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1. INTRODUCTION

Efficient bootstrap methods have been intensively studied over the past few years, al-
though almost exclusively with statistics based on simple random samples. The purpose
of this paper is to investigate the nse of importance samphng as an efficient bootstrap
method for the analysis of regression models. We consider parametric bootstrap which
involves simulation from a fitted parametric model. In Section 2 we give efficiency calcu-
lations for the parametric bootstrap applied to the normal linear model. Section 3 appiies
the parametric bootstrap to the generalized linear model, with efficiency calculations and
Section 4 describes some iltustrative examples involving non-nested models.

2. LINEAR REGRESSION

The concept of importance sampling was first introduced by Harmmersley & Marton
(1956}, in an article on Monte Carlo methods. They describe it as a way of concentrating
the distribution of the sample points in that region of the sample space of the most
“importance”; in other words there is a deliherate alteration of the sampling probabilities
in order to reduce the variability of some estimate of interest.

This idea can be used to make the bootstrap more efficient and cost-effective: if, instead
of resampling uniformly from £ (an appropriate estimate of the distribution function ),
we resample from a distribution which is maore concenlrated around the parameler we
want to estimate, the variation of the new estimate should be smaller than the varialion
of the classical bootstrap estimate, and this would allow us to decrease the number of
simulations.

Our basic framework is the following:

Let yi,...,yn be n realizations of the random variable ¥, and =, ... , 2, be the corre-
sponding values of the covariale x. Suppose we fit two regression models to the data:

Ho o yi=mo+ ¢,

Hyr yi=m+q,
where no; = Ho,10 = fo 4 Sri,el’s are iid with L(e) = 0 and var(e;) = o < oo, but
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nothing else is known about their common distribution F. We are interested in comparing
the two models, i.e. in assessing whether 8 should be zero or not. Under H,, using the
method of least squares, we estimate 2 as
5 la= 8y

Tz — 1)

with £y( ﬁ) = f and var{ ) = ¢? Tt (z; ~ £)*. {From now on we will refer to the
expectation, variance, etc. under the hypothesis H; as to E;, vary, elc,]. We choose the
test statistic T = B/s.e.(f), and aim to estimate the tail probability of 7" under Hy:
Pobs = pr(T" 2 tos 1 Ho), where t,, is a known value of 7. Because of the unknown nature
of the distribution /' we cannot estimate pyps directly and will make use of a Monte Carlo
method. In order to illustrate and verify our proposed method, we will apply it to the
case where the distribution 7 is known to be normal with mean zero and variance o2, and
then we compare the approximate results obtained with the exact resulis provided by the
normal theory. Under normal assumptions, if = 0 {i.e. Hy holds) and &? is known, we
know that pes = pr(T 2 L, | Ho) = 1 — ${1,).

Efron (1982) proposes a bootstrap method for regression which consists of bootstrap-
ping the residuals of the regression model:

let T = f/s.c.(f) = T Wz — @yt fo o (z: — #)? be the statistic of interest
caleulated from the simulated distribution, where y* is simulated from the null model
¥ = §+ ¢ and the ¢f's are uniformly sampled from the set of the residuals & =y, —

A bootstmp estimate of the tail probability pa, is py = (1/B) T, HTF 2 Logs)s whcre
tus = Bfs.e.(f) is obtained from the data, He)=1ifz 2 0, or = 0 oltherwise is the
indicator function, and B is the number of independent bootstrap replications.

Since Eg(fy) = (1/B) L. HI7 = toe) = pre(T™ 2 tu,), it follows that asymptoti-
cally £5( fo) = povs and vard{ po) = (poss — poye )/ B, where I} and var} are the bootstrap
expectation and variance calculated with respect to the null model.

Although p, is an unbiased estimate of pu,, when the event {7 > Lobs ] does not
happen too often (for instance if {, is in the tail of the distribution), the variance of
o can be big, unless a large number of bootsirap simulations {typically of the order of
1,008) is used.

Allernatively, as suggested by Johns (1988), we can use the importance sampling boot-
strap which consists of generating a set of iid ¥™*'s no longer from the null disiribution
Fo{fjp), but from a suitable F,(4,) and then downweighting the events {T* > 1,,} by
the ratio of the two likelihoods evaluated at Y*. We obtain:

B
o~ - (7 Y'
;G:};Z[I{Jﬁ > b |V~ F }H °
T ob=)

where we assume that fy = F! and f, = F" represent the corresponding densities.
0 0 a
The mean and variance of p, under the model F, are determined by

Ex(3.) /1(1 > tobs)%%fa{z)

J I 2 ) i)z = Bol(o) = pas (1)

it

i
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2
i) = [T 2 ) 88 (s
(1( pa) /]([ iy tnbs)‘fi(z) f(a( )d
= 1 2 ) PR e =, )
say, and therefore vari{ p,) = (pis ~ p%, )/ B.

Il we choose the model F, in some appropriate way we can find a more eflicient, esti-
mator and this will allow us Lo reduce the number of bootstrap simulations. Let

S 2
Sf (o o) = perillod  Boke = Do )
=) pﬂ) Pis pobs
denole the theoretical gain in efficiency of §, over po; ef f(fo; Fa) will be maxirmum when
Pis 18 al a minimum. Hence we are interested in finding the value of o that minimizes py,.
For a reason that will become apparent later, o is called the tilting cocfficient.
[u order to find the optimum a we provide an explicit form for 7g and 7,: we assume
thal 7y is a straight horizontal line and 5, a line of slope o

o=y . 1, =§+alz—37),

and that the variance of the two distributions Fy and F, is the same o? (in fact
our initial calculations considered two different variances, but later we found thal the
simplified version produces results nearly as optimal).

This preduces a simplified version of py,:

sl = exp M~Q—2T~r 1w @ (l‘-i-f}
P, o) ! (v(n-(ﬁ)) { (m)} )

here varf A = g2/ 50 (4. 332
where var(8) = o/ 0 (a; — )%,

Il we make use of the expansion 1~ ®{u) = ¢(u)/u (see, for example, Barndorfl-Nielsen

& Cox, 1989, pp.35-57), the optinmum value for o obtained from the corresponding Poppr

will simply be

& o= 32 + var( §).

For this optimum value of a, we obtain

‘

52 5 \/2——‘—* P
pie(B) = exp (Lj__‘_"_i_"lﬂ_il | — ¢ 8 +var{8) + ,j) } '

var( B) \/v(!-?'( B)

Setting { = ,@/\/var( 4), we have:

Pis(t) = exp{t? + 1){1 = $(Vi2 + 1 4 1)}

The table below illustrates the gain in efliciency for a few values of ¢. It confirms what
we said previously, that is importance sampling works well for assessing probabilities for
rare events: as we move towards the tail of the distribution the gain in eficiency grows
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Table 1: Gain ir efficiency as funclion of {

¢ Pis papp-r Cﬁ
-1 2.51 .53 0.07
-0.5 0.94 1.86 0.47
-0.4 0,79 1.49 0.62
-1 0.50 0.80 1.18
0 0.43 0.66 1.38
0.1 0.37 0.54 1.57
0.5 0.18 0.23 2.39
1 0.06 0.07 4.03
2 0.602 0.002 19
308 x107° 0.8 x167° 222
4 5.4 x107" 5.6 x107° 7263

exponentially, but il we remain towards the centre of the distribution we will obtain no
substantial gain. That explains also the lack of symmetry in ¢f f as a function of ¢, even
though 7 is symmetric,

3. GENERALIZED LINEAR MODELS

Let Y be a rov. with density f(y; 9, ¢):
[lyin, 6) = exp {254 ¢ o(y: 6)) (4)

and 7 = g{p) be the link function, according to the terminology illustrated by McCullagh
& Nelder (1989).

Given a vector y of realizations of ¥, we want to choose between two models to fit to
the data:

Ho:y~ Fol{no)
Hy oty ~ RO,

where [ and Fy are two distributions belonging to the family (4).

Let 7" = Do(y; jro) — D1(y; g1} be the difference of deviances between the two models,
as in McCullagh & Nelder {1989). Tor convenience we take Hy Lo be the hypothesis
producing the largest deviance, so that T > 0.

Qur aim is to find a significance level for My, ie to estimate

Pobs = Pr(T = 1y, | Ha),

where 1., 1s the observed value of 7 when the twe models are fitted.
In absence of standard methods of estimating g, (if the two models are non-nested),
one way would be via a bootstrap procedure:



99

generate a set of iid y™'s from Fy{ 7,3, caiculate 7 = Doly™; i)y — Di{y™; i),
repeat the same procedure B times and caleulate the bootstrap significance
level pg = (I/B) Zle ](Tb* 2 dops | Y™ ~ Fof 7))

As in the regression case, E5( fy) = poy. and varg{ o) = (Povs — P, )/ B.
In a similar fashion to the normal case, we find that the oplimum & for Pis 1s the
solution
; " : - 12
& = \/[ e dy - br( ’io:‘}“’?o.’;‘ 7]1:‘)/“1‘(@)] + ] o — -
2 V(o) oy — 7.'1{)2/“1‘(95) Lims V(0 ) (Figy — i)t fad9)

[We refer to a chapter in the PhD thesis by Gigli for details on the calculations).

4. EXAMPLES

[n the following examples we concentrate our attention on two kinds of non-nested
models: in the first two cases we assume a specific error distribution and want to compare
two different link functions. Iy the final example we compare two different error distribu-
tions. The following bootstrap method provides an alternative to the parametric approach
suggested by many (see for example Cox, 1961: Atkinson, 1979; Davison & Gigli, 1989;
and Pereira, 1977 for a review of the non-nested models literature).

4.1 POISSON MODELS

Wahrendorf et al(1987) propose a bootstrap method to analyze the goodness-of-fit of
different models to death rate from coronary heart disease among British male doctors.
The aim of the fitting was to vestigate whether an additive or multiplicative model best
explains the influence of age and smoking habits on the death rate (see Breslow, 1985 for
a full description of the data). Two GLM’s with Poisson error and respectively additive
{A) and multiplicative (M} links are fitted to the data, resulting in a deviance of 13.0%
with 3 df for the multiplicative model, and 3.37 (with 3 df} for the additive model.

In their approach Wahrendorl ef alconsider the difference of deviances as the test
statistic ({w, = 9.674), to test the hypothesis that the two models fit the data equally
well. Their bootsirap procedure consists in simulating bootstrap r.v.’s y='s from the
original data (ie f;, the fitted mean of the Poisson distribution is taken to be y,, the
corresponding observed datum), and fitting the two models to the ¥*’s; the hootstrap
test statistic is T = D{y"; jipy) — Diy=; 4}, where M and A stand for mulliplicative
and additive and they construct the bootstrap distribution of 7; finally they calculate a
bootstrap confidence interval and if it contains the value zero, they accept the hypothesis
that the two models explain the data equally well,

But a few problems arise: i) simulating bootstrap sampies from the data does nol scem
correct, as the simulation should be done from a null hypothesis related o the models;
in other words, in the null hypothesis one should staie the preference towards one model
or the other, and from there infer whether the two models descr; be the dala equally well,
or if one of the two is to be preferred; the result of their test is conservative not bacause
the variance of the Lest is too large {this is their explanation), but because the sampling
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is done {rom the wrong set; ii) the number of simulations required is gunite large - 1,060
for this example.

In the importance sampling framework the approach is quile straightforward: since
the additive model provides a smaller deviance, we simulate the bootstrap samples from
a Poisson distribution with mean vector gy, which represents for us the alternative hy-
pothesis, and then downweight the corresponding observation hy the lilelihood ratio of
the null over the alternative hypotheses, obtaining an estimate of the significance level of
the null hypothesis (the multiplicative model)

B b «
o ) Ll * - fw! A
Pagis = 7}2 ]{jb ztobsly NJD(H’A)}H j (T?‘) . (5}
b=t sl A
The result of B = 260 bootstrap simulations is py; ., = (¢.00064 (se = £.000096).
As a comparison, we run a standard bootstrap experiment {in which the bootstrap
sample is drawn from the nuil hypothesis, the multiplicative model)

B
PMoes = 7]?3“ ZJ{T‘ 2 obs | 47~ P(fing)}
h=1

As suggested by the value of pyy ., the event T > {4, has a very low frequency under
Hy: 1t will happen approximately 6.1 times out of 10,000, and therefore a large number of
hootstrap replicates is needed in order to have a non-zero estimale; B = 5, 000 bootstrap
simulations were performed, and the result is fy, ., = 0.06080 (se = 0.000400}.

The two estimales are consistent hul the standard error of the standard estimate is
more than 4 times higher than that of the importance sampling estimate. The theoretical
gain in efficiency of the importance sampling estimate over the standard estimate is given
by (3) and we approximate it by ¢ff = (Pris = Prgas) /567 Pag o) = 349.

Notice that at no extra cost we obfain also an estimate of the significance level for the
alternative hypothesis: from (5), if we ignore the weights, we have

B
Paes = f;sz{fr;; 2 tos | ™ ~ Plig)} = 0.74 {se = 0.031).
=}

The conclusion we draw from the test is different from that of Wahrendorf et al.: as
the estimated significance level corresponding to the multiplicative model is very low, we
infer that the additive model fits the data betler.

We could attain an even smaller variance of our estimate of po,, if we sampled from
a Poisson( /i, ) distribution, with o suitably chosen. The optimum tilling parameter
& in this case is equal to 8.75. Il 4§ = 5(2) is the fitted canonical linear predictor,
then & provides us with the oplimum ey = 0.75 9, + 0.25 17,,. The estimate of the
significance level of Jly obtained by tilting the importance sampling distribution by &
15 Para = 0.0005493 (se = 0.600080) with a gain in efficiency of fy,, over Py, of
ef f(Prres Paras) = 1.39.

Fig. 1is a plot of the deviance for different values of the linear predictor, where
corresponds to a = 1 and#fy; to a = 0. The minimum deviance lies somewhere in between
0.75 and 1, which is a further confirmation for the additive model,
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4.2 BINOMIAL MODELS

We consider the data analyzed by Prentice (1976) on the mortality of aduit beetles
after exposure Lo a poisonous gas: the counts of beetles killed are classified according
to different dosages of the gas and are modelled as binomial r.v.’s, with the number of
beetles exposed as denominators. The twe models we want to compare are the Jogit (L),
and the complementary log-log (C}.

The deviances of the two fitted models are D{y; fi;) = 11.232, and Diy; fip) = 3.4464
(le. f.s = T.788), and we want to find an estimate of p,,, the significance level of the
nuil hypothesis Hy: logistic model,

‘The employment of the importance sampling and standard bootsirap procedures to
estimate poy, leads to the following results: pp ., = 0.0031, with s.e. = 0.000385, on B =
200 simulations, and p,, ., = 0.0040, with s.e. = 0.001997, on B = 1,060 simulations, and
estimated theoretical gain in efliciency (Tf a2 104 .

This result, together with the estimated significance level of the allernative model
(Do = 046, with s.e. = 0.0353, on 200 simulations) tells us that between the logistic
and the complementary log-log models the latter fits the data much better. (The fact
that the logistic model was unsuitable had already been stated by Pregibon, 1980).

It is interesting Lo notice the discrepancy between the variance of p when the sampling
is done from the allernative {complementary log-log) model and the variance of p; (i.e.
when the sample is drawn from f3), where & is the a that theoretically gives the largest
reduction in variance. According to our theory, the minimum variance should he attained
for & = 0.55. However, the simulation study tells us that the minimum variance js attained
at the alternative model, that is when « = 1. Moreover the minimum deviance is also
achieved at the alternative model.

The reason for that is that we based our theoretical caleulations on the assumplion
that our test stalistic is approximately normal and evidently in this specific problem
the assumption does not hold. We therefore suggest simulating from the alternative
distribution [7 anyway, because it is “safer” thap simulating from the (theoretically)
optimum distribution Fj.

4.3 LOGNORMAL VERSUS GAMMA MODELS

When we are interested in comparing two probability models that do not belong to the
same famly, the use of the deviance test is inappropriale.

Let Foly: po, $0) and M {y; g6, ¢1) be the two models of interest. I[ we fit the two
models Lo the data y, the difference of deviances will be D{yity. do) — D{y3/2,, 1) which
is different from 2{{(ythy, ¢:1) — {yitiy, do) ), the statistic we were using before, because
the log-likelihoods of the two salurated models do not cancel out.

[n this case a maxinmum likelthood ratio test appears to be more appropriate:

T = l(y‘l'zl B (7;’)1) - !(y’jﬂ- é’o) B

where gy, qﬂiu\;i,, 4;3, are the m.le.’s of the respective paramelers.
We applied this test to a data set on the cost of construction of nuclear power piants
in USA, reported by Cox & Snell(1981, 1p.82). The dala consists of the cost of 32 light



103

water reactor power plants, and the objective of the analysis is to predict the capital
cost involved in the construction of further similar power plants. We fit the models [, =
lognormal and G = gamma with 6 quantilative covariates {see Cox & Snell for a more
extensive analysis of the problem), and we are interested in estimating the significance
level of the null hypothesis pa, = priT > 1, | L), where Lo, = 0.2930.

According to the importance sampling bootstrap, we have Prie = 0.31430 with s.e. =
0.62192, on B = 200 simulations, while the Efron bootstrap gives us Prer = 0.1400 with
s.e. = 0.02460, on B = 200 simulations, giving a gain in efficiency of the importance
sampling method over the classical Efron method of e’f}’ == 1,26,

On the other hand, Jooking at the significance level of the alternative model: Pger =
0.2100 with s.e. = 0.02887, on B = 200 simulations, we can conclude that both models
are plausible, though the gamma model appears Lo fit slightly better.

The insignificance of the gain in efficiency attained by the importance sampling boot-
strap is due to the fact that we are not estimating an extreme tail probability {in fact
the significance level of the lognormal hypothesis is about 0.14), and therefore we cannot
expect an improvement when we implement the imporiance sampling bootstrap instead of
the Isfron bootstrap. This result stresses the fact that the importance sampling procedure
is really effective in gaining efficiency only when examining a situation in which the event
of interest oceurs rarely.
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