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We show that Minkowski single-particle states localized beyond the horizon modify the Unruh
thermal distribution in an accelerated frame. This means that, contrary to classical predictions,
accelerated observers can reveal particles emitted beyond the horizon. The method we adopt is
based on deriving the explicit Wigner characteristic function for the complete description of the
quantum field in the non-inertial frame and can be generalized to general states.

In classical physics, an observer in an accelerated frame
cannot detect signals emitted beyond an event horizon.
One can argue if this is also true in quantum physics.
Starting from pioneering investigations [1, 2], many au-
thors have studied how accelerated observers can register
inertial vacuum states through thermal particles detec-
tion. Here, we ask if inertial single-particle states local-
ized beyond the horizon can be revealed by monitoring
variations of the particle distribution from the thermal
background. To answer this question, we adopt quantum
field theory in curved space-time [3], developed in the last
decades with groundbreaking results as the Hawking [4]
and the Unruh effect [1, 5, 6].

In the Unruh effect, a thermal state replaces the vac-
uum when the observer is accelerated, as an outcome of
the fact that quantum states are reference-frame depen-
dent [5]. Beyond the vacuum, various authors considered
more general states focusing on entangled systems (see
[7–9] and references therein). Indeed, entanglement is
significant because of the quantum correlation between
two regions of space-time – denoted as the Rindler left
and right wedge – and the need to trace over one of the
two wedges to predict observable quantities in accelerate
frames.

A way to describe the transition from Minkowski to
Rindler frames can be made using Wigner distributions
[10]. Recently, Ben-Benjamin, Scully, and Unruh have
reported [10] the Wigner distribution for the Minkowski
vacuum state in the right wedge and the Minkowski num-
ber states in both the right and the left wedges. However,
to the best of our knowledge, the explicit expression for
Minkowski number states in the right wedge – tracing
out the left wedge – is still missing.

In this Letter, we compute the characteristic function
[11] of single-particle states in accelerated frames. From
the characteristic function, we derive the probability of
finding a Rindler particle when a Minkowski particle is
emitted. We show that there is a finite probability of de-
tecting a Rindler particle as a perturbation to the Unruh
thermal background, even when the Minkowski particle
is localized beyond the horizon.

By following the original works of Fulling, Davis
and Unruh [1, 5, 6], we consider a (1-1)-dimensional
flat space-time and the coordinate transformation
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FIG. 1. Representation of the coordinate transformation
(t, x) 7→ (T,X) = (TR(t, x), XR(t, x)) and the probability
density function transformation n(x) 7→ ∆nR(X) for local-
ized wave-packets from the inertial to the accelerated frame.
The yellow and the green lines are associated to single-particle
states with Gaussian wave-function ψ(x) defined by Eq. (16)
with aσ = 1 and ax0 = ±1. The Rindler left and right wedges
are shown in panel (a) through constant T and X lines. The
two wedges are delimited by the Rindler horizons (gray). The
profile of the probability density n(x) – defined by Eq. (13) –
for the two wave-packets has been drawn. In panels (b) and
(c), we show the constant T and X lines in the accelerated
frame and the profile of ∆nR(X), defined by Eq. (12a). The
value of ∆nR(X) gives the variation of probability density to
find a Rindler particle in X with respect to the Minkowski
vacuum. In panel (b), ∆nR(X) is not-negligible, even if ψ(x)
is localized in the left wedge. On the other hand, in panel (c),
∆nR(X) is larger and narrower for ax0 = +1, as we expect
from wave-functions localized within the right wedge.

(tR, xR) from an accelerated frame (T,X) to an iner-
tial frame (t, x) = (tR(T,X), xR(T,X)): actR(T,X) =
eaX sinh acT and axR(T,X) = eaX cosh acT , where ac2

is the acceleration – which is conventionally taken posi-
tive – and c the speed of light. Such transformation cov-
ers only the right Rindler wedge. On the other hand,
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it is possible to cover the left Rindler wedge through
the transformation t = tL(T,X) and x = xL(T,X) with
tL(T,X) and xL(T,X) being identical to tR(T,X) and
xR(T,X) but with opposite acceleration. In the notation
we have adopted, the subscript L (R) refers to the left
(right) wedge. It is possible to see a visual representa-
tion of the Minkowski and Rindler coordinates in Fig. 1,
where (TL, XL) and (TR, XR) are taken as the inverse
transformations of (tL, xL) and (tR, xR). However, since
we are not interested in temporal evolutions of states, for
the rest of the paper we will just refer to xL,R(X) and
XL,R(x) as, respectively xL,R(0, X) and XL,R(0, x).

By following again the original works of Fulling, Davis
and Unruh [1, 5, 6], we consider a massless free scalar

field φ̂(t, x). We name â(k) the annihilation operator

for the Minkowski mode with momentum k, while b̂L(K)

(b̂R(K)) the annihilation operators for the left (right)
Rindler mode with momentum K.

The Unruh effect can be obtained by representing the
Minkowski vacuum state |0M 〉 – defined by â(k)|0M 〉 =
0 for any k ∈ R – in the representation space of the

b̂L,R(K)-algebra. This leads to the following state [1]

|0M 〉 ∝ exp

(∫ +∞

−∞
dK exp

(
−β

2
|K|
)

× b̂†L(K)b̂†R(K)
)
|0L, 0R〉, (1)

with β = 2π/a and |0L,R〉 defined by b̂L,R(K)|0L,R〉 = 0.
The final expression for the Minkowski vacuum state in
the right Rindler frame can be obtained by performing a
partial trace over the left wedge, which leads to a thermal
state ρ̂0 with temperature T0 = (kBβ)−1, where kB is the
Boltzmann constant.

Analogously to |0M 〉, any Minkowski single-particle
state |ψ〉 can be represented in the right wedge through a

representative in the b̂L,R(K)-algebra and by performing
a partial trace over the left wedge ρ̂ = TrL|ψ〉〈ψ|. Here,
|ψ〉 is defined through a normalized wave function ψ(x)
such that

|ψ〉 =

∫ +∞

−∞
dxψ(x)ˆ̃a†(x)|0M 〉, (2)

where ˆ̃a†(x) =
∫ +∞
−∞ dke−ikxâ†(k)/

√
2π is the creation

operator for a particle in position x.
Eq. (2) can be put into the following form

|ψ〉 =

∫ +∞

−∞
dK

[
ψ̃−(K)b̂R(K) + ψ̃+(K)b̂†R(K)

]
|0M 〉,

(3)
with

ψ̃±(K) =
e−θ(±1)β|K|

n0(K)

∫ +∞

−∞
dX

e∓iKX√
2π
{ψR(X) [θ(±1)

+f̃R±

(
∓K
a

)]
+ ψL(−X)f̃L±

(
∓K
a

)}
,

(4a)

f̃L,R±(κ) =− θ(sL,R)θ(±1) +
1

2π

√
|κ|Γ(iκ)Γ

(
1

2
− iκ

)

× exp
(
±θ(sL,R)π|κ| ± isL,Rsign(κ)

π

4

)
,

(4b)

ψL,R(X) =
√
a|xL,R(X)|ψ(xL,R(X)), (4c)

sL = −1, sR = 1, n0(K) = (eβ|K| − 1)−1. (4d)

A proof for Eq. (3) is given in the Supplemental Ma-
terial (SM). The key element for such proof is provided
by the following identity

b̂†L,R(K)|0M 〉 = exp

(
β

2
|K|
)
b̂R,L(K)|0M 〉, (5)

which holds for any K ∈ R. Eq. (5) states that the
creation of a Rindler particle in the left (right) wedge
over the Minkowski vacuum background is equivalent to
the destruction of a Rindler particle in the right (left)
wedge, up to an exp(β|K|/2) factor. Thanks to Eq. (5),
we can give the following interpretation to the functions
ψ̃±(K) that appear in Eq. (3). ψ̃+(K) (ψ̃−(K)) can be
seen as the wave-function of a Rindler particle created
(destroyed) over the Minkowski vacuum background in
the right wedge, or – up to an exp(β|K|/2) factor – as a
Rindler particle destroyed (created) in the left wedge.
ψR(X), on the other hand, can be interpreted as

a transformed version of the wave-function ψ(x) in
terms of the infinitesimal probability function n(x)dx =
|ψ(x)|2dx. Indeed, from Eq. (4c), it is possible to notice

that for x > 0, |ψ(x)|2 dx is equivalent to |ψR(X)|2 dX,
up to the coordinate transformation x 7→ X = XR(x).

By taking the partial trace of |ψ〉〈ψ| over the left
wedge, eq. (3) results in the following expression for the
transformed single-particle state

ρ̂ =

∫ +∞

−∞
dK

[
ψ̃−(K)b̂R(K) + ψ̃+(K)b̂†R(K)

]
ρ̂0

×
∫ +∞

−∞
dK ′

[
ψ̃∗−(K ′)b̂†R(K ′) + ψ̃∗+(K ′)b̂R(K ′)

]
.

(6)

As we have mentioned before, an alternative represen-
tation for the state ρ̂ can be provided through the fol-
lowing characteristic function [11]

χ[ξ, ξ∗] =Tr

[
ρ̂ exp

(∫ +∞

−∞
dKξ(K)b̂†R(K)

)

× exp

(
−
∫ +∞

−∞
dKξ∗(K)b̂R(K)

)]
. (7)

Thanks to Eq. (6), we can write χ[ξ, ξ∗] in terms of
functional derivatives of the characteristic function for
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the thermal state χ0[ξ, ξ∗] (SM):

χ[ξ, ξ∗] =

{
1−

∣∣∣∣
∫ +∞

−∞
dKn0(K)

[
ψ̃−(K)ξ(K)

−eβ|K|ψ̃+(K)ξ∗(K)
]∣∣∣

2
}
χ0[ξ, ξ∗]. (8)

Finally, the explicit expression for χ[ξ, ξ∗] can be ob-
tained from Eq. (8) supplemented with Eqs. (4) and
the already-known expression for χ0[ξ, ξ∗] [11]:

χ0[ξ, ξ∗] = exp

(
−
∫ +∞

−∞
dKn0(K)|ξ(K)|2

)
. (9)

Functional derivatives of the characteristic function
χ[ξ, ξ∗] allow us to extract different mean values of ρ̂ [11].
In this way, we compute the probability density function
of ρ̂, defined as

〈n̂R(X)〉ρ̂ =

∫ +∞

−∞
dK

e−iKX√
2π

∫ +∞

−∞
dK ′

eiK
′X

√
2π

× δ

δξ(K)

(
− δ

δξ∗(K ′)

)
χ[ξ, ξ∗]

∣∣∣∣
ξ=0

, (10)

where n̂R(X) =
ˆ̃
b†R(X)

ˆ̃
bR(X) is the particle density oper-

ator and
ˆ̃
bR(X) =

∫ +∞
−∞ dKeiKX b̂R(K)/

√
2π is the anni-

hilation operator in X. Eq. (10) results into the following
equation (SM)

∆nR(X) = n+(X) + n−(X), (11)

with

∆nR(X) = 〈n̂R(X)〉ρ̂ − 〈n̂R(X)〉ρ̂0 , (12a)

n±(X) =

∣∣∣∣
∫ +∞

−∞
dK

e±iKX√
2π

n0(K)eθ(±1)β|K|ψ̃±(K)

∣∣∣∣
2

.

(12b)
∆nR(X) – defined by Eq. (12a) – represents the dif-

ference in the probability density function between the
Minkowski single-particle and the Minkowski vacuum
state in terms of Rindler particles. An accelerated ob-
server measuring a non-vanishing ∆nR(X) can infer the
presence of a Minkowski particle. Fig. 1 shows ∆nR(X)
for Gaussian wave-functions in comparison with the prob-
ability density function in the Minkowski space-time, de-
fined as

n(x) =
〈

ˆ̃a†(x)ˆ̃a(x)
〉
|ψ〉〈ψ|

. (13)

n±(X) derive from ρ̂ of Eq. (6) through the contribu-

tion of, respectively, ψ̃±(K). Therefore, they are asso-
ciated to the Rindler particles respectively created and
destroyed over the Minkowski vacuum background in the
right wedge. Their explicit form with respect to ψL,R(X)
reads (SM)

n±(X) = |θ(±1)ψR(X) + ψR±(X) + ψL±(X)|2, (14)

with

ψL,R±(X) =

∫ +∞

−∞
dξψL,R

(
sL,R

ξ

a

)
fL,R±(ξ − aX),

(15a)

fL,R±(ξ) =

∫ +∞

−∞
dκ
eiκξ

2π
f̃L,R±(κ). (15b)
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FIG. 2. Profile of fL,R±(ξ) defined by Eq. (15b) which
have been numerically derived through a Fourier transform
of f̃L,R±(ξ) defined by Eq. (4b)

ψR(X) and ψL,R+(X) of Eq. (14) play the role of
superposed wave-functions which result in a probability
density function n+(X) describing Rindler particles cre-
ated over |0M 〉 in the right wedge. ψL,R−(X), on the
other hand, refer to Rindler particles destroyed in the
right wedge. Within the decomposition of the wave-
functions ψR(X) + ψL+(X) + ψR+(X) and ψL−(X) +
ψR−(X), ψL±(X) derive from the left-wedge part of ψ(x)
– i.e. ψ(x) for x < 0 – while ψR(X) and ψR±(X) from
the right-wedge part of ψ(x).

The presence of ψL±(X) in Eq. (14) implies that val-
ues of the wave-function beyond the horizon give non-
vanishing contributions to 〈n̂R(X)〉ρ̂. Even a state with

small values of |ψ(x)| for x < 0 can still be detected in
the right Rindler wedge. We remark that this effect is not
due to the right tail of the wave function, since the corre-
sponding contribution is exponentially smaller than the
leading one, as detailed below with a specific example.

We can argue that the result may change if we use
a Lorentz-invariant normalization for ψ(x) [12], since
left-wedge values of the wave-function are normalization-
dependent. Nevertheless, we have verified that left-wedge
values of ψ(x) appear in ∆nR(X) even when we use a
Lorentz-invariant normalization (SM).
fL,R±(ξ), shown in Fig. 2, are localized around ξ = 0.

This means that ∆nR(X) receives most contributions
from ψL(X ′) and ψR(X ′) from X ′ ≈ −X and X ′ ≈ X,
respectively, and within a region ∆X ′ ∼ a−1. In the case
of Fig. 2a, this implies that most of the contributions for
ψL±(X) come from ψL(X ′) when xL(X ′) = −xR(X),
or, equivalently, from ψ(−xR(X)). Moreover, wave-
functions localized in the left wedge – i.e. with small
values of |ψ(x)| for x > 0 – are characterized by a
∆nR(X) whose main contributions come from ψL±(X),
since ψR(X) is defined by right-wedge values of ψ(x).
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This means that ∆nR(X) ≈ |ψL+(X)|2 + |ψL−(X)|2
and that most of the contributions for ∆nR(X) come
from ψ(x), with x as the specular point of X in the
Minkowski space-time with respect to the horizon – i.e.
x = −xR(X).

(a) x0 < 0
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(b) x0 > 0
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1aX − aXR(|x0|)
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∆nR(X)/a |ψR(X)|2 /a

FIG. 3. Profile of ∆nR(X) defined by Eq. (12a) for different
Gaussian single-particle states (16). In panel (a), the config-
urations are defined by x0 < 0 and different values of σ/|x0|.
|ψL+(X)|2 + |ψL−(X)|2 is the dominant contribution of Eq.
(11) when σ/|x0| → 0 and x0 < 0. We also show the function
FL+(X) + FL−(X) defined in Eq.(18). In panel (b), the pro-
file of ∆nR(X) and |ψR(X)|2 for configurations with x0 > 0
is shown. In this case, the dominant contribution to ∆nR(X)
is |ψR(X)|2, which, in the particular case of Gaussian wave-
functions, has Eq. (17a) as distributional limit.

It is also possible to notice from Fig. 2b that
|fR±(ξ)| � 1. Therefore, if ψ(x) is localized in a region
R – i.e. |ψ(x)| is small outside a finite regionR – and ifR
is in the right wedge and with a width ∆x � a−1, then
ψR±(X) are expected to be negligible with respect to
ψR(X). The same happens for states with ∆x ∼ a−1 but
with R far away from the origin with respect to a – i.e.
x� a−1 for any x ∈ R. This last result can be motivated
by the fact that the transformed region xR(R) becomes
way smaller than a−1 when x� a−1 for any x ∈ R and,
therefore, ψR(X) is non-negligible within a region way
smaller than a−1. In summary, |ψR±(X)| � |ψR(X)|
for any X and for wave-functions well-localized in the
right wedge – i.e. when ∆x � a−1 and x & a−1 for
any x ∈ R or when x � a−1 for any x ∈ R. More-
over, for such states, ψL±(X) are negligible and therefore

∆nR(X) ≈ |ψR(X)|2. In other words, ψR(X) acts like
a probability amplitude for wave-functions well-localized
in the right wedge and it appears as the dominant term
in Eq. (11), with ψL,R±(X) as small corrective terms.

We remark that the wave-function can still have infi-
nite tails. To give a quantitative example, we consider a
normalized Gaussian wave-functions, whose localization
degree is given by the variance σ:

ψ(x) =
1

4
√
π
√
σ

exp

(
− (x− x0)2

2σ2

)
. (16)

We are interested in the limit aσ → 0 for fixed x0 6= 0
and the limit ax0 → ±∞ for fixed σ, which correspond to
the case of well-localized states in the left or right wedge.
It is possible to prove that for Gaussian wave-functions
the limit aσ → 0 is equivalent to a|x0| → ∞ up to a
translation of ∆nR(X) with respect to X (SM). More
specifically, it is possible to prove that when x0 6= 0, any
transformation x0 7→ αx0 with α > 0 acting on ψR(X)
is equivalent to σ 7→ σ/α, aX 7→ aX − lnα. This also
applies to ψL,R±(X) and ∆nR(X). Given the invariance
under the transformation x0 7→ x0/α, σ 7→ σ/α, aX 7→
aX− lnα for any α > 0, the functions ψR(X), ψL,R±(X)
and ∆nR(X) can be put in a form depending of sign(x0),
σ/|x0| and X − XR(|x0|) instead of σ, x0 and X. This
feature is adopted in Fig. 3, where we show ∆nR(X) for
different σ/x0.

The limit of well-localized wave-functions is identified
with σ/|x0| → 0. In Fig. 3, we show how Gaussian wave-
functions give the same results expected for the general
case. Specifically, Fig. 3a shows that for wave-packets
well-localized in the left wedge, ∆nR(X) ≈ |ψL+(X)|2 +

|ψL−(X)|2. Fig. 3b shows that ∆nR(X) ≈ |ψR(X)|2
when σ/|x0| → 0 and x0 > 0. This result can be proven
analytically (SM):

|ψR(X)|2 =




δ(X −XR(x0)) +O

(
|x0|
σ exp

(
− |x0|2

2σ2

))
if x0 > 0

O
(
|x0|
σ exp

(
− x2

0

2σ2

))
if x0 < 0

(17a)
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|ψL,R±(X)|2 =




FL,R±(X) + o

(
σ
|x0|

)
if sL,Rx0 > 0

o
(

σ
|x0| exp

(
− x2

0

2σ2

))
if sL,Rx0 < 0

(17b)

with

FL,R±(X) =
σ

|x0|
2
√
πaf2L,R+(aXR(|x0|)− aX). (18)

From Eqs. (17) we obtain the explicit limit σ/|x0| → 0
of ∆nR(X) for Gaussian wave-functions. When x0 < 0,
∆nR(X)→ 0 with leading term FL+(X)+FL−(X) which
is proportional to σ/|x0|. When the degree of local-
ization of the particle increases, the probability of de-
tection in the right wedge decreases. Nevertheless, if
σ � |x0| but σ 6= 0, the profile of ∆nR(X) is approx-
imately FL+(X) + FL−(X), as in Fig. 3a. Accelerated
observers can still see a difference with respect to the vac-
uum state, even when the particle is localized beyond the
horizon. The result does not depend on the presence of a
tail in the right Rindler wedge, since most of the contri-
butions for ∆nR(X) come from values of ψ(x) beyond the
horizon. Indeed, ψR(X) and ψR±(X) are vanishing with
exponential orders, while ψL±(X) are linear in σ/|x0|.

The peak of FL+(X) + FL−(X) in X = XR(|x0|) re-
sults in a maximum probability to find the particle in
X = XR(−x0). In the Minkowski space-time, such point
correspond to the specular counterpart of x0 with respect
to the horizon: xR(X) = −x0.

When x0 > 0, the distributional limit of ∆nR(X) is
δ(X − XR(x0)), as in Fig. 3b. The single-particle ap-
pears perfectly localized in both inertial and accelerated

frame at the same position (up to the coordinate trans-
formation).

In conclusion, we have provided a complete description
for single-particle states in accelerated frames ρ̂ through
their characteristic functions χ[ξ, ξ∗]. By the derivatives
of χ[ξ, ξ∗], we obtain original expressions for the right-
wedge density function 〈n̂R(X)〉ρ̂ for a general state. A
significant outcome of this theoretical analysis is that
〈n̂R(X)〉ρ̂ receives non-negligible contributions from left-

wedge values of ψ(x). This points toward the possibility
for single-particle quantum states to tunnel from the left
to the right wedge, across the Rindler horizon. We want
to point out that such result does not depend on the
particular form of ψ(x). Nevertheless, we have tested
the extreme case in which almost all the wave-function
is localized beyond the horizon. Specifically, we have
considered in detail the case of Gaussian wave-function
ψ(x) and verified that in the limit of high locality degree
– i.e. σ/|x0| → 0 – the dominant term of ∆nR(X) is
related to left-wadge values of ψ(x) while the contribu-
tions coming from the right tail go to zero exponentially
faster. The use of the characteristic function has played
a crucial role for deriving the results for single-particle
states. Possible generalizations for χ[ξ, ξ∗] in the case of
general Minkowski-Fock states can be obtained through
the use of the same identities that have led to Eq. (8),
such as Eq. (5). The development of an explicit form for
such characteristic functions will be presented in a future
work.
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Supplemental materials

I. (1-1)-DIMENSIONAL MASSLESS SCALAR FIELDS IN RINDLER SPACETIME

In this section, we give a brief review of (1-1)-dimensional massless scalar fields in Rindler spacetime. Specifically,

we show the explicit form of φ̂(t, x) – defined in the main paper as a massless scalar field in Minkowski coordinates –

and its transformed counterparts in Rindler coordinates Φ̂L,R(T,X). The expression of φ̂(t, x) (Φ̂L,R(T,X)) will be

given in terms of â(k) (b̂L,R(K)) defined in the main paper as the annihilation operator for a Minkowski (Rindler)
particle with momentum k (K). Moreover, we show the explicit expression for the respective conjugate momentum

π̂(t, x) and Π̂L.R(t, x). From the field transformation φ̂(t, x) 7→ Φ̂L,R(T,X) and π̂(t, x) 7→ Π̂L,R(T,X) we derive the

Bogolyubov transformation â(k) → b̂L,R(K). Finally we show the canonical commutation relations that define the

â(k)- and b̂L,R(K)-algebra.

The massless free scalar field φ̂(t, x) is solution to the Klein–Gordon equation �φ̂(t, x) = 0 and writes

φ̂(t, x) =

∫ +∞

−∞

dk√
2π|k|

[
e−i|k|ct+ikxâ(k) + ei|k|ct−ikxâ†(k)

]
. (I.1)

Analogously, the transformed scalar fields in the Rindler frames Φ̂L,R(T,X) are still solution to the Klein-Gordon
equation and write

Φ̂L,R(T,X) =

∫ +∞

−∞

dK√
2π|K|

[
e−i|K|cT+iKX b̂L,R(K) + ei|K|cT−iKX b̂†L,R(K)

]
. (I.2)

The conjugate momentum of φ̂(t, x) in the Minkowski spacetime is defined as π̂(t, x) = c−1∂tφ̂(t, x) and explicitly
writes

π̂(t, x) =

∫ +∞

−∞
dk

√
|k|
2π
i
[
−e−i|k|ct+ikxâ(k) + ei|k|ct−ikxâ†(k)

]
, (I.3)

while in the Rindler spacetime Π̂L,R(T,X) = c−1∂T Φ̂L,R(T,X) and hence

Π̂L,R(T,X) =

∫ +∞

−∞
dK

√
|K|
2π

i
[
−e−i|K|cT+iKX b̂L,R(K) + ei|K|cT−iKX b̂†L,R(K)

]
. (I.4)

The coefficients â(k) can be decomposed as â(k) = âL(k) + âR(k) by defining the fields φ̂L,R(x) = θ(sL,Rx)φ̂(0, x),
π̂L,R(x) = θ(sL,Rx)π̂(0, x) and the coefficients âL,R(k) such that

φ̂L,R(x) =

∫ +∞

−∞

dk√
2π|k|

[
eikxâL,R(k) + e−ikxâ†L,R(k)

]
, (I.5a)

π̂L,R(x) =

∫ +∞

−∞
dk

√
|k|
2π
i
[
−eikxâL,R(k) + e−ikxâ†L,R(k)

]
. (I.5b)

The Bogoliubov transformations relating â(k) and b̂L,R(K) are the following

â(k) =

∫ +∞

−∞
dK

[
α(k,K)b̂L(K)− β∗(k,K)b̂†L(K) + α∗(k,K)b̂R(K)− β(k,K)b̂†R(K)

]
, (I.6)

with

α(k,K) = θ(kK)

√
K

k
F (k,K), β(k,K) = θ(kK)

√
K

k
F (−k,K), (I.7a)

F (k,K) =
1

2πa
Γ

(
− iK
a

)
exp

(
i
K

a
ln
|k|
a

+ sign (k)
β

4
K

)
. (I.7b)
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2

Such transformation can be obtained by requiring that φ̂(t, x) transforms as a scalar field under any coordinate
transformation, while π̂(t, x) as a time-derivative of a scalar field. For instance, the coordinate transformation in the
right wedge (t, x) 7→ (T,X) = (TR(t, x), XR(t, x)) for the fields writes

Φ̂R(T,X) = φ̂(tR(T,X), xR(T,X)), (I.8a)

Π̂R(T,X) =
1

c

∂

∂T
Φ̂R(T,X)

=
1

c

(
∂tR
∂T

∂

∂t
+
∂xR
∂T

∂

∂x

)
φ̂(tR(T,X), xR(T,X))

=eaX cosh(acT )
1

c

∂

∂t
φ̂(tR(T,X), xR(T,X)) + eaX sinh(acT )

∂

∂x
φ̂(tR(T,X), xR(T,X))

=eaX cosh(acT )π̂(tR(T,X), xR(T,X)) + eaX sinh(acT )
∂

∂x
φ̂(tR(T,X), xR(T,X)). (I.8b)

Eqs. (I.8) result in the following transformation for âR(k)

âR(k) =

∫ +∞

−∞
dxe−ikx

1

2

[√
|k|
2π
φ̂R(x) +

i√
2π|k|

π̂R(x)

]

=

∫ +∞

−∞
dxe−ikx

1

2

[√
|k|
2π
θ(x)φ̂(0, x) +

i√
2π|k|

θ(x)π̂(0, x)

]

=

∫ +∞

0

dxe−ikx
1

2

[√
|k|
2π
φ̂(0, x) +

i√
2π|k|

π̂(0, x)

]

=

∫ +∞

−∞
dXeaX exp(−ikxR(X))

1

2

[√
|k|
2π
φ̂(0, xR(X)) +

i√
2π|k|

π̂(0, xR(X))

]

=

∫ +∞

−∞
dX exp

(
−ik
a
eaX

)
1

2

[√
|k|
2π
eaX φ̂(0, xR(X)) +

ieaX√
2π|k|

π̂(0, xR(X))

]

=

∫ +∞

−∞
dX exp

(
−ik
a
eaX

)
1

2

[√
|k|
2π
eaXΦ̂R(0, X) +

i√
2π|k|

Π̂R(0, X)

]

=

∫ +∞

−∞
dX

1

2

[√
|k|
2π

Φ̂R(0, X)ia
d

dk
+

i√
2π|k|

Π̂R(0, X)

]
exp

(
−ik
a
eaX

)

=

∫ +∞

−∞
dX

1

2

{√
|k|
2π

∫ +∞

−∞

dK√
2π|K|

[
eiKX b̂R(K) + e−iKX b̂†R(K)

]
ia
d

dk

− 1√
2π|k|

∫ +∞

−∞
dK

√
|K|
2π

[
−eiKX b̂R(K) + e−iKX b̂†R(K)

]}
exp

(
−ik
a
eaX

)

=

∫ +∞

−∞

dK

2

∫ +∞

−∞
dX

{
1

2π

√∣∣∣∣
k

K

∣∣∣∣
[
eiKX b̂R(K) + e−iKX b̂†R(K)

]
ia
d

dk

− 1

2π

√∣∣∣∣
K

k

∣∣∣∣
[
−eiKX b̂R(K) + e−iKX b̂†R(K)

]}
exp

(
−ik
a
eaX

)

=

∫ +∞

−∞

dK

2

{√∣∣∣∣
k

K

∣∣∣∣
[
b̂R(K)ia

d

dk
F (−k,−K) + b̂†R(K)ia

d

dk
F (−k,K)

]

−
√∣∣∣∣

K

k

∣∣∣∣
[
−b̂R(K)F (−k,−K) + b̂†R(K)F (−k,K)

]}
, (I.9)

where

F (k,K) =

∫ +∞

−∞

dX

2π
exp

(
−iKX + i

k

a
eaX

)
(I.10)
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is a distribution that can be obtained from the following distributional limit

F (k,K) = lim
ε→0+

∫ +∞

−∞

dX

2π
exp

(
(−iK + εa)X +

(
i
k

a
− ε
)
eaX

)
. (I.11)

The distribution F (k,K) of Eq. (I.11) can be proven to be identical to F (k,K) of Eq. (I.7b) – for such proof see
for instance Ref. [1]. The derivative of F (k,K) with respect to k can be obtained by using integration by parts and
taking the distributional limit ε→ 0+:

d

dk
F (k,K) = lim

ε→0+

∫ +∞

−∞
dX

ieaX

2πa
exp

(
(−iK + εa)X +

(
i
k

a
− ε
)
eaX

)

= lim
ε→0+

∫ +∞

−∞
dX

i

2πa
exp ((−iK + εa)X)

1

a

(
i
k

a
− ε
)−1

d

dX
exp

((
i
k

a
− ε
)
eaX

)

= lim
ε→0+


 i

2πa2

(
i
k

a
− ε
)−1

exp

(
(−iK + εa)X +

(
i
k

a
− ε
)
eaX

)∣∣∣∣∣

+∞

−∞

−
∫ +∞

−∞
dX

i

2πa2

(
i
k

a
− ε
)−1

(−iK + εa) exp

(
(−iK + εa)X +

(
i
k

a
− ε
)
eaX

)]

= lim
ε→0+

[
iK − εa
a(k + iεa)

∫ +∞

−∞

dX

2π
exp

(
(−iK + εa)X +

(
i
k

a
− ε
)
eaX

)]

=
iK

ak
F (k,K). (I.12)

In this way the calculation of Eq. (I.9) leads to

âR(k) =

∫ +∞

−∞

dK

2

{√∣∣∣∣
k

K

∣∣∣∣
[
b̂R(K)

K

k
F (−k,−K)− b̂†R(K)

K

k
F (−k,K)

]

−
√∣∣∣∣

K

k

∣∣∣∣
[
−b̂R(K)F (−k,−K) + b̂†R(K)F (−k,K)

]}

=

∫ +∞

−∞

dK

2

{√∣∣∣∣
k

K

∣∣∣∣
[
b̂R(K)sign(kK)

∣∣∣∣
K

k

∣∣∣∣F (−k,−K)− b̂†R(K)sign(kK)

∣∣∣∣
K

k

∣∣∣∣F (−k,K)

]

−
√∣∣∣∣

K

k

∣∣∣∣
[
−b̂R(K)F (−k,−K) + b̂†R(K)F (−k,K)

]}

=

∫ +∞

−∞

dK

2

√∣∣∣∣
K

k

∣∣∣∣
[
b̂R(K)sign(kK)F (−k,−K)− b̂†R(K)sign(kK)F (−k,K)

+b̂R(K)F (−k,−K)− b̂†R(K)F (−k,K)
]

=

∫ +∞

−∞
dK

√∣∣∣∣
K

k

∣∣∣∣
[

1 + sign(kK)

2
F (−k,−K)b̂R(K)− 1 + sign(kK)

2
F (−k,K)b̂†R(K)

]

=

∫ +∞

−∞
dK

√∣∣∣∣
K

k

∣∣∣∣
[
θ(kK)F (−k,−K)b̂R(K)− θ(kK)F (−k,K)b̂†R(K)

]

=

∫ +∞

−∞
dK

[
α∗(k,K)b̂R(K)− β(k,K)b̂†R(K)

]
. (I.13)

Moreover the transformation a 7→ −a is equivalent to F (k,K) 7→ F ∗(k,K). In this way we can easily prove the
following identity from Eq. (I.13)

âL(k) =

∫ +∞

−∞
dK

[
α(k,K)b̂L(K)− β∗(k,K)b̂†L(K)

]
. (I.14)
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Eqs. (I.13, I.14) result in Eq. (I.6).

The inverse equations for Eq. (I.6) read

bL(K) =

∫ +∞

−∞
dk
[
α∗(k,K)â(k) + β∗(k,K)â†(k)

]
, b̂R(K) =

∫ +∞

−∞
dk
[
α(k,K)â(k) + β(k,K)â†(k)

]
. (I.15)

Eq. (I.15) will be proven in Sec. II.

Any quantum field in Minkowski space-time must be provided with the following canonical commutation relation

[â(k), â(k′)] = 0,
[
â(k), â†(k′)

]
= δ(k − k′). (I.16)

The analogue procedure in the Rindler spacetime consists into imposing the following commutation relations

[
b̂L(K), b̂L(K ′)

]
= 0,

[
b̂L(K), b̂†L(K ′)

]
= δ(K −K ′),

[
b̂R(K), b̂R(K ′)

]
= 0,

[
b̂R(K), b̂†R(K ′)

]
= δ(K −K ′).

(I.17)
It is possible to prove that the commutation relations (I.16) are compatible with (I.17) and give the following additional
commutation relations

[
b̂L(K), b̂R(K ′)

]
= 0,

[
b̂L(K), b̂†R(K ′)

]
= 0. (I.18)

See Sec. II for such proof.

II. PROPERTIES OF THE BOGOLYUBOV COEFFICIENTS

In Sec. I we have derived the Bogoliubov transformations relating â(k) and b̂L,R(K). The explicit expression for
the Bogoliubov coefficients is shown by Eqs. (I.7). From such equations we can extract some identities which appear
to be useful for some proofs.

For instance, Eq. (I.15) can be proven through the following identities

∫ +∞

−∞
dk[α(k,K)α(k,K ′)− β(k,K)β(k,K ′)] = 0, (II.1a)

∫ +∞

−∞
dk[α(k,K)β∗(k,K ′)− β(k,K)α∗(k,K ′)] = 0, (II.1b)

∫ +∞

−∞
dk[α(k,K)β(k,K ′)− β(k,K)α(k,K ′)] = 0, (II.1c)

∫ +∞

−∞
dk[α(k,K)α∗(k,K ′)− β(k,K)β∗(k,K ′)] = δ(K −K ′), (II.1d)
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which are valid for any K,K ′ ∈ R. Indeed, Eqs. (II.1) and their conjugates result in

∫ +∞

−∞
dk
[
α∗(k,K)â(k) + β∗(k,K)â†(k)

]

=

∫ +∞

−∞
dk

{
α∗(k,K)

∫ +∞

−∞
dK ′

[
α(k,K ′)b̂L(K ′)− β∗(k,K ′)b̂†L(K ′) + α∗(k,K ′)b̂R(K ′)− β(k,K ′)b̂†R(K ′)

]

+β∗(k,K)

∫ +∞

−∞
dK ′

[
α∗(k,K ′)b̂†L(K ′)− β(k,K ′)b̂L(K ′) + α(k,K ′)b̂†R(K ′)− β∗(k,K ′)b̂R(K ′)

]}

=

∫ +∞

−∞
dK ′

∫ +∞

−∞
dk
[
α∗(k,K)α(k,K ′)b̂L(K ′)− α∗(k,K)β∗(k,K ′)b̂†L(K ′) + α∗(k,K)α∗(k,K ′)b̂R(K ′)

− α∗(k,K)β(k,K ′)b̂†R(K ′) + β∗(k,K)α∗(k,K ′)b̂†L(K ′)− β∗(k,K)β(k,K ′)b̂L(K ′) + β∗(k,K)α(k,K ′)b̂†R(K ′)

−β∗(k,K)β∗(k,K ′)b̂R(K ′)
]

=

∫ +∞

−∞
dK ′

∫ +∞

−∞
dk
{

[α∗(k,K)α(k,K ′)− β∗(k,K)β(k,K ′)]b̂L(K ′) + [β∗(k,K)α∗(k,K ′)− α∗(k,K)β∗(k,K ′)]

×b̂†L(K ′) + [α∗(k,K)α∗(k,K ′)− β∗(k,K)β∗(k,K ′)]b̂R(K ′) + [β∗(k,K)α(k,K ′)− α∗(k,K)β(k,K ′)]b̂†R(K ′)
}

=

∫ +∞

−∞
dK ′δ(K −K ′)b̂L(K ′)

=b̂L(K) (II.2)

and
∫ +∞

−∞
dk
[
α(k,K)â(k) + β(k,K)â†(k)

]

=

∫ +∞

−∞
dk

{
α(k,K)

∫ +∞

−∞
dK ′

[
α(k,K ′)b̂L(K ′)− β∗(k,K ′)b̂†L(K ′) + α∗(k,K ′)b̂R(K ′)− β(k,K ′)b̂†R(K ′)

]

+β(k,K)

∫ +∞

−∞
dK ′

[
α∗(k,K ′)b̂†L(K ′)− β(k,K ′)b̂L(K ′) + α(k,K ′)b̂†R(K ′)− β∗(k,K ′)b̂R(K ′)

]}

=

∫ +∞

−∞
dK ′

∫ +∞

−∞
dk
[
α(k,K)α(k,K ′)b̂L(K ′)− α(k,K)β∗(k,K ′)b̂†L(K ′) + α(k,K)α∗(k,K ′)b̂R(K ′)

− α(k,K)β(k,K ′)b̂†R(K ′) + β(k,K)α∗(k,K ′)b̂†L(K ′)− β(k,K)β(k,K ′)b̂L(K ′) + β(k,K)α(k,K ′)b̂†R(K ′)

−β(k,K)β∗(k,K ′)b̂R(K ′)
]

=

∫ +∞

−∞
dK ′

∫ +∞

−∞
dk
{

[α(k,K)α(k,K ′)− β(k,K)β(k,K ′)]b̂L(K ′) + [β(k,K)α∗(k,K ′)− α(k,K)β∗(k,K ′)]

×b̂†L(K ′) + [α(k,K)α∗(k,K ′)− β(k,K)β∗(k,K ′)]b̂R(K ′) + [β(k,K)α(k,K ′)− α(k,K)β(k,K ′)]b̂†R(K ′)
}

=

∫ +∞

−∞
dK ′δ(K −K ′)b̂R(K ′)

=b̂R(K). (II.3)

Moreover, Eq. (I.15) and Eqs. (II.1) can be used in order to prove Eqs. (I.17, I.18) from Eq. (I.16).
Eqs. (II.1) come from the following chains of identities valid for any p, q ∈ {1,−1}
∫ +∞

−∞
dkθ(kK)θ(kK ′)

√
KK ′

|k| [F (k,K)F (−pk,−qK ′)− F (−k,K)F (pk,−qK ′)]

=

∫ +∞

−∞
dkθ(kK)θ(KK ′)

√
KK ′

|k|
1

(2πa)2
Γ

(
− iK
a

)
Γ

(
q
iK ′

a

)[
exp

(
i
K − qK ′

a
ln
|k|
a

+ sign(k)
β

4
(K + pqK ′)

)

− exp

(
i
K − qK ′

a
ln
|k|
a
− sign(k)

β

4
(K + pqK ′)

)]
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=θ(KK ′)
√
KK ′Γ

(
− iK
a

)
Γ

(
q
iK ′

a

)∫ +∞

−∞
dk
θ(kK)

|k|
1

(2πa)2

[
exp

(
i
K − qK ′

a
ln
|k|
a

+ sign(K)
β

4
(K + pqK ′)

)

− exp

(
i
K − qK ′

a
ln
|k|
a
− sign(K)

β

4
(K + pqK ′)

)]

=
θ(KK ′)

√
KK ′

2πa
Γ

(
− iK
a

)
Γ

(
q
iK ′

a

)
2 sinh

(
sign(K)

β

4
(K + pqK ′)

)∫ +∞

−∞
dk
θ(kK)

2πa|k| exp

(
i
K − qK ′

a
ln
|k|
a

)

=
θ(KK ′)

√
KK ′

πa
Γ

(
− iK
a

)
Γ

(
q
iK ′

a

)
sinh

(
sign(K)

β

4
(K + pqK ′)

)∫ +∞

0

d|k|
2πa|k| exp

(
i
K − qK ′

a
ln
|k|
a

)

=
θ(KK ′)

√
KK ′

πa
Γ

(
− iK
a

)
Γ

(
q
iK ′

a

)
sinh

(
sign(K)

β

4
(K + pqK ′)

)∫ +∞

−∞

dΞ

2π
exp (i(K − qK ′)Ξ)

=
θ(KK ′)

√
KK ′

πa
Γ

(
− iK
a

)
Γ

(
q
iK ′

a

)
sinh

(
sign(K)

β

4
(K + pqK ′)

)
δ(K − qK ′)

=
θ(q)|K|
πa

∣∣∣∣Γ
(
iK

a

)∣∣∣∣
2

sinh

(
sign(K)

β

4
(1 + p)K

)
δ(K − qK ′)

=θ(q)

[
sinh

(
β

2
|K|
)]−1

sinh

(
β

4
(1 + p)|K|

)
δ(K − qK ′), (II.4)

where we have replaced the integration variable |k| with

Ξ =
1

a
ln

( |k|
a

)
(II.5)

and used the following equation for the gamma function

|Γ(iz)|2 =
π

|z| sinh(π|z|) , (II.6)

which is valid for any real z. For p = −1 Eq. (II.4) gives

∫ +∞

−∞
dkθ(kK)θ(kK ′)

√
KK ′

|k| [F (k,K)F (k,−qK ′)− F (−k,K)F (−k,−qK ′)] = 0, (II.7)

resulting in Eqs. (II.1a, II.1b), while for p = 1 Eq. (II.4) gives

∫ +∞

−∞
dkθ(kK)θ(kK ′)

√
KK ′

|k| [F (k,K)F (−k,−qK ′)− F (−k,K)F (k,−qK ′)] = θ(q)δ(K − qK ′), (II.8)

For q = −1 Eq. (II.8) gives

∫ +∞

−∞
dkθ(kK)θ(kK ′)

√
KK ′

|k| [F (k,K)F (−k,K ′)− F (−k,K)F (k,K ′)] = 0, (II.9)

resulting in Eq. (II.1c), while for q = 1 Eq. (II.8) gives

∫ +∞

−∞
dkθ(kK)θ(kK ′)

√
KK ′

|k| [F (k,K)F (−k,−K ′)− F (−k,K)F (k,−K ′)] = δ(K −K ′), (II.10)

resulting in Eq. (II.1d).
Other important identities relating α(k,K) and β(k,K) are the following:

α(k,K) = exp

(
β

2
|K|
)
β(k,K), (II.11)

∫ +∞

−∞
dK2 sinh

(
β

2
|K|
)

[α(k,K)β∗(k′,K) + β∗(k,K)α(k′,K)] = δ(k − k′). (II.12)
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Eq. (II.11) comes from the following identity

F (k,K) = exp

(
sign(k)

β

2
K

)
F (−k,K), (II.13)

which can be directly extracted from Eq. (I.7b). On the other hand, Eq. (II.12) can be proven by the following chain
of identities:

∫ +∞

−∞
dKθ(kK)θ(k′K)2 sinh

(
β

2
|K|
) |K|√

kk′
[F (k,K)F (k′,−K) + F (k,−K)F (k′,K)]

=
θ(kk′)√
kk′

[∫ +∞

−∞
dKθ(kK)2 sinh

(
β

2
|K|
)
|K|F (k,K)F (k′,−K)

+

∫ +∞

−∞
dKθ(kK)2 sinh

(
β

2
|K|
)
|K|F (k,−K)F (k′,K)

]

=
θ(kk′)√
kk′

[∫ +∞

−∞
dKθ(kK)2 sinh

(
β

2
|K|
)
|K|F (k,K)F (k′,−K)

+

∫ +∞

−∞
dKθ(−kK)2 sinh

(
β

2
|K|
)
|K|F (k,K)F (k′,−K)

]

=
θ(kk′)√
kk′

∫ +∞

−∞
dK [θ(kK) + θ(−kK)] 2 sinh

(
β

2
|K|
)
|K|F (k,K)F (k′,−K)

=
θ(kk′)√
kk′

∫ +∞

−∞
dK2 sinh

(
β

2
|K|
)
|K|F (k,K)F (k′,−K)

=
θ(kk′)√
kk′

∫ +∞

−∞
dK2 sinh

(
β

2
|K|
) |K|

(2πa)2

∣∣∣∣Γ
(
iK

a

)∣∣∣∣
2

exp

(
i
K

a
ln

∣∣∣∣
k

k′

∣∣∣∣
)

=
θ(kk′)√
kk′

∫ +∞

−∞

dK

2πa
exp

(
i
K

a
ln

∣∣∣∣
k

k′

∣∣∣∣
)

=
θ(kk′)√
kk′

δ

(
ln

∣∣∣∣
k

k′

∣∣∣∣
)

=
θ(kk′)
|k| δ

(
ln

∣∣∣∣
k

k′

∣∣∣∣
)

=θ(kk′)δ (|k| − |k′|)
=δ (k − k′) . (II.14)

III. MINKOWSKI VACUUM STATES

In this section, we give a brief review of the Minkowski vacuum states seen by an accelerated observer. The aim is
to provide a simple proof for the Rindler effect through some identities shown in the previous sections. Moreover, we
provide a proof for Eq. (5) of the main paper and for some other identities which will be used in the next sections.

The Minkowski vacuum states is defined by

â(k)|0M 〉 = 0, ∀k ∈ R. (III.1)

Eq. (III.1) supplemented with Eqs. (I.6, II.11) gives

∫ +∞

−∞
dK

{
β(k,K)

[
exp

(
β

2
|K|
)
b̂L(K)− b̂†R(K)

]
+ β∗(k,K)

[
exp

(
β

2
|K|
)
b̂R(K)− b̂†L(K)

]}
|0M 〉 = 0, (III.2)

which holds for any real k and resulting, therefore, in Eq. (5).
A non-normalizable state which satisfy Eq. (5) exists and its explicit expression is the following

|0M 〉 ∝ Ŝ|0L, 0R〉, (III.3)
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with

Ŝ = exp

(∫ +∞

−∞
dK exp

(
−β

2
|K|
)
b̂†L(K)b̂†R(K)

)
. (III.4)

Eq. (III.3) is identical to Eq. (1) of the main paper and, therefore, it results in the Unruh effect. The fact that the
|0M 〉 in Eq. (III.3) satisfies Eqs. (5) can be proven in the following way

[
b̂L,R(K), Ŝ

]
=

[
b̂L,R(K), 1̂ +

∫ +∞

−∞
dK1 exp

(
−β

2
|K1|

)
b̂†L(K1)b̂†R(K1) +

1

2

∫ +∞

−∞
dK1 exp

(
−β

2
|K1|

)
b̂†L(K1)b̂†R(K1)

×
∫ +∞

−∞
dK2 exp

(
−β

2
|K2|

)
b̂†L(K2)b̂†R(K2) +

∞∑

n=3

1

n!

n∏

i=1

∫ +∞

−∞
dKi exp

(
−β

2
|Ki|

)
b̂†L(Ki)b̂

†
R(Ki)

]

=
[
b̂L,R(K), 1̂

]
+

∫ +∞

−∞
dK1 exp

(
−β

2
|K1|

)[
b̂L,R(K), b̂†L(K1)b̂†R(K1)

]
+

1

2

∫ +∞

−∞
dK1 exp

(
−β

2
|K1|

)

×
[
b̂L,R(K), b̂†L(K1)b̂†R(K1)

] ∫ +∞

−∞
dK2 exp

(
−β

2
|K2|

)
b̂†L(K2)b̂†R(K2) +

1

2

∫ +∞

−∞
dK1 exp

(
−β

2
|K1|

)

× b̂†L(K1)b̂†R(K1)

∫ +∞

−∞
dK2 exp

(
−β

2
|K2|

)[
b̂L,R(K), b̂†L(K2)b̂†R(K2)

]
+

∞∑

n=3

1

n!

{∫ +∞

−∞
dK1

× exp

(
−β

2
|K1|

)[
b̂L,R(K), b̂†L(K1)b̂†R(K1)

] n∏

i=2

∫ +∞

−∞
dKi exp

(
−β

2
|Ki|

)
b̂†L(Ki)b̂

†
R(Ki)

+

n−1∑

j=2

j−1∏

i=1

∫ +∞

−∞
dKi exp

(
−β

2
|Ki|

)
b̂†L(Ki)b̂

†
R(Ki)

∫ +∞

−∞
dKj exp

(
−β

2
|Kj |

)[
b̂L,R(K), b̂†L(Kj)

×b̂†R(Kj)
] n∏

i=j+1

∫ +∞

−∞
dKi exp

(
−β

2
|Ki|

)
b̂†L(Ki)b̂

†
R(Ki) +

n−1∏

i=1

∫ +∞

−∞
dKi exp

(
−β

2
|Ki|

)

×b̂†L(Ki)b̂
†
R(Ki)

∫ +∞

−∞
dKn exp

(
−β

2
|Kn|

)[
b̂L,R(K), b̂†L(Kn)b̂†R(Kn)

]}

=

∫ +∞

−∞
dK1 exp

(
−β

2
|K1|

)
b̂†R,L(K1)δ(K −K1) +

1

2

∫ +∞

−∞
dK1 exp

(
−β

2
|K1|

)
b̂†R,L(K1)δ(K −K1)

×
∫ +∞

−∞
dK2 exp

(
−β

2
|K2|

)
b̂†L(K2)b̂†R(K2) +

1

2

∫ +∞

−∞
dK1 exp

(
−β

2
|K1|

)
b̂†L(K1)b̂†R(K1)

∫ +∞

−∞
dK2

× exp

(
−β

2
|K2|

)
b̂†R,L(K2)δ(K −K2) +

∞∑

n=3

1

n!

[∫ +∞

−∞
dK1 exp

(
−β

2
|K1|

)
b̂†R,L(K1)δ(K −K1)

×
n∏

i=2

∫ +∞

−∞
dKi exp

(
−β

2
|Ki|

)
b̂†L(Ki)b̂

†
R(Ki) +

n−1∑

j=2

j−1∏

i=1

∫ +∞

−∞
dKi exp

(
−β

2
|Ki|

)
b̂†L(Ki)b̂

†
R(Ki)

×
∫ +∞

−∞
dKj exp

(
−β

2
|Kj |

)
b̂†R,L(Kj)δ(K −Kj)

n∏

i=j+1

∫ +∞

−∞
dKi exp

(
−β

2
|Ki|

)
b̂†L(Ki)b̂

†
R(Ki)

+
n−1∏

i=1

∫ +∞

−∞
dKi exp

(
−β

2
|Ki|

)
b̂†L(Ki)b̂

†
R(Ki)

∫ +∞

−∞
dKn exp

(
−β

2
|Kn|

)
b̂†R,L(Kn)δ(K −Kn)

]

= exp

(
−β

2
|K|
)
b̂†R,L(K) +

1

2
exp

(
−β

2
|K|
)
b̂†R,L(K)

∫ +∞

−∞
dK2 exp

(
−β

2
|K2|

)
b̂†L(K2)b̂†R(K2)

+
1

2

∫ +∞

−∞
dK1 exp

(
−β

2
|K1|

)
b̂†L(K1)b̂†R(K1) exp

(
−β

2
|K|
)
b̂†R,L(K) +

∞∑

n=3

1

n!

[
exp

(
−β

2
|K|
)

× b̂†R,L(K)
n∏

i=2

∫ +∞

−∞
dKi exp

(
−β

2
|Ki|

)
b̂†L(Ki)b̂

†
R(Ki) +

n−1∑

j=2

j−1∏

i=1

∫ +∞

−∞
dKi exp

(
−β

2
|Ki|

)
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× b̂†L(Ki)b̂
†
R(Ki) exp

(
−β

2
|K|
)
b̂†R,L(K)

n∏

i=j+1

∫ +∞

−∞
dKi exp

(
−β

2
|Ki|

)
b̂†L(Ki)b̂

†
R(Ki)

+

n−1∏

i=1

∫ +∞

−∞
dKi exp

(
−β

2
|Ki|

)
b̂†L(Ki)b̂

†
R(Ki) exp

(
−β

2
|K|
)
b̂†R,L(K)

]

= exp

(
−β

2
|K|
)
b̂†R,L(K)

{
1 +

1

2

∫ +∞

−∞
dK2 exp

(
−β

2
|K2|

)
b̂†L(K2)b̂†R(K2) +

1

2

∫ +∞

−∞
dK1

× exp

(
−β

2
|K1|

)
b̂†L(K1)b̂†R(K1) +

∞∑

n=3

1

n!

[
n∏

i=2

∫ +∞

−∞
dKi exp

(
−β

2
|Ki|

)
b̂†L(Ki)b̂

†
R(Ki)

+
n−1∑

j=2

j−1∏

i=1

∫ +∞

−∞
dKi exp

(
−β

2
|Ki|

)
b̂†L(Ki)b̂

†
R(Ki)

n∏

i=j+1

∫ +∞

−∞
dKi exp

(
−β

2
|Ki|

)
b̂†L(Ki)b̂

†
R(Ki)

+

n−1∏

i=1

∫ +∞

−∞
dKi exp

(
−β

2
|Ki|

)
b̂†L(Ki)b̂

†
R(Ki)

]}

= exp

(
−β

2
|K|
)
b̂†R,L(K)

{
1 +

∫ +∞

−∞
dK ′ exp

(
−β

2
|K ′|

)
b̂†L(K ′)b̂†R(K ′)

+
∞∑

n=3

n

n!

[∫ +∞

−∞
dK ′ exp

(
−β

2
|K ′|

)
b̂†L(K ′)b̂†R(K ′)

]n−1
}

= exp

(
−β

2
|K|
)
b̂†R,L(K)

∞∑

n=1

1

(n− 1)!

[∫ +∞

−∞
dK ′ exp

(
−β

2
|K ′|

)
b̂†L(K ′)b̂†R(K ′)

]n−1

= exp

(
−β

2
|K|
)
b̂†R,L(K)Ŝ. (III.5)

Therefore, we obtain

b̂†R,L(K)Ŝ|0L, 0R〉 = exp

(
β

2
|K|
)[

b̂L,R(K), Ŝ
]
|0L, 0R〉

= exp

(
β

2
|K|
)
b̂L,R(K)Ŝ|0L, 0R〉, (III.6)

which means that the |0M 〉 of Eq. (III.3) is solution of Eqs. (5).

Eq. (5) can be used to obtain useful identities. For instance, it is possible to move creation b̂†R(K) and annihilation

b̂R(K) operators acting from the left of ρ̂0 to its right and the other way round using the following identity and its
adjoin

b̂†R(K)ρ̂0 = eβ|K|ρ̂0b̂
†
R(K). (III.7)

Eq. (III.7) is a result of Eq. (5):

b̂†R(K)ρ̂0 =TrL

[
b̂†R(K)|0M 〉〈0M |

]

= exp

(
1

2
β|K|

)
TrL

[
b̂L(K)|0M 〉〈0M |

]

= exp

(
1

2
β|K|

)
TrL

[
|0M 〉〈0M |b̂L(K)

]

=eβ|K|TrL

[
|0M 〉〈0M |b̂†R(K)

]

=eβ|K|ρ̂0b̂
†
R(K). (III.8)
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Eq. (III.7) gives also the following identity

b̂†R(K)ρ̂0b̂R(K ′) =eβ|K
′|b̂†R(K)b̂R(K ′)ρ̂0

=eβ|K
′|
[
b̂†R(K), b̂R(K ′)

]
ρ̂0 + eβ|K

′|b̂R(K ′)b̂†R(K)ρ̂0

=− eβ|K′|δ(K −K ′)ρ̂0 + eβ(|K|+|K′|)b̂R(K ′)ρ̂0b̂
†
R(K), (III.9)

which will be used in Sec. VI.

IV. A PROOF FOR EQ. (3)

The main aim of this section is to provide a proof of Eq. (3) through some identities obtained in the previous
sections.

Eqs. (5, I.6, II.11) can be used in order to derive the following identity

â†(k)|0M 〉 =

∫ +∞

−∞
dK

[
α∗(k,K)b̂†L(K)− β(k,K)b̂L(K) + α(k,K)b̂†R(K)− β∗(k,K)b̂R(K)

]
|0M 〉

=

∫ +∞

−∞
dK

[
exp

(
β

2
|K|
)
α∗(k,K)b̂R(K)− exp

(
−β

2
|K|
)
β(k,K)b̂†R(K)

+ exp

(
β

2
|K|
)
β(k,K)b̂†R(K)− exp

(
−β

2
|K|
)
α∗(k,K)b̂R(K)

]
|0M 〉

=

∫ +∞

−∞
dK

[
2 sinh

(
β

2
|K|
)
α∗(k,K)b̂R(K) + 2 sinh

(
β

2
|K|
)
β(k,K)b̂†R(K)

]
|0M 〉

=

∫ +∞

−∞
dK2 sinh

(
β

2
|K|
)[

α∗(k,K)b̂R(K) + β(k,K)b̂†R(K)
]
|0M 〉

=

∫ +∞

−∞
dK2 sinh

(
β

2
|K|
)
θ(kK)

√
K

k

[
F (−k,−K)b̂R(K) + F (−k,K)b̂†R(K)

]
|0M 〉 (IV.1)

Eqs. (2, IV.1) result in

|ψ〉 =

∫ +∞

−∞
dK

[
ψ̃−(K)b̂R(K) + ψ̃+(K)b̂†R(K)

]
|0M 〉, (IV.2)

with

ψ̃±(K) = 2 sinh

(
β

2
|K|
)∫ +∞

−∞
dk

∫ +∞

−∞
dx
ψ(x)√

2π
e−ikxθ(kK)

√
K

k
F (−k,±K). (IV.3)

It is straightforward to obtain Eq. (3) from Eq. IV.2 if we prove that the functions ψ̃±(K) defined in Eq. (IV.3)
are identical to Eq. (4a). This can be seen in the following way

ψ̃±(K) =2 sinh

(
β

2
|K|
)∫ +∞

−∞
dk

∫ +∞

−∞
dx
ψ(x)√

2π
e−ikxθ(kK)

√
K

k

1

2πa
Γ

(
∓ iK
a

)
exp

(
±iK

a
ln
|k|
a
∓ sign(k)

β

4
K

)

=2
√
|K| sinh

(
β

2
|K|
)

Γ

(
∓ iK
a

)∫ +∞

−∞
dx
ψ(x)√

2π

∫ +∞

−∞
dk
e−isign(k)|k|x

2πa

θ(kK)√
|k|

exp

(
±iK

a
ln
|k|
a
∓ sign(k)

β

4
K

)

=2
√
|K| sinh

(
β

2
|K|
)

Γ

(
∓ iK
a

)∫ +∞

−∞
dx
ψ(x)√

2π

∫ +∞

0

d|k|e
−isign(K)|k|x

2πa
√
|k|

exp

(
±iK

a
ln
|k|
a
∓ sign(K)

β

4
K

)

=2
√
|K| sinh

(
β

2
|K|
)

Γ

(
∓ iK
a

)∫ +∞

−∞
dx
ψ(x)√

2π

∫ +∞

−∞
dΞ

√
a

2π
exp

(
a

2
Ξ− isign(K)aeaΞx± iKΞ∓ β

4
|K|
)

=2
√
a|K| sinh

(
β

2
|K|
)

Γ

(
∓ iK
a

)∫ +∞

−∞
dx
ψ(x)√

2π
F
(
−sign(K)a2x,∓K + i

a

2

)
exp

(
∓β

4
|K|
)
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=2
√
a|K| sinh

(
β

2
|K|
)

Γ

(
∓ iK
a

)∫ +∞

−∞
dx
ψ(x)√

2π

1

2πa
Γ

(
1

2
± iK

a

)
exp

((
∓iK

a
− 1

2

)
ln |ax| ± sign(xK)

β

4
K

−isign(xK)
π

4
∓ β

4
|K|
)

=

√
|K|

π
√
a

sinh

(
β

2
|K|
)

Γ

(
∓ iK
a

)
Γ

(
1

2
± iK

a

)∫ +∞

−∞
dx
ψ(x)√

2π
exp

((
∓iK

a
− 1

2

)
ln |ax| ± sign(x)

β

4
|K|

−isign(xK)
π

4
∓ β

4
|K|
)

=

√
|K|

π
√
a

sinh

(
β

2
|K|
)

Γ

(
∓ iK
a

)
Γ

(
1

2
± iK

a

)[∫ +∞

0

dx
ψ(x)√

2π
exp

((
∓iK

a
− 1

2

)
ln |ax| − isign(K)

π

4

)

+

∫ 0

−∞
dx
ψ(x)√

2π
exp

((
∓iK

a
− 1

2

)
ln |ax|+ isign(K)

π

4
∓ β

2
|K|
)]

=2 sinh

(
β

2
|K|
)

exp

(
∓β

2
|K|
){[

θ(±1) + f̃R±

(
∓K
a

)]∫ +∞

−∞
dX

ψ(xR(X))√
2π

exp
((
∓iK +

a

2

)
X
)

+f̃L±

(
∓K
a

)∫ +∞

−∞
dX

ψ(xL(−X))√
2π

exp
((
∓iK +

a

2

)
X
)}

=
e−θ(±1)β|K|

n0(K)

{[
θ(±1) + f̃R±

(
∓K
a

)]∫ +∞

−∞
dXψR(X)

e∓iKX√
2π

+ f̃L±

(
∓K
a

)∫ +∞

−∞
dXψL(−X)

e∓iKX√
2π

}

=
e−θ(±1)β|K|

n0(K)

∫ +∞

−∞
dX

e∓iKX√
2π

{
ψR(X)

[
θ(±1) + f̃R±

(
∓K
a

)]
+ ψL(−X)f̃L±

(
∓K
a

)}
. (IV.4)

V. NORMALIZATION CONDITIONS FOR SINGLE-PARTICLE STATES

In this section we provide equivalent ways to express the normalization condition 〈ψ|ψ〉 = 1 for different definitions
of wave-functions. Moreover, we discuss the case of ψ̄(x) as the wave-function which transforms as a scalar field
under Lorentz transformations. We show the explicit normalization condition for ψ̄(x) and a proof for the fact that
left-wedge values of ψ̄(x) appear in ∆nR(X).

The wave-function ψ(x) is normalized in the following way.

∫ +∞

−∞
dx |ψ(x)|2 = 1. (V.1)

Equivalently, the normalization condition 〈ψ|ψ〉 = 1 can be imposed on the wave-function in the momentum space
defined as

ψ̃(k) =

∫ +∞

−∞
dx
e−ikx√

2π
ψ(x). (V.2)

The normalization condition for ψ̃(k) writes

∫ +∞

−∞
dk
∣∣∣ψ̃(k)

∣∣∣
2

= 1. (V.3)

Eq. (V.1) can be written in terms of ψR(X) and ψL(X)

PL + PR = 1, (V.4)

where

PL,R =

∫ +∞

−∞
dX |ψL,R(X)|2 (V.5)

are associated to the probability of finding the particle in the left and in the right wedge.
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Eq. (V.3) can be written in terms of ψ̃±(K)

∫ +∞

−∞
dKn0(K)

[∣∣∣∣ψ̃+(K) exp

(
β

2
|K|
)∣∣∣∣

2

+
∣∣∣ψ̃−(K)

∣∣∣
2
]

= 1. (V.6)

Eq. (V.6) can be obtained from Eqs. (II.12, IV.3) and from the following identity

ψ̃±(K) exp

(
±β

2
|K|
)

=2 sinh

(
β

2
|K|
)∫ +∞

−∞
dkψ̃(k)θ(kK)

√
K

k
F (k,±K), (V.7)

which in turn can be directly obtained from Eqs. (I.7b, IV.3). The proof for Eq. (V.6) is the following

∫ +∞

−∞
dKn0(K)

[∣∣∣∣ψ̃+(K) exp

(
β

2
|K|
)∣∣∣∣

2

+
∣∣∣ψ̃−(K)

∣∣∣
2
]

=

∫ +∞

−∞
dK exp

(
−β

2
|K|
)[

2 sinh

(
β

2
|K|
)]−1

[∣∣∣∣ψ̃+(K) exp

(
β

2
|K|
)∣∣∣∣

2

+
∣∣∣ψ̃−(K)

∣∣∣
2
]

=

∫ +∞

−∞
dK

[
2 sinh

(
β

2
|K|
)]−1 [

ψ̃+(K) exp

(
β

2
|K|
)
ψ̃∗+(K) + ψ̃−(K) exp

(
−β

2
|K|
)
ψ̃∗−(K)

]

=

∫ +∞

−∞
dK2 sinh

(
β

2
|K|
)
|K|

∫ +∞

−∞
dk
ψ̃(k)√
|k|
θ(kK)

∫ +∞

−∞
dk′

ψ̃∗(k′)√
|k′|

θ(k′K)[F (k,K)F (k′,−K) + F (k,−K)F (k′,K)]

=

∫ +∞

−∞
dkψ̃(k)

∫ +∞

−∞
dk′ψ̃∗(k′)

∫ +∞

−∞
dK2 sinh

(
β

2
|K|
)
|K|θ(kK)θ(k′K)√

|kk′|
[F (k,K)F (k′,−K) + F (k,−K)F (k′,K)]

=

∫ +∞

−∞
dkψ̃(k)

∫ +∞

−∞
dk′ψ̃∗(k′)δ(k − k′)

=

∫ +∞

−∞
dk
∣∣∣ψ̃(k)

∣∣∣
2

=1. (V.8)

ψ(x) does not behave as a scalar field under Lorentz transformations. Nevertheless, we can use the definition of a
Lorentz-invariant wave-function ψ̄(x) through the following expression

|ψ〉 =

∫ +∞

−∞
dxψ̄(x)φ̂(0, x)|0M 〉. (V.9)

The downside is that the normalization condition for ψ̄(x) is not provided with the interpretation of
∣∣ψ̄(x)

∣∣2 as the
probability density of finding a particle at position x [2].

A possible way to switch between ψ̃(k) and ψ̄(x) can be obtained from Eqs. (2, V.9). Indeed, Eq. (2) is equivalent
to

|ψ〉 =

∫ +∞

−∞
dxψ(x)ˆ̃a†(x)|0M 〉

=

∫ +∞

−∞
dxψ(x)

∫ +∞

−∞
dk
e−ikx√

2π
â†(k)|0M 〉

=

∫ +∞

−∞
dkψ̃(k)â†(k)|0M 〉, (V.10)
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while Eq. (V.9)

|ψ〉 =

∫ +∞

−∞
dxψ̄(x)φ̂(0, x)|0M 〉

=

∫ +∞

−∞
dxψ̄(x)

∫ +∞

−∞

dk√
2π|k|

[
eikxâ(k) + e−ikxâ†(k)

]
|0M 〉

=

∫ +∞

−∞
dxψ̄(x)

∫ +∞

−∞

dk√
2π|k|

e−ikxâ†(k)|0M 〉

=

∫ +∞

−∞
dk

∫ +∞

−∞
dx

e−ikx√
2π|k|

ψ̄(x)â†(k)|0M 〉. (V.11)

By comparing Eq.(V.10) with Eq. (V.11), we obtain the following identity relating ψ̃(k) and ψ̄(x):

ψ̃(k) =

∫ +∞

−∞
dx

e−ikx√
2π|k|

ψ̄(x). (V.12)

Eqs. (V.3, V.12) result in the following normalization condition for ψ̄(x)

∫ +∞

−∞
dk

∣∣∣∣∣

∫ +∞

−∞
dx

e−ikx√
2π|k|

ψ̄(x)

∣∣∣∣∣

2

= 1, (V.13)

which makes Gaussian functions non-normalizable. Indeed a necessary condition for Eq. (V.13) is that the absolute
value of the Fourier transform of ψ̄(x) is negligible at the origin, which is an impossible condition for Gaussian
functions.

The fact that left-wedge values of ψ̄(x) appear in ∆nR(X) – as we have stated in the main paper – can be proven
in the following way:

|ψ〉 =

∫ +∞

−∞
dxψ̄(x)φ̂(x)|0M 〉

=

∫ 0

−∞
dxψ̄(x)φ̂(x)|0M 〉+

∫ +∞

0

dxψ̄(x)φ̂(x)|0M 〉

=

∫ 0

−∞
dxψ̄(x)Φ̂L(0, XL(x))|0M 〉+

∫ +∞

0

dxψ̄(x)Φ̂R(0, XR(x))|0M 〉

=

∫ 0

−∞
dxψ̄(x)

∫ +∞

−∞

dK√
2π|K|

[
eiKXL(x)b̂L(K) + e−iKXL(x)b̂†L(K)

]
|0M 〉

+

∫ +∞

0

dxψ̄(x)

∫ +∞

−∞

dK√
2π|K|

[
eiKXR(x)b̂R(K) + e−iKXR(x)b̂†R(K)

]
|0M 〉

=

∫ +∞

0

dx

∫ +∞

−∞

dK√
2π|K|

{
ψ̄(−x)

[
e−iKXR(x)b̂L(K) + eiKXR(x)b̂†L(K)

]

+ψ̄(x)
[
eiKXR(x)b̂R(K) + e−iKXR(x)b̂†R(K)

]}
|0M 〉

=

∫ +∞

0

dx

∫ +∞

−∞

dK√
2π|K|

e−iKXR(x)
{
ψ̄(−x)

[
b̂L(K) + b̂†L(−K)

]
+ ψ̄(x)

[
b̂R(−K) + b̂†R(K)

]}
|0M 〉

=

∫ +∞

0

dx

∫ +∞

−∞

dK√
2π|K|

e−iKXR(x)

{
ψ̄(−x)

[
exp

(
−β

2
|K|
)
b̂†R(K) + exp

(
β

2
|K|
)
b̂R(−K)

]

+ψ̄(x)
[
b̂R(−K) + b̂†R(K)

]}
|0M 〉

=

∫ +∞

−∞

dK√
2π|K|

∫ +∞

0

dxe−iKXR(x)

{[
exp

(
−β

2
|K|
)
ψ̄(−x) + ψ̄(x)

]
b̂†R(K)

+

[
exp

(
β

2
|K|
)
ψ̄(−x) + ψ̄(x)

]
b̂R(−K)

}
|0M 〉. (V.14)



14

By comparing Eq. (V.14) with Eq. (3), we obtain the expression for ψ̃±(K) in terms of ψ̄(x):

ψ̃±(K) =
1√

2π|K|

∫ +∞

0

dxe−iKXR(x)

[
exp

(
∓β

2
|K|
)
ψ̄(−x) + ψ̄(x)

]
. (V.15)

The functions ψ̃±(K) appear in the final expression of ∆nR(X) through Eqs. (11, 12b). Therefore, Eq. (V.15) reveals
the fact that left-wedge values of ψ̄(x) appear in ∆nR(X).

VI. A PROOF FOR EQ. (8)

We want to provide a proof for Eq. (8). Firstly, it is possible to notice that, thanks to Eqs. (III.7, III.9), Eq. (6)
can be put in the following form:

ρ̂ =

∫ +∞

−∞
dK

∫ +∞

−∞
dK ′

[
ψ̃−(K)ψ̃∗−(K ′)b̂R(K)ρ̂0b̂

†
R(K ′) + ψ̃−(K)ψ̃∗+(K ′)b̂R(K)ρ̂0b̂R(K ′)

+ψ̃+(K)ψ̃∗−(K ′)b̂†R(K)ρ̂0b̂
†
R(K ′) + ψ̃+(K)ψ̃∗+(K ′)b̂†R(K)ρ̂0b̂R(K ′)

]

=

∫ +∞

−∞
dK

∫ +∞

−∞
dK ′

{
ψ̃−(K)ψ̃∗−(K ′)b̂R(K)ρ̂0b̂

†
R(K ′) + ψ̃−(K)ψ̃∗+(K ′)eβ|K

′|b̂R(K)b̂R(K ′)ρ̂0

+ψ̃+(K)ψ̃∗−(K ′)eβ|K|ρ̂0b̂
†
R(K)b̂†R(K ′) + ψ̃+(K)ψ̃∗+(K ′)eβ|K

′|
[
eβ|K|b̂R(K ′)ρ̂0b̂

†
R(K)− δ(K −K ′)ρ̂0

]}
. (VI.1)

This last identity, together with Eqs. (9, V.6) and the definition for χ0[ξ, ξ∗] – i.e.

χ0[ξ, ξ∗] = Tr

{
ρ̂0 exp

[∫ +∞

−∞
dKξ(K)b̂†R(K)

]
exp

[
−
∫ +∞

−∞
dKξ∗(K)b̂R(K)

]}
(VI.2)

– gives

χ[ξ, ξ∗] =

∫ +∞

−∞
dK

∫ +∞

−∞
dK ′

{
−ψ̃−(K)ψ̃∗−(K ′)

δ

δξ∗(K)

δ

δξ(K ′)
+ ψ̃−(K)ψ̃∗+(K ′)eβ|K

′| δ

δξ∗(K)

δ

δξ∗(K ′)

+ψ̃+(K)ψ̃∗−(K ′)eβ|K|
δ

δξ(K)

δ

δξ(K ′)
+ ψ̃+(K)ψ̃∗+(K ′)eβ|K

′|
[
−eβ|K| δ

δξ(K)

δ

δξ∗(K ′)
− δ(K −K ′)

]}
χ0[ξ, ξ∗]

=

∫ +∞

−∞
dK

∫ +∞

−∞
dK ′

{
ψ̃−(K)ψ̃∗−(K ′)[−n0(K)n0(K ′)ξ(K)ξ∗(K ′) + n0(K ′)δ(K −K ′)]

+ ψ̃−(K)ψ̃∗+(K ′)eβ|K
′|n0(K)n0(K ′)ξ(K)ξ(K ′) + ψ̃+(K)ψ̃∗−(K ′)eβ|K|n0(K)n0(K ′)ξ∗(K)ξ∗(K ′)

+ψ̃+(K)ψ̃∗+(K ′)eβ|K
′|
[
−eβ|K|n0(K)n0(K ′)ξ∗(K)ξ(K ′) + eβ|K|n0(K ′)δ(K −K ′)− δ(K −K ′)

]}
χ0[ξ, ξ∗]

=

∫ +∞

−∞
dK

∫ +∞

−∞
dK ′

{
−ψ̃−(K)ψ̃∗−(K ′)n0(K)n0(K ′)ξ(K)ξ∗(K ′) + ψ̃−(K)ψ̃∗−(K ′)n0(K ′)δ(K −K ′)

+ ψ̃−(K)ψ̃∗+(K ′)eβ|K
′|n0(K)n0(K ′)ξ(K)ξ(K ′) + ψ̃+(K)ψ̃∗−(K ′)eβ|K|n0(K)n0(K ′)ξ∗(K)ξ∗(K ′)

+ψ̃+(K)ψ̃∗+(K ′)eβ|K
′|
[
−eβ|K|n0(K)n0(K ′)ξ∗(K)ξ(K ′) + n0(K ′)δ(K −K ′)

]}
χ0[ξ, ξ∗]

=

∫ +∞

−∞
dK

∫ +∞

−∞
dK ′

{
n0(K ′)δ(K −K ′)

[
ψ̃+(K)ψ̃∗+(K ′)eβ|K| + ψ̃−(K)ψ̃∗−(K ′)

]

−n0(K)n0(K ′)
[
ψ̃−(K)ξ(K)− ψ̃+(K)eβ|K|ξ∗(K)

] [
ψ̃∗−(K ′)ξ∗(K ′)− ψ̃∗+(K ′)eβ|K

′|ξ(K ′)
]}

χ0[ξ, ξ∗]

=

{∫ +∞

−∞
dKn0(K)

[∣∣∣∣ψ̃+(K) exp

(
β

2
|K|
)∣∣∣∣

2

+
∣∣∣ψ̃−(K)

∣∣∣
2
]

−
∣∣∣∣
∫ +∞

−∞
dKn0(K)

[
ψ̃−(K)ξ(K)− ψ̃+(K)eβ|K|ξ∗(K)

]∣∣∣∣
2
}
χ0[ξ, ξ∗]

=

{
1−

∣∣∣∣
∫ +∞

−∞
dKn0(K)

[
ψ̃−(K)ξ(K)− ψ̃+(K)eβ|K|ξ∗(K)

]∣∣∣∣
2
}
χ0[ξ, ξ∗] (VI.3)
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and hence Eq. (8) holds.

VII. PROBABILITY DENSITY FUNCTION

In the present section we show how to derive Eq. (11) from Eq. (10) and Eq. (14) from Eq. (12b).
Eq. (11) can be derived from Eq. (10) through the following chain of identities

∆nR(X) = 〈n̂R(X)〉ρ̂ − 〈n̂R(X)〉ρ̂0

=

∫ +∞

−∞
dK

e−iKX√
2π

∫ +∞

−∞
dK ′

eiK
′X

√
2π

δ

δξ(K)

(
− δ

δξ∗(K ′)

)
χ0[ξ, ξ∗]

∣∣∣∣∣
ξ=0

−
∫ +∞

−∞
dK

e−iKX√
2π

∫ +∞

−∞
dK ′

eiK
′X

√
2π

× δ

δξ(K)

(
− δ

δξ∗(K ′)

) ∣∣∣∣
∫ +∞

−∞
dK ′′n0(K ′′)

[
−ψ̃+(K ′′)eβ|K

′′|ξ∗(K ′′) + ψ̃−(K ′′)ξ(K ′′)
]∣∣∣∣

2

χ0[ξ, ξ∗]

∣∣∣∣∣
ξ=0

− 〈n̂R(X)〉ρ̂0

=

∫ +∞

−∞
dKn0(K)

∫ +∞

−∞
dK ′n0(K ′)

e−i(K−K
′)X

2π

[
ψ̃∗+(K)ψ̃+(K ′)eβ(|K|+|K′|) + ψ̃−(K)ψ̃∗−(K ′)

]

=

∣∣∣∣
∫ +∞

−∞
dKn0(K)

e−iKX√
2π

ψ̃∗+(K)eβ|K|
∣∣∣∣
2

+

∣∣∣∣
∫ +∞

−∞
dKn0(K)

e−iKX√
2π

ψ̃−(K)

∣∣∣∣
2

=

∣∣∣∣
∫ +∞

−∞
dKn0(K)

eiKX√
2π

ψ̃+(K)eβ|K|
∣∣∣∣
2

+

∣∣∣∣
∫ +∞

−∞
dKn0(K)

e−iKX√
2π

ψ̃−(K)

∣∣∣∣
2

=n+(X) + n−(X). (VII.1)

It is possible to obtain Eq. (14) from Eq. (12b) and the following chain of identities

n±(X) =

∣∣∣∣
∫ +∞

−∞
dKn0(K)

e±iKX√
2π

ψ̃±(K)eθ(±1)β|K|
∣∣∣∣
2

=

∣∣∣∣
∫ +∞

−∞
dKn0(K)

e−iKX√
2π

ψ̃±(∓K)eθ(±1)β|K|
∣∣∣∣
2

=

∣∣∣∣∣

∫ +∞

−∞
dK

e−iKX√
2π

∫ +∞

−∞
dX ′

eiKX
′

√
2π

{
ψR(X ′)

[
θ(±1) + f̃R±

(
K

a

)]
+ ψL(−X ′)f̃L±

(
K

a

)}∣∣∣∣∣

2

=

∣∣∣∣∣

∫ +∞

−∞
dX ′

{
ψR(X ′)

[
θ(±1)

∫ +∞

−∞
dK

eiK(X′−X)

2π
+

∫ +∞

−∞
dK

eiK(X′−X)

2π
f̃R±

(
K

a

)]

+ψL(−X ′)
∫ +∞

−∞
dK

eiK(X′−X)

2π
f̃L±

(
K

a

)}∣∣∣∣∣

2

=

∣∣∣∣
∫ +∞

−∞
dX ′ {ψR(X ′) [θ(±1)δ(X ′ −X) + afR±(aX ′ − aX)] + ψL(−X ′)afL±(aX ′ − aX)}

∣∣∣∣
2

=

∣∣∣∣θ(±1)ψR(X) +

∫ +∞

−∞
dξψR

(
ξ

a

)
fR±(ξ − aX) +

∫ +∞

−∞
dξψL

(
− ξ
a

)
fL±(ξ − aX)

∣∣∣∣
2

=|θ(±1)ψR(X) + ψR±(X) + ψL±(X)|2. (VII.2)

VIII. GAUSSIAN WAVE-PACKETS

The particular family of Gaussian wave-functions that we have considered are expressed by Eq. (16) with X as
variable and x0 and σ as parameters. In this section we want to study the behavior of ψL,R(X), ψL,R±(X) and
∆nR(X) with respect to different values of x0 and σ.

Notice that if we switch the sign of x0 – i.e. x0 7→ −x0 – in Eq. (16), we obtain ψ(−x). This results in the
possibility to describe ψL(X) through ψR(X) with opposite X and x0. In other words, the transformation X 7→ −X
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FIG. VIII.1: Profile of ψR(X) defined by Eq. (VIII.1) for different values of x0 and σ.

and x0 7→ −x0 gives ψL(X) 7→ ψR(X) and ψR(X) 7→ ψL(X). It is, therefore, sufficient to show ψR(X) for different
parameters x0 and σ in order to describe both ψR(X) and ψL(X). This has been done in Fig. VIII.1.

In general, it is possible to expect an almost negligible ψR(X) for x0 < 0 and σ � −x0, since ψ(x) gives most of
its contribution to ψL(X) and Eq. (V.4) implies that PR � 1 when PL . 1. Indeed the profile for ax0 = −10 and
aσ = 1 in Fig. VIII.1 – marked with a blue solid line – is not noticeable. On the other hand, a greater σ allows ψ(x)
to reach the right wedge with more contribution to ψR(X). Indeed the wave functions with x0 < 0 and σ & −x0

are noticeable in Fig. VIII.1 and they are marked with dashed blue and green lines. Moreover, for greater values of
σ, PR becomes larger together with the area under the curve of ψR(X), as it is possible to notice by comparing the
dashed blue and green lines with the respective solid lines. Contrary to the case of negative x0, figures with larger
area are the ones with x0 > 0 and σ � x0, or, in other words, wave-packets well-localized in the right wedge – see,
for instance, the solid red line in Fig. VIII.1; while smaller areas are given by wave-packets that have a non-negligible
probability to be found in x < 0 – i.e. σ & x0, as for the dashed red and yellow lines in Fig. VIII.1.

In order to conclude the analysis of ψR(X) for different values of sign(x0), we want to discuss the case of x0 = 0.
An interesting property of ψR(X) for such case can be obtained from its explicit expression:

ψR(X) =
1

4
√
π
√
σ

exp

(
aX

2
−
(
eaX − ax0

)2

2(aσ)2

)
. (VIII.1)

Eq. (VIII.1) can also be put in the following form

ψR(X) =

√
a

4
√
π

exp

(
1

2
[aX − ln(aσ)]− 1

2

[
eaX−ln(aσ) − x0

σ

]2)
. (VIII.2)

In the particular case of x0 = 0, it is easy to see from Eq. (VIII.2) that for different values of σ, the profile of
ψR(X) translates. Specifically for a transformation σ 7→ ασ with α > 0, ψR(X) transforms in the following way:
ψR(X) 7→ ψR(X − lnα). Such behavior can be observed from the gray lines in Fig. VIII.1.

An equivalent expression for ψR(X) when x0 6= 0 is the following

ψR(X) =

√
a

4
√
π

√
|x0|
σ

exp

(
1

2
[aX − ln(a|x0|)]−

1

2

( |x0|
σ

)2 [
eaX−ln(a|x0|) − sign(x0)

]2
)
. (VIII.3)

If x0 6= 0, we can use Eq. (VIII.3) to proof that any transformation x0 7→ αx0 with α > 0 acting on ψR(X) is
equivalent to σ 7→ σ/α, aX 7→ aX − lnα. Equivalently, we can say that when x0 6= 0 and for fixed sign of x0, the
only independent variables of ψR(X) are X − XR(|x0|) and |x0|/σ, as we can directly see from Eq. (VIII.3). The
invariance under the transformation x0 7→ x0/α, σ 7→ σ/α, aX 7→ aX − lnα for any α > 0 can be observed in Fig.
VIII.1 through the yellow solid line with the dashed red line and the green solid line with the blue dashed line.

Thanks to the possibility to switch from ψR(X) to ψL(X) by performing the transformation X 7→ −X and x0 7→
−x0, ψL(X) behaves similarly to ψR(X) with respect to the property described before. Specifically, when x0 = 0, the
transformation σ 7→ ασ with α > 0 acting on ψL(X) is equivalent to ψL(X) 7→ ψL(X + lnα). Moreover, if x0 6= 0,
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invariance under the transformation x0 7→ x0/α, σ 7→ σ/α, aX 7→ aX + lnα for any α > 0 holds for ψL(X). It is
now straightforward to derive such properties for ψL,R±(X) and ∆nR(X) – i.e. ψL,R±(X) and ∆nR(X) are invariant
under x0 7→ x0/α, σ 7→ σ/α, X 7→ X − lnα – as we have stated in the main paper.

In summary, the behavior of ψR(X) with respect to |x0| and for fixed sign(x0) and σ/|x0| corresponds to a translation
with respect to X. The interesting limits are a|x0| → 0 and a|x0| → ∞ with finite σ/|x0| since for such limits the
profile of ψR(X) “disappears” at aX → −∞ and aX → +∞ respectively. Such behavior can be motivated in the
following way. The case a|x0| → 0 and fixed σ/|x0| corresponds also to the limit a|x0| → 0 and aσ → 0, which,
in turns, represents the case in which ψ(x) is well-localized at the horizon. The case a|x0| → ∞ and fixed σ/|x0|,
instead, corresponds to the case in which ψ(x) is localized far from the horizon.

Since we have already explored the behavior of ψR(X) with respect to x0 6= 0 and fixed σ/|x0|, we are now interested
in the behavior of ψR(X) with respect to σ/|x0| for fixed x0 6= 0, which, in Fig. VIII.1, corresponds to considering
curves with the same color. In limit σ/|x0| → ∞ for fixed x0 6= 0, the wave-function ψ(x) “disappears” as

ψ(x) = O
(√
|x0|
σ

)
. (VIII.4)

In the same manner, ψR(X) “disappears” since

ψR(X) = O
(√
|x0|
σ

)
, (VIII.5)

as it is possible to see from Eq. (VIII.3). Moreover, the same behavior can be observed for ψL(X), ψL,R(X) and
∆nR(X).

The limit σ/|x0| → 0 for fixed x0 corresponds to the case of a perfectly localized Minkowski wave-function ψ(x) =
δ(x− x0). In the case of ψR(X), Eq. (VIII.3) gives

lim
σ/|x0|→0

|ψR(X)|2 =aeaX−ln(a|x0|) lim
σ/|x0|→0

|x0|√
πσ

exp

(
−
( |x0|

σ

)2 [
eaX−ln(a|x0|) − sign(x0)

]2
)

=
eaX

|x0|
δ
(
eaX−ln(a|x0|) − sign(x0)

)

=θ(x0)δ

(
X − ln(ax0)

a

)

=θ(x0)δ(X −XR(x0)), (VIII.6)

which can be visualized through the red and blue lines in Fig. VIII.1.
Finally, the limit σ/|x0| → 0 for fixed x0 gives the following identity

∫ +∞

−∞
dξψR

(
ξ

a

)
f(ξ) = θ(x0)

√
2
√
πaσ

x0
f(aXR(x0)) + o

(√
σ

|x0|

)
, (VIII.7)

which is valid for any function f(ξ). Eq. (VIII.7) can be proven starting from the following identity

lim
σ/|x0|→0

√
|x0|
σ
ψR

(
ξ

a

)
= lim
σ/|x0|→0

√
|x0|

4
√
πσ

exp

(
ξ

2
− x2

0

2σ2

(
eξ

ax0
− 1

)2
)

=

√
2
√
π

|x0|
exp

(
ξ

2

)
δ

(
eξ

ax0
− 1

)

=

√
2
√
π|x0|a exp

(
−ξ

2

)
θ(x0)δ(ξ − ln(ax0))

=θ(x0)

√
2
√
πaδ(ξ − aXR(x0)), (VIII.8)

which implies that

lim
σ/x0→0

√
|x0|
σ

∫ +∞

−∞
dξψR

(
ξ

a

)
f(ξ) = θ(x0)

√
2
√
πaf(aXR(x0)) (VIII.9)
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and hence Eq. (VIII.7) holds.
Thanks to the possibility of switching between ψR(X) and ψL(X) trough a change of sign for X and x0, it is

possible to write Eq. (VIII.7) for ψL(X)

∫ +∞

−∞
dξψL

(
− ξ
a

)
f(ξ) = θ(−x0)

√
2
√
πaσ

−x0
f(aXL(x0)) + o

(√
σ

|x0|

)
. (VIII.10)

Eqs. (VIII.7, VIII.10) give the following result for ψL,R±(X)

ψL±(X) = θ(−x0)

√
2
√
πaσ

−x0
fL±(−aXL(x0)− aX) + o

(√
σ

|x0|

)
, (VIII.11a)

ψR±(X) = θ(x0)

√
2
√
πaσ

x0
fR±(aXR(x0)− aX) + o

(√
σ

|x0|

)
, (VIII.11b)

for any X.
The order of magnitude for vanishing values of ψL±(X) and ψR±(X) in the case of, respectively, x0 > 0 and x0 < 0

can be put in a more strict form of Eqs. (VIII.11) in the following way. Firstly, let us consider the following chain of
inequalities

√
|x0|
σ

exp

(
x2

0

2σ2

)
|ψR±(X)| ≤

√
|x0|
σ

exp

(
x2

0

2σ2

)∫ +∞

−∞
dξ

∣∣∣∣ψR
(
ξ

a

)
fR±(ξ − aX)

∣∣∣∣

≤
√
|x0|
σ

exp

(
x2

0

2σ2

)
f

(max)
R±

∫ +∞

−∞
dξψR

(
ξ

a

)

=

√
|x0|
σ

exp

(
x2

0

2σ2

)
f

(max)
R±
4
√
π
√
σ

∫ +∞

−∞
dξ exp

(
ξ

2
− 1

2

(
eξ

aσ
− x0

σ

)2
)

=
f

(max)
R±

√
|x0|

4
√
πσ

exp

(
x2

0

2σ2

)∫ ∞

0

dξ̃σ

√
a

|x0|
exp


−1

2

(
σξ̃2

|x0|
− x0

σ

)2



=
f

(max)
R±

√
a

4
√
π

∫ ∞

0

dξ̃ exp

(
−σ

2ξ̃4

|x0|2
− ξ̃2

)

≤f
(max)
R±

√
a

4
√
π

∫ ∞

0

dξ̃ exp
(
−ξ̃2

)

=
4
√
π

2
f

(max)
R±

√
a, (VIII.12)

where x0 < 0, f
(max)
R± is the maximum value of |fR±(ξ)| and

ξ̃ =
1

σ

√
|x0|
a
eξ. (VIII.13)

This leads to

|ψR±(X)| = o

(√
σ

|x0|
exp

(
− x2

0

4σ2

))
(VIII.14)

when x0 < 0. Similarly, when x0 > 0

|ψL±(X)| = o

(√
σ

|x0|
exp

(
− x2

0

4σ2

))
. (VIII.15)

Eq. (VIII.6) results in Eq. (17a), while Eqs. (VIII.11, VIII.14, VIII.15) result in Eq. (17b).
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