QZd
[m =< W <
ﬁ - fd < R oW
P fr & &L
,V 2, o m
| TS g < B o w || _/4
ﬂ, n 4 o) “ P M ,
| W S 3 .M S
b o=t E ™ S - |
A W % m _ m N ,,
$-= - = - Ry
£ T R T
3 O S —
E F A ,, ™ ,_zlwlz/avl ///// ,. o ,w/; P i
z T~ s
I S | ! | ,/L S
< P] e —— .
| P N ~_ —— \
_ | \ N /
j ,_ [F/ﬂ“ F \.}M 7./17, /// / /\u\\ / // A
L - Pl L) — S)
i v AN N — M —_ v
_4 i \ | — W E e]
,, i — P N T
| - / , |

A New Mapping Heuristic for Last Generation Multicomputers*

G. De Petris and R. Perego

CNUCE - C. N. R., Via S. Maria 36, 56126 Pisa, Italy

*This work has been supported by the “Progetto Finalizzato Sistem Informatici e Calcolo Parallelo”

of the Italian National Research Council.

2 The static mapping problem

The static mapping problem can be informally stated as the problem of assigning, at compi-
lation time, the various communicating tasks that make-up the parallel program to a set of
interconnected processors so as to minimize (or maximize) some parameters of interest in par-
allel execution (e.g. completion time, load balance, fault tolerance, etc. [9]). In this work we
address the mapping of coarse—grained tasks those behavior can be predicted with a reasonable
degree of approximation; moreover, we assume the absence of precedence relationship among
the tasks which are modelled according to a process—based model [20].

More formally, we will tackle the static mapping problem by means of the following abstraction.

Given:

1. a parallel program modelled by a Task Interaction Graph (TIG) G, = (Np, Ep), a directed
graph whose nodes, n; € Ny, represent tasks, and edges, e; € Ep, communication channels

between each pair of interacting tasks,

2. a target parallel architecture represented by a host graph G, = (N, E,), where each node,
n; € Ny, models a processor, and each undirected edge, e; € E,, corresponds to a physical

bidirectional link connecting a pair of processing nodes,

3. all the admissible mapping functions m; : G, — G, that associate each task, n; € Ny,
to a processor, n; € Ny, and each channel, ¢; € E,, to the ordered set of links through
which any message impinging on e; will be routed (when a general routing mechanism is
supported by the target system, as happens for most modern multicomputers, only the
tasks are assigned because the paths followed by the messages are forced by the routing

rules),

4. an evaluation function F, defined over the set of all possible mappings, which measures

mapping quality by estimating program completion time,

solving the mapping problem signifies finding m/, such that F(m/) = min; F'(my).

In general, a mapping algorithm must solve two main sub-problems: (a) the topological vari-
ation problem, arising when G and G, graphs are not isomorphic, and, (b) the cardinality
variation problem, arising because the number of nodes of Gp may be greater than the num-
ber of processors of G [6]. Due to the NP-Hardness of the problem, to date many exact and
approximated solutions dealing with static process-based models of the mapping problem have
been proposed [20]. Most proposals can be grouped on the basis of algorithm structure into the

following four classes:

e Branch & Bound algorithms;

Local Search algorithms;

Genetic approaches;

Greedy algorithms.

Branch & Bound algorithms find optimal mappings but, due to their high complexity, are
suitable only for small problems. Furthermore, the optimality of the solutions reached is clearly
bound by the accuracy of the evaluation function used which, in turn, must be quite simple so
as to not further weigh down the cost of the algorithm. To improve the efficiency of the method,
various heuristics that prune the solution tree are generally employed. Nevertheless, complexity
in the worst case still remains exponential. Exact approaches are followed by Sinclair [24], Ma,
Lee and Tsuchiya (18], Shen and Tsai [23]; they all use evaluation functions that take into
account, at most, load balancing and remote communication delays, and report results achieved
on graphs with no more than 10 processors and 23 tasks.

Local Search algorithms yield locally optimal solutions and provide means of limiting the time
required to find a good solution. Starting from an admissible mapping, the solution is iteratively
improved until a satisfactory assignment is found. To avoid the problem of being trapped into

“bad” local optima, some techniques are often adopted which allow non-deterministic jumps to

solutions outside the neighbors of the current one. Bokhari [7] uses the number of task graph
edges that fall onto host graph edges (cardinality) as the mapping evaluation function and tests a
pairwise exchange algorithm with probabilistic jumps on problems with up to 49 tasks. Bollinger
and Midkiff [8] use a simulating annealing algorithm [14] to minimize remote communication
delays and, in a second phase, message collisions. Results on graphs with up to 512 tasks and
processors have been reported.

In Genetic approaches, Darwin’s evolutionary mechanisms are applied to Computer Science.
Mapping populations are generated by the use of operators such as replication, mutation and
selection, directly derived from the Natural Sciences. Following this strategy, Arunkumar and
Chockalingam [4], minimized communication delays for some samples of not more than 80 tasks
and 16 processors. A similar approach has been used by Miihlenbein et al. in Ref. [19].

Greedy algorithms guarantee polynomial bounds on complexity because a single path from
the root to a leaf of the solution tree is followed: a task is repeatedly picked and assigned to
a processor until the mapping is completed. Greedy mappers generally use accurate evaluation
functions to drive each assignment. Moreover, the evaluation functions must be defined over
partial mappings as well (ie. m : Gp = GoU{L}, where m(n;) = L means that task n; has not
yet been assigned to a processor). Antonelli et al. [2, 3], propose a greedy algorithm to minimize
communication delays of CSP-like programs; Baba, Iwamoto, Yoshinaga [5] do not take into
account the internal structure of the task graph (i.e. computation and communication loads),
but only its shape, and report results achieved with a greedy algorithm on graphs with up to
530 nodes.

Other relevant proposals cannot be neatly classified according to the above taxonomy. Lee
and Aggarwal [15], for example, propose an interesting combination of a greedy with a local
search algorithm; Sadayappan, Ercal and Ramanujam [22] report on two mapping algorithms,
each composed of two different phases. The first phase solves the cardinality variation problem by
grouping the tasks into clusters, the second one assigns clusters to processors; Lo [16], continues

along the lines traced by Stone [25] in transforming task and host graphs into a single network

to which a Min-Cut Maz—-Flow algorithm is applied.

3 Preliminaries

3.1 Target parallel architectures

The greedy mapping algorithm discussed in this paper is designed for multicomputers composed
of large ensembles of processing nodes interconnected by a k-ary n-cube direct communication
network. By simply specifying the degree and dimension of the interconnection topology, we can
target the mapper to deal with most existing multicomputers, ranging from 2D meshes (k-ary
2-cube) like Symult 2010, Intel Touchstone Delta and Paragon, up to hypercubes (2-ary n-cube)
like nCUBE 2, Intel iPSC/2 and iPSC/860. Further assumptions made about the target parallel

architecture are the following:

e the system has IV = k™ identical pn’s interconnected by [bidirectional links. The length

of the shortest path (distance) from pn 1 to pn j will be indicated by d(z, 5);

e each processing node supports multitasking (many-to-one mappings are allowed) and is
composed of a processor, a routing unit (router), and a local memory whose size is bounded

by some constant M

e routers exploit the deadlock-free e-cube routing algorithm and the wormhole flow-control
policy [10]. Such techniques, adopted by many commercial multicomputers such as Symult
2010, nCUBE 2, Intel Touchstone Delta and Paragon, can be efficiently implemented in
hardware and allow low-latency communications even for distant pn’s. The deterministic
sequence of links used by the e-cube routing algorithm to deliver a message from pn i to
pn j will be indicated by path(i,j). With wormhole routing, in the absence of network

contentions, the latency T, (4,7, L) of a message L bits long, sent from pn i to pn 7, is:

Loy () - 1)) 1)

Twh(ivj: L) = TC(—F_

(3,4) I Message status

24) OF----L7 [advancing

(1,3) [(F-eemmm- 11 === blocked
time

Figure 1: Network contention on a 5-ary 1-cube. The packet from 1 to 3 is blocked on node 2

until packets (2,4) and (3,4) are delivered, even if path(1,3) and path(3,4) are disjoint.

where T¢ is the time (usually a single channel cycle) needed to transfer a flit (i.e. the
smallest information unit into which a message is partitioned) between two adjacent pn’s,

and F' is the flit length expressed in bits [10].

e a packet of a message requiring a busy link ¢ is blocked in the links it currently occupies

until ¢ is freed.

It is worth mentioning that the message latencies given by Eq. 1 are rarely achieved in actual
programs because of packet blocking times consequent to the sharing of network resources. By
comparing experimental message latencies when network traffic is heavy or unevenly distributed
with respect to those modelled by Eq. 1 (Figure 1 graphically illustrates the case of a packet
waiting for another one to be wholly delivered even if their paths are disjoint) one can see the

importance of taking into account network contention problems in an accurate mapping scheme.

3.2 Program modelling

When a static approach to the mapping problem is followed, a suitable amount of information
on program behavior must be initially collected. Throughout our discussion we will assume the
information deduced during a modelling step which analyzes the parallel program or the trace

records obtained during a instrumented run, and produces a deterministic description of its

communication kernel in the following simple language:

PROCESS 1 : begins the description of task ¢;

INT_OP p : holds the task in a “busy state” for p CPU cycles. It models any sequence
of internal operations not affecting the network. If the duration of the code section is

variable, p approximates the most probable duration of the modelled code section;

SEND dest f : the task sends a message f{lits long to task dest. Process is busy for a constant
amount of time regardless of the number of flits sent or their destination, then it may

execute a new instruction;

RECEIVE sndr f : the task receives a message f flits long from task sndr. If the message on
the required channel has yet not arrived, the task executing this instruction switches into
“idle state” until the arrival of the message; then the task spends a number of CPU cycles

independent the number of flits or the sender;

STOP : marks the end of the task description.

Such a program description, recognized by our mapping algorithm, recalls Lo’s Temporal
Commaunication Graph (TCG) abstraction [17]. As Lo’s TCG, it integrates the static TIG model
with timing information needed to face both network contention problems and applications
which exploit different communication patterns as the computation progresses. Furthermore
it was chosen for the availability of a flexible simulator [21], extensively used for evaluation
purposes, that measures the completion time of such programs on multicomputers having the
characteristics outlined in the previous subsection.

During its execution, our mapping algorithm transforms the input TCG description according
to the Synchronous Phases Model (SPM) abstraction [15]. This transformation requires the set
E, of logical communication channels to be split into subsets on the basis of temporal information
on the use of each channel: a communication channel ey, is put in subset ¢ together with channel

e; iff two messages, both occupying the network for a time longer than a predefined fraction

of their whole minimal latency (modelled by Eq. 1), may be sent onto e; and e;. Each subset
defines a different program communication phase because all the messages of phase 7 are assumed
to be simultaneously sent and received before phase (z+ 1) starts. The logical subdivision of the
parallel program into more distinct communication phases permits reduction of the complexity
of the mapping algorithm because only messages in the same phase can contend for the use of

network resources.

Moreover, while devising communication phases, the algorithm deduces the following quantities

needed during the mapping phase:

T': number of tasks of Gyp;

a: number of channels of Gp;

m;;: average number of messages sent from task ¢ to task j;
lij: average length (in flits) of messages sent from task ¢ to task j;

g;j: average time (in CPU cycles) that task 7 waits for messages from j; this is computed

considering the program executed on a specialized architecture isomorphic to Gp;
g;: average time (in CPU cycles) that task i waits for messages (¢; = 3. ;=1 7 %j);
P: number of communication phases;

pﬁ‘j: true iff during phase h some message is sent from task ¢ to task j.

4 The mapping evaluation function

In order to design a good mapping heuristic, we first need to formulate an objective function
which can accurately measure what is to be optimized. The mapping evaluation function (F')

we propose attempts to efficiently approximate the completion time of the modelled program

10

when assigned by a mapping function m to the processing nodes of G,. Function F' is defined

following a minimaxz criterion as:
F(m) = max (R(m,n)) (2)

where R(m,n) is an estimate of the time needed for processor n to execute all the tasks assigned
to it by mapping m. The use of a minimaxz formulation allows to achieve both minimization of
interprocessor communication and balance of processor loads [23].

We will compute R(m,n) on the basis of both computation and communication costs of all
the tasks mapped onto n. A first approximation of R(m,n),n =1,..., N, can be easily derived
from the information retrived during the modelling phase, as follows:

Reompeidie(m,n) = Y (wi + ¢;) (3)

m(E)=n

Eq. 3 approximates the case in which programs are executed on a isomorphic parallel system.
Otherwise, communication costs depend on both the distance between the processors and on
contention for paths between the processors onto which the tasks have been mapped.
From Eq. 1 it follows that in absence of collisions on networks using the wormhole strategy,
some overhead is associated to task j because its partners may be mapped on non-adjacent
processors. These times, deriving from the solution given by mapping m onto the topological

variation problem, can be expressed as:

Rdistance(m)j) = Z mlj(d(m(z))m(.?)) - 1) (4)
m{i)#m(j)

Moreover, cooperating tasks sharing the same pn communicate faster through local memory.
Assuming communication times through local memory to be negligible, the savings in the com-

munication times of task j due to multitasking are:

Routtitasking(m,3) =y, min(mjlij, i5). (5)

m(i)=m(j)

11

A\ 4

1 | Y ;

task J T ¥ T

v

case 1 case 2 case 3

Figure 2: Message exchange between tasks mapped onto adjacent processors.

In fact, supposing for the sake of simplicity m;; = 1, let ¢; be the time in which task ¢ sends the
message to task j, {, the time in which the message becomes available on node m(j), and ¢ the
time in which task j executes the receive of the message. Considering tasks 7 and 7 placed onto

different but adjacent processors (t, = t; +1;;), the three cases illustrated in Figure 2 can arise:

1. gij = (ta —t) > l;;, i.e. task j executes the receive before ¢;. If tasks ¢ and j were assigned

to the same pn, task j might be scheduled t, —t; = I;; cycles earlier;

2. qij = (ta —t) < li, Le. task j executes the receive after ¢; but before t,. If tasks i and j
were assigned to the same pn, the required message would be available as soon as task 4

sends it. Task j might be immediately scheduled, saving g;; cycles;

3. gi = 0, ie. task j executes the receive after time ¢,. Task j gains nothing from sharing

the processor with task 4.

In all three cases Eq. 5 holds. Including overheads due to distance and savings in communi-
cation time due to multitasking, from Eq.’s 3, 4 and 5 we obtain a rather more precise estimate
of completion time for node n:

R(m,n) = Rcomp&idle(m» n Z Rdzstance m .7 Z Rmultztaskzng(m .7) (6)
m(j)=n m{j)=n

Delays due to network contention are not so easy to state, even if the assumption, deriving
from adoption of the Synchronous Phases Model, that all messages in the same phase start at

the same moment makes the analysis more affordable.

12

For each communication phase h we define the relation = over the set {(i,7) : p?j = 1} of all

the messages exchanged (all the communication channels used) during phase A as:

(4,7) =n (5,%) & path(m(i), m(5)) N path(m(s), m(t)) # 0. (7)

In other words (¢,7) =, (s,t) iff message (3, j), during phase h, can contend the use of the same
link with message (s,%). The adoption of deterministic routing rules on G, makes possible the
determination of relationships =p at mapping time.
Furthermore, because messages can also interfere if their paths are disjoint (see Figure 1), for
each channel (3, j), we define its Interference Class S" (4, 7) as the equivalence class given from the
transitive closure of relation =;. Classes S*(4,7) are a partition of all the messages exchanged
during phase h. Only messages belonging to the same class may collide with each other during
the considered communication phase.

Assuming equal for all sources the probability of obtaining a link, a generic message (i, jn),
L, jy, flits long, requiring the link simultaneously with s — 1 others, of lengths {;,j,,. .., L, _1jn_1»

{ ., liyj,, is subjected to an approximate average delay of:

ih41dhb1r

1
3 > i, (8)
r#h

In fact (i, jp) with probability 1/s will be the t-th message to travel on the link. In this case
it will be blocked for the time required for the router to manage all (¢ — 1) preceding messages
(each with probability (¢ — 1)(s — 2)!/(s — 1)! = (¢t — 1)/(s — 1) because each one can be in one
of the (¢ — 1) positions before). The expected delay to which (35, 7,) will be subject is therefore:

8

°. 1 t—1 1 1

t=2 7 \r#h t=2
1 11 1 (s—1)s
= — injr 1Zt:;er9r 1 5 —
#h t=1 r#h
1
frnd —2— Z lirjr
r#h

Such analysis does not consider that routers, by always granting priority to the same sources,
may not apply a fair policy.

From Eq. 8 and from the previous discussion, we can formulate a suitable approximation of the
delays to which task j is subjected due to the blocking of messages delivered from processor 1

as:

P
.o lst
Reontention(m, 7’).7) = Z Z m (9)
b=l (s,0)#)
(s,£)€S™(3.9)

where |S"(4,)| is the cardinality of Interference Class S"(i,). As shown by Eq. 9, we evenly
partition the delays expressed by Eq. 8 among all the messages belonging to the same Interference
Class. This, because communication delays on different channels tend to overlap and not sum.

Adding Eq. 9 to Eq. 6, we arrive at our final estimate for R(m,n), completion time of node

R(m’ n) = Rcomp&idle (m: TL) -+ Z Rdistance (m»])

m(f)=n
- Z Rmultitasking (m)]) + Z Rcontention (m> is]) (10)
m(j)=n m(i)#n,m(j)=n

Substituting Eq. 10 into Eq. 2, the formulation of our mapping evaluation function which mea-

sures program completion time in CPU cycles is completed.

4.1 Complexity and experimental evaluations

Computing Eq. 3 requires O(T), Eq.’s 4 and 5 O(na) together if we compute in O(n) the dis-
tance between two pn’'s each time we need it.

The complexity of Eq. 9 depends strictly on some implementation details. Items in the same
equivalence class are stored as nodes of a balanced tree whose root is the representative of the
whole class [26]. The search for the representative of a class costs O(log(a)) and class merging
takes O(1).

At the beginning, every item is the only member of its class. All messages are then routed

(in O(akn) steps) on an appropriate data structure representing G, thus verifying (in O(loga)

14

steps) if a collision with a message in a different class may occur on each crossed link; if so, the
two classes are merged together.

The previous sequence is repeated for each communication phase, with a global cost of O(Pkna log a).
At the end, Eq. 9 is computed in O(Paloga) steps at most. Eq. 9 -and the full evaluation
function- takes therefore O(Pknaloga).

In the best case, corresponding to entirely adjacent communicating tasks, the routing of a mes-
sage requires §2(1) and the complexity is therefore Q(Pa).

Memory requirements are O(Pa) to store the pg‘j array of bits, and O(a) for g;;,l;; and my;
values. Moreover, O(PknN) words are required to hold the data structure representing G,.

To measure the accuracy of the evaluation function F', 40 task graphs, composed of a number
of nodes ranging from 4 to 200, have been randomly generated. On the average, each task
interacts with seven partners and sends (or receives) a byte every eight processor cycles. Such
high communication requirements, resulting in a large number of network collisions, have been
chosen to render predictions of completion time more difficult. These graphs have been randomly
mapped on a square mesh architecture with a number of processors not less than the number of
tasks. For each graph both the value of function F' and the actual completion time (obtained
with a simulator [21]) have been computed. Corresponding values, sorted in increasing order
of completion time, are showed in Figure 3. The maximum error of the evaluation function on
these graphs is 5.8% and the average error only 1.7%. So we can trust that objective function
F, when inserted in a greedy framework as the one proposed, gives a good approximation of

what we really want to optimize.

5 The mapping algorithm

Mappers based on greedy algorithms may have polynomial costs because they search a unique
path joining the root to a “good” leaf of the solution tree. In Figure 4 the pseudocode of

the proposed mapping algorithm is reported. The program, starting from an empty mapping,

15

T ¥ T ¥ T

10000 [-

3 8000 + A
=
r-{
T
>
o
o]

o 6000 | -
o
o
=
i)
@
2

o 4000 F -
O
@
iy
L
le]

2000 F- -

0 1 i i i]
0 2000 4000 6000 8000 10000

Completion Times

Figure 3: F estimates compared to actual completion time on random mappings.

repeatedly chooses a task from G, and assigns it to a processor of G, until all the tasks have
been mapped or the solution reached becomes inadmissible (the implementation considers a
mapping inadmissible when pn’s memory constraints are violated). Mapping inadmissibility
causes failure of the algorithm that can be managed with backtracking. However, this problem
should however arise very rarely because the accumulation of tasks on the same node usually
produces growth in the value of the evaluation function.

First task and processor are chosen by a call to the Select_First_Pair function. This function
returns the centers of G, and G, graphs, i.e. nodes that are at the minimum total distance from
all others nodes (i : min; 3, d(3, §)).

The kernel of the mapping algorithm is function Select_Pair (see Figure 5) which takes a new
task ¢ from G, by a call to Select-Task, and then chooses the best pn for executing ¢ on the basis

of values of the mapping evaluation function F'.

16

Function Greedy_Mapper(G, : SPM _description, G, : host_graph): mapping;
begin

fori:=1to N m(i) = 1;

(task,node) := Select_First_Pair(Np, Ny);

Np := Ny \ {task};

m(task) 1= node;

(task,node) := Select_Pair(Np, Ng, m);
Np := Ny \ {task};
m(task) := node;

end;

Greedy_ Mapper := m;

end;

Figure 4: Pseudocode of the greedy mapping algorithm.

17

Function Select_Pair(N, : task_set, N, : node_set,m : mapping) : (t,n);
begin
task := Select Task(Ny);
Heap =0
for ::=1 to N begin
m(task) = i;
if Feasible(m) then Insert(Heap,1,F'(m));
end;
if Count_Elements(Heap) = 0 then Failure();
Rebuild(Heap);
i:= Extract_Node(Heap);
m(task) = 1;
ml = m;
for j := 2 to min(s, Count_Elements(Heap)) begin
i := Extract_Node(Heap);
ml(task) = 1;
if F(m) > F(m/) then m(task) = 1;
end;
Select_Pair := (t,n);

end;

Figure 5: Pseudocode of the Select_Pair function.

18

5.1 Task selection strategy

Task selection poiicy, implemented within the function Select_Task, determines the order of G,
task assignment to the pn’s of G,. Our choice has been to select next tasks on the basis of the
presumed accuracy of the evaluation function they allow. Let M = {i € N, : m({) # L} be the
set of tasks already mapped and M’ = {i € N, : m(i) = LA3j € M | (4,5) € Ep} the set of
unassigned tasks that interact with those in M.

If M' # 0, function Select_Task returns the task ¢ of M’ that has the maximum number
of partners in M. In fact, the more mapped partners of ¢ there are, the more precisely the
evaluation function can estimate completion time of the current partial mapping, driving the
algorithm towards a good solution.

When this criterion is ambiguous because more tasks of M, say t1,...,1t; have an equal number

s}

of partners in M, the more connected ¢
tivity of ¢, tasks ¢ € G, with d(¢,¢) < min(Dg/4, Dp/4), where D, and D, are respectively the
diameters of G, and Gy, are counted. This second criterion is aimed at favoring the assignment
of richly interconnected tasks when the availability of free pn’s is greater.

Otherwise, if M’ = () because G, is disconnected, a randomly chosen task ¢ is returned by

function Select_Task. In this particular case communication and blocking times for selected task

t cannot be forecast because where partners of ¢ will be mapped cannot be foreseen.

5.2 Processor selection strategy

To improve efficiency, processor choice is performed in two steps (see code in Figure 5). Let ¢
be the task returned by the last call to function Select.Task, m the current partial mapping and
C(j) ={t € M :3(4,j) € Ep} the set of partners of task j which are already assigned to some
pn.

Firstly, a low—cost evaluation function F” is used to narrow the set of candidate pn’s. Values
of function F' for mappings m’, each obtained from m by assigning ¢ to one of the admissible

pn’s, are inserted into a heap that is subsequently ordered in increasing order of the F’ field.

19

Estimate F” includes the computation of Eq. 6; furthermore, when a many-to-one mapping must
be found because there are more tasks than processing nodes, F’ is designed to favor pn’s to
which some task has been already assigned if the usage factor, defined as the ratio between the
number of already assigned tasks and the number of occupied pn’s, falls below the threshold
x =T/N. This strategy avoids the need to assign last tasks of many—to-one mappings on busy
pn’s, and experimentally yields better results (improvements of more than 5% on 50 many-to-one
mappings of random graphs).

Secondly, the processor for task ¢ is chosen on the basis of the evaluation function F' among
the first s = (2 *n + 1) % [C(¢)| pn’s present into the ordered heap.

Especially when only a few tasks have been mapped, it is possible for the evaluation function
F to assume similar lower values for many of the s pn’s to which task ¢ could be assigned. Let
Ji,...,Jn (generically j) be the pn’s corresponding to similar values for evaluation function F.

The choice among ji, ..., j, is performed, in the order, on the basis of:

e the result of a look-ahead in the solution tree, making some optimistic assumptions about
the mapping of some unassigned tasks: for each task ¢ € M’ partner of ¢, a task ¢’ € C(c)
is considered; assuming ¢ to be mapped onto a pn x crossed by path(j,m(c')) and/or
by path(m(c'),7), it is possible to estimate imprecisely -but efficiently- the overheads of
J due to distance and contention. To this end d(j,m(c')), the distance between j and
m(c'), is added to the number of links of path(j, m(c')) utilized by some channel of E, (if
path(m(c'), §) crosses z as well, we also add the number of utilized links of path(m(c'), 7))-
An example (see Figure 6) should explain these details. Suppose that mapping task 1
of G, on nodes ji,jo2,j3 of G, yields the same value for the objective function F' (the
only messages for which the delay can be computed are those on channel (1,4)). Task 2
communicates with both task 1 and task 5 € M. For all pn’s j1, j2, j3, the distance from
m(5) is 2, but links of path(js,5) and of path(5,j2) are used by two different channels,

while both paths between j; (or j3) and 5 are free. So, 7; or j3 will be chosen;

20

Figure 6: Look-ahead in the mapping of a 3x3 grid onto a isomorphic architecture.

e the values assumed by the summed total cost version of our mapping evaluation function:
N
F(m) = Y p=1(E(n));

e the absolute difference between the sum of the degrees of the neighbours of ¢t in G, and of

7 in G, that have distance lower than g;

e the minimum n-dimensional rectangle holding all the mapped tasks.

5.3 Complexity and experimental performance

Select_First_Pair function requires O(n) and O(T'a) for computation of the centers of G, and G,
respectively, while complexity of Select_Pair function, called exactly T' times, is more difficult
to state. Set M’ is stored as a heap ordered on the basis of the two values used by function
Select_Task to perform task choice. Each time a new task ¢ is mapped, M’ is updated inserting
all its partners not yet assigned, and recomputing the two values used by Select_Task: O(T)
steps are required to recompute the number of partners of ¢ in M, while for the second value
(task connectivity), whatever value for g is chosen, a time proportional to O(a) is needed. Being
T the assignments, the previous steps take globally O(aT).

Moreover, updating M’ each time a new task t is mapped requires at most the insertion or

21

re—insertion of D(t) partners (with D(t) degree of task t). Thus, the global costs for managing
M'is O(alogT).

Task selection takes therefore globally O(aT).

The algorithm globally visits NT' nodes of the solution tree. Function F” is computed for each
visited node. F’ requires O(D(7)), with ¢ the next task to map. Being the sum of the task
degrees equal to 2a, F' takes overall O(aN).

Rebuilding the heap of processors on the grounds of F' values is done T times, in O(T'N) steps.
Evaluation function F is computed s times at each level of the solution tree. At each level,
we can derive F' values from the value assumed on the previous partial mapping by storing the
state of some data structures each time a new allocation is decided. In this way, we distribute
the complexity of the F' computation along the path from root to leaf of the solution tree. The
costs of the other processor selection strategies are bounded by the F' complexity. Thus, as
O(Pknaloga) is the complexity of F' (see Section 4), a time of the order of O(sPknaloga) it
is required overall to choose processors.

Finally, global complexity in the worst case can be bounded by O(aT + alN + T'slogT +
Psknaloga) < O(Plaloga) for every s. In the best case, corresponding to the absence of
contention, complexity is 2(Pla).

To measure the actual performance of the mapper, 40 graphs with up to 400 tasks, have
been considered. One half of these graphs models mesh computations while the others, randomly
generated, have high communication demands resulting, on the average, in 5.5 partners for each
task and a ratio of 8 between processor cycles spent performing internal operations and flits
sent or received. These programs were fed as input to the mapper choosing the smallest square
mesh into which the tasks fit as the target architecture. Figure 7 reports the times (in seconds)
needed on a DEC 3000/400 workstation to map each program as a function of the number of
tasks. The curve labeled mesh_graphs (random_graphs) regards the execution times required
to map graphs having mesh (random) communication pattern, while WCC_random_graphs and

BCC_random_graphs (BCC_random_graphs) are the curves of theoretical Worst-Case and Best—

22

mapper execution time

Figure 7: Mapping times on a DEC 3000/400 as a function of the number of input tasks.

Case complexities. Programs with 400 tasks require less than 25 seconds, and times for graphs

with less than 225 tasks are shorter than 10 seconds. Moreover, the experimental times for

35

30

25

20

T i i T

“mesh_graphs*
"random_graphs"
WCC_random_graphs (x)
BCC_random_graphs (x)
BCC_mesh_graphs (x)

e

100 150

400

random graphs are more close to the Best-Case than to the Worst—Case curve.

6 Results and concluding remarks

In order to verify the value of the proposed mapping algorithm, we report results achieved on
three classes of experiments. The first class is composed of 6 graphs modelling real scientific
programs. The second class of experiments considers graphs derived from highly parallel pro-

grams having a regular communication pattern for which the optimal mappings are known. The

last trials compare our proposal with the results reported in Ref. [15].

23

6.1 Results on real programs

Six task graphs have been generated from the trace files distributed with the public domain
ParaGraph package [12]. We automatically performed the translation by using a simple utility
that reads PICL [11] timestamped event records that make—up the ParaGraph trace file, and
then builds the corresponding TCG task graph.

The trace files used to generate the task graphs considered in this experiment are the following:

1. chol.trf: solution of a linear system by Cholesky factorization, forward solution, and

back substitution. All-to—-All communications on a 3~dimensional hypercube.

2. £ft64.trf: typical dimensional exchange pattern of an FFT on a 6-dimensional hyper-

cube,.
A el mpagnatn ba AsiT PR et mrmal bomanmiilea AT da AN Ao
3. flops.trf: program to count FLOPS on a 3—dimensional hypercube. All-to—All commu-
nications.

4. matrix.trf: matrix computations on a 4-dimensional hypercube. 2-D mesh communica-

tion pattern.

5. sort.trf: sorting algorithm on a 4-dimensional hypercube. Dimensional exchange com-

munication pattern on a 4-dimensional hypercube.

6. sparse.trf: sparse Cholesky factorization. All-to—~All communications on a 3—dimensional

hypercube.

Table I reports the results achieved by the mapper on these real programs: the column
labeled Mapping shows the assignments obtained running the mapper (i.e. tuple (z1,zs,...,z7)
means m(z) = z;,¢ = 1,...,T), while completion times of the resulting mappings are reported
in the last column (C.T.). It is worth mentioning that task numeration was randomly permuted
before passing the graphs as input to the mapper.

In all tests but the last, the obtained mappings are equivalent to the original ones (completion

24

Table I: Results on graphs derived from ParaGraph trace files.

Program ' Mapping C.T.
chol (0,1,2,4,3,5,6,7) , 178,787
£F£64 (0,32,16,48,8,40,24,56,4,36,20,52,12,44,28,60, | 36,038

2,34,18,50,10,42,26,58,6,38,22,54,14,46,30,62,
1,33,17,49,9,41,25,57,5,37,21,53,13,45,29,61,

3,35,19,51,11,43,27,59,7,39,23,55,15,47,31,63)

flops (0,1,3,2,7,5,6,4) 304,391
matrix (0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15) 199,802
sort (0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15) 69,070
sparse (0,1,5,3,2,4,7,6) 472,261

times of the obtained mappings are exactly equal to that of the original mappings except on the
sparse program, where we obtained a negligible improvement). On programs f£t64, matrix
and sort we are sure that the obtained mappings, as the originals, are optimal because they
both exploit only nearest-neighbour communications (the mappings achieved on programs f£t64
and matrix are simply the bit reversal representation of the pn’s (tasks) binary identification
numbers (i.e. m((bp—1,...,b1,b0)) = (bo,b1,...,bn — 1)) and are therefore equal to the original

ones because of the symmetry of hypercube topology).

6.2 Results on regular graphs

Table II reports the results achieved on TCG graphs of different sizes having regular communi-
cation patterns. As can be seen, the proposed mapping algorithm optimally embeds programs
having ring and 2-D mesh communication patterns onto mesh and hypercube multicomputers
independent of the number of pn’s (more properly this independence holds true for all the tests
performed). Graphs modelling butterfly communication patterns (e.g. a 2-D FFT algorithm)

are optimally embedded onto hypercubes while the resulting mappings onto mesh multicomput-

25

Table II: Results on regular graphs.

Comm. Pattern Target Topology pr’s Mapping
ring all k-ary n-cube | up to 512 optimal
2-D mesh vhypercube up to 256 optimal
2-D mesh up to 784 optimal
butterfly hypercube up to 512 optimal
2-D mesh 4,16,64,256 | suboptimal
tree 2-D mesh 8,32,128,512 | suboptimal

ers are nearly optimal (the tests we performed produced a maximum and average error of 1.8%
and 0.5% with respect to the optimal mappings). Satisfactory are also the mappings of binary
tree graphs modelling a reduce operation onto a 2-D mesh. The obtained mappings produced
a maximum and average error of 6.8% and 3.5% with respect to contention—free “H” mappings

onto architectures with about twice the number of needed processors [13] .

6.3 Comparison with Lee—Aggarwal’s results

In Ref. [15] the Synchronous Phases Model is proposed and an interesting mapping algorithm
is described. The mapping algorithm is composed of two steps: in the first, an admissible
mapping is obtained by execution of a greedy algorithm; the solution is then improved upon
by executing a pairwise exchange algorithm with probabilistic jumps away from local optima.
Results obtained with this mapper on a set of 9 graphs corresponding to real communication
patterns, mapped on hypercubes of 8 and 16 nodes, are also reported in the paper.

The same graphs were fed as input to our mapper whose theoretical complexity is lower than
Lee-Aggarwal’s. Results of comparison are shown in Table III. Improvements, even if only
slight at times, are obtained in 5 cases, equal completion times are achieved in 3 cases, only 1

result is worse.

26

Table III: Comparison with Lee-Aggarwal’s results.

[15] Proposed Mapper

Time | Time Mapping

66 66 (40156237)
64 64 (01243657)
93 | 86 (42053167)
136 | 144 (2603715 4)
102 | 98 (01245673)

67 67 [(1246148021091311135715)
99 98 |(0124861291035141371511)

107 97 |(08123111412457151361009)

159 158 | (0101248121357614153119)

6.4 Concluding remarks

"Our investigation of the static task assignment problem has resulted in the development of a
new greedy heuristic for the automated mapping of arbitrary unprecedence-constrained tasks
onto highly parallel last generation multicomputers.

A O(Pknalog a) objective function which efficiently approximates the completion time of a given
program, modelled according to Lee—Aggarwal’s abstraction, has been formulated as a measure
of task assignment quality. Many experiments have demonstrated the accuracy of our objective
function even when communication load is heavy or unevenly distributed over the network.
Based on this evaluation function, we have designed a greedy mapping algorithm. It adopts
a novel look-ahead criterion which descends a level in the solution tree when the objective
function assumes similar values for different assignments. The algorithm solves both topological
and cardinality problems and can be target to deal with arbitrary multicomputers based on

k-ary n-cube direct networks exploiting the e-cube routing algorithm and the wormhole flow

27

control strategy.

Worst case complexity of the proposed mapping algorithm is bounded by O(Plalog a), resulting

in execution times shorter than 10 seconds on a workstation for highly communicating programs

with less than 200 tasks. We have reported the performance of the proposed mapping algorithm

for three classes of experiments: program-—derived graphs with up to 64 tasks, regular graphs

with up to 784 tasks, and Lee-Aggarwal’s graphs. In all cases the obtained assignments are

optimal or reasonably good, showing the suitability and effectiveness of the followed approach

when program behavior is loosely dependent on input values.

References

(1]

(6]

A. Agarwal. Limits on Interconnection Network Performance. IEEE Transactions on Par-

~ . PR SO AP I RN { AN Yy N
lel and Distributed Systems, 2(4):398-411, October 1991.

<
o~
ol

S. Antonelli, F. Baiardi, S. Pelagatti, and M. Vanneschi. A Static Approach to Process
Mapping in Massively Parallel Systems. In Proceedings of IFIP Working Conf. on Parallel

Processing, Pisa, Italy, April 1988.

S. Antonelli, F. Baiardi, S. Pelagatti, and M. Vanneschi. Communication Cost and Process
Mapping in Massively Parallel System: a Static Approach. Technical Report TR 12/89,

Dept. of Computer Science, University of Pisa - Italy, 1989.

S. Arunkumar and T. Chockalingam. Randomized Heuristics for the Mapping Problem.

Journal of High Speed Computing, 4(4):289-299, April 1992.

T. Baba, Y. Iwamoto, and T. Yoshinaga. A Network-Topology Independent Task Allocation

Strategy for Parallel Computers. In Proceedings of Supercomputing, 1990.

F. Berman and L. Snyder. On Mapping Parallel Algorithms into Parallel Architectures.

Journal of Parallel and Distributed Computing, 4(5):439-458, October 1987.

28

[7] S. H. Bokhari. On the Mapping Problem. IEEE Transactions on Computers, 30(3):207-214,

March 1981.

[8] S. W. Bollinger and S. F. Midkiff. Heuristic Technique for Processor and Link Assignment

in Multicomputers. IEEFE Transaction on Computers, 40(3):325-333, March 1991.

[9] T. L. Casavant and J. G. Kuhl. A Taxonomy of Scheduling in General-Purpose Distributed
Computing Systems. IEEE Transaction on Software Engineering, 14(2):141-154, February

1988.

[10] W. Dally. Network and Processors Architecture for Message-Driven Computers. In R. Suaya
and G. Bithwistle, editors, VLSI and Parallel Computation, chapter 3, pages 140-222.

Morgan Kaufmann Publisher, Inc. - San Mateo, California, 1990.
[11] G. A. Geist et al. A User’s Guide to PICL: a Portable Instrumented Communication
Library. Technical Report TM-11616, Oak Ridge National Laboratory, September 1990.

[12] M. T. Heath and J. E. Finger. ParaGraph: A Tool for Visualizing Performance of Parallel

Programs. ParaGraph user guide, available from netlib.ornl.gov, May 1993.

[13] E. Horowitz and A. Zorat. The Binary Tree Interconnection Network: Application to
Multiprocessor System and VLSI. IEEE Transactions on Computers, C-30:247-253, April

1981.

[14] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by Simulated Annealing.

Science, 220(4598):671-680, 1983.

[15] S. Y. Lee and J. K. Aggarwal. A Mapping Strategy for Parallel Processing. IEEE Trans-

actions on Computers, 36(4):433-442, April 1987.

[16] V. M. Lo. Heuristic Algorithms for Task Assignment in Distributed Systems. IEEE Trans-

actions on Computers, 37(11):1384-1397, November 1988.

29

[17) V. M. Lo. Temporal Communication Graphs: Lamport’s Process-Time Graphs Augmented

for the Purpose of Mapping and Scheduling. Journal of Parallel and Distributed Computing,

16(4):378-384, December 1992.

[18] P. Y. R. Ma, E. Y. S. Lee, and M. Tsuchiya. A Task Allocation Model for Distributed

Computing Systems. IEEE Transactions on Computers, 31(1):41-47, January 1982.

[19] H. Miilenbein, M. Gorges-Schleuter, and O. Kramer. New Solutions to the Mapping Problem

20]

[22]

[23]

[25]

[26]

of Parallel Systems: the Evolution Approach. Parallel Computing, 4(3):269-279, June 1987.

M. G. Norman and P. Thanisch. Models of Machines and Computation for Mapping in

Multicomputers. ACM Computing Surveys, 25(3):263-302, September 1993.

S. Orlando, R. Perego, and M. Sardo. PNS, a Programmable Simulator of Direct Net-
works. Technical Report R/08/44, C.N.R. Finalized Project “Sistemi Informatici e Calcolo
Parallelo”, 1993.

P. Sadayappan, F. Ercal, and J. Ramanujam. Cluster Partitioning Approaches to Mapping

Parallel Programs onto a Hypercube. Parallel Computing, 13(1):1-16, January 1990.

C. C. Shen and W. H. Tsai. A Graph Matching Approach to Optimal Task Assignment
in Distributed Computing Systems Using a Minimax Criterion. IEEE Transactions on

Computers, 34(3):197-203, March 1985.

J. B. Sinclair. Efficient Computation of Optimal Assignments for Distributed Tasks. Journal

of Parallel and Distributed Computing, 4(2):342-362, April 1987.

H. S. Stone. Multiprocessor Scheduling with the aid of Network Flow Algorithms. IEEE

Transactions on Software Engineering, 3(1):85-93, January 1977.

R. E. Tarjan. Data Structures and Network Algorithms. SIAM, 1983.

30

