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Abstract. Explosive synchronization, an abrupt transition to a collective co-

herent state, has been the focus of an extensive research since its first obser-
vation in scale-free networks with degree-frequency correlations. In this work,

we report several scenarios where a first-order transition to synchronization

occurs driven by the presence of a dependence between dynamics and network
structure. Therefore, different mechanisms are shown to be able to prevent

the formation of a giant synchronization cluster for sufficient large values of
the coupling constant in both mono and multilayer networks. Using the Ku-

ramoto model as a reference, we show how for an arbitrary network topology

and frequency distribution, a very general weighting procedure acting on the
weight of the links delays the synchronization transition forming independent

synchronization clusters which suddenly merge above a critical threshold of the

coupling constant. A completely different scenario in adaptive and multilayer
networks is introduced which gives rise to the emergence of an explosive syn-

chronization when a feedback between the dynamics and structure is operating

by means of dependence links weighted through the order parameter.

1. Introduction. Synchronization is one of the most fascinating processes in com-
plex networks’ dynamics. The spontaneous order of the network’s units into a col-
lective dynamics is an emergent phenomenon whose appearance relies on a delicate
interplay between the topological properties of the network and the main features
of the dynamical system associated to each graph’s node [6, 2].

Considered as a phase transition, in a large majority of cases synchronization oc-
curs as a second-order transition involving a continuous and reversible change into
order of the macroscopic state. However, it has been recently reported that un-
der certain circumstances it is possible the observation of explosive synchronization
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Figure 1. (a) Phase synchronization level r vs the coupling
strength λ, for different values of the frequency gap γ (see. Eq. (2))
at 〈k〉 = 40 with network size N=500. Frequency distribution g(ω)
is chosen to be homogeneous in the [0,1] interval. (b) Same as in
(a), but for different values of the average degree 〈k〉 at γ = 0.4.
In both panels, the legends report the color and symbol codes for
the different plotted curves. In (c) and (d), the degree ki that each
node achieves after the network growth is completed (upper plots)
and the average of the natural frequencies 〈ωj〉 of the neighboring
nodes (j ∈ N (i), bottom plots) are reported vs. the node’s natural
frequency ωi, for 〈k〉 = 100 and frequency gaps γ = 0.0 (c), and
γ = 0.4 (d). The red solid line in (d) is a sketch of the theoretical
prediction f(ω). Panels (e) and (f) show r (color coded according
to the color bar) in the parameter space (λ, γ) for (e) 〈k〉 = 20
and (f) 〈k〉 = 60. The horizontal dashed lines mark the separation
between the region of the parameter space where a second-order
transition occurs (below the line) and that in which the transition
is instead of the first order type (above the line). The yellow striped
area delimits the hysteresis region.

(ES), an irreversible and discontinuous transition to the coherent state [4]. Origi-
nally, ES was described in all-to-all coupled ensembles of Kuramoto oscillators [11]
with specific distributions of frequencies [17, 15]. Later on, various kinds of node’s
degree and frequency oscillator correlations were found to be able to induce ES in
networks of periodic and chaotic oscillators [9, 14].

Disclosing the mechanisms at the root of these unexpectedly abrupt transitions
is of fundamental relevance for a deeper understanding of the networks’ structure
and dynamics. For instance, recent clinical evidence seems to indicate that ES
is actually the mechanism driving the transition from normal to pathological brain
behavior during epilepsy, one of the world’s most prominent brain disorders [10]. ES
has also been reported to appear in the transition to synchrony in power networks
[18].
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Due to the relevance to practical applications, ES has attracted an extensive
attention, and stimulated a large amount of research. In this paper, our aim is to
provide some insight on the recent findings regarding the microscopic mechanisms
of ES in complex networks composed of either a single or several layers [4].

2. Explosive synchronization in monolayer networks. In our research of this
phenomenon we use as a benchmark a complex network of dynamical units whose
instantaneous phase evolves in time according to the simple and paradigmatic model
to describe periodic oscillators introduced by Kuramoto [11]:

θ̇i = ωi + λ

N∑
j=1

Aij sin(θj − θi) i = 1, ..., N, (1)

where θi is the phase of the i-th oscillator with natural frequency ωi and λ is the
coupling constant. The topology of the network is uniquely defined by the adjacency
matrix A = (Aij), since Aij = 1 if node i is connected with node j and Aij = 0
otherwise. The frequencies are chosen according to a given distribution g(ω). The
level of synchronization can be monitored using as an order parameter the value

of r = 〈 1N |
∑N
j=1 e

iθj(t)|〉T , with 〈...〉T denoting a time average over a conveniently
large time span T .

Early works in ES focused on the effect of imposed correlations between the
node’s degrees and the corresponding natural frequency of each oscillator [9, 14], i.
e. the node frequencies were tailored such that ωi ∼ ki in Eq. (1). However, we
intend to show that ES is by no means restricted to such rather limited case, but it
constitutes, instead, a generic feature in synchronization of networked oscillators.

The key microscopic feature introduced by the k− ω relationship is not the cor-
relation itself, but the subsequent consequence that the network acquires frequency
disassortativity in the presence of heterogeneous degree distributions, which is the
case of the real-world networks. This frequency disassortativity imposed by the
correlation has the secondary effect of hampering connections between nodes whose
frequencies are close. As a consequence, the clustering of possible synchronization
seeds is suppressed, and the synchronization state is forcefully frustrated up to a
very high coupling.

Based on such hypothesis, it is possible to test the minimal condition for the
transition from unsynchronized to synchronized states to be abrupt. The basic idea
is to build the network avoiding that oscillators behave as cores of a clustering
process. The practical realization of such a condition, which evokes the Achlioptas
process leading to explosive percolation [1], is to explicitly constrain the frequency
difference between each node i and the whole set N(i) of oscillators belonging to
its neighborhood [12]:

|ωi − ωj | > γ, j ∈ N (i). (2)

where a threshold γ for the frequency gap is set, and the network is then grown
by means of a conditional configuration model approach: after having initially dis-
tributed the oscillator’s frequency from a given frequency distribution g(ω), pairs
of nodes are randomly selected, and a connection between the nodes is formed only
if they verify the condition (2). The process is repeated until the network acquires
a predetermined mean degree 〈k〉. Then, the resulting adjacency matrix is used to
simulate the Kuramoto model (1). As we look for a potential occurrence of hystere-
sis in the transition, each simulation is repeated twice: a first one where the coupling
parameter λ is adiabatically increased without resetting the dynamical state, and
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another one where, starting from a synchronized state, λ is progressively decreased
up to the point coherence is lost. Both processes are named in the following as
forward and backward transitions, respectively.

In Fig. 1 we report the results obtained by setting g(ω) as a uniform frequency
distribution in the interval [0, 1]. Panels (a) and (b) show the phase synchronization
index as a function of the coupling strength. In particular, Fig. 1(a) (resp. (b))
illustrates the case of a fixed mean degree 〈k〉 = 40 (resp. a fixed frequency gap
γ = 0.4), and reports the results for the forward and backward simulations at
different values of γ (resp. 〈k〉). A first important result is the evident first-order
character exhibited, in all cases, by those transitions for sufficiently high values of
γ.

It is very revealing a close inspection of the microscopic organization of the re-
sulting networks produced by applying the frequency gap condition. We found the
spontaneous emergence of a k − ω correlation feature associated with the passage
from a second- to a first-order like synchronization transition. While such a correla-
tion was imposed ad hoc in Refs. [9, 14], here the condition (2) creates for each oscil-
lator i a frequency barrier around ωi, where links are forbidden. The reached degree
ki will be then proportional to the total probability for that oscillator to receive con-

nections from other oscillators in the network, and therefore to 1−
∫ ωi+γ
ωi−γ g(ω′)dω′.

This is shown in Figs. 1(c)-(d), where the final degree ki is reported vs. ωi, for
〈k〉 = 100. The upper plot of Fig. 1(c) refers to the case γ = 0 in which no degree-
frequency correlation is present, while in the upper plot of Fig. 1(d), instead, it is
reported the ES case occurring at γ = 0.4 and the corresponding normalized func-

tion f(ω) = 1−
∫ ω+γ
ω−γ g(ω′)dω′, with g(ω) = 1 for ω ∈ [0, 1], and g(ω) = 0 elsewhere,

which gives evidence of the emergence of a clear V-shaped correlation between the
ωi and ki. The obtained pattern is clearly nonlinear, depends on the frequency
distribution g(ω) and, in general, it is V-shaped. Finally, Figs. 1(e) and (f) show
that the rise of a first-order like phase transition is, indeed, a generic feature in the
parameter space. Here we report r in the λ − γ space, for 〈k〉 = 20 and 〈k〉 = 60
respectively. The horizontal dashed lines in panels (e) and (f) mark the values of
γc, separating the two regions where a second-order transition (below the line) and
a first-order transition (above the line) occurs. The fulfillment of Eq. (2) leads to an
explosive transition for a very wide class of distributions of the oscillators’ natural
frequencies, as shown in Figs. 2(a)-(b) for a Rayleigh distribution. The condition of
Eq. (2) can be relaxed in several ways. For instance, a frequency gap in the network
growth can be introduced as |ωi − 〈ωj〉| > γ, where 〈.〉 indicates the average value
over the neighborhood N (i). The results for this local mean field gap condition in
a homogeneous frequency distribution are shown in Figs. 2(c)-(d).

The previous findings reveal a key factor pointing out to the essence of the
ES, but it imposes a specific architecture for the network. However, based on
the acquired knowledge about the microscopic nature of the ES, the study can be
further extended to the case of a network with an arbitrary frequency distribution
and architecture, for which the only action that an external operator can perform
is a weighting procedure on the already existing links [13] by modifying Eq. (1) as

θ̇i = ωi +
λ

〈k〉

N∑
i=1

Ωij sin(θj − θi), (3)

where Ωij = Aij |ωi − ωj |α is the weight factor to be applied to the (existing) link
between nodes i, j, being Aij the elements of the adjacency matrix that uniquely
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Figure 2. (Top row) r vs. λ. Synchronization transition schemes
for different g(ω) or network construction rules, for system size
N=500. (Bottom row) The final node degree ki as a function of
ωi. (a)-(b) Rayleigh distribution for γ = 0.3. In (b), the red solid
line depicts the theoretical prediction f(ω), obtained with the same
method of the red solid line in panel (d) of Fig. 1; (c)-(d) uniform
frequency distribution, but network constructed accordingly to a
local mean field condition (see text) for γ = 0, and γ = 0.4 (see
legend for color code). In panel (d) γ = 0.4. In all cases, 〈k〉 = 60.

defines the network, and α a constant parameter which possibly modulates the
weights. The strength of the i-th node (the sum of all its links weights) is then
si =

∑
j Ωαij .

Numerical simulations of the system (3) for a Erdös-Renyi (ER) [8] network of
size N = 500 are reported in Fig. 3(a), for several g(ω) within the range [0, 1].
For the simplest case of a uniform frequency distribution, the un-weighted net-
work displays a smooth, second-order like transition [squares in Fig. 3(a)], whereas
the weighting factor has the effect of inducing ES in the same network, with an
associated hysteresis between the forward (solid line) and backward (dashed line)
transitions. Such dramatic change in the nature of the transition is independent of
g(ω), as long as it remains defined in the same frequency range [0, 1]: we obtain
identical results for symmetric (homogeneous, Gaussian, bimodal derived from a
Gaussian) and for asymmetric Rayleigh distribution:

g(ω) =
1

σ2
ωe

−ω2

2σ2 (4)

with σ=0.2, and a Gaussian centered at 0 but with just having the positive half
(and normalized consequently):
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Figure 3. (a) Synchronization schemes (r vs. λ/〈k〉) for ER
networks of size N = 500, 〈k〉=30, for the un-weighted case (dark
blue squares), and weighted cases for several frequency distribu-
tions within the range [0, 1]. (b) Node strengths si (see text for
definition) vs. natural frequencies ωi, for the un-weighted (dark
blue squares) and weighted (light blue circles) networks reported
in (a). The solid line corresponds to the analytical prediction.

g(ω) =

√
2

πσ2
e

−ω2

2σ2 ω > 0 (5)

with σ = 0.25, showing how general is the behavior for homogeneous networks.
We move now to rigorously predict the onset (and nature) of the explosive tran-

sition, by analytically examining the thermodynamic limit in which N oscillators

form an all-to-all connected (clique) graph θ̇i = ωi + λ
N

∑N
j=1 |ωi − ωj | sin(θj − θi).

Using the following definitions [13],

1

N

N∑
j=1

Ωij sin θj := Ai sinφi, (6)

1

N

N∑
j=1

Ωij cos θj := Ai cosφi, (7)

the dynamical equations governing the clique can be transformed into θ̇i = ωi +
λAi sin(φi − θi), whose stationary solution in the co-rotating frame reads as

ω = λAω sin(θω − φω). (8)

The definition of Aω and φω implies that

F (ω) := Aω sinφω =

∫
g(x)|ω − x| sin θ(x) dx, (9)

G(ω) := Aω cosφω =

∫
g(x)|ω − x| cos θ(x) dx,

In the case all oscillators are close to synchronization, one can assume that cos θ(x) ≈
r, and therefore G(ω) ' rs(ω), where s(ω) is the strength of a node with frequency
ω. Using this approximation, Eq. (8) takes the form

2

rλ
g(ω)ω = F ′′(ω)s(ω)− F (ω)s′′(ω), (10)

which is a second order differential equation whose integration gives F (ω) depend-
ing on the function s(ω). For instance, in the particular case we take a uniform
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lines mark the region of hysteresis defined by λc1 and λc2 in (a).

distribution g(ω) in the interval [−a/2,+a/2], we can solve Eq. 10 using the pre-
vious definitions of F (ω) and F ′′(ω) to explicitly obtain the strength s(ω) as the
second order polynomial

s(ω) = a

[(ω
a

)2
+

1

4

]
. (11)

and therefore, the integration of Eq. (10) gives

F (ω) = a
[1 + 4(ωa )2] arctan( 2ω

a )− (2 + π)ωa
(4 + π)λr

. (12)

Using the consistency equation given in (9) and that F ′′(ω) = 2g(ω) sin θ(ω), it
results that

sin θ(ω) =
1

λr
H

(
2ω

a

)
, (13)

where H(x) := 4
4+π

[
x

1+x2 + arctan(x)
]
. Figure 3(b) shows the emergence of this

predicted parabolic relationship between the node strengths si and the natural
frequencies ωi of the oscillators when the synchronization transits from a smooth
to an explosive one.

This analysis allows us also to determine the discontinuous nature of the transi-
tion by finding the relationship between r and λ. We use that

r =

∫
g(x) cos θ(x) dx =

∫
g(x)

√
1− sin2 θ(x) dx, (14)

which is an implicit equation in r. When λr ≥ 2+π
4+π ≈ 0.72, sin θ(x) ≤ 1 for all x,

which means that all oscillators are frequency locked and, then,

r =

∫ a
2

− a2
g(x)

√
1−

[
1

λr
H

(
2x

a

)]2
dx. (15)

On the other hand, if λr ≤ 2+π
4+π , only those oscillators with frequency in the interval

[−ω∗, ω∗] are locked. Being H(x) continuous and monotone, it can be inverted to
obtain:

ω∗ :=
a

2
H−1(λr),
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Figure 5. Plots of the matrix rij (Eq. (17)) for fully connected
(a)-(d) and ER (e-h) networks. Oscillators are labeled in ascending
order of the frequency ωi. The critical coupling strengths where the
ES takes place are λc=2.13 in λc = 2.17 respectively.

thus

r =

∫ a
2H

−1(λr)

− a2H−1(λr)

g(x)

√
1−

[
1

λr
H

(
2x

a

)]2
dx.

Hence, if we introduce the following functions

`(µ) :=

{
1 if µ ≥ 2+π

4+π

H−1(µ) if 0 ≤ µ < 2+π
4+π

and

I(µ) :=

∫ `(µ)

0

√
1−

[
1

µ
H(z)

]2
dz,

Eq. (14) takes the form
µ

λ
= I(µ), (16)

being µ = λr. Solving this implicit equation in µ we can obtain a solution for r,
which, graphically, for a given value of the coupling constant λ, corresponds to the
intersecting points between the function I(µ) and straight lines of slope 1/λ passing
through the origin.

The function I(µ) presents an inflection point at 2+π
4+π , where the curve changes its

concavity (see Fig. (4)). The consequence is that, depending on λ, there are three
different kinds of solutions: for λ small, only the trivial solution r = 0 is found since
the straight line and I(µ) only intersect at µ = 0; when λ is such that the slope
of the straight line is tangent to I(µ) (i.e., when λ = 1.03, the red dashed line in
Fig. 4(a)); and when λ increases above this value, the hysteresis appears since r
has now three values, with two stable solutions (r = 0 and r ≈ 1) and an unstable
solution (see Fig. 4(b)). The solution r ≈ 1 appears therefore abruptly when the
slope of the straight line is tangent to I(0) (i.e., when λ = 1.43 (blue dashed line
in Fig. 4(a)), which is the point where the stable solution r = 0 collapses with the
unstable one, becoming unstable (see Fig. 4(b)).
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2.1. Microscopic dynamics in explosive synchronization. More detailed in-
formation about the microscopic dynamics underlying ES can be found measuring
the local order parameter, rij [20]:

rij =

∣∣∣∣∣ lim
T→∞

1

T

∫ t+T

t

e(θi(t)−θj(t))dt

∣∣∣∣∣ , (17)

where T is the length of the time window. Its value is rij=1 for any two phase-locked
oscillators, rij=0 for all pairs of fully uncorrelated oscillators, and intermediate val-
ues for any two partially correlated oscillators. One can assume that the matrix
R = (rij) represents a dynamical functional weighted matrix, whose comparison
with the real structural adjacency matrix A = (aij) helps to reveal the deep inter-
dependence between structure and dynamics. In Fig. 5 the values of rij are reported
for a fully connected (a)-(d), and ER (e)-(h) networks, for four representative λ val-
ues. We observe that only small synchronized clusters of oscillators exist for λ < λc,
while a giant synchronized cluster shows up immediately after λc, indicating that
the small synchronized clusters suddenly merge together right at λc.

It is clear that below λc, links are always generated among those nodes whose
frequencies are relatively close. As a consequence, separated clusters form for λ up
to λc, where instead (and suddenly) all clusters merge together to melt into a giant
one.

This information guided us to consider the use of an effective network whose
structure explicitly reflects the interplay between the topology and dynamics of
the original system and, in an individual basis, it can be useful to easily identify
the nodes which are actually acting as synchronization seeds [16]. We define the
effective adjacency matrix as

Cij ≡ Aij
(

1− ∆ωij
∆ωmax

)
, (18)

where ∆ωij = |ωi−ωj | is the frequency detuning, and ∆ωmax the maximum possible
detuning present in the system in order to guarantee Cij ≥ 0.

The role of each node in the synchronization process can be extracted from the
network defined by C = (Cij) through the calculation of the standard eigenvector
centrality measure of C. Thus we obtain an effective centrality vector ΛC, whose i-th
component quantifies the potential of node i to behave as a seed of synchronization.

In Fig. 6 the comparison between ΛC and its topological counterpart ΛA (the
eigenvector centrality extracted from the original adjacency matrix A = (Aij)) is
reported. For ER networks (Fig. 6(a)), the distribution of the components of the
vector ΛC as a function of the corresponding natural frequencies of nodes shows
the existence of many seeds of synchronization with natural frequencies close to
the center of g(ω). This allows characterizing the connection between the micro-
scale and the macro-scale of the network in a much better way than ΛA, whose
components are instead uniformly distributed. For scale-free (SF) [3] networks
(Fig. 6(b)), the synchronization seeds are the hubs, and therefore ΛC and ΛA

provide essentially the same information.

3. Explosive synchronization in adaptive and multiplex networks. In the
previous sections, our study on ES has been focused on the case of single-layer, or
monolayer, networks with non-evolving interactions. Real complex systems, how-
ever, have far more complicated forms of interactions, which points to the fact that
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with N=1000 and f=1. The insets report the dependence on f of
the average transition points λF and λB for ten realizations.

the hypothesis of a single-layer, static network may actually result in an overes-
timation (or an underestimation) of the problem under study. A more accurate
analysis resorts on multilayer networks, and dynamical processes on top of them
are attracting more and more attention (see, for instance, Ref. [5] for a recent and
rather comprehensive review).

In this section we show how ES can emerge from an adaptive process without
introducing any correlation into the system a priori [19]. Let us begin by consid-
ering the following modification to Eq. (1) with an explicit fraction f of the nodes
adaptively controlled by a local order parameter. The evolution of each oscillator
is then ruled by:

θ̇i = ωi + λαi

N∑
i=1

Aij sin(θj − θi), (19)
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where the new parameter αi accounts for an adaptive control of nodes. For a fraction
f of the nodes randomly chosen, αi = ri is assumed for each of the selected nodes,
where ri is the instantaneous local order parameter of the i-th oscillator, defined
as:

ri(t)e
iφ = (1/ki)

ki∑
j=1

eiθj , (20)

and φ denotes the phase averaged over the ensemble of neighbors. For the remaining
fraction 1 − f of the nodes, αi = 1. Obviously, f = 0 returns the traditional
Kuramoto model, while f > 0 indicates that a fraction of nodes are adaptively
controlled by the local order parameter. Besides, another significant point is the
choice of the natural frequencies ωi of oscillators, which are taken from a random
homogeneous distribution g(ω) in the range [−1, 1]. The presence of an abrupt
transition with an associated hysteretic loop in r is evident in Fig. 7, indicating
the occurrence of ES above a critical value fc. The inset of Fig. 7 reports the
dependence on f of the corresponding forward and backward transition points λF
and λB .

The next step of our study is, then, moving to some theoretical analysis, in order
to grasp the essential ingredients at the origin of the observed scenarios. To that
purpose, we consider the case of Fig. 7, with f = 1 as an example. Substituting the
definition of ri into Eq. (19) one has

θ̇i = ωi + λr2i ki sin(Ψ− θi), (21)

where Ψ̇ = Ω is the group angular velocity. In the mean field approach, ri = r.
Letting ∆θi = θi − Ψ, we get ∆̇θi = ωi − Ω − λr2ki sin(∆θi). If |ωi − Ω| < λr2ki,
the oscillator i becomes locked to the mean field. For symmetric g(ω), then Ω = 0
and therefore the phase-locked oscillators fulfill:

∆θi = arcsin

(
ωi

λr2ki

)
(22)

from where it is possible to recover the contribution of the locked oscillators to the
order parameter

r =
1

〈k〉

∫
|ω|≤λr2k

h(k, ω)k

√
1−

( ω

λr2k

)2
dωdk (23)

where h(k, ω) = P (k)g(ω) is the joint distribution with P (k) being the degree
distribution of the network. The solution of Eq. (23) is shown in Fig. 8, where
the presence of an unstable middle branch is responsible for the hysteretic loop
associated to ES observed in Fig. 7. This analytic result allows us for a better
understanding of the ultimate causes of ES, and in particular of the microscopic
mechanisms that are at the basis of the arousal of explosiveness in the transition.
Notice that if one considers the Kuramoto model for the common second-order phase
transition Eq. (1) and develops the same mean-field treatment, one obtains that the
formula for the order parameter is identical to Eq. (23), but the superior integration
limit is replaced by |ω| ≤ λrk, which results in the following consequence: for the
backward evolution in Fig.7, when the system begins in a synchronized state, one
has r ' r2 ∼ 1. However, for the forward transition, r ' 0, and thus r2 � r.
Therefore, the difference in the integration domains strongly impacts the fraction
of oscillators belonging to the main synchronization cluster. In the usual case of
a second-order transition, the oscillators with closer natural frequencies will first



1942 I. LEYVA, I. SENDIÑA-NADAL AND S. BOCCALETTI

Figure 8. Analytical solutions of Eq. (23) for the order parameter
r vs. λ for the ER network with f = 1.

form small synchronized clusters and then these clusters will gradually grow up and
merge with the increase of the coupling strength, until eventually forming a giant
cluster. On the contrary, in the present case, the factor r2 in the integration domain
has the effect of actually suppressing the merging of small synchronized clusters.
Thus, with the increase of λ, more and more free oscillators will be attracted to
each of the distinct clusters, but these clusters are prevented from merging with
each other. Eventually, when no more free oscillators are left, a discontinuous and
abrupt behavior of r will show up as a consequence of the sudden collapse of all
clusters.

Finally, we extend our study to the case of inter-dependent multiplex networks
[19], where each node has a one-to-one partner with the same index i whose gov-
erning equations are

θ̇1i = ω1
i + λα1

i

k1i∑
j=1

sin(θ1j − θ1i ),

θ̇2i = ω2
i + λα2

i

k2i∑
j=1

sin(θ2j − θ2i ),

(24)

where the superscripts 1 and 2 denote the network layers 1 and 2, and α1
i and α2

i

represent the coupling of the two layers via dependency links. In details, if node
i belongs to the fraction f , α1

i and α2
i refer to the local order parameters r2i and

r1i , i.e. α1
i = r2i and α2

i = r1i (α1
i = α2

i = 1 otherwise). The frequency distribution
g(ω1

i ) is still random uniform and in the range [−1, 1], while g(ω2
i ) can be either

random uniform or Lorentzian distribution.
Figure 9 shows the dependency of synchronization levels r1 and r2 as a function

of the coupling λ. In the simulations, layer 1 is always a random ER network with
〈k1〉 = 12, and we choose different topologies and frequency distributions g(ω2

i ) of
the layer 2 (see caption for details). One clearly sees that in all cases ES occurs
simultaneously in both layers. The subplots show the dependence of the hysteresis
loop width on f in each case. The apparition of ES seems very robust against
the difference in topology and frequency distribution, which again indicates that
the correlation between k and ω is not the essential condition for the emergence
of ES. If f is below the critical value fc, synchronization returns to a second-order
transition. More importantly, these observations can be quantitatively verified via
the mean-field theory. In the traditional second-order transition, oscillators with
close frequency firstly collapse into small synchronization clusters, which gradually
converge towards a giant cluster at the critical coupling strength.
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Figure 9. Synchronization parameters r1 and r2 vs. λ for two
inter-dependent networks with N = 103 and f = 1. Squares and
circles (triangles and stars) denote the forward (backward) transi-
tions, and the insets report the average width 〈d〉 of the hystere-
sis loop as a function of f . Here layer 1 is a ER network with
〈k〉 = 12. From (a) to (b), layer 2 is ER network with 〈k〉 = 12
and 〈k〉 = 6, and g(w2

i ) is a random homogeneous distribution in
the range [−1, 1]. From (c) to (d), layer 2 is ER network and SF
network with 〈k〉 = 12, and g(w2

i ) is Lorentzian distribution and
random homogeneous fashion.

Recently, furthermore, this kind of ES has been shown to coexist with the stan-
dard phase of the Kuramoto model in the thermodynamic limit [7].

4. Conclusions. A complete understanding of the nature of phase transitions in
complex networks intimately depended on an explicit interaction between the net-
work topology and the characteristic dynamics of oscillators. While up to few years
ago, these transitions were always found to be continuous, reversible, second or-
der ones, in this work we have presented diverse situations where the transition is
abrupt, first-order like, which it has come to be named as explosive synchronization
in recent literature. We have studied very different situations where ES appears,
and we can safely conclude that the necessary condition for ES is the existence of a
microscopic suppressive rule able to prevent the formation of a giant synchroniza-
tion cluster. The way this condition is fulfilled, as explicit or implicit frequency
disassortativity, or adaptive coupling, configures the many scenarios where ES can
be observed.
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