (1.79 eV) is
related to the trion (also known as charged exciton) contribution, consisting of the bound
state between an electron (or hole) and an exciton [78,79]. This deconvolution analysis
confirms the absence of the defect-related peak XD, typically located at lower energy with
respect to the trionic component. After a statistical analysis of different MoS2/GaN areas,
we built a histogram of the excitonic peak energy A0, as reported in Figure 5b. This
distribution showed a standard deviation of 10 meV around a mean value of 1.87 eV,
indicating a spatially uniform PL emission from the sample surface. The energy of the
main PL peak (A0) has been shown in the literature to be dependent on the strain of MoS2,
with a red shift of the peak at increasing strain with a rate of −99 meV/% [72]. By applying
this linear relation, the values of the tensile strain were calculated from the experimental
values of the A0 peak energy, as reported in Figure 5c. From this analysis, strain values in
the range between 0.08 and 0.3% were deduced, with a mean value of ε = 0.19 ± 0.05%, in
good agreement with the previous estimation by Raman measurements.

The interface properties of the 2D/3D vdW heterostructure were characterized by
cross-sectional transmission electron microscopy analyses. Figure 6a is an overview HR-
TEM image, showing a monolayer MoS2 conformal to the crystalline GaN substrate, sim-
ilarly to other reports for MoS2 grown by CVD approaches on GaN or other crystalline
hexagonal substrates [36,37,80,81]. Furthermore, the presence of a vdW gap between the
single layer of MoS2 and GaN surface is clearly demonstrated by the high-resolution
HAADF-STEM image in Figure 6b. This is a direct indication of a weak bond between
MoS2 and the underlying GaN crystal. Notably, this high-resolution STEM analysis reveals
a different structure of the first crystalline planes of GaN with respect to the underlying
bulk crystal. As reported in previous structural investigations of CVD MoS2/GaN het-
erostructures [37], such differences can be attributed to partial oxidation of the GaN surface
during the MoS2 growth process or some form of surface reconstruction.
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In the last section of this paper, DFT calculations have been performed to obtain a
deeper physical understanding of the type of interaction and electronic properties of the
MoS2/GaN interface. In this context, it is worth mentioning that DFT calculations of
this kind of heterostructure have been recently reported in the literature [57,59]. A S-Ga
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equilibrium distance of 0.232 nm in Ref. [57] and 0.237 nm in Ref. [59] was evaluated
for the ideal case of a lattice-matched interface between MoS2 and Ga-terminated GaN,
indicating the formation of a covalent-like bond at the interface. Clearly, those calculation
results do not match with the results of atomic resolution TEM analyses of the MoS2/GaN
heterostructure obtained in the present work and with those recently reported by different
research groups [37,47], which showed the presence of a larger vdW gap separating S from
Ga atoms.

As a matter of fact, under real experimental conditions, the GaN(0001) surface can
be subjected to reconstructions or to oxidations. Hence, to provide a more complete
description of the MoS2/GaN system, we performed DFT calculations of the heterostructure
considering three different model configurations of the GaN surface (see Figure S3 of the
Supplementary Materials): (i) the ideal Ga-terminated GaN, analogous to the one reported
in the literature; (ii) the passivation of the Ga termination with an oxygen coverage of one
monolayer; and (iii) the formation of an ultra-thin crystalline Ga2O3 oxide. The analysis of
the DFT predictions for these three configurations has been compared with the experimental
results for our system.

Figure 7a shows the most stable configuration obtained by DFT calculations of the ideal
Ga-terminated GaN surface, where a Ga-S equilibrium distance of 0.241 nm was estimated,
in close agreement with recent literature reports [57,59]. Furthermore, the calculated band
structure for this system (reported in Figure 7b) shows a high n-type doping of MoS2 and
strong perturbation of its energy bands. As a matter of fact, this ideal configuration of the
MoS2/GaN(0001) interface does not provide a real representation of the system. For this
reason, we performed DFT calculations considering the presence of O atoms bonded to the
GaN(0001) surface.
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Figure 7. (a) Structure of the interface between Ga-terminated GaN and monolayer MoS2 seen from
the (1120) plane and (b) the energy band structure of this heterostructure. EF refers to the calculated
Fermi level of the system.

Figure 8a,b shows the results for oxygen-passivated Ga terminations with one mono-
layer O surface coverage. Also in this case, a covalent interface interaction was obtained,
which again deviates from the experimental evidence of a weak van der Waals bonding.
The theoretically calculated strong interface coupling had a structural impact only on the
topmost Ga layer of the substrate and perturbed the MoS2 bands with respect to those of a
freestanding MoS2 layer (see Figure S4 of the Supplementary Materials).

We thereon considered the formation of an ultra-thin layer of surface native oxide
Ga2O3, which significantly reduces the surface energy of GaN(0001) as compared to other
oxidized reconstructions [82]. This layer is characterized by an O−Ga−O trilayer which
inverts the polarization of the GaN layer along the [0001] direction, followed by a Ga−O
bilayer that terminates the oxidized surface (Figure 9a). The interaction of this Ga2O3-
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terminated GaN surface with MoS2 gave rise to a van der Waals interface with an oxygen-
sulfur interface distance of 3.05 Å. This distance is significantly larger than the one reported
in the literature for the ideal MoS2/GaN(0001) system [57,59] and it is in better agreement
with the experimental observations of a vdW gap at the interface. Figure 9b–e shows the
total and partial electronic contributions (Mo d and Ga s orbitals) in the density of states
of the heterosystem, plotted at the close Γ-M-K-Γ path of the Brillouin zone. The pristine
bands of MoS2 are clearly preserved in this case, showing a direct band gap of 1.7 eV at the
K point of the Brillouin zone. We note that such an interface induces a significant n-type
doping for the MoS2 sheet, due to a shift of surface Ga s states deriving from the oxide
layer towards lower energies (because of Ga-O bonding). Such a shift brings the Fermi
level of the system close to the conduction band of the MoS2 layer. Overall, the theoretical
calculations indicate that a van der Waals interface at the MoS2/GaN(0001) heterosystem is
expected when an ultra-thin Ga2O3 native oxide forms at the substrate’s surface, whereas
it is rather improbable for low surface oxygen coverages.
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EF refers to the calculated Fermi level of the system.
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EF refers to the calculated Fermi level of the system.
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4. Conclusions

The structural, chemical, vibrational, and light emission properties of the CVD-
grown MoS2 heterostructure with GaN have been investigated in detail by several mi-
croscopic and spectroscopic techniques and by DFT calculations. XPS analyses on as-
grown samples showed the formation of stoichiometric MoS2. According to micro-Raman
spectroscopy, monolayer MoS2 domains on GaN exhibit an average n-type doping of
(0.11 ± 0.12) × 1013 cm−2 and a small tensile strain ε ≈ 0.25%), whereas an intense light
emission at 1.87 eV was revealed by PL analyses. Furthermore, a gap at the interface was
shown by cross-sectional TEM analysis, confirming the vdW bond between MoS2 and
GaN. Finally, DFT calculations of the heterostructure were carried out, considering three
different configurations of the interface, i.e., (i) an ideal Ga-terminated GaN(0001) surface,
(ii) the passivation of the Ga surface by a monolayer of oxygen, and (iii) the presence
of an ultrathin Ga2O3 layer. This latter configuration is the only one which accounts for
the formation of a vdW bond at the interface and a significant n-type doping of MoS2, in
agreement with the experimental observations. These results provide an insight on the
MoS2/GaN interfacial properties, which rule the current injection mechanisms across these
vdW heterostructures. Further studies on how to tailor the structural/chemical properties
of this interface will be crucial for future applications in electronics and optoelectronics.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/nano14020133/s1. Figure S1: AFM image of GaN-on-
c-sapphire with an RMS of about 0.3 nm. Figure S2: In-plane TEM image of MoS2 triangular flakes
on a carbon grid. Figure S3: Interface models used for the DFT calculations of the MoS2/GaN
heterostructure, considering three different configurations of the GaN surface. Figure S4: Band
structure of freestanding MoS2 based on DFT calculations.
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