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EQUIVALENT DISSIPATION POSTULATES IN CLASSICAL
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by
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Consiglio Nazionale delle Ricerche Universita di Roma 2
Via S.Maria, 34 - 56100 Pisa Via 0.Raimondo, 00173 Roma

1. Introduction

[n the classical theory of plasticity, the notions of yield surface and
plastic stretching play a crucial role. The yield surface is the boundary of the
region in stress space of all stresses which are attainable from the current
one without any further plastic deformation; it characterizes the transitions
from a purely elastic to an elastic-plastic regime. On the other hand, knowing
the plastic stretching, the total stretching and the elastic response law of the
material, one can calculate the stress at each instant during each admissible
processes.

The two notions are tightly connected by stating some sort of dissipation
postulate, on the form of which there has been recurrent speculation of
plasticity theorists (vid. the discussion of Lubliner in [1], where many of the
relevant references are listed). For example, a well-known dissipation
condition involving the additional working of internal action has been
suggested by Drucker in [2]: Drucker’'s Postulate implies convexity of the yield
surface, as well as the so-called associated flow rule, according to which the
plastic stretching agrees with the outward normal to the yield surface
evaluated at the current stress. Another condition having similar
consequences, this one restricting the sign of the complementary working, has
been proposed for study by Martin [3]. Moreover, we have showed in [B] that
properties of the yield surface and the plastic stretching completely analogous
to the classical ones can be obtained by a version of [lI'yushin’'s Postulate [4]
appropriate to the theory of materials with elastic range undergoing large
deformations developped in [5] [6] (7].

[n this paper we prove that, within the linear theory of isotropic materials
with elastic range [7], the postulates of Drucker, Martin and I[l'yushin are
indeed equivalent: this result, whose formal proof is rather delicate, had been
previously stated by us in [8].

2. The Linear Theory of [sotropic Materials with Elastic Range

[n this section we present in abridged form the elements of the title
theory, in order to make our paper reasonably self-contained. A general theory
of materials with elastic range undergoing large deformations has been



formulated in [S] and [6]; in [7], among other things, that general theory has
been linearized by choosing the norm of both the displacement gradient from a
fixed reference placement and its time derivative to be small, and the
resulting theory has been shown to have all key features of classical
infinitesimal plasticity. Once and for all we refer the reader to our papers
just quoted for a precise and detailed exposition of those concepts and results
that we here only skim.

2.1 Histories

We begin by introducing’/ the basic notion of a history, namely, a
continuous and piecewise continuously differentiable mapping

€: [0,1] > Sym, E =E(7), (2.1)

from the closed unit interval of the real line into the space of second-order
symmetric tensors. The value E(z) of € at "instant” T is interpreted as the
infinitesimal strain tensor at a fixed material point: by E we denote the time
derivative of E, when it exists, or else the derivative from the right at an
instant T where E has a discontinuity.

The set B of all histories is closed with respect to certain operations of

section and continuation: for Ee® and 7 el0,1], the T-section of € is the
history €, such that

T B (T) = E(zT) (2.2)

a continuation G of E is any history G such that G, =E for some v €]0,1], and

a continuation of E up to a given AeSym is a continuation of E whose final
value E(1) is A. For the purpose of this presentation, it is expedient to assume
that all histories begin at the origin 0 of Sym:

E(0)=0 for all Eed ; (2.3)

this assumption reflects those real life situations when experiments are made
only on identically prepared specimina.

2.2 The Constitutive Functional

we model the mechanical response of isotropic elastic-plastic solids by
means of a constitutive functional

T:D - Sym, T=T(), (2.4)

whose value T(E) assigns the Cauchy stress at the end of history E. T is
assumed to be frame-indifferent and invariant under time-rescalings (briefly,
rate-independent). As a consequence of rate-independence, T(ﬁt), the stress
corresponding to the T-section of E, can be interpreted as the stress obtained



at instant T during the hlstorg £ itself; we stress this interpretation by
writing TE(”C) in place of T(E,), and notice that

Te(T) = Te (1) (2.5)

The type of mechanical response we envisage is further specified by
introducing the notions of elastic range and unloaded history (see [6], Sections
3 and S, respectively).

2.3 The Elastic Range

The elastic range corresponding to the history Ee® is a set £(E) C Sym,
the closure of an arcwise connected open set containing £(1), whose boundary
is attainable from interior points only, and whose points are interpreted as the
symmetric gradients of all deformations from the reference configuration to
conflguratlons which are elastically accessible from the current configuration,
A history G is called an elastic continuation of E if there exists zel0,1]
such that both G, =E and G(z)eE(E) for all = elz,1]; we let C(E,E(E)
denote the subset of B consisting of all elastic continuations of £, and assume
that the constitutive functional T is path- /ndependent when restricted to
C(E,E(E)), in the sense that T(G)=T(A) for all A, GeC(E E(E)) such that
G(1)=H(1). Two crucial properties of the material class we wish to study are
that, for all Eeb,

(i) the elastic range E£(E) is invariant under elastic continuation, i.e.,
E(E) = E(G) for all GeC(E,E(E));
(ii) the elastic range evolves smoothly, i.e., for each T¢[0,1[ and for each A

belonging to the interior part £°(E,) of £(E,) there exists § >0 such that

AeE(E,) per Telt, T+6] .

2.4 Unloaded Histories

For a given Ee®, a history EP is called an unloaded history corresponding
to £ if, for all ze(0,1], both EP(z)e£(E,) and, for G any elastic continuation

of E, up to EP(z), T(6)=0. The notion of unloaded history is a mathematical
formulation of the idea that there should be a stress-free configuration
attainable via elastic continuation from the current configuration: in
particular, the initial configuration is stress-free. For all £¢%, we assume

here that there is exactly one unloaded history P corresponding to £, and that
there is no plastic change of voiume, i.e., E? is such that

trEP(z) =0 for all ©el0,1]. (2.8)

For £ €D and for all ©€l0,1] it is clear that



E(T)=E (1) . (2.7

Moreover, for Ee D and G an elastic continuation of E such that G_=€, it is
not difficult to show that

GP(z) =EP(1) forall Telz, 1], (2.8)

so that

G°(z) =0 forall Telz, 1]. (2.9)

We now state two further properties of histories which are in general left
tacit. These are:

(i) (existence of continuations implying plastic stretching) for each €e®
such that E(1) € 3(E), there is a continuation G such that

G,=E and GP(z)=0; (2.10)

(i) (insensitivity of plastic stretching to elastic cycles) let E,GeD be a pair
of histories such that, for some positive numbers z=. T and § with
0<TTLT+§< 1,

(1) E.=G, and E(z) € 3E(E,);

(2) for all T'elz,T], G(z)eE(E,), with 6(T) = G(z);

(3) for all 8€(0,81, E(z+8)=G(T-0) (vid. Fig. 1):




then,

EP(T) = GP(T) . (2.11)

Property (i) guarantees that each history attaining the boundary of its elastic
range has a continuation with non-vanishing instantaneous plastic stretching;
property (ii), on the other hand, << formalizes the requirement that plastic
stretching should not be affected by any prior deformation cycle remaining
within the elastic range>> (cf. [8], Axioms 8 and 9, respectively).

-

2.5 Stress Range and Yield Surface

Let a history E and its corresponding unloaded history E” be chosen in .
The classic assumption that the stress response to a purely elastic strain
from the unstressed configuration reached after unloading at the current
instant © is both unaffected by the past deformation process and completely

determined by E(t) and E°(z), together with (2.6) and the fact that we here
deal exclusively with the linear theory of isotropic materials, yields the
following representation formula for the linear mapping T delivering the
stress T¢(z):

Te(r)=TIE(T) - EP() 1= 2p (E(z) - EP(7)) + A(trE(e)I (2.12)

where the constitutive moduli A and p are supposed to satisfy the usual a
priori positivity restrictions

3A+20°0, pu>0 . (2.13)

Consequently, T is invertible, and we have

E(v) = T Te(2)]+ EP(x) =
=(172p) [Te(z) «(A/@p+3N))(trTe(z) 11+ EP(z) . (2.14)

For each Ee® and z€(0,1], let
T(E):={TeSym| T="TIE - EP(7)], EcE(E,)) (2.15)

be the collection of all stresses T elastically attainable starting from the
current stress Te(z). We call T(E.) and its boundary 8T(E,) the stress range

and the yield surface respectively, associated to history E and instant 7. Due
to the invertibility of T, the elastic range £(E,) and the stress range T(E,)

are in one-to-one pointwise correspondence; moreover,

E(v)edE(E,) = Tu(r)edT(E,) . (2.18)



[@)]

3. Working Integrals, Potentials and Cyclic Powers

For E€D and 74,7, €[0,1] such that 0<To<T <1, the integrals

A[E} = ITE(t)'E(t)dt and A€} := JT(t)-é(t)dt (3.1)

define, respectively, the working and the complementary working (per unit
volume) done by internal actions along history E during the time interval
[tg.T1]. We proceed to show that the working [the complementary working] is,
in a sense we make precise, path-independent over the elastic range [the

stress range].
For each EeD and E€£(E), let Ged be any elastic continuation of € up to

E. with G_=E. We observe that, for all T e[z, 1],
GP(z)=EP(1), G(v)=E(1), &(1)=E: (3.2)
by (2.12) and (2.14), respectively, we then have that
To(@)=TI6(x)-E(N , &(e)=€E(1) +» T '[T5(x)] : (3.3)
in particular,
Ti=T,(N=TE-E()], E=6N=E)+ T[T, (3.4)
We now define the stress and the strain energy to be, respectively,

25(A):= A-T '[A] and 2g(A):=A-TIA] . (3.5)

[t follows from (3.3)+(3.5) that the stress and the strain energies are equal
over [z, 1], in the sense that

25(T(x) =To(z) T [ T4(x)1 =
= (6(z)-E°(1)) - TI6(z) - E°(1)1= 2 a(6(z) -E°(1)) . (3.6)

Finally, (3.3) and (3.6) imply that
To(z) - 6(r) = T4z -T-l[TG(t'ﬂ =G5(To(r)) = a(6(z)-E°(1))
and

T5(z)-6(x) = (TI6(z)-E° () (6(z) - E°(1)) + To(w)- EP(1) =
= [a(6(z) -EP(1)) + T4(x) - EP (D1 = [G(T4(z)) + Tolz)- P11 .



Thus, the working is path-independent within the elastic range, and the
complementary working within the stress range, in the following sense:

|
[t 60 = aE-") - g - (3.7)
and
|
[T 600w = 5. €0y -5, 0).6°0)) | (3.8)
T
where we have set
G(A.B):=TG(A)+A'B . (3.9)

For each E€D, we are then in a position to define the potential

|
P(E) - EE)» R, Q(:E):= jTG(t)-G(t)d’c (3.10)
0

and the complementary potential
1
PLiE): TE) - R, 9(Ti8) = [T () 6(x)dr (3.11)
o]

where G is an arbitrary elastic continuation of € up to Ee£(E), and T =TI(E-
EP(1)] (cf. (3.4)y ). [t is easily seen that the potentials ¢ and 9. are

differentiable over £°(E) and T°(E), respectively, with derivatives

Fig. 2



3 PE:E)=T and 8;9(T:E)=E . (3.12)
Now, for each E€D, choose §>0 , E and T in such a way that
Eef(E,) , TeT(E,) forall T'elv, v+8]: (3.13)

then, [P(E:E,.5)-PE:E)] and [P(T:E,.5) - P(T:E,)] measure the working and
the complementary working during the "cycles” (€ - £(z) » E(z+8) » E} and (T
> To(z) - To(z+8) » T}, respectively (Fig.2).

Remark. It is important to realize that the "cycles” considered above are not
parts of any history: to see how to interpret them in the case, say, of the
complementary working, let TeT(E,) for all z'¢lz, +8] . and let G be an

elastic continuation of €, up to E=E(z) + T !(T}: moreover, for
0CTCTH<TCT+§¢T, <

let G be a continuation of G, such that &, _ G and :

(1) G(zVeE(E,) for all T'elzg, T1, with Tolrg) =T and T4(T)=Tu(2)):

(2) G(T+9)=E(z+0) for all 6€(0,5] :

(3) G(z)eE(E,.q) for all T'elT+5,7,], and T4(z) =T .

Suppose now, as is common experience in applications, that one were willing
to strenghten our former assumption on the insensitivity of plastic stretching
to elastic cycles slightly , in such a way that

P(TiErs) =P (T:Gx.y)

would follow. Then, by definition of complementary working, and as the
constitutive functional is rate-independent and the complementary working is
path-independent within the elastic range, one would have that

T

-~

|
PAT:E )~ T:E,) = fTG(“:')-G(v:')dt' - J‘Tﬁ(t')-ﬁ(t')dv:' =
0 0

T+8
T
= fTG(t')-G(t')dt' (3.14)
To
and a physically convincing interpretation of [Qc(T:€,.;) - Pc(T:€,)] as the

complementary working done on the cyclic part of a history would ensue. O

As the elastic range evolves smoothly, for each £¢D and zel0,i[ fixed,
and for each Eef°(E.) and TeT°(E,), there is § >0 such that (3.13) is obeyed.
Consequently, whenever a finite limit exists, we may set

A ‘P(E:EPS)'“P(E:ET,)
P(E:EL) = Jim 5




and likewise

e LT: Et+5) - P(T:E,)
Jim 5 . (3.15),

PT:E) =
We call ¢ the cyclic power and 9. the complementary cyclic power. The main

properties of cyclic powers are the contents of our first proposition.

Proposition 1. For each Ee® and ©el0,1[, ¢ [?] is well-defined over
T(E,) [EE)], and

P(T:E,) = - [Te(T) - T1- EP(%)
[ PCE:E,) =(Te(r) - TIE-E()])-E(x) 1. (3.18)

Moreover, if, for 0<wvo< vy <1, TeT(E,) [EeE(E)] for all Telry, T,l,
then the function v — P(T:E.) [ v+ ®(E:E,) 1 is piecewise continuous on
[zg.7,].

Corollary. For each Ee® and tel0,1[,

P(EE,) + P(T:ED =0, (3.17)

provided T =TIE - EP()].

Propf. We prove the assertion on @c: the proof of the corresponding assertion
on ¢, which is completely analogous, has been given in [6]; the proof of the
corollary is a straightforward consequence of (3.16); 5.

Let Tel0,1[ and TeT°(E,) be arbitrarily chosen. In view of (3.11), (3.8),
(3.9) and the assumption that the elastic range evolves smoothly, and recalling
also (2.5), (2.7), we can write:

Pe(TiErrs) = Pc(T:E,) = [G(T:EP(z+8)) - O(T:EP(T))] +
-[o0(Te(z+8):EP(T+8)) - O(Te(2): EP(T))] +
+T$E(t’)-é(t)dt'
But, in view again of (3.9), ’
O(T:EP(T+8)) - O(T:EP(T)) = T-[EP(7+8) - EP(T)]

and

S(Te(v+8):EP(+8)) - 5(To(v):E7(2)) =[T(T (2 +6)) - T(T ()] +



+[Telw+8)-EP(T+8) - T(z)-EP(2)] .

Dividing by 8§ and passing to the limit for § » 0+, and taking into account (3.5),,
we then have (3.18), for all TeT°(E,); as the right hand-side of (3.16), is

well-defined for all TeSym, (3.16), holds on the boundary 8T(E,) of T°(E,) as
well. Finally, the stated smoothness properties of function T c'PC(T;Et)

follow directly from the corresponding properties of E? and (3.16),. O

4., Equivalent Dissipation Postulates

Recall from the former section that, for £¢® and ©y,T;€[0,1] such that
0<7Tg<Ty <1, the integrals

7, 7
AB)= [T E@ar and A= [T (2) E)de (4.1)
Z %o

define, respectively, the working and the complementary working done by
internal actions along history £ during the time interval [zy,z,]. The integral

Ty
7,8 = 17,0 - T (xo) E@) 0o (4.2)
To
defines the additional working along E during [T, 74l
A history Eed is strain-closed [stress-closed] in the time interval
(zg. 7] if E(ry) = E(r,)=E for some EeE(E,) for all zelzy, T,
[ Telzg)=Te(z,)=T for some TeT(Ey) for all Telzy, v,1]: we briefly say that
E is strain-closed [stress-closed ] if it is strain-closed in some time
interval.
With the above notions of working integrals and closed histories, we are in
a position to formulate the dissipation postulates of [I'yushin [4], Martin [3]
and Drucker [2].

[I'yushin’s Postulate. Let a history Ee D be strain-closed in the time
interval [Ty, (1. Then, the working along E during [ty,T,] is nonnegative:

AfE) 20 . (4.3)

Martin's Postulate. Let a history Ee¢ D be stress-closed in the time
interval [Ty, T,]. Then, the complementary working along E during [Ty, %]
is nonpositive:

AJdE} <O . (4.4)



Drucker's Postulate. Let a history E€ D be stress-closed in the time
interval [Ty, v,]. Then, the additional working along E during [tqy, vl is
nonnegative:

AE) 20 (4.5)

As T is invertible, E is stress-closed in [Ty, Tl if and only if
E(tg) -EP(rg) =E(r ) - EP(T) : (4.6)
consequently, as
[Fo(2) - T1E(2) = [(T(x) - T)- (B() - EP(eN] + [(2) - T1-E%(2)

(4.5) can be written in the well-known equivalent form

T

A = 11, -T1-E(@av 20 (4.7)

Tg

Recalling (3.16), in Proposition 1, we may also write

(3]
78 = - [oumie ) ar s (4.8)

thus, the assumption that, for each stress-closed history £ and for each
TeT(E,) for all instants = belonging to the time interval during which E is

stress—closed,
P(T:E) <0 (4.9)

appears as a natural differential formulation of Drucker's Postulate, and of
course implies it. Actually, as stated in our next proposition, under our present
hypotheses Drucker’s Postulate implies that (4.9) holds for all histories Eed,
for all Telo,1land for all TeT(E,): thus, stipulating (4.9) only for stress-

closed histories has an illusory greater generality.

Proposition 2. The additional working along stress-closed histories is
nonnegative if and only if the complementary cyclic power is nonpositive
along all histories at each instant Te[0,1].

Proof. [t suffices to prove that the complementary cyclic power is nonpositive
along all histories at each instant ze[0,I[ if the additional working along
stress-closed histories is nonnegative.

For all E¢® and Tel0,1[ such that E(z)edE(E,), let G be a continuation of

E_ of the type considered already in stating the insensitivity of plastic

T



stretching to elastic cycles, namely, such that, for some positive numbers T
and § with 0<T<ZT<T+§ <, both G(z)e£(E,) for all Telz,T], with
6(T) =6(z) (so that also T4(%) =T4()), and E(z+6) = G(T+8) for all ©€(0.5].
For each fixed T belonging to T(E,.) for all T'elz,T+5s[, assume in addition
that G has been chosen in such a way that Telzg) =T for some zyelz. T and,
finally, that, for some z; such that T+s§<z, <1, G(z)ek(E,.,) for all
Te[T+8, 7yl and T4(z)) =T (vid. Fig. 3).

- —
PP ~ o~
~

Tem=Te®Tg(T) N

/

SN

T=Tq ()= To (%)
Fig.3

By construction, history G is stress-closed in the time interval (zg. 741,
We apply Drucker’'s Postulate (4.5) to G, and get

[ T+§
[Ta@) =118 @) = [11 ()6 v

the arbitrariness in the choice of §, together with (2.11) and the fact that,
again by construction, T4(%T) = Te(T), then implies that

0 (T(T)-T)G(T) = (Te(z) - T)-EP(z) (4.10)
finally, (4.10) yields the desired conclusion. [J

Thus, the local formulation of Drucker’'s Postulate is that the
complementary cyclic power ‘Pc("ér) is nonpositive along all histories at each
instant Te[0,1[ . We now give equivalent local formulations of both Martin's
and [l'yushin’s Postulate: remarkably, the local formulation of Martin's
Postulate turns out to coincide with Drucker's.

Proposition 3. The complementary working [workingl along stress-closed



[strain-ciosedl histories is nonpositive [nonnegativel if and only if the
complementary cyclic power [cyclic powerl is nonpositive [nonnegativel
along all histories at each instant ©e€[0,1].

Proof. We prove the stated equivalence only for Martin's Postulate; the proof
for [l'yushin’'s, which is completely analogous, has been given in [6] in the
general case when large deformations are allowed.

We firstly show that (4.4) implies (4.10),. With reference to Fig. 3 again,
let £ and G be as in the proof of Proposition 3, and consider the following
cyclic portion of T4(+):

(T=To(tg) » T5(T) - To(T+8) > Tolz)=T) .

In view of (4.4), we have that

T+S

0¢ [T(2):6(x)aw = -[9,(T:6. ) - P (T:6)1 .
%o

Therefore, by (3.15),, (3.16),, (2.11) and the fact that, by construction,
T5(T) = Te(), we conclude that

0¢-PUT:G3) =[T5(T)-T1-GP(T) = [Te(z) -T1-EP(%) , (4.11)

which establishes (4.10).
Secondly, if (4.10) holds and E is stress-closed in [zy, 7,1, (4.11) implies

that

i1
0¢ j@C(T;ét)dﬂc = 9(TiE, ) - 9(T:E,) (4.12)

for each Te T(E,) for all velwg, 7], Choosing now T =T(zg) = T(zy) in (4.12),
and recalling (3.11) and (3.1),, we arrive at

02 JTE(t)-é(t)dt = AJE}. O
%o

We are now in a position to give a straightforward proof of the main
result of this paper.

Prdposition 4. Within the linear theory of isotropic materials with elastic
range each one of the postulates of [l'yushin, Martin and Drucker is equivalent
to each other.

Proof. Drucker’'s and Martin's Postulates are trivially equivalent because they
share their equivalent local formulations. Furthermore, we have from
Proposition 3 that [I'yushin's Postulate holds if and only if the cyclic power is
nonnegdative along all histories at each instant ©¢[0,1[, a condition which, in
view of (3.18), and the fact that the elastic range £(E,) and the stress range



T(E.C) are in one-to-one correspondence (cf. (2.13)), is equivalent to the
validity of Martin's Postulate. O

We remark in closure that the implication (4.3) > (4.10) has been noted by

Pipkin & Rivlin in their seminal paper [9].
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