Towards Runtime Monitoring for malicious
behaviors detection in Smart Ecosystems

Emilia Cioroaica*, Felicita Di GiandomenicoT,
Thomas Kuhn *, Francesca Lonettif, Eda Marchetti’, Jasmin Jahic*, Frank Schnicke*
* Fraunhofer IESE, Kaiserslautern, Germany
T ISTI CNR , Pisa, Italy
*{emilia.cioroaica, thomas.kuhn, jasmin.jahic, frank.schnicke} @iese.fraunhofer.de
T{felicita.digiandomenico, francesca.lonetti, eda.marchetti } @isti.cnr.it

Abstract—A Smart Ecosystem reflects in the control decisions
of entities of different nature, especially of its software com-
ponents. Particularly, the malicious behavior requires a more
accurate attention. This paper discusses the challenges related
to the evaluation of software smart agents and proposes a
first solution leveraging the monitoring facilities for a) assuring
conformity between the software agent and its digital twin in a
real-time evaluation and b) validating decisions of the digital
twins during runtime in a predictive simulation.

Index Terms—Smart Ecosystems, Virtual Evaluation, Monitor-
ing, Malicious Behaviors Detection, Digital Twins

I. INTRODUCTION

Smart Ecosystems (SES) are the next major concept that
enable adaptation of intelligent systems we use daily. When
systems are part of a SES, they become much more dynamic
as they get quick downloads of new software components and
runtime updates of existing functionalities. Originally, SES
extend the concept of System Of Systems (SoS) [1], because
they aggregate not only systems and system components but
also actors such as developers, organizations and users [2].
SES aggregate multiple parties that dynamically integrate into
groups or migrate between groups in order to achieve common
tactical goals that lead to fulfillment of higher level strategic
ones. For example, in case of highway ecosystems, through
the downloads of smart software agents, autonomous vehicles
can start cooperation and drive together in vehicle platoons
(tactical goal) that enable them to reduce fuel consumption
(strategic goal). In an ecosystem, cooperation of systems is
possible through involvement of actors, including developers
that provide software updates during runtime.

Within an ecosystem, software and hardware components
are provided by different actors that may have not only
collaborative goals, but undeclared competitive goals as well.
In this setting, malicious behavior may be injected to harm
ecosystem participants. Even without access to privileged
system functions and instructions, malicious code may be
seriously affecting system performance and behavior.

In literature, there are several examples of how discovered
vulnerabilities of hardware resources can be specifically ex-
ploited with malicious intentions. Indeed, Seaborn and Dullien
[3] have shown that specially designed software that executes
on hardware with known vulnerabilities can lead to serious

system failures that manifest into security threats. Additionally,
the dynamic random access memory (DRAM) row hammer
effect can be repeatedly induced by software exploiting the
hardware structure of DRAM modules. In this case, repetitive
and specially crafted memory patterns can cause the memory
cells to leak their charges and to interact electrically among
each other [4].

Semantic attacks through which software components can
show faulty behavior on purpose are further examples. For
instance, malicious behavior of a downloaded software smart
agent can, occasionally refuse to detect pedestrians at a cross-
ing while controlling an autonomous vehicle and put citizens
into dangerous situations. In this case, such a behavior can
be caused by logic bombs [5] that remain dormant in the
host system for a certain amount of time. Logic bombs will
be activated when an event happens or certain conditions are
met. This makes malicious behavior difficult to detect during
admission of smart agents into a smart ecosystem as it may
be triggered by events of software components deployed on
the system at a latter point in time.

From these examples it is evident that ahead of time
evaluation of software components that join an ecosystem is
not sufficient. A novel approach we have introduced in [6]
proposes evaluation of a software smart agent during runtime
without executing its behavior that may contain malicious
code, but by executing it’s digital twin (DT) in a simulated
environment. Digital twins are downloaded on the systems to-
gether with the smart agents and are executable abstractions of
the software components fed with real-time data. Evaluation of
the DT’s behavior is performed in linked predictive simulation
in interaction with abstraction models of hardware components
that enables execution of the digital twin behavior faster than
the wall clock. If the digital twin shows a correct behavior
in a simulated environment, trust in the smart agent is build
over time. If the behavior of the digital twin is considered not
trustworthy, then execution of the smart agent on real ECU
(Embedded Control Unit) is stopped and a fail-over behavior
is executed instead. Because the trustworthiness of the smart
agent is judged in advance by executing the behavior of its
digital twin in a simulated environment, conformity between
the digital twin’s behavior and smart agent behavior needs
to be assured. One way of assuring conformity is through

monitoring of their behavioral executions.

The main objective of this paper is to assess correctness of
the run time behavioral execution of software components.
This is achieved by monitoring the behavioral conformity
between a real time execution of a smart agent and its digital
twins execution in a simulated environment. In the context of
linked predictive simulation, we consider the valid behavior of
the digital twin being the contract against which the behavior
of the smart agent is assessed. Therefore, we introduce the con-
cept of runtime monitoring for malicious behaviour detection
in smart ecosystems. Specifically, the behavior of the digital
twin becomes the specification against which the behavior of
the system is validated. Our solution represents a first attempt
of using monitoring data coming from combined simulated and
real world software executions to promptly detect malicious
behaviors.

In what follows: Section II presents an overview of the main
challenges when monitoring smart agents in smart ecosystems;
Section III presents a first attempt to provide an architecture
for mitigating malicious behavior during runtime through the
use of digital twins; Section IV presents the related work and
Section V summarizes the work in this paper and presents
on-going and future work.

II. MONITORING CHALLENGES

When smart agents are deployed on safety critical systems,
such as autonomous vehicles, their malicious behaviours need
to be promptly detected. Particularly, it is important to assure
confidence in the smart agent’s behavior before it is admitted
to control critical components of the ecosystem. In traditional
embedded systems, assurance of correct behavior at-design-
time is usually performed through rigorous testing, verification
and validation activities in order to prevent software compo-
nent failures under specified operational conditions [7].

In SES, smart agents bind to embedded systems of host
systems and dynamically interact with other components. This
raises manifold challenges for the monitoring system that
keeps track of the agents behavior and their trustworthiness:

1) Unknown interaction with the Hardware Platform. When
smart agents interact with the hardware for the first time,
different timing behavior between the hardware platform
and the smart software agent may yield different results.
This can lead to unexpected behavior of the software
smart agent.

2) Integration of third party systems or components. An
autonomous system is an open system, characterized
by runtime integration of third party systems or system
components. This aspect may affect the execution of a
smart agent that needs to interact with other software ap-
plications, some being dynamically loaded smart agents
as well.

3) Changing environmental conditions. Smart ecosystems
realize autonomous systems that adapt to changing envi-
ronmental conditions. A smart software agent therefore
must perform dynamic adaptation and be able to interact
with unknown software components.

4) Changing operational context. The operational context
of ecosystem participants may change dynamically, ei-
ther because the system joins a different ecosystem,
or because the system operates in an environment that
it was not designed for. This changes the smart agent
behavior, as it has to adapt to new environmental con-
ditions.

5) Non-determinism. The nature of advanced smart
agent implementing machine learning may be non-
deterministic. During their lifetime, these agents imple-
ment a continuous learning process that affects their
behavior. Deviations from expected values may be due
to the learning process, and not to malicious behavior.

III. MITIGATION OF MALICIOUS BEHAVIOR

To prevent the injection of malicious behavior in smart
ecosystems, one of the major goals is its detection and miti-
gation of its negative effects. For this purpose, here we extend
our preliminary architectural proposal presented in [6] useful
for the evaluation of software behavior in virtual environments.
We propose a platform for mitigation of malicious behaviors
able to : i) create a virtual environment such that smart agents
cannot easily distinguish between simulations and the real
world; ii) testing malicious behaviors that occur with very low
probability in real but controlled testing environments, so to
improve their early detection.

Digital Digital Digital Control
Twin Twin Twin Code

Read state

Control L

Reads | c ' Reads | c | Reads
state | Control state | CONtro state

Control

Runtime
Monitor

Virtual Real Real

System System System) Control

\ ;o
I T T

Evaluation Real Real

Environment Environment (1) Environment (2)

Fig. 1. Mitigation concept

Fig. 1 illustrates the concept of our mitigation platform. In
particular, in (Real Environment (1)), we illustrate the situation
already analyzed in [6] where the real environment is under
direct control of the digital twin that has been previously
evaluated in a simulated environment. Note that, in Fig. 1,
the Real System is the ECU (Embedded Control Unit) showed
in Fig 1 of [6] in charge of executing the control function of
the software smart agent.

We extend our previous work as shown in (Real Environ-
ment (2)) of Fig. 1, where we assume that a smart agent is
accompanied by a digital twin which provides an abstracted
behavior of the smart agent. As in the figure, an additional
component namely the Runtime Monitor ensures conformance
between the DT behavior (specification) and the control com-
ponent (realization). In this way, the control component of
the smart agent may implement much more complex behavior
than the DT; as long as it stays within the DT specification,

it will be considered safe. The runtime monitor does not
need application knowledge regarding the control component
implementation; it needs to compare the DT specification to
the control component behavior. It can therefore be a trusted
and validated component inside the system. If it detects a
deviation, it may switch to a predefined safe behavior that,
e.g. disconnects the malicious control function and stops the
autonomous vehicle.

Our evaluation environment evaluates whether the DT,
which is a specification of the smart agent, provides a valid and
safe behavior at all times. This is achieved by linking the DT to
a virtual system (Evaluation Environment). This virtual system
may be replicated many times. During multiple executions
of the DT behavior, if the DT contains any malicious code,
it is more likely to discover it inside one of the evaluation
environments than in the real system. The Runtime Monitor
judges the DT behavior and evaluates whether the DT did
show malicious behavior or not.

DT that shows a proper behavior in the virtual environment
will build up trust, and over time will be allowed to control the
real system as well. The ecosystem however needs to take care
that any situation, which includes behavior, time, and external
factors is evaluated first in the virtual environment, and that the
number of those evaluations is big compared to the controlled
situation instances in the real system.

This assumption is however only feasible, if the DT is
unable to detect whether it operates inside an evaluation
environment, or whether it operates in a real environment. This
detection cannot be prevented for generic software behavior.
The DT behavior therefore must be limited to, for example,
value tables that output expected value ranges for permutations
of input values and historical inputs.

The proposed solution is a possible reply to the challenges
listed in Section II. In particular, with reference to challenge
(1) it can manage unexpected behavior of the smart agent by
exploiting the time elasticity and by monitoring the events
of behavioral execution both of the digital twin and of the
software smart agent. Concerning challenge (2), the integra-
tion of third party systems or components is improved by
using clear interfaces of communication of input and output
data between the software smart agent and other interacting
applications during the monitoring activity. Monitoring data
can be exploited for offline or online analyses of root cause
for malicious decisions. To cope with challenges (3) and
(4), sensor data describing the current state of the system
and of the environment are collected at the beginning of
the simulation, so to easily allow detection of changes in
operational contexts and environmental conditions. Finally,
monitoring data collected after executing the digital twin in a
simulated environment can be used to dynamically generating
the specification of the software behavior of the smart agent
so to mitigate the non-determinism, which is the major aspect
of challenge (5). In the next subsection, we present the
monitoring concept and briefly overview the main monitoring
functionalities.

A. Monitoring

Existing run-time and offline monitoring solutions [8] ad-
dress two main challenges: i) finding very powerful, concise
and unambiguous specification languages able to express the
properties to be validated; ii) provide efficient mechanisms to
assess the on line or offline conformity of the system against
these properties or contracts.

In our approach, we consider the valid behavior of the
digital twin being the specification or contract against which
the behavior of the system is validated. However, to the
best of our knowledge, there is not so much recent literature
addressing monitoring of combined simulated and real world
software executions as well as the conformity among them.
This paper goes in this direction providing an approach
exploiting monitoring for evaluating the digital twin behavior
in a simulated environment and then assuring conformity
between the software agent and its digital twin in a real-time
evaluation. In this section, we consider three main monitoring
aspects: monitoring in context of linked predictive simulation;
monitoring for validity and monitoring for conformity.

a) Monitoring in context of linked predictive simula-
tion: An important aspect for runtime monitoring remains
the definition of parameters against which the behavior of
the smart agent is judged as being trustworthy or not. This
trustworthiness does not only cover the results that an agent or
control component provides; it must also consider timeliness.
Monitors therefore need to consider the tuple (decision, At),
At being the decision time. If a result is not provided within
the safe time interval At, the software execution must be
considered potentially malicious and countermeasures need to
be activated.

b) Monitoring for validity: Monitoring the validity of a
decision can be done by performing a look-ahead simulation
and assessment of the impact of virtually triggered decision
events in the simulation environment. This approach requires
internal simulation models: a) of the components with which
the smart agent interacts, b) of the system itself, ¢) of the envi-
ronment. The simulation models need to be abstract enough for
enabling efficient execution of the digital twins and accurate
enough for being effective in the scope of the evaluation.
Fig. 2 depicts our concept for a monitor that validates the
decision of a digital twin in a simulated environment. The
events triggered during the execution of the digital twin of
the smart agent are notified at its interface and propagated to
digital twins of interacting components. These digital twins are
internal simulation models of interacting system components
fed with predicted real-time data of system’s sensors and
actuator. The behavior of the system including its future state
is evaluated by an evaluation engine that observes the effects
of triggered events on the orchestrated digital twins. The
evaluation engine provides an alarm that triggers the fail-over
behavior, or provides a list of events in the order they occurred.

¢) Monitoring for conformity: Building trust on a par-
ticular behavior execution of a smart agent requires an a-
priory knowledge of its intentions. This knowledge can be
achieved by evaluating its specifications in advance in a

Evaluation
Engine

Pediction
Engine

Digital Twins

Event Propagation Monitor for Validity

A - []
DT Interface

*

|

DT Behavior execution
EEEEEEEEEEEEEEEEEEEEEENEEEEEEEER

Fig. 2. Monitoring for Validity

simulated environment. Digital twins are running specification
of smart agent’s behavior fed with real-time data obtained
from querying the state of the system and the state of the
environment at the moment when the linked predictive simu-
lation starts. Conformity monitoring during linked predictive
simulation starts immediately after the execution of the digital
twin’s behavior in a simulated environment. The results of the
digital twin execution form the specification against which the
behavior of the smart agent is evaluated.

IV. RELATED WORK

Smart Ecosystems extend the concept of cyber-physcial sys-
tems (CPS). The authors of [8] present a review of techniques
and tools for qualitative and quantitative monitoring of CPS,
distinguishing two major contexts in which the monitoring of
dynamic behaviours can be applied: run time verification dur-
ing system execution with respect to some specified properties;
model-based system design and development where the system
behavior is simulated and evaluated in many scenarios.

Other approaches [9] target offline monitors proposing
solutions for identifying violations against policies expressed
in first-order temporal logic as well as efficient and scalable
parallelization of the logs analysis leveraging map-reduce
approaches.

Regarding monitoring for validity, Blum et al. [10] propose
a look-ahead simulation for evaluating the safety of a decision
through a consequence engine. It utilizes internal simulation
models of the robot, interacting actors and the environment.
Our approach doesn’t rely on selection of a set of predefined
actions, but dynamically generates the actions exploiting the
results of decision events. In particular, our validity monitoring
activities involve selection of most probable environmental
changes and iterations through multiple internal simulation
models of the environment.

V. CONCLUSION

In our work, we are interested in the behavioral execution
of software components and behavioral conformity between a

real time execution of a smart agent on an ECU (embedded
control unit) and its digital twin’s execution in a simulated
environment.

Therefore, we introduced the challenges of runtime moni-
toring for malicious behaviour detection in smart ecosystems
and presented a first architecture solution using monitoring to
promptly detect malicious behaviors. The proposed architec-
ture is applicable for monitoring software smart agents and
their digital twins that are received as black boxes.

The approach we are proposing has several limitations as
well. It has been conceived for well defined interfaces and
in situations where the agents cannot influence intermediate
states in each other way except through the well defined
interfaces.

As future work, we would like to extend the monitoring
components so as to address not only the input/output com-
munications but also intermediate states.

At the same time we are exploring the possibility of defining
digital twins of smart agents by abstracting it’s behavior for
the scope of evaluation.

ACKNOWLEDGMENT

This work has received funding from ECSEL Joint Un-
dertaking (JU) under grant agreement No 783119. The JU
receives support from the European Union Horizon 2020
research and innovation program and Netherlands, Austria,
Belgium, Czech Republic, Germany, Spain, Finland, France,
Hungary, Italy, Portugal, Romania, Sweden, United Kingdom,
Tunisia.

REFERENCES

[1] “Office of the deputy under secretary of defense for acquisition and
technology, systems and software engineering. systems engineering
guide for systems of systems,” Version 1.0. Washington, DC, ODUSD(A
and T)SSE, 2008.

[2] K. Manikas, “Revisiting software ecosystems research: A longitudinal
literature study,” Journal of Systems and Software, vol. 117, pp. 84—-103,
2016.

[3] M. Seaborn and T. Dullien, “Exploiting the dram rowhammer bug to
gain kernel privileges,” Black Hat, vol. 15, 2015.

[4] “Ars technica.” [Online]. Available: https://arstechnica.com/information-
technology/2016/10/using-rowhammer-bitflips-to-root-android-phones-
is-now-a-thing/

[5]1 A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE transactions
on dependable and secure computing, vol. 1, no. 1, pp. 11-33, 2004.

[6] E. Cioroaica, T. Kuhn, and B. Buhnova, “(do not) trust in ecosystems,”
in Proceedings of the 41st International Conference on Software En-
gineering: New Ideas and Emerging Results. 1EEE Press, 2019, pp.
9-12.

[71 A. Romanovsky and F. Ishikawa, Trustworthy cyber-physical systems
engineering. CRC Press, 2016.

[8] E. Bartocci, J. Deshmukh, A. Donzé, G. Fainekos, O. Maler,
D. Nickovi¢, and S. Sankaranarayanan, Specification-Based Monitoring
of Cyber-Physical Systems: A Survey on Theory, Tools and Applications.
Cham: Springer International Publishing, 2018, pp. 135-175.

[9] D. Basin, G. Caronni, S. Ereth, M. Harvan, F. Klaedtke, and H. Mantel,
“Scalable offline monitoring,” in Runtime Verification, B. Bonakdarpour
and S. A. Smolka, Eds. Cham: Springer International Publishing, 2014,
pp. 31-47.

[10] C. Blum, A. F. T. Winfield, and V. V. Hafner, “Simulation-
based internal models for safer robots,” Frontiers in
Robotics and Al, vol. 4, p. 74, 2018. [Online]. Available:

https://www.frontiersin.org/article/10.3389/frobt.2017.00074

