
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 70, 2021 5009916

CoMo: A Novel Comoving 3D Camera System
Andrea Cavagna , Xiao Feng , Stefania Melillo , Leonardo Parisi , Lorena Postiglione , and Pablo Villegas

Abstract— Motivated by the theoretical interest in reconstruct-
ing long 3D trajectories of individual birds in large flocks,
we developed CoMo, a comoving camera system of two synchro-
nized cameras coupled with rotational stages, which allows us to
dynamically follow the motion of a target flock. With the rotation
of the cameras, we overcome the limitations of standard static
systems that restrict the duration of the collected data to the short
interval of time in which targets are in the cameras common field
of view, but, at the same time, we change, in time, the external
parameters of the system, which have then to be calibrated
frame by frame. We address the calibration of the external
parameters measuring the position of the cameras and their three
angles of yaw, pitch, and roll in the system home configuration
(rotational stage at an angle equal to 0◦) and combining this
static information with the time-dependent rotation due to the
stages. We evaluate the robustness and accuracy of the system by
comparing reconstructed and measured 3D distances in what we
call 3D tests that show a relative error of the order of 1%. The
novelty of the work presented in this article is not only on the
system itself but also on the approach that we use in the tests,
which we show to be a very powerful tool in detecting and fixing
calibration inaccuracies, and it, for this reason, may be relevant
for a broad audience.

Index Terms— 3D, 3D reconstruction, camera calibration, cam-
era system, field data collection, panning system, wide field of
view.

I. INTRODUCTION

IN RECENT years, technological advances in the field of
imaging and computer vision, together with the growing

demand for 3D contents, contributed to make digital camera
stereo systems accurate in the 3D reconstruction and, at the
same time, accessible to a wide audience. This led to the
proliferation of stereo vision applications in fields as diverse
as entertainment [1]–[3], surveillance [4]–[7], navigation
[8]–[11], robotics [12]–[15], medicine [16]–[19], and
biology [20]–[23].

The experimental design of a 3D system is delicate because
of the several factors that contribute to its reliability and feasi-
bility, which strictly depends on the specific data to be gathered
and on the environmental and logistic constraints of the data-
acquisition location. Standard stereo systems are designed
in a static fashion with the position and the orientation of
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the cameras fixed in time, thus, with a fixed field of view.
This setup is suitable for most of the laboratory experiments,
where the phenomena to be reconstructed happen in a confined
volume, but it represents a severe limitation for nonconfined
field experiments.

Ideally, when dealing with nonconfined phenomena, one
would like to have a wide field of view and a high resolution
of the system. However, in fact, this is not possible since both
factors depend on the cameras’ focal length, which needs to
be short to have a large field of view, and it needs to be long
to have a high resolution. Therefore, one has to lower the
data-taking expectations, finding a compromise between the
two factors, which, most of the time, ends up reducing both
the field of view and the resolution of the system. A smarter,
though more complicated, strategy is to replace the static setup
with a dynamic one, effectively widening the field of view with
a controlled rotation of the cameras aimed at following the
targets [24]–[30]. The dynamic setup overcomes the limitation
of the static one by actually breaking the link between the size
of the field of view and the resolution of the system, which
is now the only factor depending on the focal length. Hence,
the resolution of the system can be set as high as needed
without reducing the 3D volume covered by the system.

The rotation of the cameras makes the external parameters
(orientation and position of the cameras in the world reference
frame) time-dependent quantities that have then to be carefully
calibrated frame by frame to guarantee high accuracy in
the reconstruction of the scene. The literature suggests two
different calibration approaches [31]: 1) 3D methods that
reconstruct key points of calibrated 3D targets and estimate
the external parameters as the ones that minimize the 3D
reconstruction error [32]–[36] and 2) 2D methods that match
features across the cameras, reconstruct the correspondent
3D points that are then projected back on the cameras, and
estimate the external parameters as the ones that minimize the
reprojection error [37]–[45].

In [46], we show that both approaches are essential to
achieve high accuracy in the 3D reconstruction. The 2D
methods give the best performance in the first step of the 3D
reconstruction process, which consists of matching the images
across the cameras. The 3D methods give the best performance
in the second step of the 3D reconstruction process, where the
point-to-point correspondences identified in the first step are
used to triangulate and actually determine the 3D position of
the targets.

In their standard implementations, both the methods start
from a set of correspondences that should cover the entire field
of view to guarantee the reliability of the two methods [33].
This is not problematic for 2D methods, where point-to-point
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correspondences may be found all over the acquired images,
but it represents a severe limitation for 3D methods in wide-
field setup, where it is not always possible to cover the entire
field of view with calibrated targets. The third approach,
which is robust with respect to the 3D reconstruction accu-
racy regardless of the size of the field of view, consists of
calibrating the external parameters of the system by directly
measuring the orientation and position of all the cameras in
a common reference frame. This latter approach represents a
valid alternative to the 3D methods described above, but it is
generally not used because it requires particular care in the
system setup that has to be specifically designed to guarantee
a precise measurement of the external parameters.

In this article, we present a novel comoving 3D system,
CoMo, inspired by the human ability to follow the trajectory of
a target with a coordinate movement of the eyes: cameras are
coupled with rotational stages that drive a controlled rotation
of all the cameras in the same direction and at the same
rotational speed, in this way, dynamically adapting the field
of view to the motion of the targets.

We developed and tested CoMo in the context of 3D data-
taking of flocks of birds with cameras pointing at a wide region
of the sky. This makes 3D standard methods for the calibration
of the external parameters not appropriate. Therefore, for the
calibration of the set of external parameters to be used in
the 3D reconstruction process, we adopt the direct measure
approach, measuring the position and the three angles of yaw,
pitch, and roll of all the cameras in a common reference
frame with the technique described in Section III-C2 and
Appendix A in the Supplementary Material, while we use
the standard 2D method described in [20] for the calibration
of the parameters used for the identification of point-to-
point correspondences across the cameras. We also propose
a new procedure to improve the standard calibration of the
camera focal length [47] that we found to be not sufficiently
accurate for our purposes. We discuss this new procedure
in Section VII-B, where we show how we could detect and
fix the inaccuracy on the focal length by performing 3D
reconstruction tests on calibrated targets.

We extensively tested CoMo to evaluate its performance in
terms of the 3D reconstruction, see Section VII-C where we
show that the comparison between reconstructed and measured
3D quantities on calibrated targets gives excellent results with
a 3D reconstruction error of the order of 1%.

With a full-fledged experimental data-taking campaign in
the field, we could also check the feasibility of the experiment
with the CoMo setup, which proved to be easy to mount and
easy to calibrate in the field. The data collected in the field
confirmed that, with the comoving strategy, we can actually
track the flocks significantly longer than with a standard static
system, as shown in Video1 in the Supplementary Material.

This article is organized as follows. In Section II, we state
the requirements for the system in terms of 3D reconstruc-
tion accuracy. In Section III, we describe the design of the
system, our field setup, and the calibration procedure for
both the internal and external parameters. In Section IV,
we address the mathematical formalism of the 3D recon-
struction for our dynamic system. In Section V, we show

the tests that we performed on the equipment to measure
the temporal offset between cameras and rotational stages
and assess the camera synchronization and the camera frame
consistency. In Section VI, we show the tests we performed
on the rotational stages home repeatability and angle accuracy.
In Section VII, we show in detail the tests on the 3D
reconstruction accuracy of the system, and we introduce a
novel approach to fix inaccuracies in the calibration of the
cameras’ focal length. Finally, in Section VIII, we show an
example of the 3D reconstructed trajectories of a flock of
starlings collected with our dynamic system.

II. 3D RECONSTRUCTION ACCURACY REQUIREMENTS

The requirements on the 3D reconstruction accuracy are
strictly dependent on the application for which the data are
collected. We collect field data of bird flocks with the aim
of understanding the mechanisms behind the emergence of
collective behavior, and in particular, we investigate the cor-
relation properties of these systems [48], [49]. We mainly use
the data to measure, how far (in space) and for how long
(in time), the change in the direction of flight of a bird1

influences the change in the direction of flight of the other
birds in the flock.

In this framework, the absolute positions of the birds are
not very useful, while the relevant quantities are the birds’
directions of flight and the bird-to-bird distances. Therefore,
we need CoMo to be particularly accurate in the 3D recon-
struction of the distances between targets. More precisely,
we require the relative error on the reconstructed 3D target-
to-target distances to be: 1) not dependent on the position of
the targets to avoid a spatial bias on the quantities that we
compute; 2) not dependent on the instants of time where the
targets live, to avoid a temporal bias on the quantities that we
compute; and 3) smaller than 0.01, which we define to be the
threshold of the accuracy acceptability.

We evaluated CoMo 3D reconstruction accuracy with the
tests described in detail in Section VII, showing that the system
fulfills all the requirements above.

III. COMO SYSTEM

In this section, we describe the hardware design of CoMo,
its field setup, and the calibration procedure that we developed
to fulfill the 3D reconstruction accuracy requirements listed in
Section II.

A. Design

The design of CoMo is shown in Fig. 1: each of the
two IDT OS10-4K cameras (resolution: 3840 px × 2400 px,
sensor size: 17.9 mm × 11.2 mm, and frame rate: 155 fps),
equipped with Schneider Xenoplan 28 mm f/2.0 optics,

1The 3D velocity vector, v , of a bird is given by �X/�t , where �X is
the 3D displacement vector of the bird in the interval of time �t . The bird
direction of flight, v̂ , is defined as the velocity versor v̂ = v/|v|. The change
in the direction of the bird is instead given by v̂− V̂ , where V̂ is the direction
of flight of the group that is computed averaging the direction of flight of
all the birds in the flock. The change in the direction of flight is, therefore,
computed from the distance between the 3D position of the bird at times t
and t +�t .
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Fig. 1. Scheme of the system. The two IDT OS10-4K cameras (resolution: 3840 px × 2400 px, sensor size: 17.9 mm × 11.2 mm, and frame rate: 155 fps),
equipped with Schneider Xenoplan 28 mm f/2.0 optics, are coupled with the two high-speed one-axis rotational stages (Newport RVS80CC; nominal accuracy:
10−4 rad and nominal home repeatability: 4 · 10−3 rad). Each camera is connected with a 19-pin Lemo cable to the IDT TC-19 hub, which is also connected
to a control laptop. The camera parameters, such as the exposure time, the sensitivity, and the frame rate, are manually set on the IDT proprietary software
Motion Studio running on the laptop. They are sent via an Ethernet connection from the laptop to the hub, which redirects them to the cameras through
the 19-pin Lemo cable using an IDT proprietary protocol. The hub sends to the cameras also the synch signal, which is generated by the hub itself. The
direction and the speed of rotation of the stages are manually controlled via a Joypad Logitech F310 connected, via a UBS cable, to a motion device, namely,
a Raspberry Pi 3 Model B+ connected to a 7” touchscreen. The motion device communicates, via an Ethernet connection, to the unit controller, which
redirects the signals to the rotational stages on a DB25 cable, in the form of a high-frequency nano PWNM. The data acquisitions start with both the cameras
and the stages in the waiting from trigger mode until they simultaneously receive the trigger signal, a 5 V TTL signal. The trigger signal is generated with
a standard trigger button, and it is sent at the same time to the hub, which redirects the signal to the cameras, and to the unit controller, which redirects the
signal to the stages.

is mounted on a high-speed one-axis rotational stage (Newport
RVS80CC; nominal accuracy: 10−4 rad and nominal home
repeatability: 4 · 10−3 rad). The cameras are connected to
the hub IDT TC-19 that has the double tasks of redirecting
the signals from a laptop controller to the cameras and of
synchronizing the cameras via a trigger and a synch signal.

1) Motion Control: The rotation of the stages is manually
controlled by an operator via a motion device connected to
a unit controller (XPS-RL4), which is also connected to the
stages.

The data acquisition procedure starts with cameras and
stages in waiting for the trigger mode, until they simultane-
ously receive a signal from a hardware trigger connected to
the camera hub and the stage unit controller. We developed
two different motion modes for CoMo.

a) Off-line motion mode: The speed and the direction of
rotation are set before the acquisition starts independently for
each stage.

b) Online motion mode: The speed and the direction of
rotation may be chosen online from an operator via a joypad,
but they are set to be equal for all three stages (see Appendix B
in the Supplementary Material).

The two different motion modes have different applications:
we use the off-line mode when performing tests on the system,
where we need to be versatile on the cameras’ rotation, while
we use the online mode when we collect data in the field,
and it is of great importance to change the orientations of the
cameras in real time in order to track the moving target.

B. Field Setup

We perform experiments on bird flocks in the urban environ-
ment of Rome, Italy, setting up CoMo on the roof of Palazzo

Massimo alle Terme, Rome, Italy, in front of one of the bigger
and more stable birds roosting site in Rome.

In this location, our working distance is about 150 m with
a system baseline, i.e., the distance between the cameras,
of about 25 m. The coupling between the cameras (with a
sensor size of 17.9 mm × 11.2 mm) and the optics (with a
focal length of 28 mm) produces a wide field of view of 35.5◦
in width and 22.6◦ in height.

C. CoMo Calibration

Our field setup with a working distance of 150 m and a
wide field of view of 35.5◦ × 22.6◦ makes the calibration of
both the internal and external parameters particularly tough.

We calibrated the internal parameters focal length, the posi-
tion of the image center, distortion coefficients), and the
external parameters (orientation and position of all the cameras
with respect to a common reference frame in the 3D space)
with two different procedures.

1) Calibration of the Internal Parameters: For the cal-
ibration of the internal parameters, we adopt a two-step
procedure. In the first step, we use a standard calibration
approach. We calibrate each camera separately in the lab
using a standard calibration method based on [47]: we collect
50 images of a 13 × 19 checkerboard in different positions,
we randomly pick 20 of these pictures, and we estimate
the focal length, the position of the image center, and the
first-order radial distortion coefficient. We iterate this process
50 times, and we choose each parameter as the median value
obtained in the iterations.

For our dynamic setup, this standard calibration approach
proved to be not accurate enough, producing a time-dependent
3D reconstruction error due to a slight miscalibration of the
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focal length, which we estimated to be of the order of 0.5%.
Therefore, we designed a second step of the calibration to
adjust the focal length, using the dynamic approach described
in detail in Section VII-B1.

Note that, because of the large working distance and of the
large field of view, we cannot perform the standard calibration
of the internal parameters with a calibration target kept at the
working distance while filling the entire field of view, as this
would require a planar target of 98 m × 60 m. Therefore,
we chose to reduce the distance of the calibration target in
favor of filling the field of view.

This might be the reason for the miscalibration of the
cameras’ focal length obtained with the standard method in
the first step of our calibration procedure. However, our results
are also compatible with a different scenario, which may be
the scope of the interesting future investigation: the standard
calibration approach is less sensitive than the dynamic one
to small variations of the estimated focal length; hence, these
variations are boosted and, therefore more detectable, using
dynamic information. This latter scenario suggests that the
dynamic approach to the calibration may be an efficient and
relatively simple strategy to improve the calibration perfor-
mance both for static and dynamic system configurations.

2) Calibration of the External Parameters: In [46], we point
out the need for two different sets of external parameters: the
first set to be used to match points across the cameras and
the second set to be used in the 3D reconstruction process. For
the calibration of the first set of parameters, we use a standard
2D calibration procedure, and we refer the interested reader
to [20], while here we focus on the calibration of the second
set of parameters, i.e., the one used for the 3D reconstruction.

Our experimental setup, with a working distance of 150 m
and with a large field of view, is not suitable to calibrate
the external parameters with standard procedures. Our field
of view is essentially a wide area of the sky, where we
cannot locate any calibration 3D target; hence, we cannot use
a 3D calibration method. We prefer to not use a feature-based
calibration routine because of their low accuracy in the 3D
reconstruction, which, in [46], we show to be higher than 1%.
Therefore, we address the calibration with a different strategy.

CoMo external parameters are actually given by the com-
bination of a static term, which does not change in time and
describes the initial position/orientation of the cameras, and
a dynamic term, which is time-dependent and describes the
rotation of the cameras due to the stages. We directly measure
these two terms separately.

We initially set the rotational stages in their home position,
i.e., angle of rotation equal to 0 rad, and we set the pitch and
roll angles of both cameras, respectively, to 0 and 0.22 rad
using a clinometer (RS Pro Digital level 667-3916; accuracy:
3 · 10−3 rad). We set the yaw angle of the left camera, αL ,
to 0.11 rad and the yaw angle of the right camera, αR , to
−0.11 rad with a simple but effective technique, with which
we achieve an accuracy of 10−3 rad and we extensively tested
on static camera systems [50], [51] (see Fig. 2 and Appendix A
in the Supplementary Material). With this procedure, we mea-
sure the orientation of both cameras in a common reference
frame. To define the positions of the two cameras in the real

Fig. 2. Experimental setup. Each camera is mounted on a rotational stage
that is locked on an L-shape bar and then on a tripod. The L-bars have a
gauge on their small edge (on the left-hand side for the right camera and on
the right-hand side for the left camera). We set the yaw angles of the cameras
by tightening a fishing line, i.e., a thin nylon line, between the two external
edges of the bars, so that the fishing line crosses the gauge, and it can be used
as a pointer on the gauge. Denoting the long side of the L-bar with L and the
distance from the point where the line crosses the gauge and the side of the
bar with l, we can measure the yaw angles as atan(l/L), with the negative
sign for the right camera and with the positive sign for the left camera. The
accuracy of the measured angle is 10−3 rad, obtained as δl/L , with δl being
the thickness of the wire.

3D world, we still need to fix a metric scale factor that we
calibrate by measuring the system baseline, i.e., the distance
between the cameras, with a high precision range finder (Hilti
Laser the probability distribution (PD)-E; accuracy: 1 mm).

We start the data acquisition by moving the cameras from
this home calibrated configuration and recording the time-
dependent angles of rotation of the stages. With a postprocess-
ing procedure, we can then associate to each camera frame
the correspondent external parameters combining the ones
measured in the home configuration and the time-dependent
rotation of the stages recorded during the data acquisition
(see Sections IV-D and IV-E).

IV. DYNAMIC 3D RECONSTRUCTION

There is a vast literature about 3D reconstruction for
static camera systems, i.e., system with fixed cameras ori-
entation, [33]–[36], [38], [39], [41], [42], [44], [45]. Here,
we move a step forward to generalize the 3D reconstruction
theory to our dynamic system.

A. Camera Reference Frame

The camera reference frame OC xyz has the origin, OC ,
in the camera optical point, the z-axis directed as the optical
axis, and the xy plane parallel to the sensor with the x-axis
pointing right and the y-axis pointing down (see Fig. 3). In our
dynamic setup, this reference frame is not fixed in time, but
it rotates on the xz plane around the camera optical center.

B. Pinhole Model

The pinhole camera model describes the mapping between
the 3D real world and the 2D camera world as a central
projection (see Fig. 3): the 2D image, q , of the 3D point
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Fig. 3. Single camera. The camera reference frame has the origin in the
camera optical point, OC , the z-axis directed as the optical axis, and the
xy plane parallel to the sensor with the x-axis pointing right and the y-axis
pointing down. The pinhole model describes the relationship between the 3D
world and the 2D camera sensor as a central projection: the image q of a 3D
point lies at the intersection between the sensor and the line passing through Q
and the camera optical center. This correspondence is not one-to-one because
q is not only the image of the point Q but also of all the other 3D points
belonging to the optical line, OC Q. This ambiguity makes a single camera
not sufficient for the 3D reconstruction.

Q lies at the intersection between the camera sensor and the
line between Q and the camera optical center, OC . Its natural
mathematical framework is then projective geometry, where
the correspondence between a 3D point Q ≡ (X,Y, Z) and its
2D image q ≡ (u, v)2 is expressed in a very simple formalism

q = P · Q (1)

where q = (ū, v̄, w̄) is the 2D projective point corresponding
to q , namely, u = ū/w̄ and v = v̄/w̄, and Q = (X,Y, Z , 1)
represents the homogeneous projective coordinates of Q [52].
P is the 3 × 4 matrix of the form P = K · [R|T ], where K
is the 3 × 3 matrix of the camera internal parameters, R and
T are, respectively, the 3 × 3 rotation matrix and the three
components translation vector that bring the camera reference
frame in the world reference frame where Q lives, and they
both depend on the external parameters of the system.

This definition of P can be further simplified by noting that

T = −R · C (2)

where C is the vector that connects the origin of the world
reference frame to the origin of the camera reference frame;
hence, P = K R · [I | − C], where I denotes the 3 × 3 identity
matrix.

In a static camera, both R and C are fixed in time, but, in our
dynamic system, the camera reference frame rotates about the
camera optical center. Hence, the vector C is constant in time,
while R ≡ R(t). The time-dependent generalization of the
projective matrix is then straightforward

P(t) = K R(t) · [I | − C]. (3)

C. World Reference Frame

We denote the two cameras’ reference frames by OL xL yL zL

(for the left camera) and OR xR yRzR (for the right camera).

2For the sake of simplicity, in this article, we will refer to the 2D coordinate
of an image point as defined in the image reference frame with the origin in
the image center instead of the standard reference with the origin in the top
left.

Fig. 4. Camera system. OL xL yL zL and OR xR yR zR represent the left and
right camera reference frames. Oxyz is, instead, the world reference frame,
with the origin on the middle point of the camera baseline, OL OR , the x-axis
pointing toward OR , the y-axis pointing down along the world gravity axis,
and the z-axis pointing outward following the right-hand rule. In this reference
frame, the coordinates of the two camera centers are CL = (−d/2, 0, 0) and
CR = (d/2, 0, 0). The circle arrows specify the positive direction and the axis
of rotation for the yaw, pitch, and roll angles.

We define also a third reference frame, Oxyz, with the origin
on the middle point of the camera baseline, OL OR (see Fig. 4),
the x-axis pointing toward OR , the y-axis pointing down
along the world gravity axis, and the z-axis pointing outward
following the right-hand rule. This reference frame is fixed
in time, and this is the reference frame within which we will
reconstruct the scene. It is then in this reference frame that we
need to express the projective matrices of the two cameras.

D. External Parameters

As we already stated in Section III-C2, with our setup,
the external parameters are the combination of a static term,
which describes the home configuration, and a dynamic term,
which describes the rotation due to the stages; thus, the camera
rotational matrices are of the form

RC = RyC (−ϕC(t)) · RS(αC , βC , γC) (4)

where the subscript C indicates a generic camera (left or right),
RyC (−ϕC(t)) is the time-dependent rotation, about the y-axis
of the camera reference frame, which takes into account the
rotation of the stage of an angle ϕC(t), RS(αC , βC, γC) is
the static rotation matrix that takes into account the home
orientation of the camera, and αC , βC , and γC are the angle of
yaw, pitch, and roll, respectively.3 In particular, for our system

RS = RzC (−γC) · RxC (−βC) · RyC (−αC). (5)

Note that the order of the rotations in (5) is crucial, and it
explicitly depends on the tripod model used in the experimen-
tal setup (see Appendix A in the Supplementary Material).

Note also that our choice of the world reference frame, with
the origin at the center of the camera baseline and the x-axis

3In the world reference frame, the x-axis is parallel to the fishing line that
we use to measure the two yaw angles, αL and αR (see Fig. 2), which are then
automatically measured with respect to the world reference frame. A similar
argument holds also for the pitch and roll angles that we measure using a
clinometer because the y-axis of the world reference frame is parallel to the
gravity direction.
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Fig. 5. Time discretization. (a) Two-time discretization of the camera (purple
dashed line) and the stages (green dashed line) have to be matched to associate
the position of the stage at each camera sample, i.e., frame. In the continuous
world timeline, cameras and stages receive the trigger signal simultaneously,
but, due to hardware lag time, they do not start to record immediately and,
in general, not at the same time. We do not need to know the recording starting
time of cameras and stages in the world timeline, but we need to measure
the camera-stage offset (red double arrow on the world timeline axis). Once
we know this offset, we can match each camera time sample, ti , with its two
closest time samples of the stage, t j and t j+1: ti ∈ [t j , t j+1]. These intervals
are highlighted with white and red striped boxes. (b) Black sinusoidal line
represents the angle of rotation of the stage. The green circles correspond to
the time samples of the stage, where the angle is actually measured, while the
purple circles correspond to the camera time samples where we need to know
the stage position. We associate to each camera time sample the angle obtained
with a linear interpolation at time ti between the two points (t j , ϕ(t j )) and
(t j+1, ϕ(t j+1)).

pointing toward the right camera, makes the expression for
the two camera centers, CL and CR , extremely convenient:
CL = (−d/2, 0, 0) and CR = (d/2, 0, 0) with d being the
length of the baseline.

E. Time Discretization

In Section IV-D, we derived the expression of the cameras’
rotational matrices implicitly considering the time as a con-
tinuous variable, while, in the actual experimental setup, time
is, in fact, measured in discrete steps, what we normally call
frames.

In a standard static system, the only relevant time rate is
one of the cameras. Time discretization can then be efficiently
addressed by expressing all the dynamic quantities in the
camera frame unit of time. In our dynamic system, we have
instead two time rates: one of the cameras defined by the
cameras’ frame rate and one of the rotational stages defined
by their sampling rate. Cameras and stages discretize time with
two different rates (the cameras shoot at 155 fps, and the stages
gather the data at 1000 Hz); see Fig. 5 where the camera and
the stage sampling times are highlighted with purple and light
green dashed lines, respectively. We reconstruct the position
of the targets from the images; hence, our primary time rate is
one of the cameras. In order to perform an accurate calibration
of the external parameters, we need to match this primary time
line with the secondary time line of the stages and associate
the correct stage position at each camera frame.

In addition to these two discretizations of time, we have also
the continuous world timeline. In the world timeline, cameras
and stages receive the trigger signal simultaneously, but, due
to hardware time lags, which are different for the cameras

and the stages, they do not start to record immediately and,
in general, not at the same time. We do not need to know the
recording starting times with respect to the world reference,
but it is crucial to know the time delay between cameras and
stages, �t0, highlighted with a red arrow on the world timeline
in Fig. 5. We measured �t0 with the procedure described in
Section V-A, and we estimated a delay of 3 ms of the cameras
with respect to the stages.

Once this time offset is measured, we can express the time
corresponding to the camera frame and the time corresponding
to the stage samples in the same reference, defining the i th
camera time as ti = �t0 + i�tC and the j th stage time as
t j = j�tS, where �tC = 1/155 s and �tS = 1/1000 s denote
the time steps of the cameras and the stages, respectively.

Finally, we associate to the i th camera frame, ti , its two
closest stage samples, t j and t j+1, such that ti ∈ [t j , t j+1] (see
Fig. 5) where these last intervals are highlighted with white
and red striped boxes, and we define the angle ϕC(ti ) with
a linear interpolation of the two angles ϕC(t j ) and ϕC(t j+1)
measured by the stages.

F. 3D Reconstruction

The ambiguity of the camera projection, which associates
to the same 2D image all the 3D points lying on the same
optical line shown in Fig. 3, can be solved with two cameras
(see Fig. 4): if qL and qR are the images of the same point,
Q, in the left and the right camera, Q must lay on the two
optical lines, one for each camera, passing through the two
images, and it is then the point at the intercept between the
two lines. In a mathematical formalism, this consists of solving
the following system in the unknown Q:{

qL = PL (t) · Q

qR = PR(t) · Q
(6)

where qL and qR are the 2D projective points corresponding
to qL and qR and Q = (X,Y, Z , 1) is the 3D homogeneous
projective point corresponding to Q. PL (t) and PR(t) are the
projective matrices of the left and the right cameras defined
as in (1), each with its own calibration matrix, KL and K R ,
its own rotation matrix defined as in (4), RL and RR , and its
own center in the world reference frame, CL and CR .

In deriving (6), we assumed that, at each instant of time,
we detect the exact position of the targets on the images,
without considering any kind of noise. The direct effect of
noise is that the two lines defined by the system (6) do not
intersect anymore. Therefore, the 3D reconstructed coordinates
cannot be found as the exact solution of the system but as
its approximation, which we obtain using the standard DLT
(direct linear triangulation) method in [52].

Note that, in (6), we identify the camera positions with
the optical centers even though we do not know their exact
position. We assume that the optical centers are located in
the same position on the camera body (except for small
fluctuations) because the factory design is the same for both
cameras. We assume also that they are both located at the
center of the camera body, which may be not completely
correct. With this choice, we may then produce a misposition
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Fig. 6. Time offset. In order to measure the camera-stage time offset,
we acquired images of five different targets while rotating the cameras with
a periodic movement between 1◦ and −1◦. The targets are still; hence,
the rotation of the cameras due to the stages produces an apparent rotation
of the 2D coordinates of the targets at the same speed but in the opposite
direction. We estimate the offset from the cross correlation between the signal
recorded by the stage and the position of the targets. (a) Evolution in time
of the position of the five targets used in the test, each highlighted in a
different color. (b) Signal is recorded by the rotational stage. (c) Correlation
function Ci (τ ) for each of the five targets. The maximum of all the cross
correlation functions occurs at the same time, which is the offset �t0. Inset:
the angle recorder by the stage, green line, and the position of one of the
targets, purple line, normalized to be represented on the same scale in the
plot. The comparison between the two signals shows the apparent movement
of the target at the same speed of the stage but in the opposite direction.

of the two cameras, which, in principle, may affect the 3D
reconstruction accuracy of the system. However, the error
that we are introducing is a systematic error, i.e., equal for
both cameras; hence, we may induce a systematic error on
all the 3D reconstructed points, namely, a solid translation
of the 3D world. This may be relevant for the accuracy of
the absolute position of the targets, but it does not affect the
accuracy of the mutual distance between pairs of targets, which
is what we are interested in, as we stated in Section II.

V. TIME DISCRETIZATION: TESTS

We extensively tested the equipment to measure the
time offset �t0 between the cameras and the stages (see
Section IV-E) and highlighted with a red arrow in Fig. 5.
We also checked the consistency of the cameras’ frame rate
and the synchronization between the cameras.

A. Time Offset

We measured the time offset between the cameras and
the stages recording images of five targets (2 × 2 cardboard
checkerboards) while rotating the stages with a periodic move-
ment between 1◦ and −1◦, starting with the stages in their
home position.

The targets are still; hence, the rotation of the cameras
(due to the stages) produces an apparent rotation of the 2D
coordinates of the targets: if a camera rotates in the clockwise
direction at a certain speed, we will detect a rotation of the
u-coordinate of the targets with the same speed but in the
counterclockwise direction, and vice versa, a counterclockwise

rotation of the camera corresponds to a clockwise rotation
of the targets. Therefore, we can estimate the time offset
comparing the signal gathered by the stages with the position
of the targets (see Fig. 6(a) where we plot the u-coordinates of
the five targets and Fig. 6(b) where we plot the angle recorded
by the stage as a function of time). We compute the cross
correlation of the two signals, taking care of the following
three factors: 1) the two signals are recorded with different
time discretization; 2) the duration of the signals is finite in
time; and 3) targets positions are not centered in 0.

We oversampled the signal from the cameras, i.e., the
u-coordinate of the targets, with linear interpolation. In this
way, we resampled the camera signal at 1000 Hz (the gathering
frequency of the stages) so that the time resolution of the
cross correlation is defined by the time discretization of the
rotational stage. We took care of the finite duration of the two
signals restricting the signal of the stage at one period (from
the first to the second maximum), highlighted with a red arrow
in Fig. 6(b). Finally, we normalized the target coordinates by
subtracting their home position (see the inset of Fig. 6(c) where
we plot the signal from the stage in light green and the position
of one of the targets in purple, normalized to be on the same
y-scale of the stage).

We define the cross correlation between the signal of the
stage and the coordinate of the i th target as

Ci (τ ) = 1

T − τ

T∑
t=0

ϕ(t)ūi(t + τ ) (7)

where ūi is the normalized position of the i th target. For each
target, we can define τi as the point where Ci (τ ) reaches its
maximum. We found that all the targets have the maximum
of Ci (τ ) at the same point [see Fig. 6(c)], which is the time
offset �t0 between the cameras and the stages, and which we
estimated to be equal to 3 ms.

B. Frame Rate Consistency and Cameras Synchronization

We checked the frame rate consistency and the synchro-
nization between the cameras using a chronometer that we
built specifically for these tests: a needle spins at a constant
rotational velocity (20 rps) over a protractor. Knowing the rota-
tional speed of the needle, the frame rate and synchronization
accuracy are then directly measured from the angle between
the positions of the needle in two different images.

We tested the frame rate consistency for each camera
separately, by measuring the angle span by the needle between
two subsequent images. We found a negligible error, i.e., the
error is below our resolution of 7 · 10−5 s corresponding
to 0.5◦ at a rotational speed of 20 rps. We also tested the
synchronization between the cameras, comparing the position
of the needle on the images acquired at the same time frame
from different cameras, and again, we found a negligible error.

VI. YAW ANGLES ACCURACY IN TIME

The accuracy of the time-dependent yaw angles,
ϕL(t) and ϕR(t), depends on two factors: the rotational
stage home repeatability and the accuracy on the interpolation
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we use to compute ϕL(t) and ϕR(t), as described in
Section IV-E. We evaluated the accuracy both on the home
repeatability and the interpolation on each pair camera/stage
separately, by performing the tests shown in this section.

A. Stage Home Repeatability

In the rotational stage home procedure we include the
initialization of the stage, namely we first initialize the stage,
and then, we move it to the home position. The unit controller
offers also a direct procedure to home the stage from a generic
position, but we chose the indirect procedure because of its
higher consistency (see Appendix C in the Supplementary
Material for more details).

We denote by ϕ0 the stage home position. We cannot have
an absolute measure of ϕ0; hence, we measure its fluctua-
tion, �ϕ0. With the camera mounted on the stage, we collect
a set of 100 images of seven targets (2 × 2 checkerboard)
acquired after the initialization and homing procedure of the
stage. Between two consecutive acquisitions, we initialize the
stage and send it to the home position. We detect the targets on
the images with the subpixel routine in [53] that associates to
each target the position of its central corner, and we measure
the angular fluctuation of the home position within each pair
of consecutive images as the displacement of the targets,
normalized by the camera focal length 	.

To evaluate the natural fluctuations in the targets positions
due to the detection routine, we perform a first test that we
will use as a reference acquiring a set of 100 images with
the stage still in the home position. We compute the PD of
the angular fluctuations, as highlighted in black in Fig. 7.
Then, we perform the actual home repeatability test acquiring
a set of 100 images with the stage in the home position,
after performing the initialization and homing procedures, and
we compute the PD of this homing procedure fluctuations,
as highlighted in purple in Fig. 7, which shows a zero median
and a zero mean (median equal to 4.7 · 10−7 rad and mean
equal to 6.2 · 10−7 rad) and values smaller than 6 · 10−5 rad.

The plot shows the high compatibility of the two PDs;
hence, we conclude that the error on the home position is
negligible and smaller than the one guaranteed by the factory
equal to 4 · 10−3 rad.

B. Angle Interpolation

In order to measure the error on the interpolation of the
angles recorded by the stages, we perform the following
test: we separate cameras and stages, and we stuck on each
stage a 13 × 19 checkerboard printed on a foam board.
We put the stage in rotation, and we acquired images of the
rotating checkerboard keeping the camera still, starting with
the rotational stage in the home position.

We use the evolution in time of the position of the checker-
board corners to estimate the angle of rotation of the stage,
in this way, computing the rotation angle with a method that
does not depend on the angular position gathered from the
stage.

For each image, we detect the corners of the checkerboard
with the subpixel routine in [53]. We use the first part of

Fig. 7. Home repeatability. The PD obtained while acquiring images with
the stage still represents the reference distribution for our test. The reference
distribution, highlighted in black, gives the measure of the fluctuations due
to the target’s detection routine. The PD of the fluctuations on the home
position of the stage, highlighted in purple, obtained homing the stage after its
initialization procedure. The PD is compatible with the reference distribution,
with the fluctuations smaller than 6 · 10−5 rad and with a zero median and a
zero mean (median equal to 4.7 · 10−7 rad and mean equal to 6.2 · 10−7 rad).

the acquisition, when the stage is still, to define a reference
position for each corner, namely, we associate to each corner
the average of its coordinates over all the images with the
stage in its home position. Then, we compute the angle of
rotation of the stage corresponding to a given camera frame, t ,
using the Kabsch algorithm [54]. More in detail, we associate
to each frame t the rotational matrix that minimizes the root
mean squared deviation (RMSD) computed with the Kabsch
algorithm between the positions of the corners detected at time
t and the reference positions. Finally, we compared the angle
found with the Kabsch algorithm and the angle that we would
associate with the same camera frame interpolating the angular
positions gathered by the stages.

We carried out this test with the stages performing periodic
rotation in three different configurations, corresponding to
different choices of the parameters.

1) Slow: ϕmax = 2◦, vmax = 1◦/s, and amax = 0.5◦/s2.
2) Moderate: ϕmax = 10◦, vmax = 10◦/s, and

amax = 10◦/s2.
3) Fast: ϕmax = 18◦, vmax = 36◦/s, and amax = 72◦/s2.

Here, vmax and amax are the maximum speed and the
maximum acceleration reached by the stages, and ϕmax denotes
the amplitude of the periodic rotation, i.e., the stage performs
a periodic rotation between ϕmax and −ϕmax.

The results of these tests are shown in Fig. 8 where,
in the first column, we plot the angle gathered by the stage in
the three different tests, and in the second column, we show
the PD of the error on the angle, �ϕ, defined as the difference
between the interpolation of the angle measured by the stage
and the angle measured via the Kabsch algorithm.

As expected, we found that the error grows with the
speed of the rotation because of a decreasing accuracy in the
interpolation, but, in all cases, we found an error smaller than



CAVAGNA et al.: CoMo: A NOVEL COMOVING 3D CAMERA SYSTEM 5009916

Fig. 8. Angle accuracy. (a), (c), and (e) Angle gathered by the stage in the
three different tests (slow, moderate, and fast). (b), (d), and (f) PDs of the
error on the angle, �ϕ, defined as the difference between the interpolation
of the angle measured by the stage and the angle measured with the Kabsch
algorithm. The first row refers to the slow configuration, the second row refers
to the moderate configuration, and the third row to the fast configuration.
As expected, the error grows with the speed due to the decrease of the
interpolation accuracy with the speed, and in all three cases, the error is
below 5 ·10−4 rad, being smaller than 5 ·10−5 rad for the slow configuration.

5 · 10−4 rad, being smaller than 5 · 10−5 rad for the slowest
test, which can be considered negligible for all our practical
purposes.

VII. SYSTEM ACCURACY EVALUATION: 3D TESTS

The question at the very core of all 3D reconstruction
systems is: how accurate is the system in reconstructing the
position of an object Q at a specific time t? Answering
this question is not straightforward, especially if, as in our
case, experiments are performed in the field where the system
cannot be mounted and calibrated once and for all. We believe
that a fair answer can only be given by checking reconstructed
quantities against reality.

This is what we actually do for our system in what we call
3D tests: with a laser range finder (Hilti Laser PD-E; accuracy:
1 mm), we measure the distance between pair of targets in
the common field of view of the cameras, we reconstruct
the position of the targets in our world reference frame,
and from these positions, we compute reconstructed target-
to-target distances. Finally, we compare reconstructed and
measured distances, and we compute the percentage error on
the measured distances.

We perform the 3D tests in two different fashions.
1) Static 3D Test: Cameras are set up in their home

configuration, and they do not move during the data
acquisitions.

2) Dynamic 3D Test: Cameras rotate during the data acqui-
sition.

A. 3D Test Setup

We evaluate the 3D reconstruction accuracy of the system,
checking that the requirements described in Section II are

fulfilled, performing the tests described in detail in
Section VII-B. In principle, we should perform the tests
exactly in the experimental configuration: camera baseline at
25 m, targets at a distance from the cameras in the range
between 100 and 150 m, and pitch angles of both cameras set
to 0.22 rad.

However, due to logistic constraints, we are forced to
perform the tests in a slightly different configuration: 1) we set
the camera baseline at about 10 m with targets at a distance
from the cameras in the range between 20 m and 40 m and
2) we do not manage to have targets in the common field of
view of the cameras for a pitch value of 0.22 rad, but we can
achieve the maximum pitch of 0.15 rad. We take care of these
two logistic limitations in the design of the test and in the data
analysis (see Section VII-C).

B. Accuracy on the Calibration of the Internal
and External Parameters

To evaluate the accuracy of the calibration procedures,
we perform 3D tests in a special configuration where we
can write the explicit coordinates of the reconstructed points.
To this aim, we set pitch and roll angles of both cameras
equal to 0, and we obtain the following explicit form of
the Z -coordinate of a 3D point (see Appendix D in the
Supplementary Material):

Z(t) = 	d

s(t)− (α + ϕ(t))	
(8)

where d is the system baseline, i.e., the distance between
the cameras that we measure with the laser range finder,
	 is the cameras focal length,4 s(t) = uL(t) − u R(t) is the
disparity, α = αR − αL and ϕ(t) = ϕR(t) − ϕL(t) are the
mutual orientation of the cameras due to the system home
configuration and the rotation of the stages, respectively.

From (8), we obtain the explicit expression of the relative
error on Z , δZ/Z

δZ(t)

Z
= δd

d
+ δ	

	
+ Z

	d
[ψ(t)δ	 +	δψ(t)] (9)

where ψ(t) = α + ϕ(t), and δd , δ	, and δψ denote the error
on d , 	, and ψ . Note that, here, we are not considering the
contribute due to the error on s(t), i.e., error in the position of
the targets on the images, because it is not relevant in the 3D
test setup (see Appendix A in the Supplementary Material).

Denoting the distance between two targets as �Z , we also
obtain that

δ(�Z)

�Z
= δd

d
+ δ	

	
+ 2

Z̄

	d
[ψ(t)δ	+	δψ(t)] (10)

where Z̄ is the mean Z -coordinate of the two targets.
We do not measure the absolute positions of the targets but

their mutual distances, �R; hence, in the 3D test, we can only
estimate the error on these distances, δ(�R). In Appendix A in
the Supplementary Material, we show that �R is proportional
to �Z , which means that δ(�R) is proportional to δ(�Z).
Therefore, we can write the explicit expression of the relative

4For the sake of simplicity, we are assuming the same value of the focal
length for both cameras.
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Fig. 9. Static 3D test. The plots show |δ(�R)|/�R for each pair of targets
as a function of their mean distance from the cameras, Z̄ . The orange circles
represent the result of the 3D test obtained with the original calibration
parameters. The orange dashed line is the mean value of |δ(�R)|/�R. Red
circles (left column) represent the results obtained by manually introducing an
error of 0.1605 m in the baseline length (δd/d = 0.015), while purple circles
(right column) represent the result obtained by manually introducing an error
of 0.003 rad in the angle α. (a) Error on d produces an increment of the
error, constant for all the targets. A constant fit of the data (red dashed line)
gives an estimate of δd/d equal to 0.016, compatible with the experimental
δd/d = 0.0015. (b) Error on α produces an increment of the error linear
in Z . A linear fit of the data (purple dashed line) gives a slope equal to
0.00059 m−1, which corresponds to δα = 0.0031 rad in perfect agreement
with the experiment. (c) When reducing the span of Z , the error due to d is
still well-estimated, with a constant fit that predicts an error on δd/d equal
to 0.016. (d) When reducing the span of Z , the error due to α cannot be
detected and estimated properly. The constant fit (red dashed line) and the
linear fit (purple dashed line) are both compatible with the data.

error on target-to-target distances by substituting δ(�Z)/�Z
with δ(�R)/�R in (10), which gives

δ(�R)

�R
= δd

d
+ δ	

	
+ 2

Z̄

	d
[ψ(t)δ	+	δψ(t)]. (11)

Equation (11) shows that δ(�R)/�R is made of a constant
term, which depends on the error on d and on 	, and a linear
term in Z̄ , which depends on the error on ψ and 	.

The idea now is to use the information of (11) to detect
potential sources of error in the system.

From the trend of δ(�R)/�R in Z̄ , we can make the first
discrimination between errors due to an incorrect measure of
the baseline versus errors due to inaccuracies in 	 and ψ ,
as shown in Fig. 9, where we present the effect on a static
3D test of an error on d or of an error in α. The difference
between the two results is evident: an error on d produces an
increase of the errors constant with Z , while the error on α
produces errors with a trend in Z . We stress here that it is
possible to discriminate between the two situations only if the
span in Z of the targets is large enough (see Fig. 9) where,
in the bottom figure, we show how the results would have
looked like with a short span in Z . To further discriminate
between an error in 	 and an error in ψ(t), we need dynamic
information. To this aim, we derive Z with respect to time,

and we obtain the following expression:

∂t (δZ) = Z 2

	d
[∂tϕ(t) · δ	] (12)

which tells us that the evolution in time of the error on Z is
quadratic in Z with a coefficient that depends on the rotational
speed, ∂tϕ, and the error on the focal length, δ	.

In Section III-C1, we mentioned that we need a two-step
procedure for the calibration of the internal parameters because
of the low accuracy on the estimation of 	 with the standard
calibration approach. We will use this last equation to show
how to detect and how to quantify the error δ	. Once we
corrected the error on 	, we can go back to (11) and check
for a potential error on the cameras’ orientation, with the tests
described in Section VII-B.

1) Improving the Focal Length Calibration: We check the
accuracy of the standard calibration of 	 with the following
3D test: we put in rotation one camera per time at a constant
rotational speed (v = 6◦/s). We check 	 of the left camera
rotating only the left camera in the clockwise direction

∂tϕL(t) = v and ∂tϕR(t) = 0 (13)

while we check 	 of the right camera rotating only the right
camera in the counterclockwise direction

∂tϕL(t) = 0 and ∂tϕR(t) = −v. (14)

Therefore, in both tests, ∂tϕ(t) = ∂tϕR(t) − ∂tϕL(t) = −v,
and (12) reads

∂t (δZ(t)) = −v Z 2

	d
δ	. (15)

Note that δZ is the reconstruction error; hence, δZ(t) =
Z3D(t) − Z , where Z3D is the reconstructed Z . This implies
that ∂t (δZ(t)) = ∂t Z3D(t)−∂t Z , but the targets are still; hence,
their position is constant in time and ∂t Z = 0. Equation (15)
can then be written as

∂t (Z3D(t)) = −v Z 2

	d
δ	 (16)

which tells us that the derivative of Z3D with respect to
time is constant for each target, and it linearly depends on
the speed of rotation and the error in 	. We checked the
evolution in time of Z3D(t), and we found the linear trend
shown Fig. 10(a) and (f), which is also the reason for the large
error bars of δ(�R)/�R in Fig. 10(b) and (g).

Equation (16) tells us more because it shows that ∂t Z3D(t) is
quadratic in Z , which means that targets at different distances
from the cameras will have a linear trend in time with different
slopes: the further apart the target the higher the slope. With a
linear fit of Z3D(t), we computed ∂t Z3D(t) for each target,
and we plot these quantities versus 〈Z 2

3D〉t
5 [see insets in

Fig. 10(c) and (h)]. From these last plots, we estimated δ	
with a linear fit, and we found an error of 41.61 px for the
left camera (	L = 6356.41 px with the standard calibration
and 	L = 6314.8 px with the dynamic calibration) and an

5〈Z2
3D〉t is the average in time of Z2

3D(t), and it is the most accurate estimate
of Z that we can give since we do not measure the absolute position of the
targets but targets mutual distances.
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Fig. 10. Improving the focal length calibration. In the left box, data refer to the calibration improvement procedure while on the right box to its validation.
Left box: the top part refers to the calibration of the left camera and the bottom part to the calibration of the right camera. Data are collected with a dynamic
3D test with one camera per time in rotation at a constant speed v = 6◦/s. In the first column, we show the results of the 3D test obtained with the standard 	,
i.e., 	 calibrated with the standard method. In the right column, we show the same quantities but obtained with the dynamic 	, i.e., 	 calibrated with the
dynamic procedure. (a), (d), (f), and (i) Reconstructed Z , Z3D(t), for all the targets, each highlighted with a different color. Z3D(t) is normalized by its mean
in time to have all the targets in the same range. (a) and (f) Standard 	: Z(t) shows a linear trend in t . (d) and (i) Dynamic 	: Z(t) does not show any
trend in t . (b), (e), (g), and (l) Mean in time of δ(�R)/�R for each pair of targets as a function of the pairs mean distance from the cameras, Z̄ . Error
bars are computed as standard deviation. (b) and (g) Standard 	: large error bars reflect the high variability of the targets Z(t) due to their linear trend in t .
(d) and (l) Dynamic 	: error bars are in most of the cases smaller than the symbols, and they reflect the absence of the trend in time of the targets Z(t).
(c) and (h) Absolute value of the slope of the reconstructed Z , |∂t Z3D(t)|, as a function of 	. At a fixed value of 	, the slope increases with the target
distance from the camera, which is embedded in the color code, going from light purple and light blue for the closest target to dark purple and dark blue for
the furthest. All the targets present a well-defined minimum of the slope for the same value of 	, highlighted with orange dashed line, which corresponds
to the dynamic 	, while the standard 	 is highlighted with the red dashed line. In the inset, we show the linear trend of ∂t Z3D with the average of Z3D
in time, 〈Z2

3D〉t for the standard 	. Right box: we validate the dynamic calibration comparing the absolute value of the relative error in the target-to-target
distances using the focal length obtained with the standard (red circles) and dynamic (orange circles) calibration. (m) We tested the dynamic calibration with
a dynamic 3D test rotating both cameras simultaneously at a speed of 6◦/s in the two opposite directions. The plot shows that, with the dynamic calibration,
we obtain smaller relative errors and much smaller error bars than with the standard calibration. Moreover, we see that the trend in Z that is quite evident for
the standard calibration becomes negligible with the dynamic calibration. (n) We validate the dynamic calibration on a 3D test reproducing our experimental
procedure, with both cameras rotating simultaneously and in the same direction. Here, we do not appreciate a decrease of the error bars because the effect
of δ	 is negligible due to the effective speed v = 0◦/s, but we still see that the overall errors get smaller.

error of 33.52 px for the right camera (	R = 6333.81 px
with the standard calibration and 	R = 6300.29 px with the
dynamic calibration).

But we can estimate δ	 more precisely with a different
strategy: we run again the analysis of the 3D test moving the
value of 	 in the interval [5900 px, 6700 px], and for each
value of 	, we compute |∂t Z3D(t)| of each target. We found
that all the targets have a well-defined minimum of |∂t Z3D(t)|
that occurs at the same value of 	 [see Fig. 10(c) and (h)].
We choose then 	 corresponding to this minimum as our
new calibrated focal length, i.e., the dynamic 	 highlighted
with a dashed orange line in Fig. 10(c) and (h). With this
procedure, we found an error on 	 for the left camera equal
to 40 px and for the right camera equal to 30 px, compat-
ible with the estimate obtained from the linear fit of ∂t Z3D

versus Z 2
3D. We checked that, using this dynamic 	, Z3D

does not show anymore a trend in t , and we also found

a reduction of the error bars for δ(�R)/�R, as shown
in Fig. 10(d), (e), (i), and (l).

We validated the dynamic calibration by performing other
two 3D tests in different conditions. We perform the first test
rotating both the cameras simultaneously at a constant speed
of 6◦/s but in opposite directions, in this way, amplifying
a potential error on 	: we rotate the left camera in the
clockwise direction, ∂tϕL(t) = −v, and the right camera in the
counterclockwise direction, ∂tϕR(t) = v; hence, the effective
rotational speed ∂tϕ is equal to 12◦/s. We also performed
a second test to simulate the experimental setup, thus rotating
the cameras in the same direction at the same speed, ∂tϕL(t) =
∂tϕR(t) = v, with an effective rotational speed, ∂tϕ(t) = 0◦/s.

The results of these two tests are shown in
Fig. 10(m) and (n), where the red circles refer to the
standard calibration and the orange circles to the dynamic
calibration. As expected the effect of the standard 	 is
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Fig. 11. System accuracy. Left box (panel a): orange and green boxplots represent the relative error in the 3D reconstruction as a function of Z̄ for two
different sets of static 3D tests. Data from the two sets are collected mounting and unmounting the entire system, which justifies differences in the Z̄ values
for the two tests. Data within the same set are collected by repeating the alignment procedure with the fishing line (eight times for the orange set and ten
times for the green one). The line inside the box corresponds to the median of the relative error in the 3D reconstruction for a single target-to-target distance,
the two edges of the box correspond to the first and the third quartiles, and the two whiskers correspond to the minimum and the maximum value. The plot
shows no trend in Z̄ , hence showing a not appreciable error on the angle α. The data show variability within the same test (quite large error bars), due to the
alignment, and also variability within the two different tests, due to the setup procedure, but this does not affect the accuracy and the consistency of the 3D
reconstruction that gives always relative errors smaller than 0.012. Right box (panels b–g): data presented in the first and second rows are collected performing,
respectively, static (panels b–d) and dynamic (panels e–g) 3D tests for different values of β. The dynamic tests are performed in the field configuration with
the cameras rotating simultaneously at the same speed and in the same direction. The plots show |δ(�R)|/�R for each pair of targets as a function of their
mean distance from the cameras, Z̄ . Static tests are performed shooting one single image; hence, we do not have error bars. For the dynamic tests instead,
we plot |δ(�R)|/�R averaged in time, and error bars, which are most of the times smaller than the symbols, represent standard deviation. We do not see
any trend of the error with β nor in the static tests nor in the dynamic tests. The comparison between static and dynamic tests at a fixed value of β shows
relative errors of the same order and always smaller than 0.01.

more evident in the test at ∂tϕ(t) = 12◦/s where we see
large error bars of |δ(�R)|/�R and also a trend with Z̄ ,
while, for v = 0◦/s, error bars are quite small. In both tests,
the dynamic 	 reduces |δ(�R)|/�R, and it makes the error
bars for the test at v = 12◦/s comparable with the ones of the
test at ∂tϕ(t) = 0◦/s. These two factors, lower |δ(�R)|/�R
and smaller error bars, confirm that the dynamic 	 is more
correct than the one obtained with the standard calibration.

From these tests, we learn that, for accurate calibration of
the internal parameters, we need first to perform the standard
calibration procedure described in Section III-C1, and then,
we need to perform two dynamic 3D tests, each with only
one camera per time in rotation at a constant speed. From
the linear fit of ∂t Z3D(t) versus 〈Z 2

3D〉t , we estimate the
error on the focal length of the two cameras, which we use
to correct the results obtained with the standard calibration
approach. With this two-step calibration procedure, we fulfill
the requirement on the time independence of the reconstruction
error at the relatively low cost of performing two dynamic 3D
tests, namely, few hours of work.

2) Set-up and Alignment Consistency: Field experiments
are often performed in locations where the apparatus cannot
be mounted once and for all as it happens for our experiment,
which is carried out on the roof of a building where we are
forced to mount and unmount the entire system on a daily
basis. It is then important to design an easy-to-mount system
and a consistent calibration procedure. We tested CoMo to
evaluate our consistency in the mounting procedure and in the
alignment of the cameras with the fishing line, as described
in Fig. 2.

To this aim, we performed two sets of static 3D test mount-
ing and unmounting the entire system between the two. In each

set, we repeat several times the alignment procedure taking
at every alignment a static picture of the targets. We then
reconstructed the position of the targets; we computed target-
to-target distances and δ(�R)/�R. Finally, we evaluate the
variability of the reconstruction error within each set of data
and between the two sets.

The results of this test are shown in Fig. 11(a), where we
show the relative error, ∂(�R)/�r , of each pair of targets
as a function of Z̄ . The plot shows variability within the
same test, which is due to the alignment procedure, and
variability within different tests, but with relative errors always
below 0.012. The absence in both tests of a trend in Z̄ shows
that inaccuracies in the calibration of α are negligible and
the alignment technique is consistent, while the upper limit of
0.0012 of the reconstruction error shows the consistency of
our mounting procedure.

C. 3D Reconstruction Accuracy in Field Setup

We evaluate the 3D reconstruction accuracy of the system
performing again 3D tests but this time with a setup as similar
as possible to the experimental one. In principle, we should
perform this 3D test exactly in the experimental configuration:
camera baseline at 25 m, targets at a distance from the cameras
in the range between 100 and 150 m, and pitch angles of both
cameras set to 0.22 rad.

However, due to logistic constraints, we are forced to
perform the tests in a slightly different configuration: 1) we set
the camera baseline at about 10 m with targets at a distance
from the cameras in the range between 20 and 40 m and 2) we
do not manage to have targets in the common field of view of
the cameras for a pitch value of 0.22 rad, but we can achieve
the maximum pitch of 0.15 rad.
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Fig. 12. 3D reconstructed trajectories of a starling flock. (a) 3D reconstructed trajectories of a flock of 50 birds, where each individual trajectory is highlighted
in a different color. (b)–(d) X , Y , and Z coordinates of the trajectories as a function of time. (e) 3D reconstructed coordinates of the trajectories of the same
flock represented in (a). The purple part of the trajectories represents the part of the acquisition that we would have acquired with our cameras in static mode,
while the green part of the trajectories represents the extra data that we obtained with the dynamic system. (f)–(h) X , Y , and Z coordinates of the trajectories
as a function of time, with the same color code of (e). In terms of the time length of the acquisition, we followed the flock for 11.2 s against 7.9 s that we
would have taken with the static system, with a time increment of 3.3 s.

We take care of these two logistic limitations in the design
of the test and the data analysis. In particular: 1) in the 3D
test, the ratio Z/d is between 2 and 4, while this ratio in
the field is between 4 and 6. The factor Z/d is relevant
when we find a trend with Z̄ in δ(�R)/�R in which case,
to estimate the experimental error, we have to renormalize
the 3D reconstruction error found in the tests by a factor 2.
2) we perform three series of tests at different pitch angles:
β = 0 rad, β = 0.08 rad, and β = 0.15 rad to detect a
potential trend of the error with β and, in this case, to predict
the range of the reconstruction error in the field conditions,
i.e., β = 0.22 rad.

We perform the 3D test in the following way: for each of the
three pitch values, we perform first a static 3D test in the home
configuration, and then, we put both cameras in rotation as in
the field, namely both cameras rotate in the same direction and
with the same rotational speed. We perform the test rotating
the cameras at a constant speed of 6◦/s (0.1 rad/s), which is
the maximum speed that we use in the field.

The results are shown in the right box of Fig. 11, where,
in the first row, we plot the relative error for the three static
tests and, in the second row, the results of the dynamic 3D
tests. In both cases, we have excellent results with relative
errors smaller than 0.01, without any trend in Z , and we did
not find any trend of the error with β. We do not have here
to renormalize the relative error to take care of the different
value of Z/d in the test and the field because we do not see
any trend of the relative error in Z , nor we need to make
any prediction of the error at β = 0.22 rad because there are
nonappreciable differences of the errors for different βs.

The results of the static 3D test at β = 0 essentially reflect
the accuracy of the cameras’ alignment procedure. The com-
parison between static tests at different values of β shows that
the introduction of a nonzero pitch angle produces a negligible
error because, with different values of β, we obtain errors

of the same order. With a similar argument, the comparison
between static and dynamic tests shows that the introduction
of the rotation due to the stages does not add affect the
accuracy of the external parameters calibration. Therefore,
the 3D tests show that the dominant source of error on the
external parameters calibration is the alignment technique and,
in particular, on the measurement of the cameras’ yaw angles.
From the results of the 3D tests, we estimated this angular
error to be smaller than 0.001 rad, hence confirming the high
precision of our alignment procedure.

VIII. FIELD RESULTS

We tested the feasibility of the data collection with CoMo
with the first experimental campaign on starling flocks, setting
up the apparatus on the roof of Palazzo Massimo alle Terme
in front of one of the bigger and more stable starlings roosting
place in Rome.

With this first experimental campaign, we could prove the
feasibility of the data-taking with CoMo. We proved that
the system is easy to mount and easy to calibrate, and we
also checked that the parameters we chose for the rotational
controller are suitable to chase the flocks. We collected a quite
large amount of data, ∼ 50 flocks of different sizes going from
few individuals to large flocks of ∼ 1000 birds. With this first
experimental campaign, we could also prove that, with the
dynamic approach used by CoMo, we considerably expand
the time length of the acquired data.

In Fig. 12(a), we show the 3D reconstructed trajectories
of a flock of 50 birds, where each trajectory is highlighted
with a different color, while, in Fig. 12(b)–(d), we show the
X , Y , and Z coordinates as a function of t . In Fig. 12(e),
we show the trajectories of the same flock but with a different
color code to emphasize the temporal expansion that we obtain
with the dynamic approach. In purple, we plot the part of the
acquisition that we would have acquired with our cameras in
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static mode, while, in green, we plot the extra data that we
were able to take due to the dynamic system. In terms of the
time length of the acquisition, we followed the flock for 11.2 s
against 7.9 s that we would have taken with the static system,
with a time increment of 3.3 s.

IX. CONCLUSION

We presented a novel comoving camera stereo system,
CoMo, developed in the context of 3D tracking of large
groups of targets moving in a wide and nonconfined space.
To overcome the limitation of standard static setup, where the
size of the field of view is defined by the fixed position of
the cameras and, in most of the cases, narrowed to achieve
a sufficient resolution of the system, we designed CoMo
to follow the motion of the targets with a controlled and
synchronized rotation of the cameras driven by rotational
stages (one for each camera).

The 3D reconstruction for a dynamic and wide-field system
is rather demanding because the external parameters of the
system have to be calibrated frame by frame, and they cannot
be calibrated with standard methods, which are not accurate
enough on wide-field data. We propose a novel technique
for the calibration of the external parameters that separate
their static component, corresponding to the system in the
home configuration (rotational stages at the 0◦ position), from
their dynamic component, corresponding to the rotation due to
the stages. We calibrate the static component of the external
parameters by measuring the position and the three angles of
yaw, pitch, and roll of the cameras in a common reference
frame, and we combine this information with the frame-by-
frame rotation gathered from the stages.

We validated this calibration approach performing what
we call 3D tests: we set up the system, we acquire images
of a set of still targets, and we accurately measure with a
laser distometer the distance between each pair of the target.
From the collected images, we reconstruct the position of
the targets, and we compute their mutual distances that we
compare with the measured ones. The results of the 3D
tests show the consistency of the calibration method for the
external parameters and the high accuracy of the system
(3D reconstruction error below 1%).

The 3D tests represent a fair and objective method to
evaluate the accuracy of a 3D system, but the very relevance of
the 3D tests is in the designing phase of a 3D system because,
as we showed in this article, 3D tests are a powerful tool
to detect potential sources of errors, also providing a well-
defined procedure to discriminate errors due to an incorrect
measurement of the cameras’ position versus errors due to
an incorrect measurement of the cameras’ orientation. Finally,
3D tests are on the basis of the new method that we proposed
to improve the standard calibration of the focal length, which
we could found to be inaccurate by performing dynamic 3D
tests and noting an unexpected trend of the reconstructed
position with time.

We carried the first experimental campaign using CoMo to
collect data on starling flocks that are an emblematic example
of targets moving in large groups in a nonconfined space.
To this aim, we set up the apparatus on the roof of Palazzo

Massimo alle Terme, where we are forced to mount and
unmount the system every day. With this first experimental
campaign, we proved that the system is easy to mount and
easy to calibrate and confirmed that the design of CoMo
considerably expands the time length of the acquired data.
The simplicity of the system makes CoMo suitable for all those
applications in the field of science, surveillance, entertainment,
and robotics, where the experimental objective is to follow a
target whose motion cannot be predicted in advance.

The limitations of the system in its current setup are essen-
tially two. First, the manual control of the cameras’ rotation
may result in a suboptimal chasing of the target. The operator
checks the flock position on the cameras by online watching
the images on the laptop screen that has a low refresh rate,
which may induce a delay reaction of the operator to sudden
changes in the direction of the flock. Second, the rotation
of both the cameras in the same direction may result in the
target loss on one of the cameras when the flock moves in
between the cameras along the direction orthogonal to the
system baseline. In this special situation, we would need to
rotate the two cameras in opposite directions, as it happens to
human eyes when trying to follow the tip of a finger moving
toward the nose. To overcome both these limitations, we are
planning to upgrade CoMo to automatically follow the target
estimating the optimal rotation needed to keep the target at
the center of the field of view for each camera separately.
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