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Abstract: The numerical approximation of the solution of the Fokker–Planck equation is
a challenging problem that has been extensively investigated starting from the pioneering
paper of Chang and Cooper in 1970 [7]. We revisit this problem at the light of the
approximation of the solution to the heat equation proposed by Rosenau [25]. Further,
by means of the same idea, we address the problem of a consistent approximation to
higher-order linear diffusion equations.
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1 Introduction
The Fokker-Planck equation is a partial differential equation describing the time evolution
of a density function f(v, t), where v ∈ IRd, d ≥ 1 and t ≥ 0, departing from a nonnegative
initial density ϕ(v). The standard assumptions on ϕ(v) is that it possesses finite mass ρ,
mean velocity u and temperature θ, where for any given density g(v)

ρ =

∫
IRd

g(v) dv (1.1)

is the mass density,

u =
1

ρ

∫
IRd

vg(v) dv (1.2)

is the mean velocity, and θ is the temperature defined by

θ =
1

dρ

∫
IRd
|v − u|2g(v) dv. (1.3)

The Fokker–Planck equation is a fundamental model in kinetic theories and statistical
mechanics. Its general form reads

∂f

∂t
= JFP (f) = γ

d∑
k=1

{
∂2f

∂v2k
+

1

θ

∂

∂vk
[(vk − uk)f ]

}
. (1.4)
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The one-particle friction constant γ is usually assumed to be a function of ρ, u, θ. Equation
(1.4) has a stationary solution of given mass ρ, mean velocity u and temperature θ given
by the Maxwellian density function

Mρ,u,θ(v) = ρ
1

(2πθ)d/2
exp

{
−|v − u|

2

2θ

}
, (1.5)

which is such that JFP (Mρ,u,θ) = 0. The Fokker-Planck equation appears in many different
contexts. It was originally derived for the distribution function of a Brownian particle in a
fluid [8], and is applicable in a more general form to a plasma [9]. A detailed investigation
of this model has been performed by Frisch, Helfand, and Lebowitz [13] in connection
with the kinetic theory of liquids. As shown more recently [27] (cf. also [6]), it provides
also a good description of the grazing collisions in a one-dimensional gas. The Fokker-
Planck operator JFP has the usual conservation properties of mass, mean velocity, and
temperature, and

∫
logfJFP (f) dv < 0, which guarantees the increasing in time of the

(Shannon) entropy

H(f)(t) = −
∫
IRd

f(v, t) log f(v, t) dv. (1.6)

It is interesting to remark that, if the friction γ is taken to be proportional to the pressure
p = ρθ , then JFP (f) has the same kind of nonlinearity (quadratic) as the true Boltzmann
equation.

For the purpose of accurate numerical simulations, a discretized Fokker-Planck equation
must guarantee most of the conservation laws of the original equation, starting from mass
conservation. Furthermore, since the solution of the Fokker–Planck equation represents
a density function, any numerical scheme that approximates equation (1.4) is required
to guarantee the positivity of the solution. In addition, it would be desirable that an
approximation scheme must be accurate and stable.

The seminal paper for the approximation to equation (1.4) is due to Chang and Cooper
[7]. Other classical references are the paper by Larsen, Levermore Pomraning and Sander-
son [16], and the well-known book by Risken [24]. Various aspects of the numerical approx-
imation of Fokker–Planck equation were subsequently dealt with by a number of authors
[2, 3, 10, 11, 12, 20]. Also in recent times, this problem has attracted the interest of research
[19, 22].

The aim of this paper is to present a discretized version of equation (1.4) which main-
tains most of the physical properties of the original equation. These properties include
conservation of mass and positivity of the discrete solution, same evolution for the mean
velocity and temperature, monotonicity in time of the discrete Shannon entropy, and the
existence of an explicit discrete equilibrium density. In addition, the problem of the large-
time behavior of the approximation and the convergence to the corresponding equilibrium
density has been dealt with in the one-dimensional situation.

This discrete version is largely inspired by a recent paper [23], in which the kinetic
meaning of the approximation to the heat equation proposed by Rosenau in [25] has been
deeply investigated.

The last part of the paper is devoted to show how this idea could be fruitfully applied
to construct a numerical approximation to one-dimensional linear diffusion equations of
higher order. In particular, it is shown that starting from this approximation one can
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easily obtain an explicitly computable formula for the central difference approximation of
a derivative of any even order.

2 Main properties of the Fokker–Planck equation
Given a nonnegative initial value ϕ(v) with finite mean velocity u and temperature θ,
easy computations show that the mass, mean velocity, and temperature of the solution to
the Fokker–Planck equation (1.4) do not change with time. It is convenient to normalize
f to be a probability density instead of a mass density, and change equation (1.4) to a
dimensionless form. To do this, one introduces the dimensionless variables v̄, t̄, and the
dimensionless functions ϕ̄, f̄ defined by the formulas

v̄ =
v − u√

θ
, t̄ =

γ

θ
t,

ϕ(v) = ρθ−d/2ϕ̄(v̄), f(v, t) = ρθ−d/2f̄(v̄, t̄).

(2.1)

Substituting (2.1) into (1.4), carrying out elementary calculations, and then omitting the
bars, we obtain that the function f(v, t) will now satisfy the equation

∂f

∂t
= J̄FP (f) =

d∑
k=1

{
∂2f

∂v2k
+

∂

∂vk
(vkf ]

}
. (2.2)

with the initial condition ϕ(v) and consequently f(v, t) satisfying the following simple
normalization conditions

ρ = 1, u = 0, θ = 1. (2.3)

The normalization (2.3) corresponds to the equilibrium Maxwellian density

M(v) =
1

(2π)d/2
exp

{
−|v|

2

2

}
. (2.4)

Let ϕ be any probability density on IRd with finite second moment. Let X be any random
variable with this density, and let W be any independent Gaussian random variable with
density M given by (2.4). For every t > 0 define

Zt = e−tX + (1− e−2t)1/2W. (2.5)

Then, the random variable Zt has a density f(v, t) at each t ≥ 0, and it is well-known
that f(t) is evolved from ϕ under the action of the adjoint Ornstein–Uhlenbeck semigroup.
Therefore f(v, t) satisfies equation (2.2), which can of course be checked directly from the
definition.

Mean velocity and temperature of the solution at any time t ≥ 0 can be obtained
directly from expression (2.5). We obtain

u(t) = 〈Zt〉 = e−t〈X〉 = e−t
∫
IRd

v ϕ(v) dv, (2.6)
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and
θ(t) = 〈|Zt|2〉 = e−2t〈|X|2〉+

(
1− e−2t

)
〈|M |2〉 =

1− e−2t
(

1−
∫
IRd
|v|2 ϕ(v) dv

)
.

(2.7)

A direct computation then shows that the following laws of evolution hold

du(t)

dt
= −u(t),

dθ(t)

dt
= 2 (1− θ(t)) . (2.8)

Of course, in the case in which ϕ satisfies (2.3), (2.8) imply conservation of both mean
velocity and temperature.

It is well-known that the solution to the Fokker–Planck equation (2.2) converges expo-
nentially in time to zero in relative entropy [26, 28], which implies exponential convergence
to equilibrium in L1-norm. A slightly less known result is that exponential convergence to
equilibrium for non regular initial data can be directly shown to hold also in weaker norms
by resorting to the Fourier transform. Given a probability density f(v), v ∈ IRd, we define
its Fourier transform f̂(ξ), ξ ∈ IRd by

f̂(ξ) =

∫
IRd

e−i ξ·vf(v) dv.

Let us consider a family of metrics that has been introduced in the paper [15] to study
the trend to equilibrium of solutions to the space homogeneous Boltzmann equation for
Maxwell molecules, and subsequently applied to a variety of problems related to kinetic
models of Maxwell type. For a more detailed description, we address the interested reader
to the lecture notes [5].

Given s > 0 and two random variables X,Y with probability distributions f (respec-
tively g), their Fourier based distance ds(X,Y ) is given by the quantity

ds(X,Y ) = ds(f, g) := sup
ξ∈IRd

∣∣∣f̂(ξ)− ĝ(ξ)
∣∣∣

|ξ|s
.

The distance is finite, provided that X and Y have the same moments up to order [s],
where, if s /∈ N, [s] denotes the entire part of s, or up to order s− 1 if s ∈ N. Moreover ds
is an ideal metric. Its main properties are the following

1. Let X1, X2, X3, with X3 independent of the pair X1, X2 be random variables with
probability distributions f1, f2, f3. Then

ds(X1 +X3, X2 +X3) = ds(f1 ∗ f3, f2 ∗ f3) ≤ ds(f1, f2) = ds(X1, X2)

where the symbol ∗ denotes convolution;

2. Define, for a given nonnegative constant a, the dilation of a function f = f(v),
v ∈ IRd as

fa(v) =
1

ad
f
( v
a

)
.

Then, given two random variables X,Y with probability distributions f and g, for
any nonnegative constant a

ds(aX, aY ) = ds(fa, ga) ≤ as ds(f, g) = as ds(X,Y ).
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Consider that, in view of the representation formula (2.5), given the initial values ϕ and
ϕ̃, the two solutions f(t) and f̃(t) are the probability distributions of the random variables
Zt and Z̃t expressed by (2.5). Hence if for some s > 0 the distance ds(X, X̃) = ds(ϕ, ϕ̃) is
finite, then

ds(Zt, Z̃t) = ds(e
−tX + (1− e−2t)1/2W, e−tX̃ + (1− e−2t)1/2W ) ≤

ds(e
−tX, e−tX̃) ≤ e−stds(X, X̃).

(2.9)

The first inequality follows from property 1. Then the dilation property 2 is applied to
conclude. The same result [4] can be easily obtained also resorting to the Fourier transform
version of the Fokker–Planck equation (2.10), that reads

∂f̂(ξ, t)

∂t
= −|ξ|2f̂(ξ, t)−

d∑
k=1

ξk
∂f̂(ξ, t)

∂ξk
. (2.10)

3 The one-dimensional Fokker–Planck equation
For the rest of this Section, let us fix d = 1. To start with, let us consider that the Fokker–
Planck equation (2.2) can be fruitfully written in weak form. It corresponds to say that, for
any given smooth function φ(v), the Fokker–Planck operator modifies the solution f(v, t)
according to

d

dτ

∫
IR
φ(v)f(v, t) dv =

∫
IR

(
φ′′(v)− vφ′(v)

)
f(v, t) dv. (3.11)

By choosing φ(v) = e−iξv we obtain the (one-dimensional) Fourier transform version (2.10)
of the Fokker–Planck equation (2.2). The advantage of working with a weak version of the
equation, is that we can allow the initial value ϕ(v) to be a measure on IR.

3.1 A Rosenau-type approximation
Rosenau [25] proposed a regularized version of the Chapman-Enskog expansion of hydro-
dynamics. This regularized expansion resembles the usual Navier-Stokes viscosity terms at
law wave-numbers, but unlike the latter, it has the advantage of being a bounded macro-
scopic approximation to the linearized collision operator. The model originally considered
by Rosenau is given by the scalar equation

ft + Ψ(g)v =

[
−εξ2

1 + ε2ξ2
f̂(ξ)

]∨
, (3.12)

where f̂(ξ) denotes the Fourier transform of f(v), while f(ξ)∨ denotes the inverse Fourier
transform.

The operator on the right side looks like the usual viscosity term εfvv at low wave-
numbers ξ, while for higher wave numbers it is intended to model a bounded approximation
of a linearized collision operator, thereby avoiding the artificial instabilities that occur when
the Chapman-Enskog expansion for such an operator is truncated after a finite number of
terms.
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The right side of (3.12) can be written as[
−εξ2

1 + ε2ξ2
f̂(ξ)

]∨
=

1

ε

[
1

1 + ε2ξ2
f̂(ξ)− f̂(ξ)

]∨
=

1

ε
[Mε ∗ f − f ] , (3.13)

where ∗ denotes convolution and

Mγ(v) =
1

2γ
e−|v|/γ =

1

2

(
1

γ
e−v/γI{v≥0}(v) +

1

γ
ev/γI{v<0}(v)

)
(3.14)

is a non-negative symmetric function satisfying ‖Mγ‖L1 = 1. In (3.14) IA(v) denotes the
characteristic function of the set A, i.e. IA(v) = 1 if v ∈ A, while IA(v) = 0 otherwise.

Hence Rosenau approximation consists in substituting the linear diffusion equation

∂g(v, t)

∂t
=
∂2g(v, t)

∂v2
(3.15)

with the linear kinetic equation

∂g(v, t)

∂t
=

1

ε2
[Mε ∗ g(v, t)− g(v, t)] (3.16)

A detailed study of the properties of the kinetic equation (3.16), as well as its connections
with the diffusion equation (3.15) was recently given in [23] (cf. also [18, 21]). Also, a sim-
ilar approximation was used in connection with the one-dimensional fractional diffusion
equation [14]. These studies showed that the approximation maintains most of the prop-
erties of the original diffusion equations. Moreover, in the case of the heat equation, the
Rosenau-type approximation gives a new physical inside into the numerical approximation
of (3.15). In particular the moments at the first two order of the approximate solutions
follow the same evolution of the original diffusion equation.

However, it is important to notice that (3.13) is only a physically relevant way to
write the right-hand side of (3.12). Indeed, by making use of standard properties of the
convolution operation one has[

−εξ2

1 + ε2ξ2
f̂(ξ)

]∨
= −εξ2

[
1

1 + ε2ξ2
f̂(ξ)

]∨
= ε

∂2Mε ∗ f
∂v2

= εMε ∗
∂2f

∂v2
. (3.17)

This shows that Rosenau approximation is obtained by smoothing out the right-hand side
of the linear diffusion equation (3.15) by means of its convolution with Mε. Hence, the
linear kinetic equation (3.16) can be alternatively written as

∂g(v, t)

∂t
= Mε ∗

∂2g(v, t)

∂v2
. (3.18)

It is tempting to use the same approximation for the one-dimensional Fokker–Planck equa-
tion (2.2). In this case one considers the equation

∂f(v, t)

∂t
= Mε ∗

[
∂2f(v, t)

∂v2
+
∂(vf(v, t))

∂v

]
. (3.19)
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In Fourier transform, equation (3.19) reads

∂f̂(ξ, t)

∂t
= − ξ2

1 + ε2ξ2
f̂(ξ, t)− ξ

1 + ε2ξ2
∂f̂(ξ, t)

∂ξ
. (3.20)

It is clear that the diffusion term is given by a linear kinetic equation of type (3.13). Then,
the Fourier transform of the drift term can be written as

− ξ

1 + ε2ξ2
∂f̂(ξ, t)

∂ξ
=

1

2ε

[
1

1− iεξ
− 1

1 + iεξ

]
∂(if̂(ξ, t))

∂ξ
.

Hence we obtain the identity

Mε ∗
∂(vf(v, t))

∂v
=

1

ε
M̃ε ∗ (vf(v, t)), (3.21)

where
M̃γ(v) =

1

2

(
1

γ
ev/γI{v<0}(v)− 1

γ
e−v/γI{v≥0}(v)

)
. (3.22)

Note that, while Mγ(v) is a symmetric probability density, M̃γ is antisymmetric, and it is
obtained from Mγ(v) by changing the sign on the domain v ≥ 0.

Finally, the approximated Fokker–Planck equation (3.19) can be equivalently written
as

∂f(v, t)

∂t
=

1

ε2
[Mε ∗ f(v, t)− f(v, t)] +

1

ε
M̃ε ∗ (vf(v, t)). (3.23)

One can easily verify, in view of the expressions of the functionsMε and M̃ε, that the mean
velocity and temperature of the solution to (3.23) follow the same laws of evolution (2.8)
of the original Fokker–Planck equation (2.2).

3.2 The discrete Fokker–Planck equation
Having in mind the previous discussion, given a small positive parameter ε� 1 we consider
the approximation to the operator JFP given by

JεFP (f)(v) =
2

ε2
(Pε ∗ f − f) (v) +

1

ε
P̃ε ∗ (vf(v)), (3.24)

acting on probability densities f(v) satisfying the normalization conditions (2.3). In (3.24)

Pε(v) =
1

2
(δ(v + ε) + δ(v − ε)) , P̃ε(v) =

1

2
(δ(v + ε)− δ(v − ε)) , (3.25)

where δ(v) denotes as usual the Dirac delta function concentrating on v = 0. Note that, in
analogy with (3.23), Pε(v) is a symmetric probability measure, and P̃ε is antisymmetric,
and obtained from Pε by changing its sign when v > 0.

Using the symmetry properties of Pε and P̃ε, one shows that the weak form of the
evolution equation

∂fε
∂t

= JεFP (fε) (3.26)
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is written as
d

dt

∫
IR
φ(v)fε(v, t) dv =

∫
IR

[
2

ε2
(Pε ∗ φ− φ) (v)− v 1

ε
P̃ε ∗ φ(v)

]
fε(v) dv. (3.27)

Alternatively, by choosing Φ(v) = e−iξv one obtains the evolution equation for the Fourier
transform f̂ε(ξ, t)

∂f̂ε(ξ, t)

∂t
= − 2

ε2
(1− cos(εξ))f̂ε(ξ, t)−

sin(εξ)

ε

∂f̂ε(ξ, t)

∂ξ
. (3.28)

The Fourier description clearly shows that as ε→ 0, the right-hand side of equation (3.28)
converges pointwise to the right-hand side of equation (2.10).

Let us examine in details the properties of the solution to equation (3.27). In view of
definition (3.25), it follows that for 0 ≤ n ∈ N∫

IR
v2nPε(v) dv = ε2n,

∫
IR
v2n+1Pε(v) dv = 0,∫

IR
v2nP̃ε(v) dv = 0,

∫
IR
v2n+1P̃ε(v) dv = −ε2n+1.

(3.29)

Hence, by choosing φ(v) = 1, v, v2 in (3.27) and using (3.29) we conclude that equation
(3.27) preserves the total mass, while the evolution equations for the mean velocity and
temperature coincide with equations (2.7).

In particular, if the initial datum satisfies the normalization conditions (2.3), also the
solution to (3.26) satisfies (2.3).

A further fundamental property of the solution to equation (3.27) follows by considering
as initial datum the law of a random variable Xε that takes values only on a discrete
number of points. To be more precise, for a given positive number N ∈ N, N � 1, let us
set ε = 1/N . Then we define

ϕε(v) =
∑
|j|≤2N2

ϕjδ(v − jε), ϕε(v) = 0 elsewhere (3.30)

where the nonnegative constants ϕj satisfy∑
|j|≤2N2

ϕj = 1. (3.31)

Let D be the space of functions of type (3.30), subject to condition (3.31). Let us consider
a nonnegative measure g(v) in D. Owing to definition (3.25), it is immediate to verify that
T (g) = ε2JεFP (g)/2 + g belongs to D. Indeed

T (g)(v) = Pε ∗ g(v) +
ε

2
P̃ε ∗ (vg(v)) =

1

2

[
1 +

ε

2
(v + ε)

]
g(v + ε) +

1

2

[
1− ε

2
(v − ε)

]
g(v − ε).

(3.32)

Therefore T (g)(v) is a linear combination of the values of g in the points g(v + ε) and
g(v − ε), and whenever v belongs to the interval (−2/ε, 2/ε) the coefficients of the linear
combination are nonnegative. Moreover, a direct inspection shows that

T (g)(2/ε+ ε) = T (g)(−2/ε− ε) = 0. (3.33)
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Last, condition (3.31) remains verified. This property can be verified by owing to the mass
conservation property of JεFP , or by direct inspection. Indeed, using (3.33) we have∑

|j|≤2N2

T (g)j =
1

2

∑
|j|≤2N2

(gj+1 + gj−1) +
ε2

4

∑
|j|≤2N2

((j + 1)gj+1 − (j − 1)gj−1) =

2N2−1∑
j=−2N2+1

gj +
1

2
(g2N2 + g−2N2) +

ε2

4

(
2N2g2N2 + 2N2g−2N2

)
=

∑
|j|≤2N2

gj .

Hence

T (g)(v) =
∑
|j|≤2N2

T (g)jδ(v − jε), T (g)(v) = 0 elsewhere, and
∑
|j|≤2N2

T (g)j = 1.

Consequently, T (g) is a linear mapping of D into D.
Now, given the nonnegative measure ϕε ∈ D, consider that the initial value problem

for the discrete Fokker–Planck equation (3.26) can be rewritten as

∂fε(v, t)

∂t
=

2

ε2
(T (fε)(v)− fε(v)) , fε(v, t = 0) = ϕε(v). (3.34)

The (unique) solution to (3.34) can be explicitly expressed in the form of a Wild sum
[21, 29]

fε(v, t) = e−2t/ε
2
∑
i≥0

1

i!

(
2t

ε2

)i
f (i+1)
ε (v), (3.35)

where f (0)ε (v) = ϕε(v) is the initial value, and the nonnegative coefficients f (i)ε , i ≥ 1, are
recursively defined by f (i)ε (v) = T (f

(i−1)
ε )(v). Since at any time t ≥ 0 the solution (3.35)

is a convex combination of the time-independent nonnegative coefficients f (i)ε , the solution
to the initial value problem (3.34) with ϕε ∈ D belongs to D at any subsequent time t ≥ 0.
In addition, the solution is nonnegative for all t ≥ 0.

Last, let Ψ(r), r ≥ 0 be a convex function, such that Ψ(0) = 0. Then, given a
nonnegative measure g(v) in D, by (3.32), whenever v belongs to the interval (−2/ε, 2/ε),
we obtain the inequality

Ψ(T (g)(v)) ≤ 1

2

[
1 +

ε

2
(v + ε)

]
Ψ (g(v + ε)) +

1

2

[
1− ε

2
(v − ε)

]
Ψ (g(v − ε)) , (3.36)

while
Ψ (T (g)(2/ε+ ε)) = Ψ (T (g)(−2/ε− ε)) = 0.

Therefore, proceeding as before, we obtain∑
|j|≤2N2

Ψ (gj) ≤
∑
|j|≤2N2

Ψ (T (g)j) . (3.37)

Since at any time t ≥ 0 the solution (3.35) is a convex combination of the time-independent
coefficients f (i)ε , the convexity of Ψ, coupled with inequality (3.37) shows that, for any given
nonnegative measure ϕε ∈ D

Ψ(f)(t) =
∑
|j|≤2N2

Ψ (fε,j(t)) ≤
∑
|j|≤2N2

Ψ (ϕj) = Ψ(ϕε). (3.38)

9



Hence, the discrete functional Ψ(fε)(t) is monotonically decreasing in time. In particular,
we can consider the classical Shannon entropy on the probability measure g ∈ D, defined
by

H(g) = −
∑
|j|≤2N2

gj log gj . (3.39)

Then, in analogy with the original Fokker–Planck equation, Shannon entropy (3.39) is
shown to be increasing in time along the solution to the discrete Fokker–Planck equation
(3.26).

A further interesting property of the approximation (3.26) is the fact that the equation
JεFP (f) = 0 has a unique explicit solution in D, which is nothing but the stationary solution
of the approximation (3.27), provided that the initial measure ϕε ∈ D.

3.3 The stationary solution
In one dimension, the Fourier transform of the stationary solution solves the equation

2

ε
(1− cos(εξ))f̂∞(ξ) + sin(εξ)

∂f̂∞(ξ)

∂ξ
= 0. (3.40)

Hence, if f̂∞(ξ) 6= 0

1

f̂∞(ξ)

∂f̂∞(ξ)

∂ξ
= −2

ε

1− cos(εξ)

sin(εξ)
= − 2

ε2
ε sin(εξ)

1 + cos(εξ)
=

2

ε2
d

dξ
log(1 + cos(εξ)).

Therefore, integrating both sides from 0 to ξ, and assuming that the solution has mass
equal to one, so that f̂∞(0) = 1 one obtains

f̂∞(ξ) =

(
1 + cos(εξ)

2

)2/ε2

. (3.41)

By choosing ε = 1/N , we argue that the steady state is the convolution product of 2N2

identical functions, each of them with Fourier transform

ψ̂(ξ) =
1 + cos ξ

N

2
. (3.42)

Let X be a discrete random variable taking values ±1 and 0 with probabilities

P (X = ±1) =
1

4
, P (X = 0) =

1

2
. (3.43)

Then,

h(x) =
1

4
(δ(x+ 1) + δ(x− 1) + 2δ(x)) ,

which implies

ĥ(ξ) =
1 + cos ξ

2
.
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Hence, the function (3.42) is the characteristic function of the random variable X/N .
Consequently, if ε = 1/N , the function (3.41) is the characteristic function of the random
variable

SN =
1

N

2N2∑
j=1

Xj , (3.44)

where the Xj are independent and identically distributed copies of X, defined as in (3.43).
By construction, the random variable SN takes values only on the discrete set of points
εj, where |j| ≤ 2N2. Consequently, SN has a probability distribution that belongs to D.
Considering now that X has zero mean, and variance 1/2, it follows easily by the central
limit theorem that the law of SN is an approximation of the Gaussian distribution, that
is an approximation of the stationary solution of the original Fokker–Planck equation. In
addition, the law of SN satisfies the normalization conditions (2.3).

3.4 Large-time behavior
The results of Section 3.2 showed that the solution to the discrete Fokker–Planck equation
(3.26) in D maintains most of the properties of the original Fokker–Planck equation, like
preservation of positivity and mass, same evolution of moments up to order two, and
entropy monotonicity. A further property of the original Fokker–Planck equation is the
exponential convergence of its solution towards the Maxwellian equilibrium. As discussed
in Section 2, exponential convergence to equilibrium can be shown also in Fourier metric.
In what follows, we will investigate about the large-time behavior of the solution to (3.26)
and its (eventual) convergence to equilibrium in terms of the metric ds.

Let εξ ∈ [mπ, (m + 1)π), where |m| ∈ N. Then, since the function sin εξ does not
change sign in this interval, the differential equation

dξ(t)

dt
=

1

ε
sin(εξ(t)), ξ(t = 0) = ξ, (3.45)

can be solved uniquely as soon as εξ(t) ∈ [mπ, (m+ 1)π) to give the relationship

tan
εξ(t)

2
= et tan

εξ

2
. (3.46)

Then, since both εξ(t)/2 and εξ/2 belong to the interval [mπ
2 , (m + 1)π2 ) identity (3.46)

can be used to relate in a unique way ξ to ξ(t) (or vice-versa)

ξ(t) =
2

ε
arctan

[
et tan

εξ

2

]
. (3.47)

Now, considering that

1− cos(εξ) =
2 (tan(εξ/2))2

1 + (tan(εξ/2))2
,

by using (3.46), the one-dimensional equation (2.10) can be integrated along characteristics
on each interval [mπ, (m+ 1)π). Indeed, using (3.46) on this interval equation (2.10) takes

11



the form

d

dt
f̂ε(ξ(t), t) = − 2

ε2
2 (tan(εξ(t)/2))2

1 + (tan(εξ(t)/2))2
f̂ε(ξ(t), t) =

− 2

ε2
2 e2t (tan(εξ/2))2

1 + e2t (tan(εξ/2))2
f̂ε(ξ(t), t) = − 2

ε2
d

dt
log
[
1 + e2t (tan(εξ/2))2

]
f̂ε(ξ(t), t).

(3.48)

Thus, integration over time gives the solution

f̂ε(ξ(t), t) = ϕ̂ε(ξ)

[
1 + (tan(εξ/2))2

1 + (tan(εξ(t)/2))2

]2/ε2
. (3.49)

Then using again (3.46) we obtain for ξ ∈ [mπ, (m+ 1)π)

f̂ε(ξ, t) = ϕ̂ε

[
2

ε
arctan

(
e−t tan(εξ/2)

)] [1 + e−2t (tan(εξ/2))2

1 + (tan(εξ/2))2

]2/ε2
(3.50)

We remark that, if the initial value ϕε(v) ∈ D, its Fourier transform is given by

ϕ̂ε(ξ) =
∑
|j|≤N2

ϕje
−iεξj . (3.51)

where the nonnegative constants ϕj satisfy condition (3.31). Then, for any value ξ̄ =
2mπ/ε, with m ∈ N, ϕ̂ε(ξ̄) = 1. By letting t → ∞ in (3.50), for any ξ ∈ IR such that
εξ ∈ [mπ, (m+ 1)π)

ϕ̂ε

[
2

ε
arctan

(
e−t tan(εξ/2)

)]
→ ϕ̂ε

(
2

ε
mπ

)
= 1,

while

f̂ε(ξ, t)→
(

1

1 + (tan(εξ/2))2

)2/ε2

=

(
1 + cos(εξ)

2

)2/ε2

= f̂∞(ξ). (3.52)

Since m is arbitrary, pointwise convergence to the stationary solution (3.41) follows for all
ξ ∈ IR.

A stronger result about convergence to the steady state follow by restricting the allowed
set of values of ξ.

Indeed, since the function (3.41) is a stationary solution to the Fokker–Planck equation,
for every t ≥ 0 it satisfies the identity

f̂∞(ξ) = f̂∞

[
2

ε
arctan

(
e−t tan(εξ/2)

)] [1 + e−2t (tan(εξ/2))2

1 + (tan(εξ/2))2

]2/ε2
. (3.53)

Therefore, considering that for t ≥ 0[
1 + e−2t (tan(εξ/2))2

1 + (tan(εξ/2))2

]2/ε2
≤ 1,

12



if the initial value ϕε(v) has zero mean, we have the inequality

|f̂ε(ξ, t)− f̂∞(ξ)|
|ξ|2

≤

∣∣∣ϕ̂ε − f̂∞∣∣∣ (2ε arctan
(
e−t tan(εξ/2)

))
|ξ|2

,

and this inequality, on the set |εξ| ≤ π/2, clearly implies

sup
|εξ|≤π/2

|f̂ε(ξ, t)− f̂∞(ξ)|
|ξ|2

≤ d2(ϕε, f∞) sup
|εξ|≤π/2

∣∣∣∣∣arctan
(
e−t tan(εξ/2)

)
εξ
2

∣∣∣∣∣
2

. (3.54)

Hence, by setting η = tan(εξ/2) we obtain

sup
|εξ|≤π/2

∣∣∣∣∣arctan
(
e−t tan(εξ/2)

)
εξ
2

∣∣∣∣∣
2

= sup
|η|≤1

∣∣∣∣∣arctan
(
e−tη

)
arctan η

∣∣∣∣∣
2

≤ 4e−2t.

This implies exponential convergence of the solution to the stationary state (on the set
|εξ| ≤ π/2) at the same rate of the Fokker–Planck equation (2.2). On the other hand, on
the set |εξ| > π/2, since both |f̂ε|(ξ, t) ≤ 1 and |f̂∞|(ξ) ≤ 1, we have the bound

sup
|εξ|>π/2

|f̂ε(ξ, t)− f̂∞(ξ)|
|ξ|2

≤ sup
|εξ|>π/2

2

|ξ|2
=

8

π2
ε2. (3.55)

3.5 Stability of the approximation
Let us consider a Taylor expansion of the trigonometric functions on the right-hand side
of equation (3.28) up to the second order. We obtain

∂f̂ε(ξ, t)

∂t
= −|ξ|2f̂ε(ξ, t)− ξ

∂f̂ε(ξ, t)

∂ξ
+Rε(f̂ε)(ξ, t), (3.56)

where the remainder term has the expression

Rε(f̂ε)(ξ, t) = ξ3

(
2ε

3!
sin εξ̄ f̂ε(ξ, t)−

ε2

3!
cos εξ̄

∂f̂ε(ξ, t)

∂ξ

)
, (3.57)

and ξ̄ belongs to the interval (0, ξ). Let the initial value ϕ of the Fokker–Planck equation
(2.2) possess finite moments up to the order three, and let us consider an approximation
ϕε ∈ D with the same moments of ϕ up to the second order. Then, since the mean velocity
and the temperature of the Fokker–Planck equation and of its approximation follow the
laws (2.8), it is immediate to conclude that

|Rε(f̂ε)(ξ, t)|
|ξ|3

≤ 2ε

3!
sup
ξ
|f̂ε(ξ, t)|+

ε2

3!
sup
ξ

∣∣∣∣∣∂f̂ε(ξ, t)∂ξ

∣∣∣∣∣ ≤ 2ε

3!
+
ε2

3!
|u0| = εC(ε, u0), (3.58)

where u0 is the initial mean velocity defined by (1.2). In addition, if the Fourier metric
d3(f, fε)(t) is initially bounded, it remains bounded at any subsequent time.
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Let h(ξ, t) be defined as

h(ξ, t) =
f̂(ξ, t)− f̂ε(ξ, t)

|ξ|3
.

Since for ξ 6= 0 we have the identity

ξ

|ξ|3
∂(f̂(ξ, t)− f̂ε(ξ, t))

∂ξ
= 3h(ξ, t) + ξ

∂h(ξ, t)

∂ξ

by considering the difference between the Fourier transforms of one-dimensional Fokker–
Planck equation (2.10) and (3.56), we conclude that h satisfies

∂h(ξ, t)

∂t
+ ξ

∂h(ξ, t)

∂ξ
= −(|ξ|2 + 3)h(ξ, t) +

Rε(f̂ε)(ξ, t)

|ξ|3
. (3.59)

Integrating along characteristics, (3.59) is equivalent to

dh(ξet, t)

dt
= −(|ξ|2e2t + 3)h(ξet, t) +

Rε(f̂ε)(ξe
t, t)

|ξ|3e3t
.

Hence, by using (3.58) we obtain

d

dt
|h(ξet, t)| ≤ −3|h(ξet, t)|+ εC(ε, u0),

that implies
|h(ξet, t)| ≤ |h0(ξ)|e−3t + εC(ε, u0)

(
1− e−3t

)
.

In conclusion

d3(f(t), fε(t)) = sup
ξ∈IR
|h(ξ, t)| ≤ d3(ϕ,ϕε)e−3t + εC(ε, u0)

(
1− e−3t

)
. (3.60)

Hence, by choosing initial data for the discrete Fokker–Planck equation such that d3(ϕ,ϕε) ≤
Cε, we obtain that in the Fourier distance d3 the uniform in time estimate

d3(f(t), fε(t)) ≤ εmax {C,C(ε, u0)} . (3.61)

4 The general case
The discretization of the one-dimensional Fokker–Planck equation introduced in Section 3
can be easily extended to any dimension d > 1. To this aim, it is enough to outline that
the Fourier transformed equation (2.10) can be rewritten as

∂f̂(ξ, t)

∂t
= −

d∑
k=1

(
|ξk|2f̂(ξ, t) + ξk

∂f̂(ξ, t)

∂ξk

)
. (4.1)

The Rosenau approximation in this case is given by

∂f̂(ξ, t)

∂t
= −

d∑
k=1

(
ξ2k

1 + ε2ξ2k
f̂(ξ, t) +

ξk
1 + ε2ξ2k

∂f̂(ξ, t)

∂ξk

)
, (4.2)
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that in the physical space reads

∂f(v, t)

∂t
=

1

ε2

d∑
k=1

(
[Mε(vk) ∗ f(v, t)− f(v, t)] +

1

ε
M̃ε(vk) ∗ (vf(v, t))

)
. (4.3)

As in Section 3, one can easily verify that the mean velocity and temperature of the
solution to (3.23) follow the same laws of evolution of the original Fokker–Planck equation
(2.2). Also, using the functions (3.25) one obtains the evolution equation for the Fourier
transform f̂ε(ξ, t)

∂f̂ε(ξ, t)

∂t
= −

d∑
k=1

(
2

ε2
(1− cos(εξk))f̂ε(ξ, t) +

sin(εξk)

ε

∂f̂ε(ξ, t)

∂ξk

)
. (4.4)

In the limit ε → 0, the right-hand side of equation (3.28) converges pointwise to the
right-hand side of equation (4.1).

As in the one-dimensional case, let us consider as initial datum the law ϕε(v) =

ϕ(v1, v2, . . . , vd) of a random vector (X
(1)
ε , X

(2)
ε , . . . , X

(d)
ε ) which takes values only on a

discrete number of points of IRd. For a given positive number N ∈ N, N � 1, let us set
ε = 1/N , the law reads

ϕε(v) =

d∑
i=1

∑
|ji|≤2N2

ϕj1,...,jd

d∏
i=1

δ(vi − jiε), ϕε(v) = 0 elsewhere (4.5)

where the nonnegative constants ϕj1,...,jd satisfy

d∑
i=1

∑
|ji|≤2N2

ϕj1,...,jd = 1. (4.6)

Let Dd be the space of functions of type (3.30), subject to condition (3.31). Proceeding as
in Section 3, we can prove that, starting from a nonnegative initial value in Dd, the solution
to equation (4.3) belongs to Dd for each time t ≥ 0. Moreover, the solution is nonnegative.
Also, mass is preserved, and the laws of evolution of the mean velocity and temperature
follow the same laws of evolution (2.8) of the continuous equation. Last, Shannon entropy
is monotonically increasing. Concerning the equilibrium distribution, we assume that

f̂∞(ξ) =

d∏
j=1

f̂∞(ξj) =

d∏
j=1

(
1 + cos(εξj)

2

)2/ε2

. (4.7)

Then we have

d∑
k=1

(
2

ε2
(1− cos(εξk))f̂∞(ξ) +

sin(εξk)

ε

∂f̂∞(ξ)

∂ξk

)
=

d∑
k=1

∏
j 6=k

f̂∞(ξj)

(
2

ε2
(1− cos(εξk))f̂∞(ξk) +

sin(εξk)

ε

∂f̂∞(ξk)

∂ξk

)
= 0.

(4.8)
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Consequently, f̂∞(ξ) is a stationary solution for the d-dimensional Fokker–Planck equation.
Note that

Ψ̂(ξ) =
d∏
j=1

(
1 + cos(εξj)

2

)
is the Fourier transform of the joint distribution function of the random vector X =
(X1, . . . , Xd) where the random variables Xk, for k = 1, . . . , d are independent each other
and distributed according to (3.43). Consequently, if ε = 1/N , the function (4.7) is the
characteristic function of the random vector

SN =
1

N

2N2∑
j=1

Xj , (4.9)

where the Xj are independent and identically distributed copies of the random vector X
Considering now that X has zero mean, and variance d/2, it follows by the central limit
theorem that the law of SN is an approximation of the d-dimensional Gaussian distribution,
that is an approximation of the stationary solution of the original Fokker–Planck equation
in IRd.

Unlikely, the analysis of Section 3.4 is no more valid in dimension d > 1, and the
study of the large-time behavior of the solution to the discretized Fokker-Planck equation
requires further efforts. We leave this problem open for future research.

5 Higher-order diffusions
Let us consider the fourth-order (one-dimensional) linear diffusion [1]

∂g(v, t)

∂t
= −∂

4g(v, t)

∂v4
. (5.1)

The Fourier transform version of equation (5.1) reads

∂ĝ(ξ, t)

∂t
= −ξ4ĝ(ξ, t). (5.2)

Following the idea of Rosenau [25], for a given ε� 1 we consider the approximation given
by

∂ĝ(ξ, t)

∂t
= −

(
ξ2

1 + ε2ξ2

)2

ĝ(ξ, t) = − 1

ε4

(
ε2ξ2

1 + ε2ξ2

)2

ĝ(ξ, t). (5.3)

This approximation is consistent with the analogous one introduced for the Fokker–Planck
equation. Note that, since (

1

1 + ε2ξ2

)2

= M̂ε ∗Mε(ξ),

withMε defined as in (3.14), the approximation (5.3) corresponds to modify equation (5.1)
by taking the convolution of the right-hand side with Mε ∗Mε. Hence the approximation
in the physical space reads

∂g(v, t)

∂t
= −Mε ∗Mε ∗

∂4g(v, t)

∂v4
=
∂4Mε ∗Mε ∗ g(v, t)

∂v4
. (5.4)
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Since (
ε2ξ2

1 + ε2ξ2

)2

=

(
1− 1

1 + ε2ξ2

)2

= 1 +

(
1

1 + ε2ξ2

)2

− 2
1

1 + ε2ξ2
.

equation (5.4) can be rewritten as a linear kinetic equation of the form

∂g(v, t)

∂t
=

1

ε4
[G(Mε) ∗ g(v, t)− g(v, t)] , (5.5)

where the function
G(Mε)(v) = 2Mε(v)−Mε ∗Mε(v). (5.6)

has integral equal to one, but, at difference with the case of the heat equation, is no more
a probability density function. Indeed, it becomes negative on part of the real line. This
fact is in agreement with the theory of higher-order diffusions, and it is connected with the
absence of a maximum principle for the solution to these equations.

It is remarkable that, in view of the expression (5.4), the moments up to order four
of the solution to the approximated equation follow the same evolution of the original
equation.

The same property is maintained by considering in the definition of Gε a probabil-
ity density different from Mε. In particular, we can resort to Pε, as defined in (3.25).
Consequently, we consider the approximation

∂g(v, t)

∂t
=

4

ε4
[G(Pε) ∗ g(v, t)− g(v, t)] , (5.7)

where the constant 4 in front of the interaction operator is chosen to preserve the evolution
of the fourth-order moment. By resorting to the definition of Pε(v), it is immediate to
conclude that

Pε ∗ Pε(v) =
1

4
(δ(v + 2ε) + 2δ(v) + δ(v − 2ε)) .

Hence, for a given (smooth) function h = h(v)

1

ε4
[G(Pε) ∗ h(v)− h(v)] =

δ(v + 2ε)− 4δ(v + ε) + 6δ(v)− 4δ(v − ε) + δ(v − 2ε)

ε4
. (5.8)

Expression (5.8) coincides with one of the central differences approximation of the fourth
order derivative of a function (cf. [17] and the references therein). The previous reasoning
allows to conclude that, at difference with other approximations, (5.8) is well-adapted,
in view of its properties about preservation of moments evolution, to approximate the
diffusion equation (5.1).

The approximation of the (linear) diffusion equation of order 2n, with n > 2 follows
along the same lines. Indeed, given the equation

∂g(v, t)

∂t
= (−1)n−1

∂2ng(v, t)

∂v2n
, (5.9)

in Fourier variables, equation (5.9) takes the form

∂ĝ(ξ, t)

∂t
= −ξ2nĝ(ξ, t). (5.10)
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Given ε� 1, we consider the approximation to (5.10) given by

∂ĝ(ξ, t)

∂t
= −

(
ξ2

1 + ε2ξ2

)n
ĝ(ξ, t) = − 1

ε2n

(
ε2ξ2

1 + ε2ξ2

)n
ĝ(ξ, t). (5.11)

In this case(
ε2ξ2

1 + ε2ξ2

)n
=

(
1− 1

1 + ε2ξ2

)n
= 1 +

n∑
k=1

(−1)k
(
n

k

)(
1

1 + ε2ξ2

)k
. (5.12)

We can easily find the expression of the function on the right-hand side in the physical
space by considering that, for k ∈ N(

1

1 + ε2ξ2

)k
= ̂Mε ∗ · · · ∗Mε︸ ︷︷ ︸

k

(ξ)

Thus, the approximation to the linear diffusion equation of order 2n, with n ≥ 2, can be
rewritten as a linear kinetic equation of the form

∂g(v, t)

∂t
=

1

ε2n
[Gn(Mε) ∗ g(v, t)− g(v, t)] , (5.13)

where the function Gn(Mε) is defined by

Gn(Mε)(v) =

n∑
k=1

(−1)k+1

(
n

k

)
Mε ∗ · · · ∗Mε︸ ︷︷ ︸

k

. (5.14)

As before, for n ≥ 2 ∫
IR
Gn(Mε)(v) dv = 1.

By construction, the solution to the kinetic equation (5.13) is such that, for all k ≤ 2n− 1∫
IR
vk [Gn(Mε) ∗ g(v, t)− g(v, t)] dv = 0,

while ∫
IR
v2n

1

ε2n
[Gn(Mε) ∗ g(v, t)− g(v, t)] dv = (2n)!

∫
IR
g(v, t) dv.

Likewise, given a (smooth) function h(v), the expression

C2n(h)(v) =
1

ε2n
[Gn(Pε) ∗ h(v)− h(v)] , (5.15)

where as usual Pε(v) is given by (3.25), gives an explicitly computable central difference
approximation of order 2n of h with a number of good properties with respect to the
higher-order diffusion equation (5.10). Indeed, the solution to the approximated diffusion
equation

∂g(v, t)

∂t
= (2n)!

1

ε2n
[Gn(Pε) ∗ g(v, t)− g(v, t)]

is such that, in agreement with the solution to the original diffusion equation, all moments
up to the order 2n − 1 remain constant in time, while the moment of order 2n is linearly
increasing with the same rate.
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6 Conclusions
We introduced and discussed a discretized version of the Fokker–Planck equation which
maintains most of the properties of the continuous version. The basic idea was to use a
suitable modification of the Fourier transform of the equation, similar to the one consid-
ered by Rosenau [25] for the linear heat equation. This approach has been subsequently
applied to higher-order linear diffusion operators, to obtain an easy-to-handle way to re-
cover explicitly a central difference approximation to derivatives of any even order. A main
problem, however, remains open. It is not clear wether the solution to the discrete Fokker–
Planck equation converges towards the stationary discrete solution or not. A partial result
in this direction has been derived in Section 3.4. Also, it would be interesting to know if,
in the set D, and for random variables with a law that satisfies the normalization condition
(2.3), the Shannon entropy (3.39) attains the maximum value in correspondence to the law
of the stationary distribution SN defined in (3.44).
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