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Foreword 

Dear Delegate, 

Since its conception in 2005 with the Inaugural Meeting in Chatou, France, the 
Smoothed Particle Hydrodynamics rEsearch and Engineering International 
Community (SPHERIC) has foster, steered and disseminated the development 
and application of the Smoothed Particle Hydrodynamics (SPH) method in 
academia and industry alike.  

The International SPHERIC Workshops are a unique series of yearly events with 
exclusive focus on the SPH method and associated particle-based methods. SPH 
has been widely adopted in the field of computational fluid mechanics, solid 
mechanics, geomechanics, manufacturing engineering and many other 
disciplines. The SPH scheme is considered to be the mainstream method for free-
surface flows, and multi-phase flows, high non-linear deformation, fracture and 
fragmentation and, complex physics due to its meshless particle-based nature. 

The SPHERIC workshop brings together state-of-the-art developments from 
academia and novel interdisciplinary applications from industry in a unique blend 
towards the advancement of the numerical scheme.    

It is our pleasure and privilege to host the 17th edition of the International 
SPHERIC Workshop in Rhodes Island, Greece and I am looking forward to 
welcoming you for a stimulating and fruitful event. 

Sincerely, 

Georgios Fourtakas 
Chair of the Local Organizing Committee 
17th International SPHERIC Workshop 
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Abstract—Smoothed Particle Hydrodynamics (SPH) schemes
generally result from a compromise between the need for con-
servation of the main global quantities ( global mass, linear
and angular momenta) and consistency of the SPH mollified
operators towards the exact ones. In the present work, a
globally non-conservative but locally accurate pressure gra-
dient approximation is adopted, resulting in a novel high-
order weakly-compressible SPH scheme, which also prevents
Tensile Instability occurrences. To fulfill the dynamic free-surface
boundary condition, a switch between the non-conservative and
conservative formulations is retained, the latter being preferred
in a thin region close to the free-surface. Regular particle
distributions are maintained thanks to recent improvements in
Particle Shifting Techniques. The latter are taken into account
within the continuity and momentum equations through a quasi-
Lagrangian formalism. The numerical diffusion is obtained using
Riemann solvers, with a reconstruction/limitation of the left and
right states based on the Monotonic Upstream-centered Scheme
for Conservation Laws (MUSCL) technique, allowing for low
numerical dissipation without tuning parameters. The numerical
investigation is carried out on several problems characterized by
different flow features and showing the advantages of the present
scheme with respect to conservative formulations. Since the
proposed formulation does not intrinsically guarantee momenta
conservation, the latter are monitored proving that the overall
errors are generally acceptable.

I. INTRODUCTION

SPH is a particle method based on the discretization of
the computational domain in particles without topological
connections. In this framework a differential operator at a cer-
tain position is represented through a convolution summation
among neighbouring particles via a chosen weight function,
also known as kernel function. The representation of the dif-
ferential operators is not unique and several properties of SPH
both globally (i.e. global conservation properties) and locally
(accuracy and consistency of the operators) depend on the
specific formulation. In general, this is a compromise between
the need for conservation of the main global quantities (i.e.
global mass, linear and angular momenta) and consistency of
the SPH mollified operators towards the exact ones.

The first application of the SPH method to free-surface
flows considering the fluid as a weakly-compressible medium
was derived in a conservative formalism (see e.g. [16]) that
is, through the use of differential operators ensuring exact
mass and momenta conservation. A remarkable property was
the intrinsic fulfillment of the dynamic free-surface bound-
ary condition [4]. On the other hand, the accuracy of such
formulation was rather low (between the first and second
order) and was very sensitive to particle disorder, which

rapidly deteriorates the convergence of the scheme [20].
Additionally, the conservative formulations are prone to the
onset of Tensile Instability (TI), an unwanted phenomenon
that introduces noise in the fluid flow solution and, in the
worst case, generation of voids inside the regions characterized
by large negative pressure. To improve the accuracy of such
formulations, maintaining regular particle distribution was a
key point, and substantial improvements have been achieved
through the implementation of Particle Shifting Techniques
(PSTs) (see, e.g., [11], [18]). Concomitantly, PSTs were taken
into account within the continuity and momentum equations
through quasi-Lagrangian formalism, as in [18].

On the other hand, non-conservative formulations were
proposed to overcome some drawbacks of the conservative
schemes and increase the interpolation accuracy of the SPH
method. It was firstly achieved by Randles & Libersky [21]
in the solid mechanics context, thanks to the introduction of
renormalized operators allowing for the exact gradient approx-
imation of a linear field. Then, again in the solid mechanics
field, Dilts [7] proposed a Moving Least Square (MLS) method
to approximate the SPH operators and consequently suppress
Tensile Instability occurrences. Such renormalized operators
were then adapted to weakly-compressible free-surface flows
by Oger et al. [17]: since the dynamic free-surface boundary
condition is not ensured with non-conservative formulations
[4], a switch between conservative and non-conservative for-
mulations was performed depending on the particle position
with respect to the free-surface. Because PSTs were not yet
developed, the study was limited to the pure Lagrangian
framework. The MLS method was also adapted to the weakly-
compressible field by Le Touzé et al. [9] where the pressure
condition was imposed explicitly at the free-surface.

More recently, a switch between conservative and non-
conservative formulations was adopted by Sun et al. [22],
[23] to counteract Tensile Instability in case of strong negative
pressure, e.g. in vortex cores. The switch depended this
time on the pressure sign: non-conservative formulation was
preferred in case of negative pressure whereas the conservative
formulation was used in zones of positive pressure; the latter
was also maintained close to the free-surface.

In the present work, a non-conservative formulation present-
ing similarities with the one of Oger et al. [17] is investigated.
The pressure gradient is approximated as in [17], i.e. consider-
ing the non-conservative formulation far from the free-surface
(and, therefore, free from Tensile Instability) and the conser-
vative one close to the free-surface. A renormalized operator
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is retained, ensuring exact reproduction of the gradient of a
linear pressure field. Regular particle distribution and therefore
accurate interpolation of the SPH operators are maintained
thanks to PST, filling the gap with the works by [9], [17]. This
PST is taken into account within the constitutive equations
considering the quasi-Lagrangian formalism firstly derived by
Sun et al. [22] and then adapted to Riemann solver in [14].
Since the present paper aims at a low-dissipation scheme,
Riemann solver are retained, filling another gap with the works
by [9], [17]. The proposed formulation does not ensuring
momenta conservation, a specific attention is paid on this
aspect and the momenta are monitored during the simulations.
The investigation is performed for various configurations on
dedicated test cases.

II. DERIVATION OF THE SCHEME

In this section the proposed formulation is presented, the
five key points being: (i) use of PST to obtain regular par-
ticle distributions and then accurate interpolation of the SPH
operators; (ii) use of quasi-Lagrangian derivative d(•)

�
dt =

D(•)
�
dt + ∇(•) · δu to take into account the PST in the

constitutive equation (δu being the PST velocity and D(•)
�
dt

the Lagrangian derivative); (iii) use of a renormalized pressure
gradient inside the fluid to avoid Tensile Instability and then
increase the accuracy order of this operator; (iv) use of a
conservative pressure gradient operator in the free-surface
region to ensure free-surface dynamic boundary condition; (v)
use of diffusive terms obtained by means of Riemann solver.
With these choices the scheme reads:

dρi
dt

= −ρidiv(ui) − ρidiv(δui) + div(ρiδui) + Θρ
i,Rie

mi
dui

dt
= −Vi∇Pi + mifi + Vidiv(ρiui ⊗ δui) + Θu

i,Rie

dxi

dt
= ui + δui, Vi(t) = mi

�
ρi(t), Pi = c20(ρi − ρ0),

(1)
where the subscript i refers to the particle i. ρi and Vi are
the density and volume respectively, and the mass mi is
supposed constant in time and set using the initial volume and
density values as mi = ρi(0)Vi(0). xi is the material point
position, ui the fluid velocity, f i the external volume forces,
Pi the pressure, ρ0 and c0 the nominal density and speed of
sound respectively. Since the weakly-compressible assumption
is used, the latter is chosen as:

c0 ≥ 10 max
�
Umax ,

p
(∆p)max/ρ

�

where Umax and (∆p)max stand respectively for the expected
maximum velocity and pressure variation within the fluid
domain. The continuity equation and the term due to PST
within the momentum equation are identical to [14] and the
corresponding terms are:

ρidiv(ui) = ρi
X

j

(uj − ui) ·∇iWijVj

ρidiv(δui) = ρi
X

j

(δuj − δui) ·∇iWijVj

div(ρiδui) =
X

j

(ρiδui + ρjδuj) ·∇iWijVj

Θρ
i,Rie = −ρi

X

j

(2uE − (ui + uj)) ·∇iWijVj

Vidiv(ρiui ⊗ δui) =
X

j

(ρiui ⊗ δui + ρjuj ⊗ δuj)∇iWijVjVi

where W is the kernel function (hereinafter a C2-Wendland
kernel is adopted), the subscript j indicates the neighbour
particles to the i-th particle and uE is the velocity solution of
the Riemann problem (see [14] for details).

Fig. 1. Definition of free-surface region and inner particles along with the
related pressure gradient approximations: the free-surface region is defined as
the union of free-surface particles and particles having at least a free-surface
particle within their kernel support; inner particles are particles that do not
interact with free-surface particles. Li is the renormalization matrix defined
in Eq. (3).

Differently from [14], the pressure gradient is here approxi-
mated by following [17], i.e. considering a switch between the
non-conservative and conservative formulations, depending on
the particle position with respect to the free-surface: the former
is used inside the fluid domain, while the latter is adopted in
a thin region close to the free-surface. Precisely, the algorithm
derived in [13] is used to detect particles located at the free-
surface. The free-surface region is then defined as the union of
these free-surface particles with particles having at least one
free-surface particle within their kernel support. For particles
within this free-surface region the conservative formulation is
used, this choice being motivated by the need of fulfilling
the dynamic free-surface boundary condition (see [4] for
details). By contrast, for inner fluid particles noted hereinafter
I and corresponding to particles without free-surface particle
within their kernel support, the non-conservative formulation
is retained, as represented in Fig. 1. Incidentally, a second con-
dition for the application of the non-conservative formulation
(namely, Γi ≥ 0.95 where Γi =

P
j WijVj) is necessary to

avoid that the presence of a small gap between different fluid
portions leads some particles to be regarded as inner particles.
Finally, the pressure gradient approximation reads:
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∇Pi =




Li

P
j(Pj − Pi)∇iWijVj if i ∈ I &Γi ≥ 0.95

P
j(Pj + Pi)∇iWijVj otherwise

(2)

where Li is the renormalization matrix [21] ensuring the exact
gradient approximation of a linear pressure field:

Li =

"X

j

(xj − xi)⊗∇iWijVj

#−1

(3)

In [14], the diffusive term due to Riemann solvers in the
momentum equation was expressed following the idea of [19],
i.e. by substituting the arithmetic mean (Pj + Pi)/2 by the
Riemann problem solution PE within the pressure gradient
approximation as:

X

j

(Pj + Pi)∇iWijVj =
X

j

2
Pj + Pi

2
∇iWijVj

≈
X

j

2PE∇iWijVj .
(4)

In the present work the proceed of [14] is re-used, but
considering the pressure gradient approximation (2): the first
line of (2) is then rewritten as Li

P
j(Pj − Pi)∇iWijVj =

Li

P
j 2 [(Pj + Pi)/2− Pi])∇iWijVj where the term (Pj+Pi)/2

is substituted by PE ; for the second line of (2) the expression
(4) is retained as it is. Thus, noting Θij = 2PE−(Pi + Pj), the
diffusive term within the momentum equation due to Riemann
solver reads:

Θu
i,Rie =




−Li

P
j Θij∇iWijVjVi if i ∈ I &Γi > 0.95

−P
j Θij∇iWijVjVi otherwise

(5)

Finally, the scheme is integrated in time by using a 4th-order
Runge-Kutta scheme, with the following Courant-Friedrichs-
Lewy number:

∆t = CFLh
Rw

c0
; CFLh = 0.5 (6)

A ratio Rw/∆x = 4 is used in all the numerical simulations,
where Rw is the radius of the kernel support and ∆x is the
initial particle distance.

Before proceeding to the next Section, we just highlight
some important points. Within the free-surface region (or when
Γi < 0.95), the scheme in the system (1) is equivalent to
the QL-MassCons scheme derived in [14]. For inner particles
characterized by Γi ≥ 0.95 the difference resides in the
pressure gradient approximation. The mass is intrinsically
conserved but linear and angular momentum are not. However,
the proposed formulation is invariant by change of pressure
reference (for internal flows) and free from the Tensile Insta-
bility.

III. PARTICLE SHIFTING TECHNIQUE (PST)

The PST derived in [15] is used with the additional con-
dition proposed in [14] to limit density variations induced
by PST within quasi-Lagrangian SPH formulations. Following
[8], the shifting is performed tangentially to the free-surface in
all the free-surface region. The first step of the PST consists in
computing a non-dimensional vector pointing towards zones
with low concentration of particles J i as:

J i = −Ri (Ri/∆x)3
X

j

"
1 + 0.2

�
Wij

W (∆x)

�4
#
∇iW

∗
ijVj (7)

where Ri = min

Rw,max


∆x, dFS

i

��
, dFS

i is the distance
between particle i and its closest free-surface particle, and
W ∗ is the kernel function with support radius Ri. In the free-
surface region, i.e. for i /∈ I, to ensure that the kinematic free-
surface condition is fulfilled, J i is projected in the direction
tangential to the free-surface. The projected vector reads:

J⊥
i = J i − (J i · eni) eni (8)

where ñi is the normal vector in the free-surface region
computed as in [15]. For particles inside fluid ñi = 0. Finally,
the PST velocity δui is computed as follows:

δui = J⊥
i min

�
Uchar

i ;
1

2

Rw

∆x

Uchar
i

∥J⊥
i ∥

;
ϵ

2∆t|J⊥
i ·∇Γi|

�
(9)

where Uchar
i = 0.5maxj

� ���(uj − ui) · (xj−xi)

∥xj−xi∥

���
�

is the char-
acteristic velocity used in [15] to ensure that δui is O(∆x).
The third limitation ensures that the shifting velocity induces
small density variations [14]. Precisely, ϵ is the maximum
density variation allowed within one time-step ∆t. In all the
simulations ϵ = 5.0× 10−5. Finally, ∇Γi =

P
j ∇iWijVj .

IV. NUMERICAL RESULTS

The present section is dedicated to the discussion of the
numerical results. Four benchmarks are chosen to carry out
the discussion, all in two dimensions. A comparison with
analytical solution is provided when applicable. In order to
discuss the benefits and drawbacks of using a non-conservative
pressure gradient, the QL-MassCons scheme derived in [14] is
used all along the discussion as a comparison baseline. As the
only difference between the two formulations is specifically
the pressure gradient approximation, it allows for comparing
conservative and non-conservative formulation while keeping
the other components of the scheme unchanged.

A. Case of an inviscid internal flow: Taylor-Green vortices

The first test case under investigation is the Taylor-Green
vortices. Since an inviscid fluid is considered, it allows for
measuring the numerical dissipation for an internal flow. The
analytical solution in terms of velocity and pressure is given
by:
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Fig. 2. Inviscid Taylor-Green vortices. Energy dissipated at tU/L = 5
for four spatial resolutions with the present formulation, compared to QL-
MassCons scheme of [14]; the order rate between two spatial resolutions are
indicated with corresponding colors

Fig. 3. Inviscid Taylor-Green vortices. Vorticity field obtained with the
proposed formulation at tU/L = 5 for L/∆x = 800. The analytical solution
is represented in the right part on the black dashed-line (i.e. for x/L > 0.5).





ux = U sin (2πx/L) cos (2πy/L)

uy = −U cos (2πx/L) sin (2πy/L)

p = ρ0U
2

2

1

2
[cos (4πx/L) + cos (4πy/L)]

(10)

in a periodic domain of size [0, L]×[0, L]. The reference scales
are the length L, the velocity U , the time L/U , the pressure
ρ0U

2/2, and the initial kinetic energy E0
k . The speed of sound

is chosen as c0 = 10U and the study is carried out for 4 spatial
resolutions ranging from L/∆x = 100 to L/∆x = 800, until
time tU

�
L ≤ 5. As shown in Fig. 2 the present formulation

allows for maintaining a convergence-order rate between the
2nd and 3rd order until L/∆x = 800, while an inevitable
saturation is observed with the QL-MassCons scheme (see [14]
for details).

In Fig. 3 the vorticity field obtained with the proposed
formulation with the spatial resolution L/∆x = 800 is rep-
resented at tU/L = 5. The analytical solution is reported for
x/L > 0.5 for qualitative comparison purposes. As observed
the results are in good accordance with the analytic solution,
the only mismatch being located at the center of vortices where
the vorticity picks are smoothed with respect to the analytic
solution.

B. Case of an inviscid flow without free-surface deformation:
inviscid rotating circular fluid domain with non-uniform an-
gular velocity

(a) Vorticity field, QL-MassCons scheme [14]

(b) Vorticity field, present formulation

Fig. 4. Inviscid rotating circular fluid domain with B/σ0 = π/12. Vorticity
field obtained with R/∆x = 400 at tσ0 = 100 with the QL-MassCons
scheme derived in [14] (top) and with the present formulation (bottom). In
the bottom part, the analytical solution is provided in the right part of the
black dashed line (i.e. for x/R > 0) for qualitative comparison purposes.

The second test case under investigation consists in a
rotating circular patch of fluid of radius R with a non-
uniform angular velocity distribution [5]. It constitutes an
interesting benchmark to measure the numerical dissipation
of the scheme when no free-surface deformations occur. The
analytical solution in polar coordinates reads:




uθ(r) = r σ(r) ; ur(r) = 0

p(r) = − ρ0
R R

r
sσ(s)2 + ρ0

B2

2


R2 − r2

� (11)

where σ(r) = σ0

h
ℓ2

ℓ2+r2 + 2R ℓ2

(ℓ2+R2)2 r
i

is the non-uniform
angular velocity, ℓ is a shape parameter set as ℓ2 = 0.1R2 as in
[5]. σ0 and B are dimensional parameters of frequency dimen-
sion standing respectively for the angular velocity amplitude
at the center of fluid domain and the centripetal volume force
f = −B2rer . In the present work B is set as B/σ0 = π/12 to
obtain negative pressure in most of the fluid domain without
adverse pressure gradient at the free-surface. The reference
variables are the length R, the time 1/σ0, the velocity Rσ0,
the pressure ρ0R

2σ2
0 , the maximum vorticity 2σ0 and the

mechanical energy E0
m. The speed of sound is chosen as

c0 = 2.7Rσ0 and the study is performed for four spatial
resolution going from R/∆x = 50 to R/∆x = 400 and for
tσ0 ≤ 100.
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Fig. 5. Inviscid rotating circular fluid domain with B/σ0 = π/12.
Mechanical energy obtained at tσ0 = 100, as a function of the spatial
resolution.

Fig. 6. Inviscid rotating circular fluid domain with B/σ0 = π/12. Temporal
evolution of the angular momentum obtained with the present formulation for
four spatial resolutions.

Since the pressure is negative in most of the fluid domain,
Tensile Instability is expected to occur with a conservative
pressure gradient formulation, introducing disorder in the par-
ticles distribution. The PST acts against the Tensile Instability
preventing unphysical cavities in the fluid domain, but noise
in the fluid flow solution remains (top plot of Fig. 4). By
contrast, the present formulation is by nature free from Tensile
Instability and the vorticity field obtained with the proposed
formulation is in good agreement with respect to the analytical
solution, plotted for x/R > 0 (see bottom plot of Fig. 4)). In
Fig. 5 the energy dissipated at tσ0 = 100 as a function of the
spatial resolution is plotted and a 3rd-order of convergence is
observed in this test case. Finally, the temporal evolution of
the angular momentum is given in Fig. 6. At tσ0 = 100 the
maximum error observed with the coarsest resolution is about
1 × 10−4 of the initial angular momentum. Furthermore, it
converges towards 0 with an order of about 0.5.

C. Case of an inviscid periodic flow in long-time simulation
with small free-surface deformation: standing wave

The fourth test case under investigation consists in the
evolution of an inviscid standing wave over finite depth, often
used in SPH to study the numerical dissipation of different
schemes (see, e.g., [1], [10]). The fluid height is fixed to
H = L/2 and k = 2π/λ is the wave number with λ = L the
wave length. The crest to trough amplitude is fixed to 0.2H
as represented in Fig. 7. Noting g the gravity acceleration
amplitude, initial pressure and velocity are set like in [1] as:

Fig. 7. Inviscid standing wave. Description of the test case and initial
conditions.

Fig. 8. Inviscid standing wave. Convergence order measured on the envelop
at t/T ≈ 100; the 3rd− order convergence rate is also indicated.





u0
x = U cosh(ky) sin(kx)

u0
y = −U sinh(ky) cos(kx)

p0 = ρ0g(H − y)

; U =
0.2H

√
gk

2
p

tanh(kH) cosh(kH)

Due to the amplitude of the standing wave, the linear
potential theory is not sufficient to capture the physics and
the 3rd−order solution of [3] is used as a reference solution.
The reference variables are the length H , the pressure ρ0gH ,
the oscillation period T and the initial kinetic energy E0

k .
The speed of sound is chosen as c0 = 10

√
gH . The free-

slip boundary condition considered in the bottom part of the
tank (see Fig. 7) is modelled using the classical ghost particle
method [6] and the PST velocity δui is mirrored in the normal
direction of the boundary, as proposed in [18].

First, as shown in Fig. 8, a 3rd-order of accuracy is
recovered concerning the kinetic energy, with a relative error
of about 5% during the last oscillation period for the finest
spatial resolution. In Fig. 9 the temporal evolution of the free-
surface elevation η at the center of the fluid domain x/H = 1
is plotted for three spatial resolutions; the last five oscillation
periods are shown and the 3rd− order analytical solution of
[3] is also plotted. The pick amplitude converges towards the
reference solution as the spatial resolution increases, and the
relative error during the last oscillation with H/∆x = 200
are about 4% and 6% respectively for the crest and trough
elevation. The frequency also converges towards the reference
solution and, with the finest spatial resolution an error of
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Fig. 9. Inviscid standing wave. Temporal evolution of the free-surface
elevation η at the center of the fluid domain (i.e. x/H = 1) for three spatial
resolutions, along with the 3rd−order analytical solution of [3]; only the last
5 oscillation periods are represented.

0.01% per oscillation is observed. This good accordance with
the reference solution is confirmed in Fig. 10 where the
pressure field obtained in the last oscillation for H/∆x = 200
is plotted, in addition to the analytical free-surface [3].

Fig. 10. Inviscid standing wave. Snapshots of the flow field during the
last oscillation period at t = 99.25T obtained with H/∆x = 200. The
free surface of the 3rd−order analytical solution [3] is plotted for qualitative
comparison.

Fig. 11. Inviscid standing wave. Temporal evolution of the x-component of
velocity of the fluid center of gravity for three spatial resolutions. ∆x is the
particle spacing corresponding to the related spatial resolution and, therefore,
diminishes as the spatial resolution increases.

Finally, to check the linear momentum conservation, the
temporal evolution of the horizontal component of the velocity
of the center of gravity ẋG is plotted in Fig. 11. The quantity
ẋG T represents the horizontal displacement of the center of
gravity during one period, and this quantity is compared to
the initial particle spacing ∆x (which furthermore diminishes
as the spatial resolution increases). For the coarsest spatial
resolution, the maximum displacement during one period is in
any case less than 2.5%∆x. Moreover, this error diminishes
as the spatial resolution increases and reaches 0.5%∆x for
H/∆x = 200.

D. Case of an inviscid fluid with spatial and temporal discon-
tinuities: fluid impact

Fig. 12. Impact of two identical inviscid fluid patches. Left: initial velocity
field. Right: pressure field obtained with L/∆x = 400 at tU/L = 0.048.

The last test case under investigation consists in the impact
in the normal direction of two identical rectangular inviscid
fluid patches of size [2L,L]. The two patches impact each
other with velocities U and −U respectively, as represented
in the left plot of Fig. 12. The reference scales are the length
L, the velocity U , the time L/U , the pressure ρ0c0U and
the initial kinetic energy E0

k = 2ρ0L
2U2, where the notation

U = ∥U∥ is used hereinafter. The particles are initialized on
a Cartesian lattice with initial pressure and velocity P = 0,
ux = 0 and uy = ±U . The speed of sound is chosen as
c0 = 100U like in [12], [14] in order to limit the density
variation to about 1%. As in [14], a small gap of length
0.08L between the two fluid patches is considered in the
initial configuration (see left plot of Fig. 12), in order to
represent impact appearing in more complex cases. After the
contact of the two fluid surfaces (see right plot of Fig. 12), an
acoustic wave front propagates in the vertical direction from
the contact line towards the free surface with intensity of order
ρ0c0U ; simultaneously, a rarefaction wave propagates from the
lateral free surfaces towards the center. Finally, an horizontal
elongation is experienced by the two joint fluid patches, with
acoustic waves reflection on the free-surface as the fluid patch
elongates. Initially formulated in [24] for an incompressible
fluid, this problem was then studied for validation of weakly-
compressible SPH models (see, e.g., [12], [14]). In the latter
case, the total energy Ek + Ec is theoretically conserved, with
a periodic energy transfer from kinetic to compressible energy
(and viceversa) occurring at each acoustic wave reflection.
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For the present work, the main interest of this benchmark
resides on the temporal and spatial discontinuity which char-
acterizes the collision of the two patches. When the patches
impact each other, the particles in the impact area are, indeed,
suddenly detected as inside fluid particles. Consequently, an
abrupt change on the pressure gradient formulation occurs as it
goes from its conservative to its non-conservative formulation.

In the top part of Fig. 13, the temporal evolution of the
total energy obtained for four spatial resolutions is represented.
The main part of the energy dissipation occurs during the
impact stage, i.e. for tU/L < 0.04. After that instant, the
periodic transfer between kinetic and compressible energies
is maintained (see bottom part of Fig. 13), and for spatial
resolutions L/∆x ≥ 200 this energy transfer occurs with
negligible numerical dissipation. This behavior is different to
what observed in [14] with a conservative pressure gradient
formulation, where additional dissipation was observed due
to the strong negative pressure appearing periodically in the
fluid domain and implying Tensile Instability occurrences. A
1st−order convergence is observed from L/∆x ≥ 100 but this
lower accuracy-order (with respect to the previous test cases)
is coherent with the presence of a discontinuity.

Fig. 13. Impact of two identical inviscid fluid patches. Top: temporal
evolution of the total energy for four spatial resolutions. Bottom: temporal
evolution of the kinetic, compressible and total energies for L/∆x = 400
for the last portion of the simulation time history.

Regarding the kinematics, in the top plot of Fig. 14 the
results are compared to those obtained in [12] with an incom-
pressible Finite Volume method (LS-FVM) at tU/L = 0.207
and a good agreement is found. Since no reference solution is
available in the literature after this instant, the free-surface
shape is compared in the bottom plot to the one obtained
with the QL-MassCons scheme of [14], showing again a good
agreement. Finally, in order to check the linear momentum
conservation, the vertical component of the velocity of the
center of gravity ˙yG is plotted in Fig. 15, normalized by the

Fig. 14. Impact of two identical inviscid fluid patches. Pressure field obtained
with L/∆x = 400 at tU/L = 0.207 (top) and tU/L = 1 (bottom). In
the top plot, the free-surface is compared to the one obtained in [12] with
an incompressible Finite Volume method (LS-FVM); the LS-FVM time has
been re-scaled for comparison purpose . In the bottom plot, the free-surface
is compared with the one obtained using QL-MassCons scheme in [14].

impact velocity U . The error is less than 5× 10−6 for all the
resolution tested, and less than 2× 10−7 for the finest resolu-
tion. Furthermore, while for the coarsest spatial resolution the
error is oriented in the same direction, the finest resolution
presents results oscillating around 0, without a preferential
direction. Note that the horizontal component has also been
checked, displaying a maximum error of ẋG < 1× 10−6U .

V. CONCLUSION

In the present work, a globally non-conservative but locally
accurate pressure gradient approximation has been adopted,
resulting in a novel high-order weakly-compressible SPH
scheme, which also prevents Tensile Instability occurrences.
To fulfill the dynamic free-surface boundary condition, a
switch between the non-conservative and conservative for-
mulations has been used, the latter being retained in a thin
region close to the free-surface. By contrast to the works in
[9], [17] where similar non-conservative formulations were
studied, recent advanced Particle Shifting Techniques have
been adopted and introduced within the continuity and mo-
mentum equations through a quasi-Lagrangian formalism. The
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Fig. 15. Impact of two identical inviscid fluid patches. Temporal evolution of
the vertical component of the velocity of the center of gravity ˙yG, normalized
by the impact velocity U , for four spatial resolutions.

numerical diffusion has been introduced by means of Riemann
solvers, filling another gap with [9], [17].

A numerical investigation has been carried out on several
problems characterized by different flow features showing that,
effectively, the proposed formulation allows for preventing
drawbacks appearing with the conservative formulation of
[14]. Particularly, whereas a saturation of the accuracy order
was previously observed in [14] with conservative formula-
tions, accuracy order between the first and third order has
been noted with the proposed formulation, depending on the
test case under investigation. Thanks to the non-occurrences of
Tensile Instability, the fluid flow solution has also been shown
less noisy than with conservative formulation in case of strong
negative pressure. Since the proposed formulation does not
intrinsically guarantee momenta conservation, the latter have
been monitored proving that the overall errors are generally
acceptable.

Future investigations shall focus on the relevance of solid
boundary conditions, multi-phase flows and industrial appli-
cation. Additionally, one can expect the present scheme may
further benefit from the use of higher-order reconstructions
such as the Weighted Essentially Non-Oscillatory (WENO)
technique (see e.g. [2], [25], [26]).
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