
Assisting the Design of a Groupware System ?

– Model Checking Usability Aspects of thinkteam –

Maurice H. ter Beek a, Stefania Gnesi a, Diego Latella a,
Mieke Massink a,∗, Maurizio Sebastianis b, Gianluca Trentanni a

aIstituto di Scienza e Tecnologie dell’Informazione ‘A. Faedo’, CNR
Area della Ricerca, Via G. Moruzzi 1, 56124 Pisa, Italy

bthink3 Inc., Via Ronzani 7/29, 40033 Bologna, Italy

Abstract

Product Data Management (PDM) systems support the product/document manage-
ment of design processes such as those typically used in the manufacturing industry.
They allow enterprises to capture, organise, automate and share engineering infor-
mation in an efficient way. The efficient handling of queries on product information
and the uploading and downloading of families of related files for modification by
designers are essential aspects of such systems. The efficiency of the system as per-
ceived by its clients depends on its correct functioning, but also for a significant part
on its performance aspects. In this article, we apply both qualitative and stochastic
model-checking techniques to evaluate various usability and performance aspects of
the thinkteam PDM system, and of several proposed extensions, thereby assisting
the design phase of an industrial groupware system.

Key words: groupware, concurrency, formal methods, verification, model checking
1991 MSC: 03B44, 68N30, 68Q10, 68Q60, 68Q85,

? This work has been partially funded by the Italian project tocai.it, by the
EU project Sensoria (IST-2005-016004), by the miniproject Faerus of the EU
project Resist (IST-2006-026764) and by the CNR-RSTL project XXL. think-
team, think3 and thinkPLM are registered trademarks of think3 Inc. For details:
http://www.think3.com.
∗ Corresponding Author. Phone: +39 0503152981

Email addresses: maurice.terbeek@isti.cnr.it (Maurice H. ter Beek),
stefania.gnesi@isti.cnr.it (Stefania Gnesi), diego.latella@isti.cnr.it
(Diego Latella), mieke.massink@isti.cnr.it (Mieke Massink),
maurizio.sebastianis@think3.com (Maurizio Sebastianis),
gianluca.trentanni@isti.cnr.it (Gianluca Trentanni).

1 Introduction

Product Lifecycle Management (PLM) is the activity of managing a company’s
products across their lifecycles—from their conception, through design and
manufacturing, to service and disposal—in the most effective way [1]. think3’s
thinkPLM is a suite of integrated PLM applications, built on thinkteam. think-
team is think3’s Product Data Management (PDM) application, catering the
product/document management needs of design processes in the manufactur-
ing industry. It allows enterprises to capture, organise, automate and share
engineering information in an efficient way. thinkteam is used to manage data
for products/documents undergoing constant changes as well as for occasional
customisations, i.e. with long or short lifecycles. The current thinkteam setting
consists of a number of clients that interact with one centralised Relational
Data Base Management System (RDBMS) server. This RDBMS controls the
storage and retrieval of data, such as Computer-Aided Design (CAD) files in
a file-system-like repository, called the Vault. Access control is based on a ‘re-
trial’ principle: There is no queue (or reservation system) handling the client’s
requests for editing rights on a file.

thinkteam is a typical example of a groupware system, i.e. a multi-user com-
puter system meant to assist people collaborating on a common project. Such
systems are studied in the interdisciplinary research field of Computer Sup-
ported Cooperative Work (CSCW), which deals with the understanding of
how people work together, and the ways in which computer technology can
assist them [2]. Groupware is typically classified according to two dichotomies,
viz. (1) whether its users work together at the same time (synchronous) or at
different times (asynchronous) and (2) whether they work together in the
same place (co-located) or in different places (dispersed). This is called the
time space taxonomy by Ellis et al. [3]. thinkteam is an asynchronous and dis-
persed groupware system. Among the important design issues in groupware
systems are data sharing, concurrency control and user awareness, where the
latter should be understood as users having a sense of the (past, current, fu-
ture) activities of other users—without direct communication—and using this
as context for their own activities [4,5].

In this article, we address these and other issues in the context of thinkteam.
More precisely, we use model checking to formalise and verify several design op-
tions for thinkteam extensions. However, we also apply model checking to verify
a number of properties specifically of interest for the correctness of groupware
protocols in general, i.e. not limited to the context of thinkteam. Recent years
have seen an increasing interest in the use of model checking for the formal ver-
ification of (properties of) groupware [6–8] and publish/subscribe (pub/sub)
systems [9–12]. One of the difficulties in this domain is that detailed models
tend to generate very large state spaces due to the interleaving activity that

2

comes with many asynchronously operating clients [11,13]. Our approach to
use model-checking techniques in the groupware domain differs from these ap-
proaches. We generate small, abstract models that are intended to address very
specific usability-related groupware issues. We show that model checking can
be of great help in an exploratory design phase, both for comparing different
design options and for refining and improving the description of the proposed
extensions. This way of using model checking is in support of a prototyping-
like modelling technique. The focus is on obtaining in a relatively fast way
an informed but perhaps somewhat approximative idea of the consequences,
both qualitative and quantitative, of adding specific features to an existing
groupware system. This is quite different from the traditional use of model
checking as a technique to develop rather complete specifications, with the
aim of reaching a maximal level of confidence in the correctness of a compli-
cated concurrent algorithm. In this sense, our proposed use of model checking
is somewhat resembling the idea of extreme programming [14]: Generating
simple ad-hoc models of new features that are meant to be added to a system.

The work presented in this article is partly based on our previous publications
on the application of model checking to the design of groupware systems,
which we now briefly describe in chronological order. In [6], we have developed
a rather abstract specification of that part of the protocol underlying the
groupware toolkit Clock [15,16] that deals with concurrency and exclusive
editing rights. In the same work we show, using the model checker Spin [17],
that our specification satisfies a number of correctness properties, some of
which were also mentioned in the work by Urnes [8] on Clock.

In [18,19], we have used the same model-checking technique to formalise and
verify some concurrency and usability aspects of thinkteam, and of a first pro-
posed extension of thinkteam with a lightweight and easy-to-use pub/sub event
notification service. This service is intended to increase the users’ awareness
of the status of the development of the engineering product and the activities
of the design team by intelligent data sharing. Whenever a thinkteam client
publishes a file by importing it into the Vault, i.e. the relevant file reposi-
tory, automatically all clients that are subscribed to that file are notified via
a multicast communication. We have analysed a number of qualitative cor-
rectness properties addressing concurrency, usability and awareness aspects.
Pub/sub event notification decouples the communication among users: A user
publishing a document need not be concerned with whom the server will send
a notification to, i.e. the users communicate through the server. Users need
not actively participate in the notification in a synchronous way. In fact, the
main strength of a pub/sub event notification service is said to be the “full
decoupling of the communicating participants in time, space and flow” [20].
The main results of the analyses of the pub/sub notification service are re-
ported in Sect. 5. A related approach can be found in [21], where a case study
in the automatic derivation of correct integration code for assembling a set of

3

thinkteam’s (software) components is reported.

Some usability issues, influenced more by the performance of a system than
by its functional behaviour, cannot be analysed by qualitative model-checking
techniques alone. In fact, we i showed in [18,19] that the system is not star-
vation free, i.e. a client can be excluded from obtaining a file, simply because
other clients competing for the same file are more ‘lucky’ in their attempts to
obtain it. Such behaviour can be explained by the fact that clients are only
provided with a file-access mechanism based on a ‘retrial’ principle. While
analysis with qualitative model checking can be used to show that such a prob-
lem exists, it cannot be used to quantify the effect that it has on usability. In
our case, the number of retries a client has to perform before obtaining a file
is an important measure of the usability of the system. If this number is high,
extending thinkteam with a waiting-list policy should be considered instead of
the current simpler retry-based policy. The trade-off between these two design
options was analysed in [22], where we used stochastic model-checking tech-
niques. The main issues and results of such analysis experiments are reported
in the present article in Sect. 6. Stochastic model checking is a relatively recent
extension of qualitative model checking that allows for the analysis of qualita-
tive properties of systems as well as performance- and dependability-related,
i.e. quantitative, properties [23–26].

We use the same technique in Sect. 7 to model and analyse a new extension
of thinkteam, concerning the replacement of the unique centralised Vault by a
distributed set of replicated vaults and a preference list for vaults per client.
The assignment of a suitable vault location has an effect on the performance of
the system and therefore on the adequacy of the support it can provide to its
clients. The properties we verify include the guarantee that files are modified
by at most one client at a time, the expected waiting time for clients requesting
a file for modification, the effect of workload conditions on the usability of the
system and on the overhead in uploading and downloading files.

An important topic addressed in this article concerns the uptake of model-
checking techniques by industry. Our industrial partner think3 had no previous
experience with such analysis techniques. We show that our approach to start
from small models that require little time to fully understand, but that nev-
ertheless provide results that would be unfeasible to produce manually, and
that can be used to generate performance diagrams directly related to issues
of interest to the industry, can be successfully transferred to industry.

We begin this article with a description of thinkteam in Sect. 2 and of its
proposed extensions in Sect. 3, followed by a brief introduction to qualitative
and stochastic model checking in Sect. 4. In Sect. 5, we present the analysis of
the extension of thinkteam with a pub/sub event notification service. Subse-
quently, in Sect. 6, we present a stochastic model for the quantitative analysis

4

of two different file access policies. In Sect. 7, we enrich the model of Sect. 6 to
analyse thinkteam extended with multiple replicated vaults. Finally, we briefly
describe the lessons learned from our experience with the use of qualitative
and quantitative model checking in an industrial groupware setting in Sect. 8,
and we draw some conclusions and give an outline of future work in Sect. 9.

2 thinkteam

In this section, we present a brief overview of think3’s PDM application think-
team. For more information, we refer the reader to http://www.think3.com.

The design process in the manufacturing industry involves a vast number of
activities. Product design is the most creative, but not necessarily the costli-
est or the most resource intensive activity in terms of human, financial and
material resources. Among the several non-design tasks that concur to the
delivery of a final product to an enterprise’s Manufacturing department, some
are externally initiated by organisations such as the Sales or the Marketing
departments, or by requests and orders of individual customers (most often
for companies working on order). Other tasks are initiated by the design office
itself and require cooperation from suppliers, the Manufacturing department
and external consultants.

Design and non-design activities produce and consume information—both doc-
umental (CAD drawings, models and manuals) and non-documental (Bill Of
Materials (BOM), reports and workflow trails). It is the composition of this
information that eventually activates the process that produces a physical ob-
ject. Information mismanagement can, and often does, have direct impact on
the cost structure of the manufacturing phase: For instance, having different
part numbers for interchangeable items (a common mishap) causes unneces-
sary inventory bloat and increases the associated costs. An important part of
the work of the design office goes into maintaining and updating projects that
have been previously released: A historical view of the previous information is
absolutely necessary for this. This is where PDM applications come into play.

Since the inception of PDM as a separate IT discipline, a few clear goals have
been deemed a non-negotiable part of any successful implementation, viz.

• it must make significant contributions to the reduction of the overall con-
ception/design/development cycle,

• it must supply a coherent and up-to-date view of the information,
• it must preserve the historical evolution of the information and of the events

and actors that have affected it (traceability), and
• it must provide easy and secure access to all of the product-related infor-

5

mation, both documental (vaulting) and non-documental (metadata).

To a large extent, thinkteam meets these goals. As such it supports the whole
product development lifecycle, bringing the right information to the right peo-
ple at the right time. However, several extensions are currently proposed to
further improve thinkteam, in particular its performance from the user’s point
of view when larger groups of CAD designers are using thinkteam in an ever
more geographically distributed and potentially service-oriented way.

As we mentioned in Sect. 1, thinkteam is an asynchronous and dispersed group-
ware system. An additional difficulty that arises during the design of such
groupware is their inherently distributed nature. This forces one to address
issues like network communication, concurrency control and distributed no-
tification. This has lead to the development of groupware toolkits that aid
groupware developers with a series of programming abstractions aimed at
simplifying the development of groupware applications. Examples include Ren-
dezvous [27], GroupKit [28] and Clock [15,16]. In this article, we address a com-
plementary approach to the design of the underlying protocols of such systems
and their performance characteristics from a user’s point of view.

document RDBMSVault

metadata operations

Client Client

Client
Client

checkIn/Out

Fig. 1. The thinkteam structure.

2.1 Technical Characteristics

thinkteam is a three-tier data management system running on Wintel plat-
forms (cf. also Fig. 1). The most typical installation scenario is a network of
several desktop clients interacting with one centralised RDBMS server and one
or more file servers grouped into a single Vault. In this setting, components
resident on each client node supply a graphical interface, metadata manage-
ment and integration services. Persistence services are achieved by building

6

on the characteristics of the RDBMS and file servers. The dotted arrows in
Fig. 1 denote document checkIn and checkOut, while the other arrows present
metadata operations. The internal communication between the Vault and the
RDBMS are not explicitly presented in the figure. Below follows a general
description of the operations of various (logical) thinkteam subsystems.

2.1.1 Metadata Management

thinkteam allows its users to manage representations of concrete entities (such
as documents and components). These representations (often called business
items or business objects) are described using an object model or meta-object
model which can be customised by the end users, e.g. by changing the at-
tributes pertaining to various types of object or by adding object types. Meta-
data management refers to operations on object instances and to the rules
these operations obey to, as they are implemented in thinkteam. Typical oper-
ations are creation, attribute editing (e.g. adding/changing description, price,
etc.), revisioning, changing state, connecting with other objects and deletion.

2.1.2 RDBMS Interaction

thinkteam uses a RDBMS to persist and retrieve both its object model and
the objects that are created during operation. RDBMS interactions are fairly
low level in nature and are completely transparent to end users.

2.1.3 Vaulting

The controlled storage and retrieval of document data in PDM applications is
traditionally called vaulting, where the Vault is a file-system-like repository.
The two main functions of vaulting are:

• to provide a single, secure and controlled storage environment where the
documents controlled by the PDM application are managed, and

• to prevent inconsistent updates or changes to the document base, while still
allowing the maximal access that is compatible with the business rules.

While the former is the subject of the implementation of the lower layers of the
vaulting system, the latter is implemented in thinkteam’s underlying protocol
by a standard set of operations made available to the clients, viz. those listed
in Table 1. It is important to note that access to files (through the above
checkOut operation) is based on a ‘retrial’ principle: There is no queue (or
reservation system) handling the requests for editing rights on a file.

7

Operation Effect

get extract a read-only copy of a file from the Vault

import insert an external file into the Vault

checkOut
extract a copy of a file from the Vault with the intent of modi-
fying it (exclusive, i.e. only one checkout at a time is possible)

unCheckOut cancel the effects of a preceding checkout

checkIn
replace an edited file in the Vault (the file must previously
have been checked out)

checkInOut
replace an edited file in the Vault, while at the same time
retaining it as checked out

Table 1
thinkteam user operations

2.1.4 Integrations

thinkteam’s data management functions would be unwieldy and require heavy
manual intervention if it were not possible to automatically extract infor-
mation from where it most often resides, i.e. in the documents themselves.
Besides, it is almost always necessary to supplement the document produc-
tion process with metadata extracted from the thinkteam repository and it is
desirable that such operations can be performed automatically. To this end,
thinkteam integrates with the authoring applications responsible for document
creation. This means thinkteam must be able to communicate with the applica-
tion to mediate both its file operations (so the application can interact with the
vaulting subsystem) and its metadata operations (so the document metadata
can be merged with that in its repository). Typical examples are automatic
retrieval/storage of a file in its appropriate vaulting position, automatic cap-
turing of data like document authorship, description, glossary keywords, etc.,
and automatic insertion (in the document body) of textual content referring
to data in thinkteam’s repository, e.g. to fill a drawing title block.

More complex interactions—whose need arises when integrating with CAD
systems—concern mapping the structure of related/composite documents to
structures of thinkteam, e.g. mechanical parts that are assembled in a single
assembly must be mapped in a hierarchical product structure known as the
BOM. Integration is typically achieved by developing software that is able
to map a set of thinkteam operations to the Application Programming Inter-
faces (APIs), and that hooks commands of applications relevant to thinkteam
(e.g. closing a file) in order to allow thinkteam to perform the appropriate
action (e.g. putting a closed file back into the Vault).

8

2.2 thinkteam at Work

thinkteam supports CAD designers in various design phases. An important area
of thinkteam intervention is the overall industrialisation part of a given project
and involves activities that tend to be intensive w.r.t. the project’s metadata
(attributes, BOM structure) while being light on the document management
(and therefore vaulting) side. Vaulting capabilities are most frequently used—
by a CAD designer—during the modelling phases, briefly described next.

2.2.1 Geometry Information Retrieval

The most usual design work in the manufacturing industry (thinkteam’s prime
target) involves the production of components that are part of more com-
plex goods. The CAD models describing these products are called assemblies
and are structured as composite documents referring to several (sometimes
hundreds or thousands) individual model files. In this situation, most of the
geometry data a designer deals with consists of reference material, i.e. parts
surrounding the component she is actually creating or modifying. The designer
needs to interact with this reference material in order to position, adapt and
mate to the assembly the part she is working with.

Most of the reference parts are normally production items subjected to PDM
management and whose physical counterparts (model files) reside in the Vault.
The logical operation by which the designer gains access to them is the get
operation discussed above, which is performed automatically. This is the type
of activity that happens most often and which is normally involved in all other
activities listed below, as well as in many others not explicitly mentioned (such
as visualisation, printing, etc.).

2.2.2 Geometry (Part) Modification

Modifying an existing part is, in order of frequency, the second-most-used
operation a designer performs during her activity. Given that the part already
exists (i.e. it is already in the Vault) the designer must express the intent to
modify it with an explicit (write exclusive) checkOut operation that prevents
attempts at modification by other users. A screenshot of the invocation of this
operation in the Graphical User Interface (GUI) is depicted in Fig. 2.

When designers are ready to publish their work, they will release it to the
system by issuing an explicit checkIn command, which frees the model for
modification. Were the designers to change their mind, then they might choose
to issue an unCheckOut command, which frees the model but discards any
changes that have occurred since the checkOut . Finally, they may issue a

9

Fig. 2. A thinkteam user checks out a file from the Vault.

checkInOut if they want to release an intermediate version of the model to the
system, but do not yet want to release it for further modifications by others.
All these actions require explicit action on the part of the user and are exposed
via suitable parts of thinkteam’s GUI. Note that when a file has been checked
out, but before it has been checked in, the file can still be accessed by other
designers in read-only mode, by means of get operations.

2.2.3 Geometry (Part) Creation

Lastly, a designer may create a completely new component and insert it into
the system. As the part will initially be created outside the system Vault,
an import operation is required to register it with thinkteam. In this case,
the special environment Save Into Project (SIP) is provided, combining meta-
data/vaulting operations to speedily register changes and modifications.

2.3 Architecture

thinkteam’s design-level architecture is based on the Model-View-Controller
(MVC) paradigm of [29]. According to this paradigm, an architecture organ-
ising interactive applications is partitioned into three separate parts, viz.

• the Model, implementing the application’s data state and semantics,
• the View, computing the graphical output of the application, and
• the Controller, interpreting the inputs from the users.

In Fig. 3, the MVC architecture is depicted together with its communication
protocol. The Controller transforms an input from the User, e.g. a checkOut

10

request, into an update, which it sends to the Model. In order to do so, it may
need to obtain data from the Model, e.g. whether the requested file is locked, by
communicating via request and response. Upon receiving an update, the Model
changes its data state and sends a notify to both the Controller and the View.
The latter, upon receiving this notify, recomputes the display—for which it
may need to obtain the new data state from the Model by communicating
again via request and response—and eventually sends a view to the User.

request

User

Controller

View

update

input

view

notify

request

response

notify
response

Model

Fig. 3. The MVC architecture and its communication protocol.

In thinkteam’s design-level architecture, the Model and the Controller are in-
tegrated and situated on the server, while a View is situated on each of the
clients. The communication between the server and the clients is defined by a
set of (communication) protocols.

2.4 Characteristics of Use

thinkteam handles something like a few hundred thousand files for some 20-
100 users. In order to get more realistic data on the particular use that clients
make of the system, think3 has provided us with a cleaned-up log-file, com-
prising all activity (in terms of the operations listed in Table 1) of one of
the manufacturing industries using thinkteam from 2002 through 2006, for us
to analyse. This log-file contains, for each operation, its time stamp (in the
format day-month-year and hour-minute-second), the name of the user that
performed it and the file the operation refers to. In this way, each line in the
log-file represents an atomic access to the Vault. The format of the log-file is
easy to handle, but it contains a really huge amount of data (792, 618 Vault
accesses by 104 users regarding 183, 492 files). Moreover, think3 has improved
its logging mechanism during the years. For these reasons, we have restricted
our analysis to the year 2006. The aim of our analysis was to obtain some
insight on the timing issues concerning the duration of editing sessions and
the occupancy of files.

The data of 2006 concerns 83 users collaborating on a total of 181, 535 files,
23, 134 of which were checked out at least once during the year. The remaining

11

files were used exclusively as reference material, e.g. downloaded in read-only
fashion by means of get operations. A total of 65 users turned out to be
involved in editing sessions. We present the analysis of a subset of the data
that is directly relevant for the models that will be presented in Sect. 6 and
Sect. 7. These concern the duration of editing sessions (i.e. the time that has
passed between a checkOut and a checkIn of a file by the same user) and the
duration of periods in which files were not locked (i.e. the time that has passed
between a checkIn and a checkOut of the same file by possibly different users).
Instead, the number of times that a user unsuccessfully tries to checkOut a
locked file (i.e. checked out by another user) has not been explicitly logged,
so little can be said about that. However, it is possible to obtain an indirect
approximation of the number of users that compete for access to the same
file by analysing the number of users that modify the same file during the
investigated period.

In Figure 4 we present the data that we obtained after a series of operations
performed on the log-file to filter out the logging of irrelevant operations such
as the numerous get operations (recall that this is the most-frequently-used
operation), operations that could be traced back to system administrator inter-
ventions and some further anomalous log operations. These graphs have been
produced with SPSS v15.0 [30] by computing the so-called mean trimmed 40%
(i.e. discarding the lower and higher 20% of the scores and taking the mean
of the remaining scores).

(a) Duration of edit sessions. (b) Duration of file inter-access time.

Fig. 4. (a)-(b) Histograms of the log-file analyses reported in this section.

Fig. 4(a) shows a histogram of the distribution of the duration of editing ses-
sions. On the x-axis, the time is presented in seconds. The histogram thus
shows all sessions except for 20% of the shortest and 20% of the longest ses-
sions, meaning that sessions of less than 111 seconds (i.e. ca. 2 minutes) and
more than 22, 256 seconds (i.e. ca. 370 minutes) have been removed. This has
been done because the log-file contained many very short sessions that were
not corresponding to real user editing sessions, but rather to automatic system

12

operations that were also logged and that feature in the log-file as very short
checkOut-checkIn sessions. We see that the mean duration trimmed 40% of
an edit session is 2, 657 seconds, so ca. 45 minutes. It is easy to see that most
sessions tend to be rather short.

In Fig. 4(b) a histogram is shown of the duration of intervals during which files,
that were involved in at least two editing sessions, were not locked (i.e. taken
in checkOut). These data give an impression of the time that passes between
Vault accesses to the same file by possibly different users. Each bar in this
histogram corresponds to a duration of about 17 hours. Many of the intervals
fall into the first few periods, indicating that there are many cases in which
files were used rather intensively.

Finally, Table 2 shows the number of files that were edited by more than one
user in 2006. A further analysis of these files shows that it is quite common
that multiple users are editing the same file on the same day, and that there
are also days in which upto 8 users are accessing the same file on the same
day or on adjacent days. We are aware of the fact that the log analysis is only
covering one year of data collected at one particular client, and may therefore
not be completely representative of a tipical thinkteam user. However, the
log data are real observations and do provide information on an example of
actual use of the system which can help to put modelling results into the
proper perspective.

Nr. files 5,077 1,407 301 79 24 22 8 8 6 10 3 1 1 1

Nr. users 2 3 4 5 6 7 8 9 10 11 12 13 14 17

Table 2
Number of files edited by at least two users

3 Proposed thinkteam Extensions

think3 is interested in various extensions of thinkteam to improve its usability
aspects, without compromising its flexibility and ease of use. However, be-
fore taking any decision on the implementation of such extensions, think3 was
looking for a lightweight model-based analysis that could provide further infor-
mation on the advantages and disadvantages of such extensions, in particular
for what concerns the concurrency and performance aspects. We briefly list
the proposed extensions in this section and refer to their relative sections in
the sequel for details of the modelling and verification results.

13

3.1 An Event Notification Service

The first thinkteam extension we consider is the addition of a pub/sub event
notification service that helps users of the groupware system to keep track of
who is working on which part of the manufact to be designed. Such additional
information enables designers to flexibly adjust their workplan, but also to get
in touch with other designers when a ‘lost update’ problem occurs. This may
happen when one designer is modifying a file that uses another file as reference,
which in its turn is being modified by another designer. This extension is
studied in detail in Sect. 5.

3.2 A Waiting-list Access Policy

Some usability aspects of a system do not depend only on the correct working
of the system, but also on its performance as perceived by the user. The
analysis of a model of the aforementioned event notification service produced a
counterexample which shows that the current retry-based access policy used in
thinkteam cannot guarantee that every user that requests a file, will eventually
obtain this file. Only a quantification of this problem may provide an indication
of the usage conditions of thinkteam under which such an access policy may
lead to an unsatisfactory performance of the system from a usability point
of view. In Sect. 6, we therefore address this problem using a quantitative
extension of the qualitative model.

3.3 Multiple Replicated Vaults

A further extension is taken into consideration in Sect. 7, viz. the substitution
of thinkteam’s single Vault by a number of geographically distributed replicated
Vaults. Such replication has the advantage that files can be downloaded from
more than one Vault location, where the choice for a particular Vault location
can be based on characteristics such as the current workload of the Vault, the
bandwidth of the connection and the availability of the most recent version of
the requested file at a Vault location. All these characteristics may have their
influence on reducing to the minimum the time needed to download often very
large composite CAD files.

14

4 Modelling and Analysis Techniques

Traditional software-engineering methods like testing and simulation alone,
would be quite time consuming and not very suitable to provide the infor-
mation needed to design the thinkteam extensions proposed in the previous
section. The main reason for this is that the concurrency aspects of groupware
system like thinkteam (with users located in geographically distributed places
that collaborate in an asynchronous but coordinated way) play a major role in
the important design issues for such systems (data sharing, user awareness and
concurrency control to guarantee mutually exclusive file modification rights).
Formal methods supported by tools, such as model checkers, would in princi-
ple be more suitable, even though their application in the groupware domain
has not been very widespread.

Model checking is an automatic technique which can be used to verify whether
a system design satisfies its requirements specification [31]. Such a verification
is moreover exhaustive, i.e. all possible input combinations and states are
taken into account. One of the few early attempts at using model-checking
techniques in the groupware domain, e.g. to model and analyse the protocols
underlying Clock [15,16], were not very encouraging due to the generation of
a huge state space. To avoid running out of memory due to such a state-
space explosion—which would make an exhaustive verification impossible—it
is necessary to use more abstract models, which capture only the core of the
system design while abstracting from unnecessary details. As said before, this
is the approach we follow in this article.

We will use two model-checking techniques. One technique has been specif-
ically designed to deal with large state spaces and suitable for the analysis
of qualitative (correctness) properties, providing also counterexamples in the
form of message sequence charts. The other technique has been specifically
designed for the analysis of quantitative aspects of a system that may pro-
vide information on its expected usability. From an industrial point of view,
both aspects are often closely related and both may provide necessary com-
plementary information on the system under design. We briefly describe both
model-checking techniques in the next sections.

4.1 Qualitative Model Checking

One of the best known and most successful qualitative model checkers is Spin,
which was developed at Bell Labs during the last two decades [17]. It offers
a spectrum of verification techniques, ranging from partial to exhaustive ver-
ification. It is freely available through spinroot.com and it is very well doc-

15

umented. Apart from these obvious advantages we have chosen to use Spin
because of the aforementioned earlier attempt at verifying a simplified version
of the Clock protocol with Spin in [8], which moreover provides a complete
specification of the protocol in Promela, which is Spin’s input language.

Promela is a non-deterministic C-like specification language for modelling
finite-state systems communicating through channels [17]. Formally, specifica-
tions in Promela are built from processes, data objects and message channels.
Processes are the active components of the system, while the data objects are
its local and global variables. Message channels are used to transmit data be-
tween processes. They can be local or global. Each channel is characterised
by the type of messages which can be sent/received via the channel and by
its length. Channels with non-zero length are used to model asynchronous
communication and behave like FIFO buffers, while zero-length ones model
synchronous communication (rendez-vous). For further details we refer the
reader to [17]. Promela specifications can be given as input to Spin, to-
gether with a request to verify certain correctness properties. Spin then con-
verts the Promela processes into finite-state automata and on the fly creates
and traverses the state space of a product automaton over these finite-state
automata, in order to verify the specified correctness properties. Spin can be
used to verify both safety and liveness properties [32,17].

There are several ways of formalising correctness properties in Promela, the
following two of which we shall use in this article. First, basic assertions may
be added to a Promela specification. Subsequently, their validity can be ver-
ified by running Spin. For instance, consider that we want to be sure that
a file is not locked the moment in which a lock request for that file is going
to be granted. Consider moreover that there is a boolean variable writeLock,
which is true every time a lock request is granted. Then the basic assertion
assert(writeLock == false) can be added to the Promela specification
just before a lock is granted and Spin can be used to verify whether there are
assertion violations. If an assertion is violated, a counterexample is automat-
ically generated.

Second, progress labels may be added to the Promela specification to mark a
specific point in the specification. Such labels can subsequently be used to for-
mulate properties in temporal logic and to verify whether they are satisfied by
the model. In particular, propositions of the form P [n]@label are true when
the execution of process P reaches label label. Index n is the (Spin-assigned)
process identifier, which can and will be disregarded for our purposes. The
temporal logic supported by Spin is the Linear Temporal Logic LTL. LTL
is an extension of predicate logic allowing one to express assertions about
behaviour in time, without explicitly modelling time. Spin accepts formulae
in LTL that are constructed on the basis of atomic propositions (including
true, false and user-defined properties expressed according to C notation,

16

the Boolean connectives ! (negation), & & (and), | | (or), −> (implication)
and <−> (equivalence), and the temporal operators [] (always), <> (even-
tually) and U (until). Given a system run, i.e. a sequence σ of states from the
behaviour of a system, the formula [] p holds if the property p holds in every
state of σ, the formula <> p holds if the property p eventually holds in at
least one state of σ, and the formula p U q holds if there exists a state in σ
where the property q holds and the property p holds in the states of σ until
q holds. For more detailed and a more formal introduction on LTL, we refer
the reader to [17,33].

4.2 Quantitative Model Checking

In the past, functional and performance analysis of systems were considered
two separate areas of research and practice. The latest developments in model
checking, extending system verification to performance and dependability as-
pects, have led to integrated qualitative and quantitative analysis techniques,
even if the very useful generation of counterexamples for such model checkers
is still under development [34].

In this article, we use the probabilistic symbolic model checker PRISM [25,35]
which supports, among others, the verification of Continuous Stochastic Logic
(CSL) properties over Continuous Time Markov Chains (CTMCs) [36]. These
CTMCs can be generated by high-level description languages, among which
the Performance Evaluation Process Algebra PEPA [37], for which PRISM
provides a front end. PRISM also accepts system descriptions in the PRISM
language—a simple state-based language based on the Reactive Modules for-
malism of Alur and Henzinger [38], from which it automatically generates
CTMCs. PRISM checks the satisfaction of CSL properties for given states
in the given model and provides feedback on the calculated probabilities of
such states where appropriate. It uses symbolic data structures (i.e. variants
of Binary Decision Diagrams).

The branching-time temporal logic CSL [39,40] is a stochastic variant of the
well-known Computational Tree Logic CTL [41]. Let I be an interval on the
real line, let p be a probability value and let ./ be a comparison operator,
i.e. ./ ∈ {<,≤,≥, >}. The syntax and informal semantics of CSL are given in
the table below:

17

State formulae

Φ ::= a | ¬Φ | Φ ∨ Φ | S./p (Φ) | P./p (ϕ)

S./p (Φ) : probability that Φ holds in steady state is ./ p

P./p (ϕ) : probability that a path fulfills ϕ is ./ p

Path formulae

ϕ ::= XI Φ | ΦU I Φ

XI Φ : next state is reached at time t ∈ I and fulfills Φ

ΦU I Ψ : Φ holds along path until Ψ holds at t ∈ I

The meaning of atomic propositions (a), negation (¬) and disjunction (∨) is
standard. Using these operators, other boolean operators can be defined in
the usual way. In the variant of CSL used in PRISM, the probability bound
./ p can be replaced by =?, which denotes that one is looking for the value of
the probability rather than verifying whether it respects a certain bound. The
intervals I = [0, t] and I = [t,∞) are usually written as ≤ t and ≥ t, resp.

It is worth pointing out that the CTL formulae A ϕ (i.e. all paths fulfill ϕ)
and E ϕ (i.e. there exists a path that fulfills ϕ) coincide, under proper fairness
constraints, with the degenerate CSL formulae P≥1 (ϕ) and P>0 (ϕ). Conse-
quently, PRISM can also be used to check qualitative, functional, properties
of stochastic models, a feature we will use in the sequel.

The basis for the definition of CTMCs are exponential distributions of ran-
dom variables. The parameter which completely characterises an exponentially
distributed random variable is its rate λ, which is a positive real number. A
real-valued random variable X is exponentially distributed with rate λ (writ-
ten EXP(λ)) if the probability of X being at most t, i.e. Prob(X ≤ t), is
1 − e−λt if t ≥ 0 and is 0 otherwise, where t is a real number. The expected
value of X is λ−1. Exponentially distributed random variables enjoy the mem-
oryless property , i.e. Prob(X > t + t′ | X > t) = Prob(X > t′), for t, t′ ≥ 0.

CTMCs have been extensively studied in the literature (a comprehensive treat-
ment can be found in [36], while we suggest [42] for a gentle introduction).
For the purposes of this article, it suffices to recall that a CTMC M is a pair
(S,R), where S is a finite set of states and R : S × S → IR≥0 is the rate ma-
trix . The rate matrix characterises the transitions between the states of M.
The probability that a transition will be taken from state s within time t is
1− e−

∑
s′∈S

R(s,s′)·t, while the probability that such a transition leads to state

18

s′′ is R(s, s′′)/
∑

s′∈S R(s, s′). We would like to point out that the traditional
definition of CTMCs does not include self-loops, i.e. transitions from a state
to itself. On the other hand, the presence of such self-loops does not alter the
standard analysis techniques (e.g. transient and steady-state analyses) and
self-loops moreover turn out to be useful when model checking CTMCs [43].
We thus allow them in this article.

In PEPA, systems can be described as interactions of components that may
engage in activities in much the same way as in other process algebras. Com-
ponents reflect the behaviour of relevant parts of the system, while activities
capture the actions that the components perform. A component may itself be
composed of components. The specification of a PEPA activity consists of a
pair (action type, rate) in which action type symbolically denotes the type of
the action, while rate characterises the exponential distribution of the activity
duration. The PEPA expressions used in this article have the following syntax:

P ::= (α, r).P | P + P | P ��L P | X

The basic mechanism to construct behavioural expressions is through prefix-
ing. Component (α, r).P carries out activity (α, r), with action type α and
duration ∆ t determined by rate r. The average duration is given by 1/r since,
by definition, ∆ t is an exponentially distributed random variable, with rate r.
After performing the activity, the component behaves as P . Component P + Q
models a system that may behave either as P or as Q, representing a race con-
dition between components. The cooperation operator P ��L Q defines the set
of action types L on which components P and Q must synchronise (or cooper-
ate); both components proceed independently with any activity not occurring
in L. The expected duration of a cooperation of activities α ∈ L is a function
of the expected durations of the corresponding activities in the components.
Roughly speaking, it corresponds to the longest one (the actual definition
can be found in [37], where the interested reader can find all formal details
of PEPA). A special case is the situation in which one component is passive
(i.e. has the special rate -) w.r.t. the other component. In this case the total
rate is determined by that of the active component only. The behaviour of
process variable X is that of P , provided that a definition X = P is available
for X.

5 An Event Notification Service for thinkteam

The addition of a pub/sub event notification service to thinkteam was originally
proposed in order to solve a problem that commonly arises in connection with
the usage of composite documents, and which is a variant of the classic ‘lost

19

update’ phenomenon. This phenomenon, sketched in Fig. 5, may come into
play when a client performs a checkOut/modify/checkIn cycle on a document
that may be used as reference copy by other clients.

Fig. 5. The ‘lost update’ phenomenon.

Note that, in order to maximize concurrency, a checkOut in thinkteam creates
an exclusive lock for write access but not for read access. It is thus possible
for clients to gain read access to documents that are checked out by others.
An automatic solution of this conflict is not easy, as it is critically related
to the type, nature and scope of the changes that will be performed on the
document. Moreover, standard but harsh solutions—like maintaining a de-
pendency relation between documents and use it to simply lock all documents
that depend on the one being checked out—are out of the question for think3,
as they would cause these documents to be unavailable for too long periods
of time. For thinkteam, the preferred solution is thus to leave the resolution
of such conflicts to the users. However, a pub/sub event notification service
would provide the means to supply the clients with adequate information, viz.

• inform a client issuing a checkOut of any outstanding reference copies, and
• notify the copy holders of every checkOut/checkIn of the original document.

The service which think3 proposed to add actually is more refined than the one
described above. All users subscribed to a document are notified whenever a
user extracts this document from the Vault for editing purposes. Moreover, as
soon as the user finishes editing and publishes the document in the Vault again,
this causes an update on this document to all users that are subscribed to it.
Hence not only those holding a read-only copy of the document recieve up-to-
date information on its status, but all users that are registered for the specific
document. The material in this section is partly based on our earlier work on
the analysis of a pub/sub extension to thinkteam presented in [44,18,19].

20

5.1 The thinkteam Protocol

thinkteam’s functioning is defined by its underlying multi-user communica-
tion schema, which we will refer to as the thinkteam protocol. We define an
abstract specification (model) of thinkteam’s underlying groupware protocol,
which nevertheless covers faithfully its most important aspects, and we extend
it with the pub/sub event notification service. We focus on the communica-
tion schema that is fundamental to the aspects of this protocol that we are
interested in to verify. As a result, we abstract completely from the RDBMS
and all its related operations. The resulting model of the extended thinkteam
protocol that we use is depicted in Fig. 6.

checkedOut

Controller
Concurrency

got

checkedOut

User

notAvailable update
notify

get

register

got

unRegister

import

update

Client

checkOut

checkIn

checkInOut

get

import

checkOut

checkIn

Vault

Server

unCheckOut

Fig. 6. The augmented thinkteam protocol.

This model is composed of three components, viz. the Vault, the Concurrency
Controller (CC) and the User. While the User is located on the client side,
the Vault and the CC are located on the server side. The messages that can
be sent from one component to another are those described in Sect. 2.1, com-
pleted with the messages register, unRegister, notify, update, got, checkedOut
and notAvailable, whose functioning we explain next. The first four messages
concern the added pub/sub event notification service. Users can explicitly sub-
scribe (unsubscribe) themselves to a file by sending a register (unRegister) to
the CC. Furthermore, the get operation is altered such that a user issuing it
is implicitly registered for the relevant file. If users are subscribed to a certain
file, then they are sent a notify by the CC whenever another user either ex-
tracts this file from the Vault via a checkOut or keeps a file checked out via
a checkInOut, in which case this notify is preceded by an update. Similarly,
they receive an update from the CC whenever another user inserts (publishes)
a file in the Vault. Finally, to make the ‘direction’ of a message clear from the
name of that message, a user that requests a read-only copy of a file through
a get receives the copy by a got, while a user requesting editing rights for a
file through a checkOut either receives the file by a checkedOut or receives a
notAvailable, depending on the file’s availability.

21

Some typical series of actions that can take place in this augmented thinkteam
protocol are the following. Users can indicate that they want to extract a file
from the Vault by sending a checkOut to the CC. Upon receiving this action,
the CC checks whether this file is available or whether it is locked as the result
of an extraction by another user. If the file is not locked, then the CC sends it
to the user that requested it via a checkedOut and it moreover sends a notify to
all other users registered for that file, while otherwise (i.e. if the file is locked)
the user receives a notAvailable. Recall that at any moment in time, a user can
explicitly subscribe (unsubscribe) to a file by sending a register (unRegister)
to the CC. Rather than extracting a file, a user can always request a read-only
copy of a file by sending a get to the CC, upon which the CC sends her the
file via a got and moreover implicitly registers this user for the file. The user
that has extracted a file has three options, viz.

• modify the file and then put it back into the Vault by sending it via a
checkIn to the CC,

• refrain from modifying the file and simply return the file as it was by sending
an unCheckOut to the CC, or

• insert a modified version of the file into the Vault—while keeping the file in
her possession for further editing—by sending it to the CC via a checkInOut
(in which case the file remains locked for other users, who can however
always obtain a read-only version of the file by means of a get operation).

In either of these cases, the CC sends an update to all other users that are
registered for this extracted file, whereas only in the latter case the CC more-
over sends a notify to all those other users—indicating that the file remains
locked—and it does so after it has sent the update. 1 Finally, a user can always
decide to insert a new file into the Vault by sending it to the CC via an import.

5.2 Model Checking the thinkteam Protocol

In this section we present the Promela specification and some of the results
of the verification of concurrency control properties and properties that are
related to user awareness. In particular, we show that by adding a pub/sub
event notification service to thinkteam, the users’ awareness of the status of
the development of the engineering product and the activities of the design
team increases.

1 This particular case is a slight improvement w.r.t. the one considered in [45,44].

22

5.2.1 The Promela Specification

The full and commented Promela specification of the augmented thinkteam
protocol is given in Appendix A. 2 Here we list the assumptions on which it
is based and provide a justification were necessary.

Next to the abstractions described in Sect. 5.1, we made several assumptions
in our specification in order to reduce the size of both the state space and
the state vector (used by Spin to uniquely identify a system state). The most
important assumptions, and their impact on the Promela specification, are:

(1) At any moment, there is only one file (called file 0) in the Vault, hence
the import of a file by a user currently is not modelled. This may seem
a strong limitation of the model, but the properties of interest focus on
mutual exclusive write access of users interested in modifying the same
file and related notification actions. This justifies this abstraction.

(2) The administrative user actions notify and update are always enabled.
To achieve this, the User process has an associated UserAdmin process,
which does nothing else than receiving the notify and update messages.

(3) After a user has sent a get to the CC it ‘actively waits’ for an answer,
i.e. the user activity is suspended, whereas users can be involved in fur-
ther interactions while waiting for the CC to respond to their checkOut.
This is modelled by means of a specific Promela input comand. This
assumption has been made to considerably reduce the size of the state
space, without interfering with relevant correctness properties.

(4) No message is ever lost. Message loss is dealt with by low-level protocols.
(5) The transmission time of messages between user and server is consid-

erably smaller than the inter-arrival time between requests from differ-
ent users. This results in a very low probability of competing requests.
Therefore we chose to mainly use handshake channels for communica-
tion, which reduces considerably the memory requirements for verifica-
tion. Further verifications with Spin indeed showed that replacing these
handshake channels by channels with a small buffer, in order to model
a more asynchronous communication, still leads to feasible memory re-
quirements while preserving the correctness of the verified properties [44].
This justifies this abstraction.

The abstractions that we applied to the thinkteam protocol turned out to be
sufficient to allow for the exhaustive verification of a number of correctness
properties of the thinkteam protocol with Spin. All reported verifications were
performed by running Spin v4.1.3 on a SUN® workstation with 1, 000 Mb
of available physical memory. The details of most of the verifications that we
performed can be found in [44,18]. Here we summarise their outcome.

2 This is a slightly improved version of the specification in [44].

23

5.2.2 Deadlock Detection

We performed a so-called full statespace search for invalid endstates, which is
Spin’s formalisation of deadlock states, in case of 2-4 users. The results are
summarised in Table 3.

users state vector depth reached deadlock memory used flags

2 84 byte 4423 no 37.574 Mbytes

3 108 byte 483303 no 129.529 Mbytes

4 132 byte 10484899 no 916.095 Mbytes -DMA=28

Table 3
Results of full statespace searches for deadlocks.

In case of 4 users, the available physical memory proved to be insufficient.
However, after disabling the explicit register (but still allowing implicit regis-
tration by means of a get) and enabling Spin’s minimized automaton proce-
dure with 28 as the maximal depth of the graph that is constructed for the
minimized automaton representation (cf. [17] for details) no deadlocks were
found—while a full statespace search was accomplished.

The reported results give a good impression of the fast-growing state-space
size in applications of this kind and, consequently, of the difficulties in obtain-
ing exhaustive verifications of relevant properties. This is one of the major
reasons for some of the unsuccessful applications of model checking to group-
ware systems in the past [8] and the main motivation for the assumptions
introduced in the previous section.

5.2.3 Verified Properties

Further properties relevant to the correctness of the thinkteam protocol with
a pub/sub event notification service can be divided into three classes: classic
concurrency control properties, potential denial of service (starvation) and
awareness-related properties. The verification of most of these properties has
been described in detail in our earlier work [44,18]. Here we summarise the
results and illustrate the formalisation of some of the less common awareness
properties. Four basic concurrency control properties have been verified:

24

CC-1 every lock request must eventually be responded to

CC-2
at any moment in time and for every file, only one user
may possess a lock on that file

CC-3 every lock on a file must eventually be released

CC-4 a lock on a file is not released as the result of a checkInOut

The awareness properties focus on verifying whether the protocol deals prop-
erly with the notifications to the users so that they are in the position to
properly keep track of the developments of the manufact design that is di-
rectly relevant to them:

AW-1a
a user does not receive a notify if she is not registered
for the file the notify refers to

AW-1b
a user does not receive an update if she is not registered
for the file the update refers to

AW-2a
every checkOut must eventually lead to a notify to all
(and only those) users registered for the file that the
checkOut refers to

AW-2b
every checkInOut must eventually lead to a notify to
all (and only those) users registered for the file that the
checkInOut refers to

AW-3
every unCheckOut, checkIn and checkInOut must even-
tually lead to an update to all (and only those) users
registered for the file the messages refer to

Finally, we verified one denial of service property:

DoS no user can be denied a service forever

Obviously some of these properties, like those regarding the locking-based
concurrency control mechanism, should also be satisfied by the basic, not yet
extended thinkteam protocol. The awareness criteria, however, are specifically
related to the pub/sub event notification service.

25

5.2.4 Awareness

Below we illustrate the formalisation and verification of some of the afore-
mentioned awareness properties. Though never mentioned specifically, for all
formulae in the sequel that contain a logical implication we have verified that
the left-hand side can indeed become true in at least one system run. More-
over, in the sequel we will not spell out the exact points in the Promela
specification where specific labels identifying relevant points of process execu-
tions have been added, but we will simply list them and assume their positions
to be clear from the description. Otherwise, cf. the full Promela specification
given in Appendix A.

No illegal notify (update). Criterion AW-1a(b) states that users do not
receive a notify (update) if they are not registered for the file these messages
refer to, i.e. the user does not receive any ‘illegal’ notify (update). We thus need
to verify that a notify (update) is preceded by either a get or a register . More-
over, we also have to verify that this is the case whenever an unRegister takes
place. To this aim, we added several labels to the specification of the User pro-
cess, viz. doneGet, doneRegister and doneUnRegister—right after the User
has sent a get (register, unRegister , resp.) to the CC. We furthermore added
two labels to the specification of the UserAdmin process, viz. doneNotify and
doneUpdate—right after it has received a notify (update) from the CC. The
formula that expresses Criterion AW-1a with reference to the first user is then:

! (! ("GetOrRegister" U "Notify") & &

[] ("UnRegister" −> ! (! "GetOrRegister" U "Notify")),

where "GetOrRegister" stands for User[3]@doneGet | | User[3]@doneRegister,
"Notify" stands for UserAdmin[4]@doneNotify and "UnRegister" stands for
User[3]@doneUnRegister. A similar formula can be verified for Criterion AW-
1b, using the label doneUpdate instead of the label doneNotify. Spin takes
about 20 minutes to verify that the formula is satisfied. We verified analogous
versions of these LTL formulae for the other users.

Notify if registered. Criterion AW-2a states that every checkOut must
eventually result in a notify to all (and only those) users registered for the
file these messages refer to. To verify this we added some user-specific labels
to the specification of the CC process, viz. doneGetX, doneRegisterX and
doneUnRegisterX—where the CC receives a get, a register and an unRegister
from user X—, doneCheckedOutX—where the CC responds to user X by send-
ing her a checkedOut—and doneNotifyX—by which the CC sends a notify to
user X. These labels allow us to formulate, e.g., that it may never be the case
that user 0 is (still) registered for file 0 the moment in which either user 1 or
user 2 checks out file 0, but user 0 nevertheless is not notified:

26

[] ! ("Registered0" & & (<> "checkOut1or2") & &

"NotUnRegisteredNoNotified0"),

in which "Registered0" stands for CC[2]@doneGet0 | | CC[2]@doneRegister0,
"checkOut1or2" for CC[2]@doneCheckedOut1 | | CC[2]@doneCheckedOut2
and "NotUnRegisteredNoNotified0" stands for

! CC[2]@doneUnRegister0 U (checkOut1or2) & & [] ! CC[2]@doneNotify0).

We verified the above and analogous versions of this LTL formula in which the
users change roles. Spin verifies each formula in approximately forty minutes.
All the formulae are satisfied. In a pretty similar way we verified that also
Criterion AW-2b holds.

Update if registered. Criterion AW-3 states that every unCheckOut, check-
In and checkInOut must eventually result in an update to all (and only those)
users that are registered for the file these messages refer to. To verify this,
we proceed as above: We added some more user-specific labels to the speci-
fication of the CC process, viz. doneCheckedInX—by which the CC receives
confirmation from the Vault of the fact that the file, which the CC received
from user X and forwarded to the Vault, has indeed been inserted into the
Vault—and doneUpdateX—by which the CC sends an update to user X. As
above, these labels allow us to formulate, e.g., that it may never be the case
that user 1 or 2 sends an unCheckOut, a checkIn or a checkInOut for file 0
to the CC, while user 0 is not currently registered for file 0, and that user 0
does eventually get updated for file 0, without meanwhile having registered
for file 0:

[] ! ((CC[2]@doneGet0 | | CC[2]@doneRegister0) & & (<> "OR") & &

(! CC[2]@doneUnRegister0 U

("OR" & & [] ! (CC[2]@doneUpdate0 | | CC[2]@doneIOUpdate0)))),

where "OR" stands for

(CC[2]@doneUnCheckOut1 | | CC[2]@doneUnCheckOut2 | |
CC[2]@doneCheckedIn1 | | CC[2]@doneCheckedIn2 | |
CC[2]@doneCheckedInOut1 | | CC[2]@doneCheckedInOut2).

Verification shows that also these formulae are satisfied.

27

5.3 Summary

All criteria listed in Sect. 5.2.3 were verified in either [44,18] or Sect. 5.2.4.
Table 4 gives an overview of all the verification results.

property state vector depth reached errors memory used

CC-1 Respond to lock 112 byte 3147677 0 473.209 Mbytes

CC-2 Unique lock/file 108 byte 434033 0 114.783 Mbytes

CC-3 Release file+lock 116 byte 7348 1 193.862 Mbytes

CC-4 Keep file locked 108 byte 434033 0 114.783 Mbytes

AW-1a No illegal notify 112 byte 3071518 0 539.769 Mbytes

AW-1b No illegal update 112 byte 3057025 0 558.508 Mbytes

AW-2a Notify if registered 112 byte 3338868 0 967.955 Mbytes

AW-2b Notify if registered 112 byte 3945506 0 894.278 Mbytes

AW-3 Update if registered 112 byte 4038761 0 745.900 Mbytes

DoS Denial of Service 116 byte 1801 1 193.759 Mbytes

Table 4
Results of the verifications discussed in Sect. 5.

The verifications show that the concurrency control and awareness aspects
of the extended thinkteam protocol are—largely—well designed. However, the
following two criteria turned out not to be satisfied.

Release file+lock. The thinkteam protocol does not oblige a user to ever
return a file to the Vault that she has previously checked out. Therefore, a
user that holds the lock on file 0 can endlessly perform checkInOut actions and
never release this lock. This is inherent to the thinkteam protocol. In practice
this undesirable situation is avoided by the intervention of a ‘superuser’ or
system administrator that a user can contact with the request to ‘convince’
another user towards releasing the file she currently has checked out.

Denial of Service. The CC can endlessly be kept busy by one of the users
so that other users never get their turn. Also this is an integral part of the
thinkteam protocol. This is due to the fact that in thinkteam access to docu-
ments is based on the ‘retrial’ principle. In Sect. 6.3 we analyse the option of
adding a queue for handling pending requests and compare an access policy
based on retrial with one based on a waiting list.

6 A Waiting-list Access Policy for thinkteam

As we have seen in Sect. 5.3, the problem with the denial of service property
is that it may be the case that one of the users might never get its turn to,
e.g., perform a checkOut, simply because the system is continuously kept busy

28

by the other users, while this user did express a desire to perform a checkOut.
As said before, such behaviour forms an integral part of the thinkteam pro-
tocol. This is because access to documents is based on the ‘retrial’ principle:
thinkteam currently has no queue or reservation system handling concurrent
requests for a document. Before simply extending thinkteam with a reservation
system, a complementary quantitative analysis could provide further insight
in the following usability issues:

• how often, in the average, do users have to express their requests before
they are satisfied, and

• under which system conditions (number of users, file processing time, etc.)
would such a reservation system really improve usability.

Below we will address these issues.

6.1 Stochastic Model of thinkteam—The Retry-based Access Policy

In this section, we describe a stochastic model of thinkteam for its current retry-
based access policy, which we later analyse using stochastic model-checking
techniques. We consider the case that there is only one file, the (exclusive)
access to which is handled by a CheckOut component. Basically, we abstract
from the file identity and we model only the fact that when a user attempts
to perform a checkOut, this may either complete successfully or fail due to the
fact that the requested file is already checked out. We are not interested, in this
model, in describing the parallel access to different files and we furthermore
assume that a user takes at most one file at a time in checkOut for modification.

We use the stochastic process algebra PEPA to specify the model. In Fig. 7,
the models of the User and the CheckOut components are shown graphically
as stochastic automata for the purpose of presentation.

///o/o/o '& %$! "#0

(cO s, λ)

��

(cO f, λ)

��

///o/o/o '& %$! "#0

(cO s,-)

��'& %$! "#1

(cI, µ)

OO

'& %$! "#2 (cO f, θ)gg(cO s, θ)
oo '& %$! "#1 (cO f,-)gg

(cI,-)

OO

Fig. 7. From left to right: Automata of the User and the CheckOut components.

As usual, a user can express interest in checking out the file by performing
a checkOut. This operation can either result in the user being granted access
to the file or in the user being denied access because the file is currently
already checked out by another user. In Fig. 7, the successful execution of a

29

checkOut is modelled by activity (cOs, λ), while a failed checkOut is modelled
by (cOf , λ). If the user does not obtain the file, then she may retry to obtain
it, modelled by activity (cOs, θ) in case of a successful retry and by (cOf , θ)
in case the checkOut failed. The checkIn operation, finally, is modelled by
activity (cI, µ). In the sequel, we will often call λ (θ, µ, resp.) the request
(retry, edit, resp.) rate. The CheckOut component takes care that only one
user a time can have the file in her possession. To this aim, it simply keeps
track of whether the file is checked out (state 〈1〉) or not (state 〈0〉).

The formal PEPA specifications of the User and the CheckOut component, and
the composed model for three User components and the CheckOut component

(User || User || User) ��{cOs,cOf ,cI} CheckOut

is given in Appendix B. These specifications are accepted as input by PRISM
and then translated into the PRISM language. The resulting specification
is given in Appendix C. From such a specification, PRISM automatically
generates a CTMC with 19 states and 54 transitions that can be found in [46]
and which can be shown behaviourally equivalent for the purpose of transient
and steady-state analysis (strongly Markovian equivalent in [37]) to the much
simpler CTMC given in Fig. 8. 3

76 5401 231,0 2λ //

µ
��

76 5401 231,1
θ

�� λ //

µ
��

76 5401 231,2
2θ

��

µ
��

///o/o/o 76 5401 230,0

3λ
OO

76 5401 230,1

2λ
OO

θ

``AAAAAAAAAAAAAAAAA 76 5401 230,2

λ
OO

2θ

``AAAAAAAAAAAAAAAAA

Fig. 8. CTMC for the retry-based access policy.

The states of this CTMC are tuples 〈x, y〉 with x denoting whether the file
is checked out (x = 1) or not (x = 0) and y ∈ {0, 1, 2} denoting the number
of users currently retrying to perform a checkOut . Note, however, that when
a user inserts the file taken in checkOut back into the Vault via a checkIn
activity, the CheckOut component does allow another user to checkOut the
file but this need not be a user that has tried before to obtain the file. In fact,
a race condition occurs between the request and retry rates associated to the
checkOut activity (cf. states 〈0, 1〉 and 〈0, 2〉). Note also that once the file is
checked in, it is not immediately granted to another user, even if there are users
that have expressed their interest in obtaining the file. In such a situation, the
file will remain unused for a period of time which is exponentially distributed
with rate 2θ + λ in the case that two users are retrying to get the file and
2λ + θ if their is only one user retrying.

3 Moreover, the CTMC obtained by removing the self-loops from that of Fig. 8 is
frequently used in the theory of retrial queues [47,48,36].

30

We use CSL to formalise and analyse in the above model various usability
issues concerning the retry-based access policy used in thinkteam. In this con-
text, it is important to fix the time units one considers. We choose hours as our
time unit. For instance, if µ = 5 this means that a typical user keeps the file in
its possession for 60/5 = 12 minutes on average. In the next sections we show
the analyses we performed. All experiments have been performed by running
PRISM v2.0 on an ordinary PC, taking only a few seconds of CPU time each.
The iterative numerical method used for the computation of probabilities was
Gauss-Seidel and the accuracy 10−6. For details concerning these options, we
refer the reader to [35] and to http://www.prismmodelchecker.org.

6.2 Analyses of Performance Properties

We first analyse the probability that a user that has requested the file and is
now in ‘retry mode’ (state 〈2〉 of the User component) obtains the requested
file within the next five hours. This property can be formalised in a pseudo-
CSL notation as:

P=? ([TRUE U≤5 "UserCheckOut" { "UserInRetryMode" }]), (P0)

where "UserCheckOut" stands for User STATE = 1 and "UserInRetryMode"
for User STATE = 2. Formula P0 must thus be read as follows: “what is the
probability that path formula TRUE U≤5 (User STATE = 1) is satisfied for
state User STATE = 2?”.

The results for Formula P0 are presented in Fig. 9(a) for request rate λ = 1
(i.e. on average a user requests the file one hour after its last successful access),
retry rate θ taking values 1, 5 and 10 (i.e. in one hour a user on average retries
one, five or ten times), edit rate µ = 1 (i.e. a user, on the average, keeps the
file checked out for one hour) and for different numbers of users ranging from 1
to 10. The edit rate in this model is close to the mean value obtained from
the log-file analysis in Sect. 2.4. The retry rate is a best guess, whereas the
number of users considered is in line with what has been found in the log-file
analysis.

Clearly, with an increasing number of users the probability that users get
their file within the time interval is decreasing. On the other hand, with an
increasing retry rate and an invaried edit rate the probability for a user to
obtain the requested file within the time interval is increasing. Further results
could easily be obtained by model checking for different rate parameters that
may characterise different profiles of use of the same system. In particular, this
measure could be used to evaluate under which circumstances (e.g. when it is
known that only a few users will compete for the same file) the retry-based
access policy would give satisfactory results from a usability point of view.

31

A bit more complicated measure can be obtained with some additional calcu-
lations involving steady-state analysis (by means of model checking). Fig. 9(c)
shows the average number of retrials per file request for request rate λ = 1,
retry rate θ taking values 5 and 10, edit rate µ ranging from 1 to 10 and
for 10 users. The measure has been computed as the average number of re-
tries that take place over a certain system observation period of time T di-
vided by the average number of requests during T . We computed the aver-
age number of retries (requests) as follows. First, we computed the steady-
state probability p (q) of the user being in ‘retry mode’ (‘request mode’),
i.e. p

def
= S=? (User STATE = 2) (q def

= S=? (User STATE = 0)). The fraction of
time the user is in ‘retry mode’ (‘request mode’) is then given by T×p (T×q).
The average number of retries (requests) is then θ× T × p (λ× T × q). Hence
the measure of interest is (θ × p)/(λ× q).

It is easy to observe in Fig. 9(c) that the number of retrials decreases consid-
erably when the edit rate is increased (i.e. when the users, on average, keep
the exclusive access to a file for a shorter period of time). We also note that
a relatively high edit rate is needed to obtain an acceptably low number of
retries in the case of ten users that regularly compete for the same file. The
effect on the average number of retries is even better illustrated in Fig. 9(b),
where with a similar approach as outlined above the average number of retries
per file request is presented for request rate λ = 1, retry rate θ taking values 5
and 10, fixed edit rate µ = 5 and various numbers of users. Clearly, the average
number of retries per file request increases sharply when the number of users
increases.

6.3 Stochastic Model of thinkteam—The Waiting-list Access Policy

In contrast with our model for thinkteam’s current retry-based access policy
of Sect. 6.2, we now assume that a user’s file request is put into a FIFO
queue when the file is already in use by another user. The moment in which
the file becomes available, the first user in this FIFO queue obtains the file.
This implies the following changes w.r.t. the model of Sect. 6.2. Since a user
no longer retries to obtain the file after an initial unsuccessful attempt to
checkOut the file, the new User component has two states only, viz. state
〈2〉 is removed from the User component as given in Fig. 7. Moreover, since
the CheckOut component now implements a FIFO policy, the new CheckOut
component must keep track of the number of users in the FIFO queue. The
full specifications of the new User and CheckOut components are given in
Appendix D and their translations into the PRISM language are given in
Appendix E. From these specifications, PRISM automatically generates a
CTMC with 16 states and 30 transitions that can be found in [46]. Here we
directly use the strongly-equivalent CTMC for three users given in Fig. 10.

32

(a) Probability for users in ‘retry mode’
to checkOut requested file in next 5 hrs.

(b) Average number of retrials per file
request for a varying number of users.

(c) Average number of retrials per file re-
quest in case of 10 users.

(d) The retry-based access policy vs. the
waiting-list access policy.

Fig. 9. (a)-(d) Results of the analyses performed in this section.

///o/o/o 76 5401 230,0
3λ //76 5401 231,0

2λ //

µ
oo

76 5401 231,1
λ //

µ
oo

76 5401 231,2
µ

oo

Fig. 10. CTMC for the waiting-list access policy.

The state tuples of this CTMC have the same meaning as before, but states
〈0, 1〉 and 〈0, 2〉 no longer occur. This is due to the fact that, once the file
is checked in, it is immediately granted to another user, viz. the first in the
FIFO queue.

The fact that we consider request rate λ, edit rate µ, one file and three users
means that we are dealing with a M|M|1|3 queueing system [42,36]. The CTMC
of Fig. 10 is the CTMC underlying this queueing system and this type of
CTMC is also called a birth-death process [42,36].

33

6.4 Retry-based Versus Waiting-list Access Policy

It is interesting to compare the two models w.r.t. the probability that there
are users waiting to obtain the file after a checkOut request. To obtain this
measure, we compute the probabilities for at least one user not being granted
the file after asking for it, i.e. the steady-state probability p to be in a state in
which at least one user has performed a checkOut but did not obtain the file
yet. In the retry-based access policy this concerns states 〈0, 1〉, 〈0, 2〉, 〈1, 1〉
and 〈1, 2〉 of the CTMC Retrial in Fig. 8, whereas in the waiting-list access
policy this concerns states 〈1, 1〉 and 〈1, 2〉 of the CTMC FIFOqueue in Fig. 10.
Hence this can be expressed as the pseudo-CSL steady-state formula

p
def
= S=? ([(Retrial STATE = 〈0, 1〉) | (Retrial STATE = 〈0, 2〉) |

(Retrial STATE = 〈1, 1〉) | (Retrial STATE = 〈1, 2〉)])

for the retry-based access policy, while for the waiting-list one the formula is

p
def
= S=? ([(FIFOqueue STATE = 〈1, 1〉) | (FIFOqueue STATE = 〈1, 2〉)]).

The results of our comparison are presented in Fig. 9(d) for request rate λ = 1,
retry rate θ (only for the retry-based access policy of course) ranging from 1
to 10, edit rate µ taking values 5 and 10 and, as before, three users.

It is easy to see that, as expected, the waiting-list access policy outperforms
the retry-based one in all the cases we considered: The probability to be in
one of the states 〈1, 1〉 or 〈1, 2〉 of the CTMC of the waiting-list access policy
is always lower than the probability of the CTMC of the retry-based access
policy to be in one of the states 〈0, 1〉, 〈0, 2〉, 〈1, 1〉 or 〈1, 2〉. Note that for
large θ the probability in case of the retry-based access policy is asymptoti-
cally approaching that of the waiting-list one, of course given the same values
for λ and µ. While we did verify this for values of θ upto 109, it is of course
extremely unrealistic to assume that a user performs 109 retries per hour.
We can therefore conclude that the time that a user has to wait ‘in the long
run’ for the file after it has performed a checkOut is always less when using
the waiting-list access policy than when using the retry-based access policy.
Furthermore, while increasing the retry rate does bring the results for the
retry-based access policy close to those for the waiting-list one, it takes highly
unrealistic retry rates to reach a difference between the two policies that is
insignificantly small.

34

7 Multiple Replicated Vaults for thinkteam

A further extension of thinkteam that think3 is considering is the addition of
a service-oriented functionality, viz. that of multiple replicated Vaults. These
Vaults reside in a number of locations that are assumed to be geographically
distributed (cf. Fig. 11). thinkteam is assumed to have persistent data on the
status of the replicated Vaults and on the status of all files, i.e. whether a file
is currently checked out by a designer or available for modification.

document

RDBMS

Client A

Client B

Client C

metadata operations

checkIn/Out

Vault

Vault

Vaultlocation
A location

B

location
C

Fig. 11. thinkteam with replicated Vaults.

When designers query thinkteam in this new setting, e.g. for a copy of a file,
thinkteam typically responds by assigning them the ‘best possible’ Vault loca-
tion. Ideally, this is the designer’s preferred Vault location (e.g. with a good
connection in terms of bandwidth), while a second-best location is assigned
if the preferred location is down or has a too high workload. If, on the other
hand, the most recent checkIn of the requested file was performed by the same
designer, then the local version of the file can be used, thus saving a checkOut.

When designers have obtained a Vault address, they may checkOut the file,
edit it and eventually checkIn the file, again with a strong preference for their
preferred Vault location. After each checkIn, the related location informs think-
team that the file has been uploaded. Afterwards, thinkteam updates the status
of the file, i.e. removes its lock, and makes it available for other designers re-
questing it. This communication also transfers the status information of the

35

Vault locations to thinkteam. Neither the communications between the Vault
locations needed to keep them consistent nor those between the Vault locations
and thinkteam are represented in Fig. 11. In the model of the system consid-
ered in this article, we do not explictly address the communications between
Vaults but assume that they are kept consistent using suitable algorithms. The
communication between the Vaults and thinkteam will be modelled explicitly.

7.1 Stochastic Model of thinkteam

The model that we consider is composed of three Vault locations (called Va,
Vb and Vc) that contain identical file repositories, three explicitly modelled
Clients (called CA, CB and CC) that compete for the same file and the think-
team application (called TT). Each Vault location is connected to TT and
they communicate their status regularly to TT. Interesting aspects of the sta-
tus of a Vault location for the purpose of performance analysis are, e.g., its
workload, availability (i.e. being up or down) and the bandwidth available to
the various Clients. TT keeps a record of the status of all files, i.e. whether a
file is locked (because it is checked out by a Client) or available for download
and modification.

The current model is based on the following assumptions.

(1) The bandwidth between a Client and a Vault is constant and each Client
prefers downloading and uploading files from the Vault with the best
connection. At times this connection may be down, however, in which
case a Client will use the next preferred Vault.

(2) Each Client has a static preference list with the preferred Vault order.
(3) The three explicitly modelled Clients do not influence significantly the

overall performance of the full system, which includes many active Clients
modelled only implicitly by means of the reponsiveness characteristics of
the various Vaults. Our aim is to analyse a number of correctness and
usability aspects of the system from these three Clients’ point of view.

(4) We only consider a subset of the operations available to thinkteam Clients,
viz. the most important ones: checkOut and checkIn. This keeps the model
relatively simple. Further operations can easily be added at a later stage.

(5) TT is not enabled to inform a Client of the fact that the local version of
the file is the most up-to-date if TT notices that the most recent checkIn
of the requested file was performed by that Client. This is future work.

Also in this case we abstract from the specific file identity and model only
the fact that when a Client tries to perform a checkOut, she may succeed
or fail due to the locking status of the file under the assumption that, in
general, three Clients are interested in the same file. Instead, we focus on

36

the interactions of different Clients with different vaults and on their impacts
on system behaviour in terms of functional and performance properties. We
assume furthermore that Clients have at most one file checked out at any time.

For a compact presentation, we model the Clients, Vaults and TT graphically
as abstract forms of stochastic automata in Figs. 12 and 13, which have also
been used in discussions with our colleagues from think3. The labels of the
states and transitions will play an important role in the next section, when
discussing the model’s analyses. The transition labels are of the general form
〈from〉 〈to〉 〈action〉, in which the part 〈from〉 〈to〉 indicates the direction of
the information flow between processes (e.g. CA TT denotes a communication
from CA to TT) while the 〈action〉 part indicates a specific action (e.g. cO s
for successful checkOut, cO f for failed checkOut and cI for checkIn).

Client process. The behaviour of a Client CX, with X=A,B,C, is modelled
as follows (cf. Fig. 12). Initially, in state CX, with rate λ the Client performs
a request to TT to download a file for modification. This request is successful
if the file is available (CX TT cO s, λ) and fails if the file is currently being
edited by another Client (CX TT cO f, λ). In case the request is successful,
TT provides the address of the ‘best possible’ Vault location to the Client
(e.g. TT CX Va means that Client CX receives the address of Vault Va).

�� ���� ��CX 3 1 (Va CX,-)

!!�� ���� ��CX 1

(TT CX Va,-) //

(TT CX Vb,-)
//

(TT CX Vc,-)
//

�� ���� ��CX 3 2
(Vb CX,-)

//�� ���� ��CX 4
(CX CX,νX)

//�� ���� ��CX 5 ED

BC

(CX Va cI,-),
(CX Vb cI,-),
(CX Vc cI,-)@A

OO
///o/o/o �� ���� ��CX

(CX TT cO s,λ) //

(CX TT cO f,λ)
//

�� ���� ��CX 3 3 (Vc CX,-)

==

�� ���� ��CX 2 (CX TT cO f,θ)ee

(CX TT cO s,θ)

OO

Fig. 12. Client CX, with X=A,B,C.

The policy to assign a Vault location is kept very simple in this model: Clients
receive the address of their preferred Vault location (the first on their prefer-
ence list) with highest static probability. They receive the address of different
Vault locations with lower probabilities, thus modelling the fact that the pre-
ferred Vault location is not always available, be it due to a high workload or
due to temporary unavailability. These probabilities can be tuned in order to
better match the performance characteristics of the planned system. Indica-
tions for such probabilities are obtained, e.g., from the log-file analysis of the
expected performance characteristics of the single centralised Vault currently
used in thinkteam (cf. Sect. 2.4).

When Client CX has obtained the address of a Vault location, the Client can
download (e.g. from Vault A by (Va CX,-)) the requested file, then edit the file
for about 1/νX time units while in state CX 4, which is left with transition

37

(CX CX,νX) and, finally, upload the file to a Vault by means of a checkIn
(e.g. to Vault A by (CX Va cI,-)), following a preference list as for download-
ing, and return to the initial state CX. Actions with a rate that is indicated
by ‘-’ are passive, i.e. the rate value is established during synchronisation—in
this case between the Client process and the Vault process, with the Vault
process determining its value.

If the Client’s request for a file fails, a series of retry actions is started (state
CX 2), with rate θ, to obtain the file at a later moment. After a number of
successive failed requests, the Client eventually performs a successful request
and moves to state CX 1 (PRISM assumes a fair process semantics).

Vault process. The behaviour of a Vault Vy, with y=a,b,c, is modelled as
follows (cf. Fig. 13). Each Vault (location) can receive download operations
from a Client (by (Vy CX,γX

y)) with rate γX
y corresponding to the average

download time 1/γX
y for that specific Client CX and Vault Vy, alternated

with checkIn operations (CX Vy cI,µX
y) with rate µX

y . After each checkIn, the
Vault informs TT (by (Vy TT,δ)) that the file has been uploaded to the Vault.
In this way, TT can update the status of the file, i.e. remove the lock and make
it available to other Clients. The same communication also models the transfer
of the status information of the Vaults to TT.

�� ���� ��TT 1 1
(TT CA Vy,ε)

!!
///o/o/o '& %$! "#Vy

(Vy CA,γA
y),

(Vy CB,γB
y),

(Vy CC,γC
y)

DD

(CA Vy cI,µA
y),

(CB Vy cI,µB
y),

(CC Vy cI,µC
y)

//'& %$! "#Vy 1
(Vy TT,δ)

oo
///o/o/o �� ���� ��TT

(CA TT cO s,-) //

(CB TT cO s,-)
//

(CC TT cO s,-)
//

�� ���� ��TT 1 2
(TT CB Vy,ε)

//�� ���� ��TT 2

(CA TT cO f,-),
(CB TT cO f,-),
(CC TT cO f,-)

ED
BC@A

(Vy TT,-)

OO

�� ���� ��TT 1 3
(TT CC Vy,ε)

==

Fig. 13. From left to right: Vault Vy and TT, with y=a,b,c.

TT process. The behaviour of TT is modelled as follows (cf. Fig. 13). Initially,
TT waits for file requests from Clients that it may honour (e.g. from Client A
by action (CA TT cO s,-)). In case of such a successful file request, TT assigns
a Vault to the Client, using the assignment policy described above.

This policy can be modelled in a stochastic way by creating a race condition
between the different assignments in the following way. If one wants that
Client A is assigned Vault A in ca. 50% of the cases, Vault B in ca. 33% and
Vault C in ca. 16% of the cases, one can choose suitable rates that reflect
this. For instance, state TT 1 1 has three outgoing transitions, labelled by
(TT CA Va,300), (TT CA Vb,200) and (TT CA Vc,100), as is shown in a
close-up of that fragment of the model in Fig. 14.

The total exit rate from state TT 1 1 is thus 300 + 200 + 100 = 600, and
the probability that Vault A is assigned to Client A is then 300/600 = 0.5.
These relatively high exit rates model the fact that Vault assignment is very

38

�� ���� ��TT 1 1

(TT CA Va, 300)

""(TT CA Vb, 200)
//

(TT CA Vc, 100)

<<
�� ���� ��TT 2

Fig. 14. Close-up of transitions from TT 1 1 to TT 2.

fast as compared to the other activities. 4 Actions (TT CX Vy,ε) model as-
signing a Vault, locking the file and sending the Vault address to the Client.
Any further request for the same file is explicitly denied (e.g. to Client A by
(CA TT cO f),-) until TT has received a message from a Vault indicating
that the file has been uploaded (e.g. for Vault Y by (Vy TT,-)). TT is then
back in its initial state, ready to accept further requests for the file.

Full specification. The specification of thinkteam is completed by the parallel
composition of the three Client processes, the three Vault processes and the
TT process, as follows (with X=A,B,C, y=a,b,c and z=f,s):

(CA��CB��CC)��CX TT cO z,TT CX Vy,CX Vy cI,Vy CX(TT��Vy TT(Va��Vb��Vc)).

The complete PEPA specification and its translation into the PRISM lan-
guage are given in Appendices F and G, resp. From such a specification,
PRISM automatically generates a CTMC with 104 states and 330 transitions.

Note that we have thus restricted the model to the investigation of the per-
formance characteristics for three Clients competing for the same file during
approximately the same period. More detailed analyses of the log-file might
provide more information on the typical and maximal number of Clients that
usually compete for the same file. The model can easily be extended with
a limited number of explicitly modelled Clients, along the same lines as in
Sect. 6.

7.2 Analysis of the Model of thinkteam with Multiple Replicated Vaults

All the analyses reported in this section were performed with the stochastic
model checker PRISM v3.1.1 on an ordinary PC and, in the case of a model
with three Clients, took a negligible amount of CPU time.

The rate values used for the analysis of functional aspects of the system de-
scribed in Sect. 7.2.1 are given in Table 5. These rates should be read consid-
ering that the letters in the subscripts refer to the names of the Vaults while
those in the superscripts indicate the Clients. Hence µA

b , e.g., is the upload

4 For reasons of space and readability, these details are abstracted from in Fig. 13:
Only a nominal indication ε of the relevant rates is given.

39

rate between Vault B and Client A, which obviously equals the download rate
γA

b between Vault B and Client A.

λ

µA
a

γA
a

µB
a

γB
a

µC
a

γC
a

µA
b

γA
b

µB
b

γB
b

µC
b

γC
b

µA
c

γA
c

µB
c

γB
c

µC
c

γC
c νA νB νC θ δ ε

ε2

2ε

ε3

3ε

0.1 60 20 40 40 60 20 20 40 60 0.3 0.3 0.3 6 100 100 200 300

Table 5
Rate values used for the functional analyses.

The time units in this model are hours. This means for instance that rate
νA = 0.3 models that on average Client A spends 60/0.3 = 200 minutes
editing a file, while rate θ = 6 models that on average a Client retries to
checkOut a locked file every 60/6 = 10 minutes.

7.2.1 Analyses of Functional Properties

Before undertaking performance analyses of the model, it is important to gain
confidence in its correctness by verifying several qualitative properties. We
have verified, e.g., the absence of deadlocks, various progress properties and
mutual exclusion of the right to edit a file. Two examples of such properties
are the following.

Whenever Client X successfully manages to checkOut a file from Vault A,
eventually a checkIn of that file is performed. This property is captured, for
X=A,B,C, by the following pseudo-CSL formula:

P≥1 ([TRUE U "ClientXCheckIn" { "ClientXCheckOut" }]), (P1)

where "ClientXCheckIn" stands for CX STATE = CX 5 and "ClientXCheck-
Out" for CX STATE = CX 3 1. Verification with PRISM confirmed For-
mula P1 to hold for the model.

The probability should be (at most) zero that two (or more) Clients will
eventually manage to obtain permission to modify the same file at the same
time. This property can be formalised in pseudo-CSL as follows:

P≤0 ([TRUE U ("PermittedAB"∨"PermittedAC"∨"PermittedBC")]), (P2)

in which, for XY=AB,AC,BC,

"PermittedXY" def
= (CX STATE = CX 1) ∧ (CY STATE = CY 1),

meaning that two Clients (X and Y) have been permitted to edit the file
(i.e. are in state CX 1 and CY 1, resp.). Verification with PRISM confirmed
that Formula P2 holds for the model.

40

7.2.2 Analyses of Performance Properties

In this section we show some performance aspects of the model, and in partic-
ular some usability aspects seen from the perspective of the Clients. The rate
values which we used are again those of Table 5 except when explicitly stated.

Swiftness of returning file. Formula P1 above only shows that Clients
eventually upload the file (after they downloaded it). The following pseudo-
CSL formula can be used to quantify this aspect, for X=A,B,C:

P=? ([TRUE U≤5 "ClientXCheckIn" { "ClientXCheckOut" }]), (P3)

i.e. what is the probability that within 5 hours after successfully downloading
the file (state CX 3 1), Client CX is in state CX 5 ready to upload the file?
The results are presented in Fig. 15(a) for edit rate νX , for X=A,B,C, varying
from 0.05 to 0.5, i.e. from an average of 20 down to 2 hours of editing activity.
As expected, the less time a Client spends editing, the higher the probability
that the file is returned within 5 hours.

Fig. 15. (a) Probability for a Client to checkIn a file within 5 hrs. after the checkOut;
(b) Percentage of time Client A spends on activities (varying file inter-access times).

Behaviour on the long run. One of the parameters that influences the
way Clients use thinkteam, and which therefore influences the time they spend
on different activities, is the average time between required accesses to the
same file. The change in average time spent on different activities by a typical
Client when varying this inter-access time can be well-observed in Fig. 15(b):
For each activity, the percentage of time Client A spends on that activity is
shown, for various values of λ, which has a strong impact on the request rate.

We see that when λ is very low, most time is spent on other activities, very
little on down- and uploading and on retrying. This pattern changes consid-
erably as λ increases. The time spent waiting for the file (retrying) increases
sharply and, obviously, a Client spends much less time on other activities. She
also spends more time editing the file, but this increase is not so sharp.

The family of properties analysed to obain the results shown in Fig. 15(b) are
simple steady-state properties formalised in pseudo-CSL as follows:

S=? (["ClientAInStateZ"]), (P4)

41

where "ClientAInStateZ" is replaced by the different states that indicate the
particular activity of Client A we are interested in, e.g. CA STATE = CA 2
to indicate that Client A is retrying to obtain a file.

Time spent downloading and uploading files. The time Clients spend
down- and uploading files depends largely on the bandwidth of their connec-
tion to the Vaults, the size of the files and the workload of the Vaults. Fig. 16
shows the effect that a change in workload of Vaults A and B has on the
percentage of time Client A spends down- and uploading files. On the x-axis
an efficiency factor is shown, ranging from 10 to 100, which multiplies the
download rates γX

a , with X=A,B,C, of Vault A for Clients A, B and C, which
are initially set to 0.6, 0.2 and 0.4, resp. Likewise on the y-axis, multiplying
the download rates of Vault B for Clients A, B and C, which are initially set
to 0.4, 0.6 and 0.2, resp. All other rates are as in Table 5.

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

Overhead Client A

 10 20 30 40 50 60 70 80 90 100
Efficiency factor Vault A 10

 20
 30

 40
 50

 60
 70

 80
 90

 100

Efficiency factor Vault B

 0.002
 0.004
 0.006
 0.008

 0.01
 0.012
 0.014

Probability upload/download

Fig. 16. Steady-state probability for a Client to be down- or uploading files.

Hence, the higher the efficiency factor, the faster the Vaults perform, and
the lower the workload. Indeed, as expected, we see that the probability that
Client A spends time on down- and uploading on the long run is smallest
when both Vaults (A and B) are working optimally. We also observe that
if only Vault B has a high workload (i.e. a low efficiency factor), and thus
performs slower, then this influences the time that Client A spends down- and
uploading. This is because part of the time Client A downloads from (and
uploads to) Vault B. Note also that this percentage does not decrease much
after a certain performance of the Vaults has been reached: This occurs more
or less at efficiency factor 40-50, for the parameter settings chosen for the
analysis. The results in Fig. 16 have been obtained by verifying Formula P4
for Client A being in either of the states CA 3 1, CA 3 2, CA 3 3 or CA 5.

Number of retries per success. The perceived usability of thinkteam also
depends on how often it happens that a Client cannot obtain a file that she
intends to modify. Failing to obtain a file means that the Client needs to spend
time on either keep trying to obtain it at a later stage or change her workplan
and search for another file. If this situation occurs frequently, a Client might
perceived this as annoying. Moreover, it may lead to the introduction of errors

42

(the Client may forget to edit the file later, or forget what modifications to
make) or to problems in the overall workflow plan, and thus result in a delay
in the delivery of the final product. It would therefore be useful to be able to
quantify this problem under various conditions and for different user profiles
of Clients using thinkteam. For instance, the different phases of design may
induce a different use of thinkteam: Initially, Clients may take more time to
modify a file because of a completely new design, but closer to the deadline
there might be a phase in which many Clients need to frequently make small
modifications in order to fine-tune the various components.

Fig. 17 shows the results of one such an analysis: The average number of
retries that Client A needs before obtaining the permission to modify a file
changes with the simultaneous increase of the edit and retry rates (modelling
Client behaviour close to a deadline) and an increase in the frequency with
which Client A needs the file time and again. The chosen edit and retry rates
are 0.025 and 0.5, resp., which have been multiplied with a factor ranging
from 1 to 10. The figure also shows how the number of retries per success
changes with the request rate λ. Given that we consider on average three
users competing for a file, the total inter-access rate is 3 · λ. This means that
the inter-access time of files is ranging from 4 hours to 1 hour, modelling a
usage pattern with time characteristics that is situated towards the faster end
of the spectrum shown in Sect. 2.4.

 0
 5
 10
 15
 20
 25
 30
 35
 40

Number of retries Client A

 1 2 3 4 5 6 7 8 9 10
Multiplication factor edit and retry rates 0

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

Request rate lambda

 0
 5

 10
 15
 20
 25
 30
 35
 40

Number of retries per success

 0
 5
 10
 15
 20
 25
 30
 35
 40
 45

Number of retries Client A

 1 2 3 4 5 6 7 8 9 10
Multiplication factor edit and retry rates 0

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

Request rate lambda

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

Number of retries per success

Fig. 17. (a) Average number of retries Client A needs to obtain a file; (b) Average
number of retries Client A needs to obtain a file if it reorganises her workplan.

Fig. 17(a) has been obtained by extending the PRISM specification of our
model with a reward structure to count the number of successful requests
and another one to count the number of retries. Reward structures defined
over a CTMC define which actions need to be counted. Subsequently, the
model can be analysed with respect to a number of reward-based properties.
We use the steady-state reward formula that calculates the average reward
on the long run. Its syntax is R{ "label" } =? [S], in which "label" is a
reward structure and S denotes that the steady-state reward is calculated. The
number of repeated failed requests per successful request shown in Fig. 17(a)
is thus obtained by dividing the outcome of this formula for label=NrFailed-

43

RequestsClientA by that for label=NrSuccessfulRequestsClientA.

Despite the fact that there are relatively few Clients needing the same file
more or less in the same period, the number of retries required to obtain the
permission to edit a file is relatively high. Few Clients would be happy to have
to try more than thirty times to get access to a file. If we were to adjust our
model by allowing Clients to change workplan in case a file is not available,
then the situation would improve. Such an adjustment is relatively simple: It
suffices to add one transition in each component CX, for X=A,B,C, from the
retry states CX STATE = CX 2 to the initial states CX STATE = CX. The
results for the adjusted model of the above reward-based properties are shown
in Fig. 17(b).

Other solutions would be to replace the retry policy with a reservation policy or
to extend thinkteam with a event notification service. In the previous sections
we have analysed both these options for a version of thinkteam with one single
centralised Vault.

8 Lessons Learned

During interactive design sessions with think3, which included both physical
meetings and meetings by means of groupware systems like teleconferencing
and electronic mail, think3 has acquired a basic knowledge of Spin and of
the stochastic model checker PRISM. In fact, we have been able to use these
model checkers in various ways to present the behaviour of our models of
the groupware protocols underlying thinkteam and its proposed extensions.
Examples include simulation, message sequence charts and counterexamples.
This has helped to detect a number of ambiguities and unclear aspects of the
designs that think3 had in mind regarding the proposed thinkteam extensions.
Examples include the two criteria (CC-3 and DoS) that were shown to be
invalid (cf. Sect. 5), the additional Criterion AW-2b that was formulated in
the context of our cooperation and the numerous questions that were addressed
during these interactive meetings. To give an idea of the type of questions, we
list three of them, with their answers.

When exactly are which requests enabled? Our initial model of think-
team prohibited a user to perform a get after initiating a checkOut for
the same file. However, think3 realized that it was preferred to allow a get
also after a checkedOut has been obtained. Such a get should be seen as a
kind of ‘re-get’.

What are the exact semantics of requests? Our initial model of think-
team allowed a user to (un)register for a file for which she possessed editing
rights. think3 showed us that in practice such situations are undesirable.

44

Our model does, however, allow a user to (un)register for a file as long as
she is waiting for a response to the checkOut that she sent for this file. After
all, this response may also be negative.

How are concurrent requests handled? As mentioned before, access to
files through thinkteam is currently based on the ‘retrial’ principle: There
is no queue (or reservation system) handling concurrent file requests. As a
result of our cooperation, think3 is investigating whether it would be useful
to equip thinkteam with a file reservation system.

think3 furthermore has expressed the intention to use our model of thinkteam
extended with a pub/sub event notification service as a basis for the planned
implementation of this extension, which of course will provide increased con-
fidence on the usefulness of the system design.

The results we have obtained with the model checker PRISM have been essen-
tial to obtain feedback on the performance aspects of the problems detected by
qualitative model checking. Our relatively simple models were easy to grasp,
but at the same time allowed the analysis of quite a number of different as-
pects, e.g. by varying the values of the model’s parameters. In this respect,
the analysis of the log-file that has been obtained from a real use of thinkteam
turned out to be extremely useful for obtaining a realistic estimate of the pa-
rameter values. On the other hand, this log-file analysis has also showed that
some data that would have been useful for a further evaluation of usability
issues is not currently collected in thinkteam’s log-files. Hence, our cooperation
has also served to develop further ideas about which data to log in the future.

For think3, the experience with model checking specifications of concurrent
systems before actually implementing them, has been a true eye opener. They
have recognized the inherent concurrency aspects of groupware systems like
thinkteam, as well as their intricate behaviour. The relatively simple, lightweight
and abstract high-level models that we have developed during our coopera-
tion, furthermore have turned out to be of great help to focus on the key issues
of the development of the interface aspects of thinkteam, before turning to the
more detailed design and implementation issues. In fact, think3 has expressed
the intention to install Spin and PRISM in order to get more acquainted
with these model checkers and—ultimately—to acquire the skills to perform
automated verification of the (groupware) protocols underlying their software
systems themselves. This makes our cooperation an excellent example of tech-
nology transfer to industry.

45

9 Conclusions and Future Work

The research described in this article has taken place in the context of the
national Italian research project tocai.it, which aims at the application and
development of knowledge-based technologies to support the aggregation of
enterprises over the Internet. think3 is one of the industrial partners in this
project. Groupware products like thinkteam are in continuous evolution. More-
over, thinkteam is used by many important manufacturing industries that
nowadays have several dislocated design departments, each of which needs
reliable and efficient software systems to cooperate in an efficient way. The
many inherent concurrency aspects that think3 needs to face when producing
their software, and their awareness of the difficulties this implies when assess-
ing the quality of their products, made it easier to raise their interest for the
use of model-checking techniques in the early phases of software design.

In this article, we have illustrated that with relatively simple abstract models
important issues concerning asynchronous dispersed groupware systems can
be addressed. Examples include awareness, concurrency control and usability-
related issues. The feature-oriented approach combined with a modular, proto-
typing-like way of generating models and results, has shown helpful also for
making think3 familiar with the possibilities and limitations of current model-
checking techniques.

We have also showed the importance of a combined qualitative and quantita-
tive analyses to be able to make informed design decisions. The development
of the models in close collaboration with think3 has showed that the activ-
ity was worthwhile to obtain precise and unambiguous specifications and has
helped to provide better documentation of thinkteam. On the other hand, the
models and results have benefited considerably from the information that we
have managed to obtain by analysing the log-file of the actual use of thinkteam.
Still further analyses of such data can be of help to obtain models that can
also be used to analyse thinkteam when used under different usage patterns.
We believe this to be an interesting topic for further technology study. The
models and results in their turn have also generated ideas for improved logging
of thinkteam’s user activities, in order to get more insight into the usability
aspects of thinkteam at work.

Finally, the expected shift from dedicated software for collaborative systems
to an architecture that is to be service oriented in nature, will raise even
more issues related to concurrency, mobility, reliability and performance. The
goal to find proper languages and model-checking tools to be integrated in
the software development processes of groupware industries will be one of the
future challenges.

46

References

[1] J. Stark, Product Lifecycle Management—21st Century Paradigm for Product
Realisation, Springer-Verlag, Berlin, 2005.

[2] J. Grudin, CSCW—History and Focus, IEEE Computer 27 (5) (1994) 19–26.

[3] C. A. Ellis, S. J. Gibbs, G. L. Rein, Groupware—Some Issues and Experiences,
Communications of the ACM 34 (1) (1991) 38–58.

[4] P. Dourish, V. Bellotti, Awareness and Coordination in Shared Workspaces,
in: J. Turner, R. Kraut (Eds.), Proceedings of the 3rd ACM Conference on
Computer Supported Cooperative Work (CSCW’92), Toronto, Canada, ACM
Press, New York, 1992, pp. 107–114.

[5] C. Gutwin, M. Roseman, S. Greenberg, Supporting Awareness of Others in
Groupware, in: M. J. Tauber (Ed.), Companion Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems: Common Ground
(CHI’96), Vancouver, BC, Canada, ACM Press, New York, 1996, pp. 205–215.

[6] M. H. ter Beek, M. Massink, D. Latella, S. Gnesi, Model Checking Groupware
Protocols, in: F. Darses, R. Dieng, C. Simone, M. Zacklad (Eds.), Cooperative
Systems Design—Scenario-Based Design of Collaborative Systems, Vol. 107 of
Frontiers in Artificial Intelligence and Applications, IOS Press, Amsterdam,
2004, pp. 179–194.

[7] C. Papadopoulos, An Extended Temporal Logic for CSCW, The Computer
Journal 45 (4) (2002) 453–472.

[8] T. Urnes, Efficiently Implementing Synchronous Groupware, Ph.D. thesis,
Department of Computer Science, York University, Toronto (1998).

[9] M. Caporuscio, P. Inverardi, P. Pelliccione, Formal Analysis of Clients
Mobility in the Siena Publish/Subscribe Middleware, Tech. rep., Department
of Computer Science, University of L’Aquila (2002).

[10] X. Deng, M. B. Dwyer, J. Hatcliff, G. Jung, Robby, G. Singh, Model-Checking
Middleware-Based Event-Driven Real-Time Embedded Software, in: F. S. de
Boer, M. M. Bonsangue, S. Graf, W.-P. de Roever (Eds.), Revised Lectures
of the 1st International Symposium on Formal Methods for Components and
Objects (FMCO’02), Leiden, The Netherlands, Vol. 2852 of Lecture Notes in
Computer Science, Springer-Verlag, Berlin, 2003, pp. 154–181.

[11] D. Garlan, S. Khersonsky, J. S. Kim, Model Checking Publish-Subscribe
Systems, in: T. Ball, S. K. Rajamani (Eds.), Proceedings of the 10th
International SPIN Workshop on Model Checking Software (SPIN’03), Portland,
OR, USA, Vol. 2648 of Lecture Notes in Computer Science, Springer-Verlag,
Berlin, 2003, pp. 166–180.

[12] S. Tripakis, S. Yovine, Timing Analysis and Code Generation of Vehicle Control
Software using Taxys, in: K. Havelund, G. Rosu (Eds.), Proceedings of the

47

1st Workshop on Runtime Verification (RV’01), Paris, France, Vol. 55 (2) of
Electronic Notes in Theoretical Computer Science, Elsevier Science Publishers,
Amsterdam, 2001, pp. 174–183.

[13] L. Zanolin, C. Ghezzi, L. Baresi, An Approach to Model and Validate Publish/
Subscribe Architectures, in: M. Barnett, S. H. Edwards, D. Giannakopoulou,
G. T. Leavens (Eds.), Proceedings of the Workshop on Specification and
Verification of Component-Based Systems (SAVCBS’03), Helsinki, Finland,
Technical Report #03-11, Department of Computer Science, Iowa State
University, 2003, pp. 35–41.

[14] D. Wells, Extreme Programming: A gentle introduction, online:
http://www.extremeprogramming.org (2006).

[15] T. C. N. Graham, T. Urnes, R. Nejabi, Efficient Distributed Implementation
of Semi-Replicated Synchronous Groupware, in: M. Brown, R. Rao (Eds.),
Proceedings of the ACM Symposium on User Interface Software and Technology
(UIST’96), Seattle, WA, ACM Press, New York, 1996, pp. 1–10.

[16] T. Urnes, T. C. N. Graham, Flexibly Mapping Synchronous Groupware
Architectures to Distributed Implementations, in: D. J. Duke, A. R. Puerta
(Eds.), Proceedings of the 6th International Eurographics Workshop on
Design, Specification and Verification of Interactive Systems (DSVIS’99), Braga,
Portugal, Springer-Verlag, Berlin, 1999, pp. 133–148.

[17] G. J. Holzmann, The SPIN Model Checker—Primer and Reference Manual,
Addison Wesley, Reading, 2003.

[18] M. H. ter Beek, M. Massink, D. Latella, S. Gnesi, A. Forghieri, M. Sebastianis,
Model Checking Publish/Subscribe Notification for thinkteam, in: A. Arenas,
J. Bicarregui, A. Butterfield (Eds.), Proceedings of the 9th International
Workshop on Formal Methods for Industrial Critical Systems (FMICS’04), Linz,
Austria, Vol. 133 of Electronic Notes in Theoretical Computer Science, Elsevier
Science Publishers, Amsterdam, 2005, pp. 275–294.

[19] M. H. ter Beek, M. Massink, D. Latella, S. Gnesi, A. Forghieri, M. Sebastianis,
A Case Study on the Automated Verification of Groupware Protocols, in:
C. Heitmeyer, K. Pohl (Eds.), Proceedings of the 27th International Conference
on Software Engineering (ICSE’05)—Experience Reports Track, St. Louis, MO,
USA, ACM Press, New York, 2005, pp. 596–603.

[20] P. T. Eugster, P. Felber, R. Guerraoui, A.-M. Kermarrec, The Many Faces of
Publish/Subscribe, ACM Computing Surveys 35 (2) (2003) 114–131.

[21] M. Tivoli, P. Inverardi, V. Presutti, A. Forghieri, M. Sebastianis, Correct
Components Assembly for a Product Data Management Cooperative System, in:
I. Crnkovic, J. A. Stafford, H. W. Schmidt, K. C. Wallnau (Eds.), Proceedings
of the 7th International Symposium on Component-Based Software Engineering
(CBSE’04), Edinburgh, UK, Vol. 3054 of Lecture Notes in Computer Science,
Springer-Verlag, Berlin, 2004, pp. 84–99.

48

[22] M. H. ter Beek, M. Massink, D. Latella, Towards Model Checking Stochastic
Aspects of the thinkteam User Interface, in: S. W. Gilroy, M. D. Harrison (Eds.),
Interactive Systems: Design, Specification, and Verification—Revised papers of
the 12th International Workshop on Design, Specification, and Verification of
Interactive Systems (DSVIS’05), Newcastle upon Tyne, UK, Vol. 3941 of Lecture
Notes in Computer Science, Springer-Verlag, Berlin, 2006, pp. 39–50.

[23] P. Buchholz, J.-P. Katoen, P. Kemper, C. Tepper, Model-checking large
structured Markov chains, Journal of Logic and Algebraic Programming 56
(2003) 69–96.

[24] H. Hermanns, J.-P. Katoen, J. Meyer-Kayser, M. Siegle, A tool for model-
checking Markov chains, International Journal on Software Tools for Technology
Transfer 4 (2) (2003) 153–172.

[25] M. Kwiatkowska, G. Norman, D. Parker, Probabilistic symbolic model checking
with PRISM: A hybrid approach, in: J.-P. Katoen, P. Stevens (Eds.),
Proceedings of the 8th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS’02), Grenoble, France, Vol.
2280 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, 2002, pp.
52–66.

[26] H. L. S. Younes, R. G. Simmons, Probabilistic verification of discrete
event systems using acceptance sampling, in: E. Brinksma, K. G. Larsen
(Eds.), Proceedings of the 14th International Conference on Computer Aided
Verification (CAV’02), Copenhagen, Denmark, Vol. 2404 of Lecture Notes in
Computer Science, Springer-Verlag, Berlin, 2002, pp. 223–235.

[27] R. D. Hill, T. Brinck, S. L. Rohall, J. F. Patterson, W. Wilner, The Rendezvous
Architecture and Language for Constructing Multi-User Applications, ACM
Transactions on Computer-Human Interaction 1 (2) (1994) 81–125.

[28] M. Roseman, S. Greenberg, Building Real Time Groupware with GroupKit, A
Groupware Toolkit, ACM Transactions on Computer-Human Interaction 3 (1)
(1996) 66–106.

[29] G. E. Krasner, S. T. Pope, A Cookbook for Using the Model-View-
Controller User Interface Paradigm in Smalltalk-80, Journal of Object-Oriented
Programming 1 (3) (1988) 26–49.

[30] R. Levesque, SPSS Inc., SPSS Programming and Data Management: A Guide
for SPSS and SAS Users (4th edition), SPSS Inc., Chicago, 2007, online:
http://www.spss.com.

[31] E. M. Clarke, O. Grumberg, D. A. Peled, Model Checking, MIT Press,
Massachusetts, 1999.

[32] E. A. Emerson, Temporal and Modal Logics, in: J. van Leeuwen (Ed.),
Handbook of Theoretical Computer Science—Vol. B: Formal Models and
Semantics, Elsevier Science Publishers, Amsterdam, 1990, pp. 995–1072.

49

[33] Z. Manna, A. Pnueli, The Temporal Logic of Reactive and Concurrent
Systems—Specification, Springer-Verlag, Berlin, 1992.

[34] T. Han, J.-P. Katoen, Providing Evidence of Likely Being on Time:
Counterexample Generation for CTMC Model Checking, in: K. S. Namjoshi,
T. Yoneda, T. Higashino, Y. Okamura (Eds.), Proceedings of the 5th
International Symposium on Automated Technology for Verification and
Analysis (ATVA’07), Tokyo, Japan, Vol. 4762 of Lecture Notes in Computer
Science, Springer-Verlag, Berlin, 2007, pp. 331–346.

[35] D. Parker, G. Norman, M. Kwiatkowska, PRISM 2.0—Users’ Guide (February
2004), online: http://www.cs.bham.ac.uk/dxp/prism (2004).

[36] V. Kulkarni, Modeling and Analysis of Stochastic Systems, Chapman & Hall,
London, 1995.

[37] J. Hillston, A Compositional Approach to Performance Modelling, Cambridge
University Press, Cambridge, 1996.

[38] R. Alur, T. Henzinger, Reactive modules, Formal Methods in System Design
15 (1) (1999) 7–48.

[39] A. Aziz, K. Sanwal, V. Singhal, R. Brayton, Model checking continuous time
Markov chains, ACM Transactions on Computational Logic 1 (1) (2000) 162–
170.

[40] C. Baier, J.-P. Katoen, H. Hermanns, Approximate symbolic model checking
of continuous-time markov chains, in: J. C. M. Baeten, S. Mauw (Eds.),
Proceedings of the 10th International Conference on Concurrency Theory
(CONCUR’99), Eindhoven, The Netherlands, Vol. 1664 of Lecture Notes in
Computer Science, Springer-Verlag, Berlin, 1999, pp. 146–162.

[41] E. M. Clarke, E. A. Emerson, A. Sistla, Automatic verification of finite-state
concurrent systems using temporal logic specifications, ACM Transactions on
Programming Languages and Systems 8 (1986) 244–263.

[42] B. Haverkort, Markovian models for performance and dependability evaluation,
in: E. Brinksma, H. Hermanns, J.-P. Katoen (Eds.), Lectures on Formal Methods
and Performance Analysis, Vol. 2090 of Lecture Notes in Computer Science,
Springer-Verlag, Berlin, 2001, pp. 38–83.

[43] C. Baier, B. R. Haverkort, H. Hermanns, J.-P. Katoen, Automated Performance
and Dependability Evaluation Using Model Checking, in: M. C. Calzarossa,
S. Tucci (Eds.), Performance Evaluation of Complex Systems: Techniques
and Tools—Tutorial Lectures of the International Symposium on Computer
Modeling, Measurement, and Evaluation (Performance’02), Rome, Italy, Vol.
2459 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, 2002, pp.
261–289.

[44] M. H. ter Beek, M. Massink, D. Latella, S. Gnesi, A. Forghieri, M. Sebastianis,
Model Checking Publish/Subscribe Notification for thinkteam, Tech. Rep. 2004-
TR-20, Istituto di Scienza e Tecnologie dell’Informazione, Consiglio Nazionale
delle Ricerche, online: http://fmt.isti.cnr.it/WEBPAPER/TRTT.ps (2004).

50

[45] M. H. ter Beek, M. Massink, D. Latella, S. Gnesi, A. Forghieri, M. Sebastianis,
Automated Verification of Groupware Protocols, ERCIM News—Special:
Automated Software Engineering 58 (2004) 33–35.

[46] M. H. ter Beek, M. Massink, D. Latella, Towards Model Checking Stochastic
Aspects of the thinkteam User Interface, Tech. Rep. 2005-TR-18, Istituto di
Scienza e Tecnologie dell’Informazione, Consiglio Nazionale delle Ricerche,
online: http://fmt.isti.cnr.it/WEBPAPER/TRdsvis.pdf (2005).

[47] G. I. Falin, A survey of retrial queues, Queueing Systems 7 (1990) 127–168.

[48] G. I. Falin, J. G. C. Templeton, Retrial Queues, Vol. 75 of Monographs on
Statistics and Applied Probability, Chapman & Hall, London, 1997.

A Promela Specification of Augmented thinkteam Protocol

Macros: */

#define numUsers 3
#define numFiles 1 /* several variables below should be defined per file if numFiles > 1 */

/* Handshake and other communication channels: */

mtype =
{

get, got, checkOut, checkedOut, notAvailable, unCheckOut, /* User */
import, checkIn, checkInOut, /* publish */
register, unRegister, /* subscribe */
update, notify, /* notification */

};

/* Channels between client and server: */

chan userToCC = [0] of {mtype, byte};
chan ccToUser[numUsers] = [1] of {mtype};
chan ccToUserAdmin[numUsers] = [0] of {mtype};

/* Internal server channels: */

chan ccToVault = [0] of {mtype, byte};
chan vaultToCC = [0] of {mtype, byte};

/* Client processes: */

proctype User(byte id)
{

byte edit[numFiles], registered[numFiles]; /* User status file 0 */
bool waitingForCheckedOut = false; /* status of checkOut */

do
:: (!waitingForCheckedOut) -> /* if User didn’t try to checkout file 0, */

todoGet: skip; /* (label for verification purposes) */
userToCC!get,id; /* then it may send get to CC and */
doneGet: skip; /* (label for verification purposes) */
ccToUser[id]?got; /* as soon as it receives got from CC, */
registered[0] = true /* it is registered for file 0 */

:: (!registered[0] && !edit[0]) -> /* if User didn’t register for nor checkout file 0, */
registered[0] = true; /* then it may want to be registered for file 0 by */
userToCC!register,id; /* sending register to CC */

51

doneRegister: skip /* (label for verification purposes) */
:: (registered[0] && !edit[0]) -> /* if User did register for but not checkout file 0, */

registered[0] = false; /* then it may not want to be registered for file 0 by */
userToCC!unRegister,id; /* sending unregister to CC */
doneUnRegister: skip; /* (label for verification purposes) */

:: (!edit[0] && !waitingForCheckedOut) -> /* if User didn’t (try to) checkout file 0, */
waitingForCheckedOut = true; /* then it may start waitingForCheckedOut by */
userToCC!checkOut,id /* sending checkOut to CC */

:: (edit[0]) -> /* if User has checkedOut file 0, then it may */
if
:: userToCC!unCheckOut,id -> /* either send UnCheckOut to CC and */

edit[0] = false /* no longer edit file 0, */
:: userToCC!checkIn,id -> /* or send checkIn to CC and */

edit[0] = false /* no longer edit file 0, */
:: userToCC!checkInOut,id /* or send checkInOut to CC */
fi /* (and still edit file 0) */

:: ccToUser[id]?checkedOut -> /* as soon as User receives checkedOut from CC, */
d_step{edit[0] = true; /* it may edit file 0 and */
waitingForCheckedOut = false} /* thus stop waitingForCheckedOut */

:: ccToUser[id]?notAvailable -> /* as soon as User receives notAvailable from CC, */
waitingForCheckedOut = false /* then it stops waitingForCheckedOut */

od
}

proctype UserAdmin(byte id)
{

do
:: ccToUserAdmin[id]?notify; /* User receives notify from CC */

doneNotify: skip /* (label for verification purposes) */
:: ccToUserAdmin[id]?update -> /* User receives update from CC */

doneUpdate: skip /* (label for verification purposes) */
od

}

/* Server processes: */

proctype ConcurrencyController()
{

byte id, ID, registered[numUsers]; /* registration per User for file 0 */
bool writeLock = false; /* status lock for file 0 */

do
:: userToCC?get,id -> /* upon receiving get from User, */

if
:: (id == 0) ->

doneGet0: skip /* (label for verification purposes) */
:: (id == 1) ->

doneGet1: skip /* (label for verification purposes) */
:: (id == 2) ->

doneGet2: skip /* (label for verification purposes) */
fi;
registered[id] = true; /* User is registered for file 0, */
ccToVault!get,id; /* CC sends get to Vault, and, */
vaultToCC?got,id; /* upon receiving got from Vault, */
ccToUser[id]!got /* CC sends got to User */

:: userToCC?register,id -> /* upon receiving register from User, */
if
:: (id == 0) ->

doneRegister0: skip /* (label for verification purposes) */
:: (id == 1) ->

doneRegister1: skip /* (label for verification purposes) */
:: (id == 2) ->

doneRegister2: skip /* (label for verification purposes) */
fi;
registered[id] = true /* User is registered for file 0 */

:: userToCC?unRegister,id -> /* upon receiving unRegister from User, */
if
:: (id == 0) ->

52

doneUnRegister0: skip /* (label for verification purposes) */
:: (id == 1) ->

doneUnRegister1: skip /* (label for verification purposes) */
:: (id == 2) ->

doneUnRegister2: skip /* (label for verification purposes) */
fi;
registered[id] = false /* User is no longer registered for file 0 */

:: userToCC?checkOut,id -> /* whenever CC receives checkOut from User: */
if
:: (id == 0) ->

doneCheckOut0: skip /* (label for verification purposes) */
:: (id == 1) ->

doneCheckOut1: skip /* (label for verification purposes) */
:: (id == 2) ->

doneCheckOut2: skip /* (label for verification purposes) */
fi;
if
:: !writeLock -> /* (1) if there is no writeLock on file 0, then */

assert(writeLock == false); /* (assertion for verification purposes) */
writeLock = true; /* CC sets writeLock on file 0, */
ccToVault!checkOut,id; /* sends checkOut to Vault, and, */
vaultToCC?checkedOut,id; /* upon receiving checkedOut from Vault, */
ccToUser[id]!checkedOut; /* sends checkedOut to User (id), and */
if
:: (id == 0) ->

doneCheckedOut0: skip /* (label for verification purposes) */
:: (id == 1) ->

doneCheckedOut1: skip /* (label for verification purposes) */
:: (id == 2) ->

doneCheckedOut2: skip /* (label for verification purposes) */
fi;
ID = 0;
do
:: (ID < numUsers) ->

if
:: (ID != id && registered[ID]) -> /* to each registered User, not */

ccToUserAdmin[ID]!notify; /* equal to id, CC sends notify */
if
:: (ID == 0) ->

doneNotify0: skip /* (label for verification purposes) */
:: (ID == 1) ->

doneNotify1: skip /* (label for verification purposes) */
:: (ID == 2) ->

doneNotify2: skip /* (label for verification purposes) */
fi

:: else -> skip
fi;
ID++

:: else -> break
od

:: else -> /* (2) if there is a writeLock on file 0, then */
ccToUser[id]!notAvailable; /* CC sends notAvailable to User */
if
:: (id == 0) ->

doneNotAvailable0: skip /* (label for verification purposes) */
:: (id == 1) ->

doneNotAvailable1: skip /* (label for verification purposes) */
:: (id == 2) ->

doneNotAvailable2: skip /* (label for verification purposes) */
fi;

fi
:: userToCC?unCheckOut,id -> /* upon receiving unCheckOut from User, */

if
:: (id == 0) ->

doneUnCheckOut0: skip /* (label for verification purposes) */
:: (id == 1) ->

doneUnCheckOut1: skip /* (label for verification purposes) */
:: (id == 2) ->

53

doneUnCheckOut2: skip /* (label for verification purposes) */
fi;
writeLock = false; /* CC sets writeLock to false, and */
goto Update /* updates all registered users */

:: userToCC?checkIn,id -> /* upon receiving checkIn from User, */
if
:: (id == 0) ->

doneCheckIn0: skip /* (label for verification purposes) */
:: (id == 1) ->

doneCheckIn1: skip /* (label for verification purposes) */
:: (id == 2) ->

doneCheckIn2: skip /* (label for verification purposes) */
fi;
ccToVault!checkIn,id; /* CC sends checkIn to Vault, */
writeLock = false; /* sets writeLock to false, and, */
vaultToCC?update,id; /* upon receiving update (by User id) from Vault, */
if
:: (id == 0) ->

doneCheckedIn0: skip /* (label for verification purposes) */
:: (id == 1) ->

doneCheckedIn1: skip /* (label for verification purposes) */
:: (id == 2) ->

doneCheckedIn2: skip /* (label for verification purposes) */
fi;

Update:ID = 0; /* updates all registered users: */
do
:: (ID < numUsers) ->

if
:: (ID != id && registered[ID]) -> /* to every registered User, not */

ccToUserAdmin[ID]!update; /* equalling id, CC sends update */
if
:: (ID == 0) ->

doneUpdate0: skip /* (label for verification purposes) */
:: (ID == 1) ->

doneUpdate1: skip /* (label for verification purposes) */
:: (ID == 2) ->

doneUpdate2: skip /* (label for verification purposes) */
fi

:: else -> skip
fi;
ID++

:: else -> break
od

:: userToCC?checkInOut,id -> /* upon receiving checkInOut from User, */
ccToVault!checkIn,id; /* CC sends checkIn to Vault and */
vaultToCC?update,id; /* upon receiving update (by User id) from Vault, */
if
:: (id == 0) ->

doneCheckedInOut0: skip /* (label for verification purposes) */
:: (id == 1) ->

doneCheckedInOut1: skip /* (label for verification purposes) */
:: (id == 2) ->

doneCheckedInOut2: skip /* (label for verification purposes) */
fi;
assert(writeLock == true); /* (assertion for verification purposes) */
ID = 0; /* (1) updates all registered users: */
do
:: (ID < numUsers) ->

if
:: (ID != id && registered[ID]) -> /* to every registered User, not */

ccToUserAdmin[ID]!update; /* equalling id, CC sends update */
if
:: (ID == 0) ->

doneIOUpdate0: skip /* (label for verification purposes) */
:: (ID == 1) ->

doneIOUpdate1: skip /* (label for verification purposes) */
:: (ID == 2) ->

doneIOUpdate2: skip /* (label for verification purposes) */

54

fi
:: else -> skip
fi;
ID++

:: else -> break
od;
ID = 0; /* (2) notifies all registered users: */
do
:: (ID < numUsers) ->

if
:: (ID != id && registered[ID]) -> /* to each registered User, not */

ccToUserAdmin[ID]!notify; /* equal to id, CC sends notify */
if
:: (ID == 0) ->

doneIONotify0: skip /* (label for verification purposes) */
:: (ID == 1) ->

doneIONotify1: skip /* (label for verification purposes) */
:: (ID == 2) ->

doneIONotify2: skip /* (label for verification purposes) */
fi

:: else -> skip
fi;
ID++

:: else -> break
od

od
}

proctype Vault()
{

byte id;

do
:: ccToVault?get,id -> /* upon receiving get from CC, */

vaultToCC!got,id /* Vault sends got to CC */
:: ccToVault?checkOut,id -> /* upon receiving checkOut from CC, */

vaultToCC!checkedOut,id /* Vault sends checkedOut to CC */
:: ccToVault?checkIn,id -> /* upon receiving checkIn from CC, */

vaultToCC!update,id /* Vault sends update (by User id) to CC */
od

}

/* Initialisation process: */

init
{

byte Users = 0;

atomic
{

run Vault(); /* pid = 1 */
run ConcurrencyController(); /* pid = 2 */
run User(Users); /* User(0) with pid = 3 */
run UserAdmin(Users); /* UserAdmin(0) with pid = 4 */
Users++;
do
:: (Users < numUsers) ->

run User(Users); /* User(1) with pid = 5, User(2) with pid = 7, etc. */
run UserAdmin(Users); /* UserAdmin(1) with pid = 6, UserAdmin(2) with pid = 8, */
Users++ /* etc. */

:: else -> break
od

}
}

55

B PEPA Specification of Retry-based Approach with 3 Users

lambda = 1.0; % request rate (user/hour)
mu = 5.0; % edit rate (user/hour)
theta = 5.0; % retry rate (user/hour)

#User = (cO_s,lambda).User1 + (cO_f,lambda).User2; % request mode
#User1 = (cI,mu).User; % file in possession
#User2 = (r_s,theta).User1 + (r_f,theta).User2; % retry mode

#CheckOut = (cO_s,infty).CheckOut1;
#CheckOut1 = (cI,infty).CheckOut + (cO_f,infty).CheckOut1;

(User <> User <> User) <cO_s,cO_f,cI> CheckOut

C PRISM Specification of Retry-based Approach with 3 Users

ctmc

const double lambda = 1.0;
const double mu = 5.0;
const double theta = 5.0;
const int User = 0;
const int User1 = 1;
const int User2 = 2;
const int CheckOut = 0;
const int CheckOut1 = 1;

module User

User_STATE : [0..2] init User;

[cO_s] (User_STATE=User) -> lambda : (User_STATE’=User1);
[cO_f] (User_STATE=User) -> lambda : (User_STATE’=User2);
[cI] (User_STATE=User1) -> mu : (User_STATE’=User);
[cO_s] (User_STATE=User2) -> theta : (User_STATE’=User1);
[cO_f] (User_STATE=User2) -> theta : (User_STATE’=User2);

endmodule

module User_2

User_2_STATE : [0..2] init User;

[cO_s] (User_2_STATE=User) -> lambda : (User_2_STATE’=User1);
[cO_f] (User_2_STATE=User) -> lambda : (User_2_STATE’=User2);
[cI] (User_2_STATE=User1) -> mu : (User_2_STATE’=User);
[cO_s] (User_2_STATE=User2) -> theta : (User_2_STATE’=User1);
[cO_f] (User_2_STATE=User2) -> theta : (User_2_STATE’=User2);

endmodule

module User_3

User_3_STATE : [0..2] init User;

[cO_s] (User_3_STATE=User) -> lambda : (User_3_STATE’=User1);
[cO_f] (User_3_STATE=User) -> lambda : (User_3_STATE’=User2);
[cI] (User_3_STATE=User1) -> mu : (User_3_STATE’=User);
[cO_s] (User_3_STATE=User2) -> theta : (User_3_STATE’=User1);
[cO_f] (User_3_STATE=User2) -> theta : (User_3_STATE’=User2);

56

endmodule

module CheckOut

CheckOut_STATE : [0..1] init CheckOut;

[cO_s] (CheckOut_STATE=CheckOut) -> 1 : (CheckOut_STATE’=CheckOut1);
[cI] (CheckOut_STATE=CheckOut1) -> 1 : (CheckOut_STATE’=CheckOut);
[cO_f] (CheckOut_STATE=CheckOut1) -> 1 : (CheckOut_STATE’=CheckOut1);

endmodule

system
((User ||| (User_2 ||| User_3)) |[cO_s,cO_f,cI]| CheckOut)

endsystem

D PEPA Specification of Waiting-list Approach with 3 Users

lambda = 1.0; % request rate
mu = 5.0; % edit rate

#User_0 = (cO_0,lambda).User_0a;
#User_0a = (cI_0,mu).User_0;
#User_1 = (cO_1,lambda).User_1a;
#User_1a = (cI_1,mu).User_1;
#User_2 = (cO_2,lambda).User_2a;
#User_2a = (cI_2,mu).User_2;

#FIFO = (cO_0,infty).F_0 + (cO_1,infty).F_1 + (cO_2,infty).F_2;
#F_0 = (cI_0,infty).FIFO + (cO_1,infty).F_01 + (cO_2,infty).F_02;
#F_1 = (cI_1,infty).FIFO + (cO_0,infty).F_10 + (cO_2,infty).F_12;
#F_2 = (cI_2,infty).FIFO + (cO_0,infty).F_20 + (cO_1,infty).F_21;
#F_01 = (cI_0,infty).F_1 + (cO_2,infty).F_012;
#F_02 = (cI_0,infty).F_2 + (cO_1,infty).F_021;
#F_10 = (cI_1,infty).F_0 + (cO_2,infty).F_102;
#F_12 = (cI_1,infty).F_2 + (cO_0,infty).F_120;
#F_20 = (cI_2,infty).F_0 + (cO_1,infty).F_201;
#F_21 = (cI_2,infty).F_1 + (cO_0,infty).F_210;
#F_012 = (cI_0,infty).F_12;
#F_021 = (cI_0,infty).F_21;
#F_102 = (cI_1,infty).F_02;
#F_120 = (cI_1,infty).F_20;
#F_201 = (cI_2,infty).F_01;
#F_210 = (cI_2,infty).F_10;

(User_0 <> User_1 <> User_2) <cO_0,cO_1,cO_2,cI_0,cI_1,cI_2> FIFO

E PRISM Specification of Waiting-list Approach with 3 Users

ctmc

const double lambda = 1.0;
const double mu = 5.0;
const int User_0 = 0;
const int User_0a = 1;
const int User_1 = 0;
const int User_1a = 1;

57

const int User_2 = 0;
const int User_2a = 1;
const int FIFO_empty = 0;
const int F_0 = 1;
const int F_01 = 2;
const int F_012 = 3;
const int F_02 = 4;
const int F_021 = 5;
const int F_1 = 6;
const int F_10 = 7;
const int F_102 = 8;
const int F_12 = 9;
const int F_120 = 10;
const int F_2 = 11;
const int F_20 = 12;
const int F_201 = 13;
const int F_21 = 14;
const int F_210 = 15;

module User_0

User_0_STATE : [0..1] init User_0;

[cO_0] (User_0_STATE=User_0) -> lambda : (User_0_STATE’=User_0a);
[cI_0] (User_0_STATE=User_0a) -> mu : (User_0_STATE’=User_0);

endmodule

module User_1

User_1_STATE : [0..1] init User_1;

[cO_1] (User_1_STATE=User_1) -> lambda : (User_1_STATE’=User_1a);
[cI_1] (User_1_STATE=User_1a) -> mu : (User_1_STATE’=User_1);

endmodule

module User_2

User_2_STATE : [0..1] init User_2;

[cO_2] (User_2_STATE=User_2) -> lambda : (User_2_STATE’=User_2a);
[cI_2] (User_2_STATE=User_2a) -> mu : (User_2_STATE’=User_2);

endmodule

module FIFO_empty

FIFO_empty_STATE : [0..15] init FIFO_empty;

[cO_0] (FIFO_empty_STATE=FIFO_empty) -> 1 : (FIFO_empty_STATE’=F_0);
[cO_1] (FIFO_empty_STATE=FIFO_empty) -> 1 : (FIFO_empty_STATE’=F_1);
[cO_2] (FIFO_empty_STATE=FIFO_empty) -> 1 : (FIFO_empty_STATE’=F_2);
[cI_0] (FIFO_empty_STATE=F_0) -> 1 : (FIFO_empty_STATE’=FIFO_empty);
[cO_1] (FIFO_empty_STATE=F_0) -> 1 : (FIFO_empty_STATE’=F_01);
[cO_2] (FIFO_empty_STATE=F_0) -> 1 : (FIFO_empty_STATE’=F_02);
[cI_0] (FIFO_empty_STATE=F_01) -> 1 : (FIFO_empty_STATE’=F_1);
[cO_2] (FIFO_empty_STATE=F_01) -> 1 : (FIFO_empty_STATE’=F_012);
[cI_0] (FIFO_empty_STATE=F_012) -> 1 : (FIFO_empty_STATE’=F_12);
[cI_0] (FIFO_empty_STATE=F_02) -> 1 : (FIFO_empty_STATE’=F_2);
[cO_1] (FIFO_empty_STATE=F_02) -> 1 : (FIFO_empty_STATE’=F_021);
[cI_0] (FIFO_empty_STATE=F_021) -> 1 : (FIFO_empty_STATE’=F_21);
[cI_1] (FIFO_empty_STATE=F_1) -> 1 : (FIFO_empty_STATE’=FIFO_empty);
[cO_0] (FIFO_empty_STATE=F_1) -> 1 : (FIFO_empty_STATE’=F_10);
[cO_2] (FIFO_empty_STATE=F_1) -> 1 : (FIFO_empty_STATE’=F_12);
[cI_1] (FIFO_empty_STATE=F_10) -> 1 : (FIFO_empty_STATE’=F_0);
[cO_2] (FIFO_empty_STATE=F_10) -> 1 : (FIFO_empty_STATE’=F_102);
[cI_1] (FIFO_empty_STATE=F_102) -> 1 : (FIFO_empty_STATE’=F_02);

58

[cI_1] (FIFO_empty_STATE=F_12) -> 1 : (FIFO_empty_STATE’=F_2);
[cO_0] (FIFO_empty_STATE=F_12) -> 1 : (FIFO_empty_STATE’=F_120);
[cI_1] (FIFO_empty_STATE=F_120) -> 1 : (FIFO_empty_STATE’=F_20);
[cI_2] (FIFO_empty_STATE=F_2) -> 1 : (FIFO_empty_STATE’=FIFO_empty);
[cO_0] (FIFO_empty_STATE=F_2) -> 1 : (FIFO_empty_STATE’=F_20);
[cO_1] (FIFO_empty_STATE=F_2) -> 1 : (FIFO_empty_STATE’=F_21);
[cI_2] (FIFO_empty_STATE=F_20) -> 1 : (FIFO_empty_STATE’=F_0);
[cO_1] (FIFO_empty_STATE=F_20) -> 1 : (FIFO_empty_STATE’=F_201);
[cI_2] (FIFO_empty_STATE=F_201) -> 1 : (FIFO_empty_STATE’=F_01);
[cI_2] (FIFO_empty_STATE=F_21) -> 1 : (FIFO_empty_STATE’=F_1);
[cO_0] (FIFO_empty_STATE=F_21) -> 1 : (FIFO_empty_STATE’=F_210);
[cI_2] (FIFO_empty_STATE=F_210) -> 1 : (FIFO_empty_STATE’=F_10);

endmodule

system
((User_0 ||| (User_1 ||| User_2)) |[cO_0,cO_1,cO_2,cI_0,cI_1,cI_2]| FIFO_empty)

endsystem

F PEPA Specification of thinkteam with 3 Users and 3 Vaults

lambda = 0.1; % request rate (client/hour)
gamma_a_A = 60.0; % download rate (file/hour) between Vault A & Client A
gamma_a_B = 20.0; % download rate (file/hour) between Vault A & Client B
gamma_a_C = 40.0; % download rate (file/hour) between Vault A & Client C
gamma_b_A = 40.0; % download rate (file/hour) between Vault B & Client A
gamma_b_B = 60.0; % download rate (file/hour) between Vault B & Client B
gamma_b_C = 20.0; % download rate (file/hour) between Vault B & Client C
gamma_c_A = 20.0; % download rate (file/hour) between Vault C & Client A
gamma_c_B = 40.0; % download rate (file/hour) between Vault C & Client B
gamma_c_C = 60.0; % download rate (file/hour) between Vault C & Client C
mu_a_A = 60.0; % upload rate (file/hour) between Vault A & Client A
mu_a_B = 20.0; % upload rate (file/hour) between Vault A & Client B
mu_a_C = 40.0; % upload rate (file/hour) between Vault A & Client C
mu_b_A = 40.0; % upload rate (file/hour) between Vault B & Client A
mu_b_B = 60.0; % upload rate (file/hour) between Vault B & Client B
mu_b_C = 20.0; % upload rate (file/hour) between Vault B & Client C
mu_c_A = 20.0; % upload rate (file/hour) between Vault C & Client A
mu_c_B = 40.0; % upload rate (file/hour) between Vault C & Client B
mu_c_C = 60.0; % upload rate (file/hour) between Vault C & Client C
nu_A = 0.3; % edit rate (file/hour) of Client A
nu_B = 0.3; % edit rate (file/hour) of Client B
nu_C = 0.3; % edit rate (file/hour) of Client C
theta = 6.0; % retry rate (client/hour)
delta = 100; % signal rate (message/hour)
epsilon = 100; % signal rate (message/hour)
epsilon2 = 200; % (a trick to raise the probability of
epsilon3 = 300; % specific "nondeterministic" choices)

% Client A (Client B and Client C are analogous):
#CA = (CA_TT_cO_s,lambda).CA_1 % successful request for checkOut

+ (CA_TT_cO_f,lambda).CA_2; % failed request for checkOut
#CA_1 = (TT_CA_Va,infty).CA_3_1 % TT assigns Vault A for checkOut

+ (TT_CA_Vb,infty).CA_3_2 % TT assigns Vault B for checkOut
+ (TT_CA_Vc,infty).CA_3_3; % TT assigns Vault C for checkOut

#CA_3_1 = (Va_CA,infty).CA_4; % checkOut file from Vault A
#CA_3_2 = (Vb_CA,infty).CA_4; % checkOut file from Vault B
#CA_3_3 = (Vc_CA,infty).CA_4; % checkOut file from Vault C
#CA_4 = (CA_CA,nu_A).CA_5; % edit file
#CA_5 = (CA_Va_cI,infty).CA % checkIn file in Vault A

+ (CA_Vb_cI,infty).CA % checkIn file in Vault B
+ (CA_Vc_cI,infty).CA; % checkIn file in Vault C

#CA_2 = (CA_TT_cO_s,theta).CA_1 % successful retry of checkOut

59

+ (CA_TT_cO_f,theta).CA_2; % failed retry of checkOut

% Vault A (Vault B and Vault C are analogous):
#Va = (Va_CA,gamma_a_A).Va % file checkOut by Client A

+ (Va_CB,gamma_a_B).Va % file checkOut by Client B
+ (Va_CC,gamma_a_C).Va % file checkOut by Client C
+ (CA_Va_cI,mu_a_A).Va_1 % file checkIn by Client A
+ (CB_Va_cI,mu_a_B).Va_1 % file checkIn by Client B
+ (CC_Va_cI,mu_a_C).Va_1; % file checkIn by Client C

#Va_1 = (Va_TT,delta).Va; % inform TT of file checkIn

% thinkteam:
#TT = (CA_TT_cO_s,infty).TT_1_1 % grant checkOut to Client A

+ (CB_TT_cO_s,infty).TT_1_2 % grant checkOut to Client B
+ (CC_TT_cO_s,infty).TT_1_3; % grant checkOut to Client C

#TT_1_1 = (TT_CA_Va,epsilon3).TT_2 % assign Vault A to Client A
+ (TT_CA_Vb,epsilon2).TT_2 % assign Vault B to Client A
+ (TT_CA_Vc,epsilon).TT_2; % assign Vault C to Client A

#TT_1_2 = (TT_CB_Va,epsilon).TT_2 % assign Vault A to Client B
+ (TT_CB_Vb,epsilon3).TT_2 % assign Vault B to Client B
+ (TT_CB_Vc,epsilon2).TT_2; % assign Vault C to Client B

#TT_1_3 = (TT_CC_Va,epsilon2).TT_2 % assign Vault A to Client C
+ (TT_CC_Vb,epsilon).TT_2 % assign Vault B to Client C
+ (TT_CC_Vc,epsilon3).TT_2; % assign Vault C to Client C

#TT_2 = (Va_TT,infty).TT % Vault A signals file checkIn
+ (Vb_TT,infty).TT % Vault B signals file checkIn
+ (Vc_TT,infty).TT % Vault C signals file checkIn
+ (CA_TT_cO_f,infty).TT_2 % deny checkOut to Client A
+ (CB_TT_cO_f,infty).TT_2 % deny checkOut to Client B
+ (CC_TT_cO_f,infty).TT_2; % deny checkOut to Client C

% full specification:
(CA <> CB <> CC) <CA_TT_cO_s,CB_TT_cO_s,CC_TT_cO_s,CA_TT_cO_f,CB_TT_cO_f,CC_TT_cO_f,
TT_CA_Va,TT_CA_Vb,TT_CA_Vc,TT_CB_Va,TT_CB_Vb,TT_CB_Vc,TT_CC_Va,TT_CC_Vb,TT_CC_Vc,
CA_Va_cI,CA_Vb_cI,CA_Vc_cI,CB_Va_cI,CB_Vb_cI,CB_Vc_cI,CC_Va_cI,CC_Vb_cI,CC_Vc_cI,
Va_CA,Va_CB,Va_CC,Vb_CA,Vb_CB,Vb_CC,Vc_CA,Vc_CB,Vc_CC> (TT <Va_TT,Vb_TT,Vc_TT>
(Va <> Vb <> Vc))

G PRISM Specification of thinkteam with 3 Users and 3 Vaults

ctmc

const double lambda = 0.1;
const double gamma_a_A = 60.0;
const double gamma_a_B = 20.0;
const double gamma_a_C = 40.0;
const double gamma_b_A = 40.0;
const double gamma_b_B = 60.0;
const double gamma_b_C = 20.0;
const double gamma_c_A = 20.0;
const double gamma_c_B = 40.0;
const double gamma_c_C = 60.0;
const double mu_a_A = 60.0;
const double mu_a_B = 20.0;
const double mu_a_C = 40.0;
const double mu_b_A = 40.0;
const double mu_b_B = 60.0;
const double mu_b_C = 20.0;
const double mu_c_A = 20.0;
const double mu_c_B = 40.0;
const double mu_c_C = 60.0;
const double nu_A = 0.3;
const double nu_B = 0.3;

60

const double nu_C = 0.3;
const double theta = 6.0;
const double delta = 100;
const double epsilon = 100;
const double epsilon2 = 200;
const double epsilon3 = 300;
const int CA = 0;
const int CA_1 = 1;
const int CA_2 = 2;
const int CA_3_1 = 3;
const int CA_3_2 = 4;
const int CA_3_3 = 5;
const int CA_4 = 6;
const int CA_5 = 7;
const int CB = 0;
const int CB_1 = 1;
const int CB_2 = 2;
const int CB_3_1 = 3;
const int CB_3_2 = 4;
const int CB_3_3 = 5;
const int CB_4 = 6;
const int CB_5 = 7;
const int CC = 0;
const int CC_1 = 1;
const int CC_2 = 2;
const int CC_3_1 = 3;
const int CC_3_2 = 4;
const int CC_3_3 = 5;
const int CC_4 = 6;
const int CC_5 = 7;
const int TT = 0;
const int TT_1_1 = 1;
const int TT_1_2 = 2;
const int TT_1_3 = 3;
const int TT_2 = 4;
const int Va = 0;
const int Va_1 = 1;
const int Vb = 0;
const int Vb_1 = 1;
const int Vc = 0;
const int Vc_1 = 1;

module CA

CA_STATE : [0..7] init CA;

[CA_TT_cO_s] (CA_STATE=CA) -> lambda : (CA_STATE’=CA_1);
[CA_TT_cO_f] (CA_STATE=CA) -> lambda : (CA_STATE’=CA_2);
[TT_CA_Va] (CA_STATE=CA_1) -> 1 : (CA_STATE’=CA_3_1);
[TT_CA_Vb] (CA_STATE=CA_1) -> 1 : (CA_STATE’=CA_3_2);
[TT_CA_Vc] (CA_STATE=CA_1) -> 1 : (CA_STATE’=CA_3_3);
[CA_TT_cO_s] (CA_STATE=CA_2) -> theta : (CA_STATE’=CA_1);
[CA_TT_cO_f] (CA_STATE=CA_2) -> theta : (CA_STATE’=CA_2);
[Va_CA] (CA_STATE=CA_3_1) -> 1 : (CA_STATE’=CA_4);
[Vb_CA] (CA_STATE=CA_3_2) -> 1 : (CA_STATE’=CA_4);
[Vc_CA] (CA_STATE=CA_3_3) -> 1 : (CA_STATE’=CA_4);
[CA_CA] (CA_STATE=CA_4) -> nu_A : (CA_STATE’=CA_5);
[CA_Va_cI] (CA_STATE=CA_5) -> 1 : (CA_STATE’=CA);
[CA_Vb_cI] (CA_STATE=CA_5) -> 1 : (CA_STATE’=CA);
[CA_Vc_cI] (CA_STATE=CA_5) -> 1 : (CA_STATE’=CA);

endmodule

module CB

CB_STATE : [0..7] init CB;

[CB_TT_cO_s] (CB_STATE=CB) -> lambda : (CB_STATE’=CB_1);

61

[CB_TT_cO_f] (CB_STATE=CB) -> lambda : (CB_STATE’=CB_2);
[TT_CB_Va] (CB_STATE=CB_1) -> 1 : (CB_STATE’=CB_3_1);
[TT_CB_Vb] (CB_STATE=CB_1) -> 1 : (CB_STATE’=CB_3_2);
[TT_CB_Vc] (CB_STATE=CB_1) -> 1 : (CB_STATE’=CB_3_3);
[CB_TT_cO_s] (CB_STATE=CB_2) -> theta : (CB_STATE’=CB_1);
[CB_TT_cO_f] (CB_STATE=CB_2) -> theta : (CB_STATE’=CB_2);
[Va_CB] (CB_STATE=CB_3_1) -> 1 : (CB_STATE’=CB_4);
[Vb_CB] (CB_STATE=CB_3_2) -> 1 : (CB_STATE’=CB_4);
[Vc_CB] (CB_STATE=CB_3_3) -> 1 : (CB_STATE’=CB_4);
[CB_CB] (CB_STATE=CB_4) -> nu_B : (CB_STATE’=CB_5);
[CB_Va_cI] (CB_STATE=CB_5) -> 1 : (CB_STATE’=CB);
[CB_Vb_cI] (CB_STATE=CB_5) -> 1 : (CB_STATE’=CB);
[CB_Vc_cI] (CB_STATE=CB_5) -> 1 : (CB_STATE’=CB);

endmodule

module CC

CC_STATE : [0..7] init CC;

[CC_TT_cO_s] (CC_STATE=CC) -> lambda : (CC_STATE’=CC_1);
[CC_TT_cO_f] (CC_STATE=CC) -> lambda : (CC_STATE’=CC_2);
[TT_CC_Va] (CC_STATE=CC_1) -> 1 : (CC_STATE’=CC_3_1);
[TT_CC_Vb] (CC_STATE=CC_1) -> 1 : (CC_STATE’=CC_3_2);
[TT_CC_Vc] (CC_STATE=CC_1) -> 1 : (CC_STATE’=CC_3_3);
[CC_TT_cO_s] (CC_STATE=CC_2) -> theta : (CC_STATE’=CC_1);
[CC_TT_cO_f] (CC_STATE=CC_2) -> theta : (CC_STATE’=CC_2);
[Va_CC] (CC_STATE=CC_3_1) -> 1 : (CC_STATE’=CC_4);
[Vb_CC] (CC_STATE=CC_3_2) -> 1 : (CC_STATE’=CC_4);
[Vc_CC] (CC_STATE=CC_3_3) -> 1 : (CC_STATE’=CC_4);
[CC_CC] (CC_STATE=CC_4) -> nu_C : (CC_STATE’=CC_5);
[CC_Va_cI] (CC_STATE=CC_5) -> 1 : (CC_STATE’=CC);
[CC_Vb_cI] (CC_STATE=CC_5) -> 1 : (CC_STATE’=CC);
[CC_Vc_cI] (CC_STATE=CC_5) -> 1 : (CC_STATE’=CC);

endmodule

module TT

TT_STATE : [0..4] init TT;

[CA_TT_cO_s] (TT_STATE=TT) -> 1 : (TT_STATE’=TT_1_1);
[CB_TT_cO_s] (TT_STATE=TT) -> 1 : (TT_STATE’=TT_1_2);
[CC_TT_cO_s] (TT_STATE=TT) -> 1 : (TT_STATE’=TT_1_3);
[TT_CA_Va] (TT_STATE=TT_1_1) -> epsilon3 : (TT_STATE’=TT_2);
[TT_CA_Vb] (TT_STATE=TT_1_1) -> epsilon2 : (TT_STATE’=TT_2);
[TT_CA_Vc] (TT_STATE=TT_1_1) -> epsilon : (TT_STATE’=TT_2);
[TT_CB_Va] (TT_STATE=TT_1_2) -> epsilon : (TT_STATE’=TT_2);
[TT_CB_Vb] (TT_STATE=TT_1_2) -> epsilon3 : (TT_STATE’=TT_2);
[TT_CB_Vc] (TT_STATE=TT_1_2) -> epsilon2 : (TT_STATE’=TT_2);
[TT_CC_Va] (TT_STATE=TT_1_3) -> epsilon2 : (TT_STATE’=TT_2);
[TT_CC_Vb] (TT_STATE=TT_1_3) -> epsilon : (TT_STATE’=TT_2);
[TT_CC_Vc] (TT_STATE=TT_1_3) -> epsilon3 : (TT_STATE’=TT_2);
[Va_TT] (TT_STATE=TT_2) -> 1 : (TT_STATE’=TT);
[Vb_TT] (TT_STATE=TT_2) -> 1 : (TT_STATE’=TT);
[Vc_TT] (TT_STATE=TT_2) -> 1 : (TT_STATE’=TT);
[CA_TT_cO_f] (TT_STATE=TT_2) -> 1 : (TT_STATE’=TT_2);
[CB_TT_cO_f] (TT_STATE=TT_2) -> 1 : (TT_STATE’=TT_2);
[CC_TT_cO_f] (TT_STATE=TT_2) -> 1 : (TT_STATE’=TT_2);

endmodule

module Va

Va_STATE : [0..1] init Va;

[Va_CA] (Va_STATE=Va) -> gamma_a_A : (Va_STATE’=Va);
[Va_CB] (Va_STATE=Va) -> gamma_a_B : (Va_STATE’=Va);

62

[Va_CC] (Va_STATE=Va) -> gamma_a_C : (Va_STATE’=Va);
[CA_Va_cI] (Va_STATE=Va) -> mu_a_A : (Va_STATE’=Va_1);
[CB_Va_cI] (Va_STATE=Va) -> mu_a_B : (Va_STATE’=Va_1);
[CC_Va_cI] (Va_STATE=Va) -> mu_a_C : (Va_STATE’=Va_1);
[Va_TT] (Va_STATE=Va_1) -> delta : (Va_STATE’=Va);

endmodule

module Vb

Vb_STATE : [0..1] init Vb;

[Vb_CA] (Vb_STATE=Vb) -> gamma_b_A : (Vb_STATE’=Vb);
[Vb_CB] (Vb_STATE=Vb) -> gamma_b_B : (Vb_STATE’=Vb);
[Vb_CC] (Vb_STATE=Vb) -> gamma_b_C : (Vb_STATE’=Vb);
[CA_Vb_cI] (Vb_STATE=Vb) -> mu_b_A : (Vb_STATE’=Vb_1);
[CB_Vb_cI] (Vb_STATE=Vb) -> mu_b_B : (Vb_STATE’=Vb_1);
[CC_Vb_cI] (Vb_STATE=Vb) -> mu_b_C : (Vb_STATE’=Vb_1);
[Vb_TT] (Vb_STATE=Vb_1) -> delta : (Vb_STATE’=Vb);

endmodule

module Vc

Vc_STATE : [0..1] init Vc;

[Vc_CA] (Vc_STATE=Vc) -> gamma_c_A : (Vc_STATE’=Vc);
[Vc_CB] (Vc_STATE=Vc) -> gamma_c_B : (Vc_STATE’=Vc);
[Vc_CC] (Vc_STATE=Vc) -> gamma_c_C : (Vc_STATE’=Vc);
[CA_Vc_cI] (Vc_STATE=Vc) -> mu_c_A : (Vc_STATE’=Vc_1);
[CB_Vc_cI] (Vc_STATE=Vc) -> mu_c_B : (Vc_STATE’=Vc_1);
[CC_Vc_cI] (Vc_STATE=Vc) -> mu_c_C : (Vc_STATE’=Vc_1);
[Vc_TT] (Vc_STATE=Vc_1) -> delta : (Vc_STATE’=Vc);

endmodule

H Additional Reward Structures of PRISM Specification

rewards "NrSuccessfulRequestsClientA"

[CA_TT_cO_s] true : 1;

endrewards

rewards "NrFailedRequestsClientA"

[CA_TT_cO_f] true : 1;

endrewards

63

