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Abstract

The Diffused Vortex Hydrodynamics (DVH) is a recent numerical model born as
an evolution of the classical vortex particle methods, where an improvement of
the solution quality has been achieved through a regularization of the particles
spatial distribution during the vorticity diffusion process. The DVH method is
a pure meshless method which adopts a body-fitted approach to enforce no-slip
boundary condition on solid surfaces. In the present work it is exploited to perform
an accurate analysis of the vorticity field generated by the incompressible flow
around bodies with geometrical singularities. In common academic or technological
applications, such singularities are quite frequent (e.g. trailing edges of wing profiles
or of propeller blades) and the classical Euler mesh-based methods can suffer in
modelling these geometries. In the recent years a wide literature was produced in
order to describe enhanced numerical methods that could overcome such challenging
problems. The potentialities of the DVH approach to problems where bodies with
geometric singularities are involved, are deeply discussed and some examples are
finally offered.
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1 Introduction

In the last decades, the accurate analysis of the vorticity field generated by a
body in motion played an important role in technology applications: aircraft
design, helicopter, bridges or skyscrapers are clear examples. Moreover, it
proved to be fundamental and strategic for new renewable energy devices. The
research on wind turbines farms, in fact, covers a large literature on this topic
and a new and interesting challenge is represented by the bladeless evolution
of them which exploits the tower oscillations induced by the shed vorticity
(see e.g. Villareal [22]).

The numerical simulation of the vorticity field generated by complex bodies
represents a non trivial task even at the present days: the algorithms based
on the solution of the Navier-Stokes equations in terms of fields (e.g. Finite
Differences, Finite Volumes of Finite Elements) or particles (e.g. Smooth
Particle Hydrodynamics) are not directly affected by the vorticity calculation
as a primary variable, but its evaluation is usually performed in the post
processing with an unavoidable accuracy degradation. Moreover, the classical
approaches to the description of the flow field around a body generally
suffer when geometric singularities are involved, as it may be typical in
the naval hydrodynamic environment. The presence of bodies with sharp
surfaces frequently forces to exploiting unstructured meshes, that are simpler
to generate but less accurate in the convergence control with respect to
the structured ones. However, the latter requires a certain regularity of the
domains mapped, so a wide literature on numerical techniques, developed in
order to overcome these issues, has been produced in the last decades (see
for general description of overlapping grids technique Petersson [18] or for
naval applications Muscari [15]). In the paper of Marrone et al. [11] the δ-
SPH approach is addressed in order to study violent water impacts. There,
the flow past a sharp-edged obstacle shows a particular effort in dealing
with the geometric singularity. To tackle this problem, a ghost-fluid approach
was formulated in order to ensure the enforcement of the correct boundary
conditions.

Differently from the outlined approaches, the vortex particle methods allow
to study the vorticity evolution in a proper way, being the vorticity the
primary variable of the problem. In the present paper the Diffused Vortex
Hydrodynamics (DVH), presented in Rossi et al. [19],[20] is exploited for the
modelling of 2D incompressible viscous flow around bodies with geometrical
singularities. The DVH method has been validated in Rossi et al. [19] where
the evolution of vorticity distribution in free space is considered. In Rossi et
al. [20] the flow at moderate and high Reynolds numbers past smooth bluff
bodies of various shapes has been studied and the results were compared with
those present in the literature.
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The use of a vortex method for incompressible flows brings several advantages
(see e.g. Cottet and Koumoutsakos [6], Koumoutsakos and Leonard [9], Chorin
[2]):

(i) the pressure field is no longer a direct unknown of the problem when the
Navier-Stokes equations are written in vorticity formalism,

(ii) the continuity equation is automatically satisfied,
(iii) the vorticity formulation allows to discretize only the rotational region of

the flow (self-adaptivity),
(iv) high accuracy on the evaluation of the velocity field (because it is obtained

through a spatial integration),
(v) possibility to simulate flows at high Reynolds numbers,

(vi) the boundary conditions at infinity are automatically satisfied, therefore
large spatial domains are not required to correctly enforce them,

(vii) finally, advantage comes from the Lagrangian nature of the method that
reduces the numerical dissipation present in mesh-based approach coming
from the nonlinear term of the Navier-Stokes equations (see e.g. Cottet
and Koumoutsakos [6]).

The DVH method exploits the operator splitting algorithm introduced by
Chorin [2]. The single time step is divided in two sub-steps: one advective
and one diffusive. In the advective sub-step, the velocity field is evaluated
through a fast multipole method (FMM, see e.g. Graziani and Landrini [8])
while, in the diffusive sub-step, the diffusion of the vortices is performed using
the deterministic algorithm described by Benson et al. [1]; the latter being
based on a superposition of elementary solutions of the heat equation. If a
body surface exists within the fluid domain, the no slip boundary condition is
enforced through the generation of a vortex sheet, as described in Chorin [2].

In the diffusive step each vortex particle spreads its circulation on a Regular
Point Distributions (RPD). At the end of this step, a new set of vortices
is generated on the nodes of the RPD overwriting the previous one. This
procedure avoids the excessive clustering or rarefaction of the vortices without
using any remeshing (with interpolation procedure). To solve the diffusion
near a smooth solid boundary, an homogeneous Neumann condition for the
vorticity field is used, together with a flat plate approximation of the solid
contour itself. However, the latter approximation is no more valid for the
vortices close to geometrical singularities, no matter the level of the spatial
discretization adopted.

In this work, the DVH method is used to simulate flows around bodies with
non-smooth boundaries. The presence of geometrical singularities requires the
modification of the diffusion algorithm described in Rossi et al. [20] with the
introduction of a suitable visibility mask algorithm. This method is then tested
around bodies of increasing complexities.
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Exploiting the body-fitted approach, obtained through the RPD, is not a
common approach. Indeed, a remeshing procedure is normally needed to
correctly interpolate the vorticity field on a desired point distribution. For
example in Wee and Ghoniem [23] a scheme treating diffusion and remeshing
simultaneously is proposed and the appropriate interpolation Kernels are
derived.

Moreover the use of the RPDs has the great advantage to be suitable for a
body-fitted approach. Conversely a wide literature promotes the penalization
function, which is an immersed-boundary like technique and it consists in a
term that enforces continuity at the solid-fluid interface considering a simple
rigid motion inside the solid. The method is deeply described in Mimeau et al.
[12], where it was exploited to simulate the flow around a rotating blade and
the flow past a semi-circular body with a porous layer, as well as in Rossinelli et
al. [21], where an impulsively started cylinder at Re up to 1000 was simulated
in order to evaluate the scalability of a vortex particle method on a GPU.

Because the high scalability aptitude of the particle codes, many other works
analyse this topic: in Yokota and Barba [24] the performances of a tree-code
and a Fast Multipole Method are compared on a GPU through the simulation
of two leapfrogging vortex rings. In Yokota et al. [25] the same Lagrangian
approach was applied to the calculation of a decaying homogeneous isotropic
turbulence and the results are compared with a spectral approach.

The paper is organized as follows: in section 2 the Diffused Vortex
Hydrodynamics is outlined and a remark on the diffusion step is stressed in
section 3 and deeply discussed in the presence of geometrical singularities in
subsection 3.3. Some examples of the potentialities of the present numerical
approach are offered in sections 4.1, 4.2, 4.3 and 4.4. In section 5 a discussion
on the computation costs of the DVH method is reported. Finally conclusions
close the article in section 6.

2 Diffused Vortex Hydrodynamics

A brief description of the DVH method is summarized in this section. A
viscous incompressible fluid in the two-dimensional domain Ω is considered.
The governing equations are the Navier-Stokes ones that, written in vorticity
ω, reads as follows:

Dω

Dt
= ν∇2ω, ∀r ∈ Ω . (1)

where the time derivative is a material derivative, ν is the kinematic viscosity
of the considered fluid and r is the position of a generic material point.
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The vorticity field is discretized with N vortex particles in the following way:

ω(r, t) =
N∑
i=1

Γi(t)δε(r − ri) (2)

where Γi is the circulation of the i-vortex with position ri and δε is a smooth
function that approximates the Dirac δ distribution in the weak sense.

In order to obtain a solution of eq. (1), the operator splitting scheme (Chorin
[2],Chorin [3]) has been used. According to this method, the evolution of the
fluid is split into two steps:

(i) the vortex particles are advected considering the fluid as inviscid,
(ii) the fluid is considered at rest and the vorticity is diffused due to viscosity.

During the advection step, the vorticity is transported according to the Euler
equation: 

Dω(r, t)

Dt
= 0

Dr

Dt
= u(r, t)

∇2u(r, t) = −curl(ω), ω = ωe3 ,

(3)

being e3 the unit vector orthogonal to the reference plane. In order to solve
the Poisson equation for the velocity, the latter is decomposed in the following
way:

u = u∞ + uω + u′ (4)

where u∞ is the free stream velocity. The term uω is the one induced by the
vorticity distribution and can be evaluated by using the Biot-Savart law

uω(r, t) =
N∑
i=1

ΓiKε(r− ri) (5)

through a classical Fast Multiple Method (FMM, see e.g. Graziani and
Landrini [8]). In eq. (5) Kε is a regularization of the Biot-Savart kernel K
(see e.g. Chorin [2]). The last term u′ in equation (4) is a correction to the
velocity caused by the presence of the boundary surfaces in the flow field.
Computation of this term typically requires the use of boundary integral
methods. An indirect Boundary Element Method (BEM) is here exploited
through a discretization of the body surface with a set of sources with strength
σj and point vortices with circulations γj:

u′(r, t) =
Nb∑
j=1

[γjKε(r, rj) − e3 ×Kε(r, rj)σj]∆s (6)
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for details see Rossi et al. [20]. The velocity u is then used to advect the vortex
particles through a fourth order Runge-Kutta time integration scheme.

In step (ii) the vorticity diffusion is obtained by solving the following linear
heat equation:

∂ω

∂t
= ν∇2ω . (7)

In the DVH scheme this equation is solved by a deterministic diffusion
algorithm proposed in Benson et al. [1] through a superposition of elementary
solutions of the heat equation. More in details each vortex particle spreads the
vorticity on a “Regular Point Distribution” (RPD) defined as a set of points
with regular spacing without any topological connection. RPDs are generated
using a packing algorithm described in Colagrossi et al. [4] and permits to
arrange points around complex shapes distributing them with almost uniform
spacing ∆r. The algorithm provides a suitable distribution of points around
complex bodies with a negligible CPU extra costs (for more detials see Rossi
et al. [20]). The use of a packing algorithm avoids the pre-processing costs
typical of FVM schemes for the mesh generation.

The vorticity field after diffusion is then lumped into new point vortices located
at the RPD nodes. In fact, at the end of this step a new set of vortices is
generated replacing the previous one. This procedure avoids the excessive
clustering or rarefaction of the vortices. Further details can also be found
in section 3.

In section 3 the solution of eq. (7) is addressed and discussed in a general case
of solid boundaries.

2.1 Choice of diffusion and advection time steps

Considering U and L as the reference velocity and length of the problem,
the Reynolds number is defined as Re = UL/ν. For the sake of simplicity a
single RPD is considered with the related spatial resolution equal to L/∆r.
Following the derivation described in Rossi et al. [19], it is possible to associate
the diffusive time step ∆td to the spatial resolution L/∆r and to the Reynolds
number:

∆td
U

L
' 0.34

Re

(L/∆r)2
= 0.34

Re∆r

(L/∆r)
, (8)

being L the length scale of the specific problem at hand and Re∆r = U∆r/ν
is the so-called Reynolds cell number. The latter needs to be O(1) at least in
the region of interest in order to properly simulate all the vorticity spectrum.

Together with the diffusion time step, we need to consider also the time step,
∆ta, for the particles advection. This can be chosen by considering both the
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flow velocity U and the discretization ∆r. A first evaluation of ∆ta can be
chosen as:

∆ta
U

L
= Co

1

(L/∆r)
(9)

where the Courant number Co is O(10−1) to avoid that the vortex particles
move with large displacements inducing extreme clustering or rarefaction on
the particle distribution during the advection steps.

For the Reynolds number analysed in this work and for the ratios L/∆r
possible with the CPU resource available, the constrain on the advection step
is generally more restrictive than that related to the diffusion process. This
means that during a time interval ∆td more than one advection step can be
performed. This is true especially far from the boundary layer regions where
coarser spatial discretizations and large Re∆r are used. In order to synchronize
diffusion and advection steps, ∆ta is arranged to get ∆td/∆ta in an integer
ratio:

N∆t =
[

∆td
∆ta

]
→ ∆ta =

∆td
N∆t

. (10)

3 Diffusion step with arbitrary solid boundaries

Using the boundary integral method it is possible to write a general solution
of eq. (7) as (see e.g. Costabel [5]):

ω(r, t) = −ν
∫ t

t0

∫
∂Ω

[
F(r? − r, t− t′)∂ω

∂n
(r?)− ω∂F

∂n
(r? − r, t− t′)

]
dS?dt′+

+
∫

Ω
ω(r?, t0)F(r? − r, t− t0)dV ?,

(11)
being ∂Ω the boundary of the fluid domain Ω while F(r? − r, t − t′), the
fundamental solution of the heat equation, is the Gaussian function:

F(r? − r, t− t′) =
1

4πν(t− t′)
exp

{
− |r

? − r|2

4ν(t− t′)

}
, (12)

ω(r?, t0) is the initial vorticity distribution, and n is the outward normal unit
vector to ∂Ω.

The natural evolution of the boundary integral formulation (11) to a solution
procedure based on the approximation of the vorticity field by a finite number
of point vortices is discussed in Graziani et al. [7].
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3.1 Diffusion of a single vortex particle in free-space

Equation (11) takes a very simple form when dealing with free space problems

ω(r, t) =
∫

Ω
ω(r?, t0)F(r? − r, t− t0)dV ? (13)

where F(r?−r, t−t0) is the fundamental solution of the heat equation defined
in eq. (12).

Calling Br′ the sphere {|r′ − r| 6 Rd} and following Rossi et al. [19], the
approximated solution of the heat equation for a single point vortex with
position ri and strength Γi is given by:

ω(r, t0 + ∆td) = ΓiF(ri − r,∆td) ∀r ∈ Bri

ω(r, t0 + ∆td) = 0 otherwise

(14)

where the Gaussian distribution has been truncated at distance Rd for
numerical purpose.

Eq. (14) can be used to distribute the vorticity of each vortex particle over
its associated RPD which is characterized by a resolution length ∆r. The
vorticity field after the diffusion step is then lumped into new point vortices
located at the RPD nodes.

Fig. 1. Sketch of the vorticity diffusion of a vortex particles in free space with the
associated RPD.

As sketched in Fig. 1, during the diffusive process the circulation of the i-
th vortex particles gives a contribution Γk to the volume (area in 2D) ∆Vk
associated to the k-th node of the RPD :

Γk = ΓiF(ri − rk,∆td) ∆Vk . (15)
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In order to preserve the circulation Γi of the i-th donor particle on the different
k-th acceptor nodes, a Shepard renormalization is implemented, evaluating a
new circulation:

Γ′k = Γi
Γk∑
k Γk

(16)

where the summation
∑
k Γk is extended to all the acceptor nodes inside the

diffusive support Bri of the i-th particle. Eq. (16) will be used also in the
case of diffusion near solid boundaries taking into account the image vortices
introduced in the following.

3.2 Diffusion close to a solid boundary

After the advection step the non-slip boundary condition is violated and a
vortex sheet is generated on the body wall according to the slip velocity
obtained by eq. (4). In the following sub-step, in order to enforce the non-
slip condition, the wall velocity is diffused within the field and eq. (11) can be
used to evaluate this effect. In the diffusion step a vanishing normal derivative
is assumed for the wall vorticity in eq. (11):(

∂ω

∂n

)
∂Ω

= 0 (17)

The second term in the boundary integral in eq. (11) disappears by choosing
a function FΩ such that: (

∂FΩ

∂n

)
∂Ω

= 0 . (18)

With this choice, eq. (11) reduces to

ω(r, t) =
∫

Ω
ω(r?, t0)FΩ(r? − r, t− t0)dr? (19)

where FΩ can be easily evaluated when ∂Ω is an infinite flat plate through
the use of the image method. The presence of the boundary needs to be taken
into account in the solution of eq. (11) if the vortex particle is at a distance
lower than Rd.

The approximated solution for a single point vortex of position ri and
circulation Γi can then be written as (see Rossi et al. [20])

ω(r, t0 + ∆td) = Γi
[
F(ri − r,∆td) + F(r

(im)
i − r,∆td)

]
(20)

where r
(im)
i is the position of the image vortex. The solution (20) is defined for

the point inside the ball Bri intersected with the half-space delimited by the
tangential plane on the body (considering the outgoing normals of the body
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surface). The image vortex gives its contribution only on the point belonging
to the set Bri ∩ Br

(im)
i

. A sketch of the influence areas commented above is

depicted in figure 2.

Fig. 2. Diffusion in the presence of a solid boundary: set of influence of the real
and image vortex particles on the RPD nodes.

Equation (20) is strictly valid only for flat plate problems. However, when
dealing with solid surfaces with generic shapes, if the diffusive radius Rd is
small enough to make the body curvature not relevant, it is possible to locally
approximate the body contour with a straight line. In this case it is possible
to solve the diffusion near the body using the method just described.

Once the image vortex has been considered, both the image and the vortex
give their diffusive contribution to the RPD nodes at a distance lower or equal
to Rd along the body normal through (20).

To preserve the conservation of the circulation we must perform a
renormalization procedure of the diffused vorticity using eq. (16) (for details
see Rossi et al. [19]).

3.3 Diffusion in the presence of geometrical singularities

If the body presents geometrical singularities, the flat wall approximation
described in the previous section is no longer valid and a visibility mask need
to be properly defined. Differences arise depending on the distance of the
vortex particle from the body as well as on the convexity or concavity of the
area close to the singular points.

Elementary diffusion in region close to a sharp edge

To take into account the presence of an edge during the diffusive step, equation
(20) must be modified. In particular the elementary solution for a single vortex
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is approximated using a visibility mask to properly chose the RPD nodes over
which the vorticity is diffused.

The action of the visibility mask is depicted in the left plot of Fig. 3: a vortex
near an edge of the body is allowed to diffuse only in the area within a distance
less or equal to Rd with the exception of the region shaded by the body. The
definition of the shaded region is depicted in fig. 3 using the line passing from
the vortex to the edge. Being ri the position of a vortex, having circulation
Γi, then the set of RPD points selected by the visibility mask can be called
B(vis)

ri
.

Fig. 3. Left: Action of the visibility mask algorithm. Right: Near body zone
subdivision: n1 and n2 are the normal vectors on the two sides of the edge.

The effect of the body is then accounted for by defining an image vortex
of position r

(im)
i and circulation Γi. The diffusion is then performed using

equation (20) where the support Bri has been substituted by B(vis)
ri

. The
position of the image vortex depends on the relative position of the vortex
with respect to the edge of the body. Indeed, near an edge of the body three
different zones S1, S2 and S3 can be defined using the normal vectors n1 and
n2 on the two side of the edge as depicted in the right plot of figure 3.

Fig. 4 sketches the four different possibilities for the definition of the visibility
support and the position of the image vortex. The diffusive supports of the i-th
vortex and of its image are Bvis

ri
and Bvis

r
(im)
i

respectively. Vorticity is diffused

by the i-th vortex particle inside Bvis
ri

while its image diffuses ω only over
Bvis

ri
∩Bvis

r
(im)
i

.

In particular sketch 4(a) depicts the case of a vortex in zone S1 at a distance
larger than Rd from the edge, in this case the position of the image vortex is
constructed as in section 3.2. Sketch 4(b) depicts the case of a vortex belonging
to the zone S1 at a distance smaller than Rd from the edge: also in this case
the position of the image is constructed by reflection of the vortex position

11



(a) Vortex in zone S1 at a distance
larger than Rd from the edge image
position taken as the reflection
with respect to the body tangent

(b) Vortex in zone S1 at a
distance smaller than Rd from the
edge image position taken as the
reflection with respect to the body
tangent

(c) Vortex in zone S3 at a
distance smaller than Rd from the
edge image position taken as the
reflection with respect to the edge
position

(d) Vortex in zone S3 at a
distance smaller than Rd from the
edge image position taken as the
reflection with respect to the edge
position

Fig. 4. Image vortex position and diffusive influence zones. The red zones are the
points on which only the vortex gives diffusive contribution. The blue zones are the
points on which both the vortex and its image give diffusive contribution

with respect to the body tangent. Finally, in the sketches 4(c) and 4(d) the
two cases of a vortex belonging to the zone S3 are shown. In this case the
image position is constructed by reflecting the vortex position with respect to
the edge position.

The heat equation solution proposed above may appear quite crude for a single
vortex particle, since it is based on a visibility criteria more suitable for an
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hyperbolic problem than for a parabolic one. However, it must be stressed
that the procedure is repeated and averaged for all the vortex particles in
the neighbourhood of the edge making the errors of the above approximation
negligible with respect to the overall accuracy of the method. Moreover the
proposed algorithm guarantees the continuity of the solution in passing across
the three regions S1, S2 and S3.

It is worth to note that, similarly to other numerical approaches, if a geometry
presents curvature radius smaller than the diffusive radius Rd this one cannot
be resolved and need to be treated as a singular point.

Elementary diffusion in Concave region

Here a portion of the body surface characterized by a concave area defined
by a sector of an angle α is considered. Fig. 5 depicts such an area with the
associated RPD. Considering the generic i-th particle vortex with a diffusive
radius Rd, it is possible to define three different zones S1, S2 and S3 by using
the following distance from the inner vertex:

ζ =
Rd

sin(α/2)
(21)

If the point vortex is in zone S3 = {ζ > Rd

sin(α/2)
} the diffusion is performed

following the processes described in sections 3.2 and 3.3, because here the
vorticity diffusion of the vortex particle is influenced by the closest wall only.

If the point vortex is inside zone S2 = { Rd

2 sin(α/2)
≤ ζ < Rd

sin(α/2)
} the diffusion

Fig. 5. Definition of three different areas for the diffusion process inside a concave
region
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is performed using the following equation:

ω(r, t0 + ∆td) = Γi
1

4π ν∆td

[
exp

{
−|ri − r|2

4 ν∆td

}
+

+ exp

{
−
|r(im)
i − r|2

4 ν∆td

}
+ exp

{
−
|r′(im)
i − r|2

4 ν∆td

} ]
∀r ∈ Bri

ω(r, t0 + ∆td) = 0 otherwise

(22)

thus the circulation is diffused using two image vortices, one for each side
of the body walls, to properly take into account their effect on the diffusion
process. In this case the positions of the image vortices are constructed as
explained in section 3.2 (see center plot of Fig. 5).

Going from S2 to S1 = {ζ ≤ Rd

2 sin(α/2)
} regions, the spanning of the areas

influenced by the imaginary vortices increases until they become overlapped.
In that configuration the spatial resolution does not allow to resolve gradients
close to the wall, standing the dimension of the diffusive radius. For this
reason, a simple renormalization procedure was chosen in order to simplify
the algorithm, through the definition of the region S1.

4 Numerical test-cases

In this section some examples, highlighting the capabilities of DVH approach
in the presence of geometrical singularities, are proposed.

Apart from the problem treated in section 4.4, for all the test-cases proposed
the DVH results are compared with a Finite Volume Method (FVM), by
means of an in-house solver (for details see e.g. [14], [15], [16], [17]), in
order to discuss in details the quality of the DVH solutions. The comparisons
are made on global quantities, drag and lift coefficients and also on local
pressure distributions. This local analysis allows to check the effects on the
flow solutions induced by the visibility mask algorithm.

In the DVH solver the flow is started impulsively, while the use of a ramp is
more suitable in the FVM to avoid the inception of instabilities in the cells
close to the body, where the no slip boundary conditions are imposed. Indeed,
the cell volumes are highly packed along the normal direction of the body
surface (because of high gradients involved) and the local time step needed to
respect the stability constraints may become very small. For the above reason,
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the detailed comparison between the two solvers is performed only when the
steady or periodic regimes are reached.

Finally, in subsection 4.3 a non standard problem is considered, where a
concave singularity is involved, is considered and the comparison with a Finite
Volume code enlights the differences between a standard approach and the
present one in treating such a singularity.

4.1 Flow past square and rectangular cylinder

A series of DVH simulations of the flow around square and rectangular
cylinders with various angles of attack is here discussed.

In this section the Reynolds number and the lift and drag coefficients are made
non dimensional using the maximum cross-stream length of the body d

Re =
Ud

ν
, cd =

2Fx
ρU2d

, cl =
2Fy
ρU2d

.

Figure 6 depicts the definition of the maximum cross-stream height of the body
d together with the angle of attack α and the sides A and B≥A of the rectangle.
The main parameters of the adopted space/time resolution are reported in
Table 1. For all the simulations discussed in this section, the Reynolds number
has been set equal to Re = 200 and the same spatial resolution has been used.

The first two simulations concern the flow around a square cylinder (A=B)
with angles of attack α = 0◦ and α = 45◦. Figure 7 depicts the wake shed by
the body for the two angles of attack used. We underline that for both the
cases α = 0◦ and α = 45◦ the length d is fixed and the Reynolds number is

Fig. 6. Geometrical parameters for a flow simulation around a rectangular cylinder
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Fig. 7. Vorticity field for d/∆r = 100 for a square cylinder at Re = 200 and various
angles of attack α. From top to bottom α = 0◦, and α = 45◦.

Fig. 8. Drag (left plot) and lift (right plot) coefficients for a flow past a square
cylinder at Re = 200 and angle of attack α = 0◦ (top) and α = 45◦ (bottom).
Comparison with a FVM solver is shown

d/∆r Re∆r Co ∆ta U/d ∆td/∆ta

100 2.00 0.70 7.05× 10−3 1

Table 1
Flow past a square and rectangular cylinders at Re = 200: main discretization
parameters
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set using this length, therefore the square with α = 0◦ is greater in size than
the one adopted with α = 45◦.

The same analysis has been performed with the FVM solver in order to
evaluate the loads. A comparison of the lift and drag coefficients is depicted in
Figure 8 for α = 0◦ and α = 45◦ respectively with an evident fair agreement
in the periodic regimes.

In order to evaluate the effect on the flow field of the edge ratio, the flow
around a rectangular cylinder with B = 2A and angles of attack α = 0◦ and
90◦ is investigated. Figure 9 depicts the wake shed by the body for α = 90◦.
As is clearly visible in the figure, a complex interaction of the shed vortices
appears after x/d ∼ 13. A comparison of the lift and drag coefficients with

Fig. 9. Evolution of the vorticity field for d/∆r = 100 for a flow past a rectangular
cylinder with B/A = 2.0 and angle of attack α = 90◦ at Re = 200.

Fig. 10. Drag and lift coefficient for the flow past a rectangular cylinder with
B/A = 2.0 at Re = 200 and α = 90◦. Comparison with a FVM solver is shown

Fig. 11. Boundary distribution of pressure coefficient for the flow past a rectangular
cylinder with B/A = 2.0 at Re = 200 and α = 90◦. Left: cp taken at zero value of cl.
Right: cp taken at maximum value of cl. Comparison with a FVM solver is shown.
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the results given by the FVM solver is depicted in Figure 10 and a good
matching is obtained in the periodic regime. For this case, a comparison of
the pressure coefficient along the body contour is also explored. The pressure
distributions are evaluated, for this case and the following ones, during the
periodic regime when the lift force is zero or at its maximum value. Figure 11
depicts the distribution of the pressure coefficient cp comparing the DVH and
FVM results. This comparison proves that the present method is consistent
with a well tested finite volume procedure not only from a global point of
view but also in the sense of the local quantities behaviour. In particular in the
region close to the vertices, the pressure drops estimated by the two solvers are
in a satisfactory agreement, demonstrating that the visibility mask procedure

Fig. 12. Evolution of the vorticity field for d/∆r = 100 for the flow past a rectangular
cylinder with B/A = 2.0 and angle of attack α = 0◦ at Re = 200.

Fig. 13. Drag and lift coefficient for the flow past a rectangular cylinder with
B/A = 2.0 at Re = 200 and α = 0◦. Comparison with a FVM solver is shown.

Fig. 14. Boundary distribution of the pressure coefficient for the flow past a
rectangular cylinder with B/A = 2.0 at Re = 200 and α = 0◦. Left: cp taken
at zero value of cl. Right: cp taken at maximum value of cl. Comparison with a
FVM solver is shown.
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reproduces in a correct physical way the local details of the numerical solution.

Figure 12 sketches the wake shed by the rectangle for α = 0◦: an evident
difference with respect to the case α = 90◦ concerns the regularity of the
vorticity fields in the two cases. In terms of global quantities, a comparison
of the lift and drag coefficient with the FVM results has been performed and
the results are compared in figure 13 with a good agreement in the periodic
regime for both drag and lift components.

For this configuration with α = 0◦, a comparison of the pressure coefficient
along the body contour with the FVM is again analysed and plotted in figure
14. The pressure distribution is nearly the same, with a perfect catch of the
peak at the upstream corners.

4.2 Flow past an airfoil NACA0008

In the present section the flow around an airfoil NACA0008 with angle of
attack α = 4◦ is discussed. Two different Reynolds numbers (based on the
chord length c, Re = Uc/ν) 2000 and 6000 are simulated. Because of the
small angle of attack and of the viscous regimes selected, the flow remains
practically attached to the airfoil and the forces reach a steady regime after a
start-up stage.

As stated in Mittal et al. [13]:

(i) these configurations have particular relevance for micro-aerial vehicles
where Reynolds numbers tend to be in the range from 102 to 104,

(ii) this flow is quite challenging for numerical methods based on immersed
boundary approaches since the region around the leading-edge of the
airfoil has very small radius of curvature compared to the airfoil chord.

Therefore, a non-uniform mesh around this area is needed in order to resolve
with a sufficient accuracy the boundary layer. In particular in both DVH and
FVM the same mesh points across the boundary layer are used. In table 2 the
main parameters of the space/time resolutions adopted in the DVH method
are reported.

Re c/∆r Re∆r Co ∆ta U/c ∆td/∆ta

2000 800 2.50 0.88 1.10× 10−3 1

6000 1000 6.00 2.11 2.11× 10−3 1

Table 2
Flow around an airfoil NACA0008 with angle of attack α = 4◦: main discretization
parameters.
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c/∆r 100 200 400 800

cd 0.0866 0.0783 0.0769 0.0773

cl 0.217 0.251 0.261 0.260

Table 3
Steady cd and cl for the NACA0008 with angle of attack α = 4◦, Re = 2000 and
for different spatial resolutions c/∆r.

Fig. 15. Vorticity field for an airfoil NACA0008 with angle of attack α = 4◦ at two
different Reynolds numbers.

This choice for the DVH quantities has been derived after convergence tests
performed on the loads in the steady regime. Table 3 reports the steady
drag and lift coefficients for different spatial resolutions at Re=2000. The
convergence of the results is reached only for the last two spatial resolutions.

Figure 15 depicts the vorticity field for both the Reynolds numbers. In the
simulation with Re = 2000 the wake is stable with the two shear layers
remaining almost parallel. Conversely, at Re = 6000 at a distance of about
two chords from the trailing edge, the wake becomes unstable giving birth to
an oscillatory vortex street. However, this instability is too far from the airfoil
to be detectable on the loads.

Figure 16 depicts an enlarged view of the vorticity field around the trailing
edge for the two Reynolds studied. At Re=2000 the flow is practically attached
to the airfoil and the separation is not clearly evident. Conversely, at Re=6000
the simulation shows that the flow separates from the suction side of the
airfoil (see right plot of fig. 16). These results are in accordance with the one
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Fig. 16. Vorticity field and streamlines around the trailing edge of an airfoil
NACA0008 with angle of attack α = 4◦ at Reynolds numbers 2000 (left) and 6000
(right) .

Fig. 17. Drag and lift coefficients for a flow past a NACA0008 airfoil with angle of
attack α = 4◦ and two different Reynolds numbers. Data from FVM solver are also
shown.

obtained by Kunz and Kroo [10] using a mesh based Navier-Stokes solver in
a 2D framework.

Figure 17 depicts the time histories of the lift and drag coefficients for the two
Reynolds numbers studied, comparing the DVH results with the data from
the FVM solver. Once the steady regime is reached, the comparisons between
the two solvers appear to be excellent for both the force components and for
both the two Reynolds number.

Besides this comparison on global quantities, in order to better view the
possible effects induced by the visibility mask procedure around the trailing
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Fig. 18. Pressure coefficient for the flow around a NACA0008 profile with angle of
attach α = 4◦ at Re = 2000 (left) and at Re = 6000 (right). Comparison with a
FVM solver is shown.

edge, a comparison on the airfoil pressure distributions is performed and
reported in figure 18. On the left plot of this figure, the cp coming from
the DVH at Re=2000 is shown for three different spatial resolutions. At
c/∆r = 400 the convergence may be assumed reached. In the same figure
an enlarged view around the trailing edge is reported. There the differences
with the FVM converged solution are more visible, however the monothonic
convergence of the DVH toward the FVM one remains well evident. This
is a clear proof that the visibility mask procedure has only local effects on
the numerical solution and that the related errors decrease when the spatial
resolution is increased. On the right plot of figure 18 the pressure distribution
at Re=6000 is reported for both solvers. The resolution adopted for both the
codes is c/∆r = 1000 and the differences between the solutions is practically
not detectable on a large scale. The comparison shown in the enlarged view of
the same figure is aimed at stressing the local discrepancies around the trailing
edge, confirming the satisfactory accuracy level of the proposed DVH scheme.

4.3 Flow past a circular cylinder without an angular sector

As third test case, the flow around a circular cylinder without an angular
sector of 30◦ amplitude is here considered. The sector is positioned in such a
way to avoid a symmetrical configuration, as sketched in Fig. 19.

A first comparison with the FVM solver is performed for Re = 100 and
is aimed at demonstrating the capability of the DVH approach in treating
concave geometries with singularities without any particular shrewdness.
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In mesh-based method, the treatment of such a geometry is not trivial. Left
plot of figure 20 shows the mesh exploited with FVM, where an overlapping
grid technique is needed to properly treat the present topology. If a structured
mesh is adopted in the FVM, in order to avoid the degeneration of the grid
volumes close to the singularity, a simplified geometry is assumed using a
small circle enclosing the tip as sketched in the right plot of figure 20. In a 2D
framework this kind of mesh adjustments are accessible while for 3D it may
require great efforts.

Figure 21 depicts the time histories of the drag and lift coefficients at Re = 100.
When the periodic regime is reached, a good agreement between DVH and
FVM solvers is obtained. To better show the main features of the flow field
and in order to highlight the complexity of the problem, the pressure and the
vorticity fields are reported in figure 22 when the lift reaches its maximum
value. The spatial resolution adopted for the DVH is c/∆r = 200. The FVM
simulation is carried out with a space and time discretization coherent with

Fig. 19. Geometric configuration of a circular cylinder without an angular sector.

Fig. 20. Finite Volume numerical grid, exploiting an overlapping grid algorithm.
Left: overall view. Right: tip magnification.
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Fig. 21. Flow around a circular cylinder without an angular sector: Drag and lift
coefficient at Re = 100. Comparison with a FVM solver is shown.

Fig. 22. Flow around a circular cylinder without an angular sector at Re = 100:
pressure field (Left) and vorticity field (Right) at the maximum lift.

Fig. 23. Flow around a circular cylinder without an angular sector at Re = 100:
pressure profile from DVH and FVM solvers calculated at the maximum lift.

the DVH ones in order to avoid under resolved solutions. In order to perform
a local comparison of the two solutions, the pressure profiles along the solid
body are depicted in figure 23. Also for this geometry, the two solvers show
a good accordance but for small discrepancies. In particular, the pressure
evaluated near the vertices are practically superimposed, demonstrating that
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also the diffusion procedure adopted for the concave regions is suitable for
getting good numerical results.

As a second test-case, the same geometry is used for studying the flow at
Re = 10, 000. This problem is more demanding because it involves quite
complex vorticity patterns. To the purpose, the spatial resolution is increased
to D/∆r = 800 in order to correctly reproduce the boundary layer regions.

In Fig. 24 the vorticity fields of the DVH and FVM solvers are compared during

Fig. 24. Vorticity fields at several time instants, Re = 10,000. Left column: DVH.
Right Column: Finite Volume Method.
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Fig. 25. Far wake of the cylinder without an angular sector at Re = 10, 000, DVH.

Fig. 26. Time hystories of drag (left) and lift (right) forces for DVH (line) and FVM
(symbols) approaches.

the transient regime. At the initial stages a negative vorticity puff originates
from the lower corner of the sector and travels towards the upper corner. When
it impinges the edge above, it bends and rolls up and a driven cavity flows is
established inside the concave region for a limited time because of its intrinsic
instability. The comparison between DVH and FVM approaches is quite fair,
even if spurious vorticity at the solid surface is present in the FVM because
of the numerical derivation used on the FVM velocity field.

Concerning with a longer time evolution, in Fig. 25 the far wake of the body
is plotted. It shows a vorticity pattern characterized by the presence of big
scale dipolar structures emerging from the inverse cascade mechanism, typical
of two-dimensional turbulence, and leading to a strong chaotic behaviour.

In fig. 26 the time histories of the forces calculated by DVH and FVM solver
are shown. The mean values of drag and the amplitude of the lift force match
in a satisfactory way. It is worth to underline that a pointwise comparison in
time is not possible since a periodic regime does not exist at this Reynolds
number. This implies that it is not possible to get a local convergence of
the solution neither with the DVH nor with the FVM. Therefore, only a
“statistical” approach can be suitable in order to detect a convergence, for
example on the average load levels and on the related RMS. However, to
perform this kind of measures very long time histories are needed.
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4.4 Flow past a DDG-51 hull waterline

A simulation around a model ship of the USS Arleigh Burke (DDG-51) has
been performed as a final test case. The ship model, having a length Lpp of
2.17 meters, is supposed to advance with a steady drift angle with a low
speed of 4.61 cm/s corresponding to a Froude number, Fr, equal to 0.01
and to a Reynolds number Re=100,000. In this condition, being the Froude
number very low, the free surface can be considered unperturbed (no waves
are generated) as may happen for a ship manoeuvring in a harbour. In this
case it is possible to study the generation of vorticity along the waterline of
the ship and its consequent downstream advection.

The main discretization parameters of the simulation are given in table 4.

Re Fr Lpp/∆r Re∆r Co ∆ta U/Lpp ∆td/∆ta

100,000 0.01 3200 31.25 1.84 5.74× 10−4 1

Table 4
Flow around the waterline of a DDG-51 shiphull advancing with a steady drift angle:
main discretization parameters.

At such high Reynolds number the vorticity field generated by a ship geometry
becomes more complicated with respect to the previous cases. In particular
the waterline in the bow region is characterized by a sharp edge with a change
of the concavity sign at a distance from the bow edge of about 0.1 Lpp.

Figure 27 depicts six time instants of the evolution of the vorticity field
highlighting the presence of a wide range of vortical scales in the starboard
region. As expected by the drift condition a large recirculation area is formed
and it is possible to note a zone close to the stern in which the detached
vortices travels upstream, moving toward the bow of the ship along the hull
side. Figure 27 depicts the evolution of an isolated vortex (highlighted by
a black arrow). The latter is released in the bow region, convected toward
the stern and finally it interacts with the boundary layer originating a dipole
structure. After this, it travels towards the bow where it merges with the other
vortices.

A further example of the complex shedding and evolution of the vorticity field
is depicted in the last row of figure 27, where a series of small vortices are
shed from the ship bow. These vortices interact with a bigger one starting to
orbit around it creating a complex “flower shaped” vorticity structure. The
shedding of such small vortices induces high frequency components on the
local loads and may generate relevant vibration on the ship structure.

Finally, in figure 28 the far wake generated by the advancing ship is sketched.
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Fig. 27. Evolution of the vorticity field around the starboard region of the ship
DDG-51 advancing with a Froude number Fr=0.01 with a drift angle of 30 degrees.
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Fig. 28. Vorticity field generated by the waterline of a DDG-51 shiphull advancing
with a steady drift angle α = 30◦ at a low Froude number Fr = 0.01

5 Computational resources

The test cases used in this work are labelled in table 5.

All the DVH simulations have been performed on a desktop PC with six cores
Xeon(R) CPU X5650, 2.3GHz, using a simple OpenMP parallel programming.
The CPU cost of the implemented code is about 100µs per vortex particle and
per time iteration on a single core. This cost is inline with other vortex particle
solvers and mainly linked to the Fast Multipole Method for the solution of the
Poisson equation. The maximum number of used particle is of order 106 and
the allocated memory did not exceed 1 Gbyte.

Table 6 displays, for some test-cases studied in this work, the total CPU cost
and the main adopted parameters. The CPU cost of the test-case N◦ 8 justifies
the limit in section 4.3 to get very long time behaviour for this kind of flow
using desktop PCs. A confirmation of the CPU costs reported in this section
is also stated in the recent article Rossinelli et al. [26] where a FMM technique
with Adaptive Mesh Refinement (AMR) is used, the 2D flows around bodies
at Re > 1, 000 were studied in limited physical time ranges similarly to the
ones adopted in this work.

The CPU costs of the FVM solver are comparable with the DVH ones when
using the same time step and a number of grid cells similar to the number
of vortices used in the DVH. However, the comparisons between the two
solvers cannot be performed in a straightforward way, since different important
aspects need to be taken into account. First of all for the FVM, pre-processing
is more demanding since the meshes need to be prepared. Secondly, the DVH
scheme has a self-adaptivity (i.e. vorticity formulation allows to discretize
only the rotational region), while in the FVM the mesh must be designed
in an optimum way with a-priori knowledge of the areas interested by high
velocity gradients. For this reason recently AMR algorithms are often adopted,
however, generally the computational costs (for each node and each iteration)
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Test N◦ Geometry Re Angle of attack

1 Square cylinder 200 0◦

2 Square cylinder 200 90◦

3 Rectangular cylinder 200 90◦

4 Rectangular cylinder 200 0◦

5 NACA0008 profile 2000 4◦

6 NACA0008 profile 6000 4◦

7 Circular cylinder without an angular sector 100 20◦

8 Circular cylinder without an angular sector 10,000 20◦

9 DDG-51 hull waterline 100,000 30◦

Table 5
Then nine test-cases studied in the present work.

Test N◦1 Test N◦6 Test N◦8 Test N◦9

Re=200 Re=6000 Re = 10, 000 Re=100,000

L/∆r close to the body 100 1000 800 3200

NMax vortices 520,000 600,000 1,400,000 5,220,000

N
◦

iterations 14,341 9,456 9,600 7,763

tendU/L 100 20 26 4.45

∆ta U/L 7 10−3 2 10−3 2.7 10−3 5.7 10−4

CPU time (6 cores) 30 hours 24 hours 3 days 8 days

Table 6
DVH solvers CPU time costs for simulating four of the test-cases proposed in this
work. Here L is a characteristic length of the problem.

rise with respect to a classic FVM solver with a fixed mesh. Summarizing,
the question related to which solver between DVH or FVM can be the more
performing one and in which conditions, still remains an open issue.

It is interesting that recently some researchers are moving in the direction
of coupling the two methodologies in order to get benefits from each model.
For example in the recent work of Palha et al. [27] the FVM is used close to
the solid body while a Vortex Particle Method is adopted in the wake region.
This idea of coupling the Vortex Particle Method with mesh-based method
was initially developed in the past by Cottet [28] and by Ould-Salihi et. al.
[29].
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6 Conclusions

In the present paper the capabilities of Diffused Vortex Hydrodynamics (DVH)
approach in treating the vorticity dynamics around geometrical singularities
have been explored. The definition of a visibility mask allowed to correctly
diffuse the vorticity over the nodes of a Regular Point Distribution even in
the presence of a sharp edge or of a concave region. In order to assess the
potentialities of the meshless numerical scheme, some examples have been
offered, starting by square/rectangular sections and NACA profiles for which
reference data are obtained through a Finite Volume Method. The last two
cases studied are particularly intriguing: the flow around a cylinder without
a sector (see section 4.3) and the flow past a DDG-51 hull (see section 4.4).
In the former, a concave region is involved and a comparison with a Finite
Volume approach allowed to discuss the problems experienced by the latter in
taking into account such a singularity.

An accurate discussion of the vorticity field generated over the free surface by a
sharp bow hull advancing in steady drift is finally performed. The interaction
of a vortices of different scales gives rise to very peculiar structures rarely
discussed in the literature as far as to the authors knowledge.

Important steps forward will be achieved with the inclusion of the extension
of the DVH model in three-dimensions framework.
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