|

Consiglio Viazionale delle Ricerche

|

D . i et

ISTITUTO D! ELABORAZIONE

:
DELLA INFORMAZION

PISA

, .
BEHAVIOURAL EQUIVALENCES FOR TRANSITION SYSTEMS

¥ } R. De Nicola

A Nota interna B84-13

Settembre 1984




BEHAVIOURAL EQUIVALENCES

FOR TRANSITION SYSTEMS

by
Rocco De Nicola*
Istituto di Elaborazione della Informazione
Consiglio Nazionale delle Ricerche - Pisa (Italy)
and

Department of Computer Science
University of Edinburgh - Edinbuwgh (U.K.)

# puthor's address: I.E.I. - Via S. Maria, 46 - I-56100 Pisa (ITALY)




ABSTRACT

In general one may try to use the same formalism to describe what
is required of a system (its specification) and how it can be built
from smaller components (its implementation), then the theory of
systems eguivalences can be very helpful +to prove that a particular
implementation satisfies a given specification. The kind of equivalence
one is interested in depends very heavily on the particular behavioural
aﬁpects one 1s willing to capture. The choice is particularly debated
in the case of parallel systems due to the large number of .properties
which may be relevant for their analysis.

In this paper we discuss an compare various proposed theories of
equivalence Tfor parallel or nondeterministic systems, by ;dapting them
to a common model which underlies many proposed models of parallelism:
labelled transition systems. The stress 1s over ' operational
significance of the various equivalences and over the properties the&

preserve.
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§0. Introduction

The reasons one wants to use formal models to describe systems is
to be able to analyze them, prove their properties and discuss their
design; to this end the notions of simulation, equivalence and
approximation between éystems are of fundamental importance.

In general one may try to use the same formalism to describe what
is required of a system (its specification) and how it can be built
from smaller components (its implementation) and use the theories of
simulation or approximations to prove that a particular implementation

is correct with respect to a given specification. Another possible use
of the theory of equivalence or simulation 1is +to arbitrarily
interchange subsystems proved equivalent. That 1is one subsystem may
- replace the other as part of a larger system without affecting the
external behaviour of the overall system. This turns out to be very
helpful to support a stepwise development method.

Anyway the equivalence approaches to systems development and
verification can be very dangerous since they could lead to erroneous
conclusions and every reduction or equivalence notion needs to be
studied together with the properties it preserves, i.e. together with
the kind of conclusions arrived at about the reduced systems which are
also valid for the original systems. -

Roughly speaking we say that a system S simulates (is equivalent
to) a system S whenever '"some" aspects of their behaviour are
compatible. The kind of equivalences, or simulations one is interested
in depends very heavily on the particular behavioural aspects one is
willing to capture. This choice is particularly debated in the case of
parallel systems due to the large number of properties which may be
relevant for their analysis.

There have been very different proposals in the litersture, as
mentioned above, the different choices depend on the use one as in mind
for - the systems he is modelling; The main idea 1s +to consider
equivalent two systems when no external observations can distinguish
them. But there is still disagreement on what are reasonable observa-
tions and on how they can be used to distinguish systems. The major
proposals have been made for various CCS-like languages but they can be
extended easily to other formalisms. In the sequel we will present and
discuss some of these proposals, by adapting them to labelled transi-
tions systems, /Kel76, Plo8l/, trying to stress the aspects of systems
they ignore and the identifications they force. Moreover by defining
all these equivalences over a unique model we will be -able to study
their interrelations. A similar comparison has been attempted in /BR83/
but there a different class of equivalences is considered and the
stress was on their logical implications more then on their operational
significance.




§1. Labelled Transition Systems

Since their appereance Keller's transition systems /Kel76/ have
proved to be a model which in some sense underlies many proposed models
of parallelism. We will present a particular class of transitions
systems with a particular emphasis on the methodologies for formal
verification it supports. In particular we will discuss methods for
reducing systems to simpler ones and for proving equivalence of two
given systems.

Transitions Systems are an abstract relational model based on two
primitive notions, namely those of state and transition. Given any
other model for which it is possible to define a notion of global state

and a notion of indivisible action causing a state transition we can
~define for each object of the model a corresponding transition system.
This correspondence determines an "interleaving" semantics for the

meodel and any property of systems which is preserved under interleaving

may be studied purely in terms of transition systems. In this way the
latters constitute a significant part of most models for parallelism
and many of their propertieé can be formulated in this highly abstract
conceptual model.

We will consider a particular class of nondeterministic transi-
tion systems which can be used to model systems controllable through
interactions with a surrounding environment, but also capable of making
internal or hidden moves which cannot be influenced or even seen by any
outside agent. This model is named labelled transition systems (LTS)
and is a slight modification of the model used by Keller.

- i

Definition 1.1 ' 2

A labelled transition system is a quadruple (Q, A, -a=>, q,)

where Q 1is a -<countable set of states, A is a countable set of
elementary actions (a, b, c...), -p=> with &€ A U %xf is a set of
binary relations on Q, and q, Q is the initial state. ]

In this definition each of the relations -a-» describes the
effect of the execution of +the elementary action a and g -a q!
indicates that by performing the action a the system when in the state
g can reach the state q'. After Milner /Mil80/ the special simbol ¥ is
used to denote the internal actions and q -T> q' indicates that a
system in the state g can perform a silent move to the state q'.

As noted in /BrR83/ a transition system can be "unrolled" into a tree
in the usual way. The initial state is the root and the transition
relation is represented by the arcs labelled with elements from A U}Z{,
the various nodes will identify the other states. Most of the examples
will be done in terms of this, more intuitive, model.

/
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Very often it is necessary to abstract from internal actions and
also to consider sequences of actions. We need to introduce notation to
represent such possibilities. In the sequal A* will be used to denote
strings over the set of actions A and will be ranged over by s,t,...,
and € will be used to denote the empty string. A sequence of actions can
be represented in a single transition by p - ,41... Hﬂ—) g, which means
that there is some sequence of states p. such %hat p. is p, p 1is q and
for ielo, e n—l% pi-—ﬁi——> pi+ . To a:ilow absorption of ?f—gctions
p -¢ 24, n>0, may be abbreviateé to p == q, and p —-'Zma??——>q to
p =a=yq. We will also use p —>q to denote p -->q.

For strings s & A*, p =s=pq is defined in the obvious way so that
if s = a°'“an—1 then p =a = pl...=a _l=7 q, p =¢=) ¢ will be render‘eq
as p == q. Moreover p =s= and p -p-» will abbreviate there exists
p'¢ P such that p =s= p' and p -p-> p' respectively; not exists p'eP
such that p =s=yp' (p —M=> p') will be rendered as p =?/=> (p —/—)). In
the sequel it will be wuseful also to be able to talk about the
immediate moves of T when in a particular state and of .the possibility
for a system to perform an infinite number of internal moves without
ever performing a visible action. These and others interesting
properties of transition systems are captured by the following defini-
tions.

Definition 1.2

If T=1(Q, A, -4>, q,) is an LTS and q&Q we have
i. Init(q) =A2aéA‘q=a-:){ r
ii. Traces(q) = JSéA*) q =S=>{ : (=

Definition 1.3

If p is any state of a transition system T then we say

i. p{) (read p converges) if either p 71? or p —>»p' implies p’l}.

ii. pf} (read p diverges) if not pll- o

Definition 1.4

A relation R over a transition system T is image finite if for
each state g of T {q'l qR q'; is finite. 0

The induced transition systems whose binary relation is =s= are
particularly interesting since they allow us to analyse the aspects of
systems which can be inferred by considering only their externally



visible actions. Many of the proposed approaches to systems simulation
or systems reduction are based or can be reduced to ignoring particular
actions or particular sets of actions which for one reason or another
have to be (or <can be) considered internal. In fact all’ the
equivalences we will 'discuss take this possibility into account. For
simplicity reasons we will consider only transition systems such that
~)p-~> is image finite. However note that the induced relation =s3 is
not necessarily image finite. Indeed any divergent state p is such that
]6' | p == p'{ is infinite.

The rest of the paper will be dedicated to define and discuss
various behavioural equivalences over labelled transition systems.

-

- §2. Strings Equivalence

A natural proposal for systems equivalence 1is to consider equi;
valent two systéms which can perform exactly the same sequences of
visible actions /Hoa8l/. In this way we can abstract from the internal
(invisible) actions of a system. ’

Definition 2.1

_ it 1. = (P, A, -p» , p,) and T2 = (Q, A, -, q,) are two
transition systems then we have
Tl ~5T2 iff for all se A* q =s»q if and only if p =s3 p) o S

It is easy to prove that Tlfv3T2 iff Traces(q,) = Traces(p_).

Example

Ty N T3 o
; It can be easily proved that ~4 is an equivalence relation, it is
indeed the equivalence used in automata and formal languages theory
over the years and it is the basis of many semantics for CSP /Hoa8l,
HBR81, OH83/. However when considering systems not running in isola-
tion but exchanging informations or synchronizing with other systems it
is ZImportant to know whether some communications will always take place
or there is the possibility of deadlock. '

If we want to be able to model and distinguish such situations we
have that, despite its simplicity, string equivalence is not a useful
notion. In fact we have that if we try to exchange the‘sequence of
messages "ab" with the system Tl we will be always successfull while




this will not be the case when we consider T or T _, moreover T and T
might exhibit very different reactions as well, in the sense that while
the former after the acceptance of the message "a'" would always accept
the pair of messages 'b,c" the latter might not.

§3. Observational Equivalences

There are various ways to "improve" string equivalence in order
to be able to differentiate transitions systems similar to the ones of
the previous example. The additional feature a new equivalence needs to
have is to be able to take into account not only the sequences of
actions a system may perform but also "some'" of the intermediate states
the system goes through while performing a particular sequence of
actions. In fact differing intermediate states can be exploited in
different contexts to produce different overall behaviours.

The first proposal in this direction has been made by R. Milner.
In /Mil80/ and in previous related works /HM80/, a so called observa-—
tional equivalence is defined for a Calculus of Communicating Systems
{(CCS). Though it has been proposed for a particular class of transition
systems it can be easily extended to the labelled transition systems we
are considering. Observational equivalence ( ® ) is defined as the
intersection of a decreasing sequence of equivalences % (k> 0) where
%, 1s the universal relation and for each k the equivalence xk is

defined in terms of its predecessor Zk 1

Definition 3.1 °

If T =(Q, A, -x>, q,) is a transition system and p, q&Q then
l.p%, q is always true

2. p'xk g iff for all se¢g A*

i. ip'. p =s=y p' implies da'. g =s=y q' and p' zk L q'
‘ ii. 3q'. g =s= q' implies Jp', p =s=> q' and p' %k . q'
3. px q iff for all k30 pxkq ) )

' This relation between states of a particular transition systems
can be easily extended to a relation between transition systems.

Definition 3.2

If T=(PUQ, A, =¥ _ U -p>»_, t,) 1is the transition system
obtained from the union of T = (P, A, —p , p,) and

I, = (Q, A, " o q,) we have that
i. . Tl’\f.\',k T2 if and only if p?,‘(,k q, and

ii. Tl% '1’2 if and only if p 2 q

]




An alternative way of defining observational equi\}alence has been
suggested by D. Park which has been inspired by the homorphisms of
automata theory (e.g. see the notion of weak homorphism in /Ginz68/).
These alternative definition has been used and discussed in /Mil84/.

Definition 3.3

; If T, and T_ are two transition systems as in the previous
definition then we say that T  simulates T2 via R<€ P x Q if
i. (p,, aq,) € R '

ii. (p, @) € R and p =s=> p' implies q =s=>q' and (p!, a') &€ R O

" Definition 3.4

If T, and T _ are as in the previous definition we say T ‘bisimula'—
tes T2 via R (T, w~ T ) if there exists a relation R such that Tl
imulates T ia R and T_  simulates T. via R. )
simulate 5 v n 5 u 1 =

The two alternative ways of characterizing observational equiva-
lence are discussed extensively in /San82/ and /HM83/; in particular
they show that % and bisimulates (2_) do not coincide when considering
infinite systems. Indeed we have T_ T implies T 7~ T_ but not
viceversa. They are the same only for image finite transitions systems..

In the sequel we give some examples of transition systems (re-
presented as trees) which either are both observation equivalent and
bisimilar (the relation R will be evident) or are both neither observa-—
tion equivalent nor bisimilar, we will use %/ and # to express this.

Examples
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The last identification shows that both observation equivalence
and bisimulation have problems in coping with infinite "transition
systems, 1in particular with transition systems with an infinite number
of internal moves, in the sense that they consider equivalent systems
which computationally are very different. We have in fact that a system
which can either compute for ever or perform the action "a'" and then
stop is considered equivalent to a system which can either perform a
silent move and then stop or perform the action "a" and then stop. On
the other hand we have: ' o

Y] il @

Yet it .seems intuitively clesr that there 1is no way to
distinguish this two processes by only.considering the visible actions
they may perform and the way they may react to external experiments. So
it seems that the notion of observetional equivalence may be
discriminating too much from some points of view.

§4. Weak Equivalence

The main reason for ¥ being finer (more discriminating) than one
would like and expect seems to be the recursive nature of its
definition. In some sense in order to decide if two agents are
observationally equivalent one needs to check that they can perform the
same sequences of actions and that the subagents reached after each
sequence still have equivalent behaviour. Some of the resulting
distinctions .are concerned only with the internal structure of
processes and an interesting critique of observational equivalence is
given in /Dar82/. There the author gives an alternative equivalence.
However it applies only to finite terms and there is no obvious
extension to infinite terms. i




A similar critique is put forward by John Kenneway in /Ken81/,
where another equivalence is proposed. Also this eguivalence is based
on recursively proposing external experiments to processes and
comparing their outcomes. In this case the particular kind of allowed
experiments give us a smaller insight into the structure of systems.
The equivalence obtained in this way is very similar to the one propos—
ed by Darondeau /Dar82/ and it is the basis of one induced by the
denotational approach of Hoare, Brookes and Roscoe ./HBR81/ which is
discussed in detail in /DeN83/.

In the present section we will describe and discuss Kennaway's
"weak" equivalence by adapting the definition given for his calculus
(NSCP) to transition systems. Moreover we will show that though defined
- recursively weak equivalence does not exploit the full power of

recursion, in fact we will prove that it is possible to give (and

indeed we give) a non recursive characterization for it.

We start with some definitions based on those of section 1. If A
is the set of visible actions we will let L, M to range over the finite
subsets of A moreover we will let R, P denote sets of states as before.

IfT=(Q, A, -#~», q ) is a transition system, p, g&¢Q and P, ReQ,
L& A, s € A* and a ¢ A then we have: -

Definition 4.1

Jo' |l p=sop'f
U{p after ¢ (peP{

i. p after s

ii. P after ¢

From this definition and from the definition of =s=p 1t is very

easy to derive:s

Proposition 4.2

(P after a) after s = P after as

Definition 4.3

“i. p MUST L if and only if for all p' such that p =3p', there exists
a& L such that p'=a=y.

ii. P MUST L if and only if p MUST L for all pe P.
We can now adapt Kenneway's weak equivalence (/Ken81/ def. 4.4.8,

pg. 93) to labelled transition systems.

-/
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Definition 4.4

If P, R<& Q are subset of states of a transition system T we have

P = R is always true
o
P — 1 R if and only if for all finite L& A
n i. P MUST L iff R MUST L  and
ii. for all ae A. P after a =, R after a
P —R if and only if for all n; 0 P =, R. ‘ f

As for observational equivalence it is easy to extend weak equiva-
lence between two states to transition systems. '

Definition 4.5

If T and T2 are two transition systems with initial states p
and q and T is a transition system obtalned from Tl and T2 as 1n

deflnltlon 3.2 then T = T2 iff p ~ q . CT.
We can give an alternatlve characterisation of - which does not
1nvolve any recurrence. :

Theorem 4.6

P R if and only if for all se A¥, for all finite L€ A
(P after s) MUST L iff (R after s) MUST IL-

Proof

1. (<=
It is enough t& prove that P R implies there exist se¢A*, and L <« A
such that (P after s) MUST L and (R after s) MU,S"I‘ L, or viceversa in P
and R. If P R then.there exists n >/O such that P #n R. We prove the
claim by induction on n. '

a. induction basis.

P R implies there exists some L such that P MUST L and R Mgé_{ L.

It %ollows trivially that (P after € ) MUST L and (R after g ) MU,%/T L, or
viceversa in P and R.

b. inductive step. .

We have P # Q if and only 1f i) P $-1Q or ii) there exists ae& A such
that P after a n Q after a. In case i) the claim follows from the
induction basis. In case ii) we have by the inductive hypothesis that
for some ae¢ A, s&A*

(P after a) after s MUST L and (Q after a) after s MU,éT L, i.e.

(P after as) MUST L and (Q after as) MqﬁT L.

2. (=)

Suppose there exists some sé& A* and some finite L € A such that

(P after s) MUST L and (Q after s) M!}é'l‘ L. We prove by induction on s
7

that P ?1; Q.




a. induction basis, s =§& .
Th‘.va’ F mee P &'%Tw‘ £ = 4 P‘\ P ==y P'{
b. inductive step, s = as'.

Then (P after a) after s' MUST L whereas (Q after a) after s' MUAT L.
By induction P after a % Q after a and so P¢ Q. A

This result allows us to derive two propositions which relate Kenna-
way's equivalence to string equivalence and observational equivalence.

Proposition 4.7
P = q implies Traces(p) = Traces(q).

Proof

Suppose there exists s such that s & Traces(p) and s ¢ Traces(q).
Let a be such that p=sa3> (a exists since -p43 is image finite and A is
infinite). Then (p after s) MU%T{af whereas vacuously
(q after s) MUSThaj, i.e. p$'q.

=t

Proposition 4.8

if p}".z' g then p=—= g - =

Proof

Suppose p % q then by theorem 4.6 there exists s ¢ A* and L & A
such that without loss of generality (p after s) MUST L while ‘
(q after s) MUST L. This implies that q after s /dand either
i. p after s =',¢,or ii. p after s ¢ ¢

In case i. we have that s & Traces(q) and s #Traces(p), i.e. p ?,1' q;
in case 1ii. we have that there exist s, L and q' such that q =s=yq' and
q':;(:} for all a¢ A while p =s= p' implies p'=a=r for some aé A. The
latter implies that for all q' such that g =s=yq' we have p' /Tpl q'. =

A direct implication of this proposition is

Corollary 4.9

If p~q then p= g =

This corollary shows that weak equivalence is at least as coarse
as observational equivalence. The equivalence of next example shows
that it is indeed coarser, in the sense that it identifies more systems.

-12~




Examples

In fact we have that if we let p, denote the initial state of T,
(i =1,2,3,4) then we have Traces(p_) ='%races(p ) and that for every *
s¢ A* the sets of possible moves of T. and T_, after they have performed
s, do coincide; this is sufficient to show that T — T . On the other

~

hand we have (q4 after a) MUST }by while (q3 after é) Myé% %b}, i.e.
T3:t T4.

Corollary 7.9 together with the above examples shows that weak
equivalence abstracts from the internal structure of systems better
then observational equivalence and that it still keeps the ability to
detect potential deadlocks. However the problem of the identification
of systems which perform an infinite number of internal actions with
systems which do not perform any action is left unsolved.

In +the next section we propose a  different approach to
behavioural equivalence explicitely based on the notion of testing by
external observers which takes-care of this problem.

§5. 4 Theory of Testing

The external behaviour of programs or processes, in general of
systems, can be investigated by a series of tests, /Moo56/. For example
with sequential systems we can associate a test with a pair consisting
of a predicate on the input domain and a predicate on the output
domain. It 1is very easy to see how the input-cutput function of a
program can be characterised by a set of such tests. For more general
systems more general kinds of tests are needed. When the processes
involved may be nondeterministic it is important to know not only
whether given a particular test a process responds favourably or
unfavourably to it but also if the process responds consistently all
the times the test is performed. In fact all the approaches to systems
equivalences discussed in the previous sections are based on the
notions of eéxternal observation and presuppose implicitely the
existence of a set of observers, a way of observing and of criteria for
judging the results of an observation.

In general one can think of a set of processes and a set of
relevant tests. Then two processes are equivalent (with respect to this

*—13—




set of tests) if they pass exactly the same set of tests. The rest of
the section is an. attempt at formalising this notion. The equivalence
is based on two preorders on processes. The first is formulated in
terms of the ability to respond positively to a test, the second in
terms of the inability not to responds positively to a test. In the
latter case a process p will be considersd "less than" a process q if
whenever p must respond positively to a particular test, q must also
respond positively. The natural equivalence between processes is obtain-
ed by taking the equivalence associated with the conjunction of these
two preorders (which is a third preorder).

The rest of the section is devoted to setting up a rather general
framework within which we may discuss testing of processes and the
“tabulation of the possible outcomes. It is essentially a resumé of §1
of /DeH83/. There it is also showed how we can cope with partially
specified states. It should be possible to adapt this general setting

to various models of computation. In /DeH83/ we showed how to view cecs

(/Mil80/) as a particular example of the general setting; in the next
section we show how this applies to transition systems.

, We assume a predefined set of states, States, and we let s range
over States. A computation is any non-empty sequence of states. We let
Comp denote the set of computations, ranged over by c. Note that a
computation may be finite or infinite.

Let f?',§§ (ranged over by o, p respectively) be sets of predefined
observers and processes. Observers may be thought of as agents which
perform tests. The effect of observers performing tests on processes
may be formalised by saying that for every o and p there is a non-empty
set of computations Comp(o,p). If ¢ Comp(o,p) then the result of o
testing p may be the cbmputation c. To indicate that a process passes a
test we choose some subset of States, denoted Success, to be successful
states. Then a computation is successful if it contains a successful
state. On the other hand a computation will be called unsuccessful if
it contains no successful state.

We may tabulate the effect of an observer o testing a process p
by noting the types of computations in Comp(o,p).

For every o ¢ 6’, p e@ let R(o,p) EX‘I‘,J_{, (the result set), be
defined by:

i) T & R(o,p) if there exists c ¢ Comp(o,p) such that c is
successful.

ii) L € R(o,p) if there exists c & Comp(o,p) such that ¢ is
unsuccessful ' o

-4 ¢~




Thus in effect we can distinguish between processes which cannot
fail a test (the result set is ;Tf) and processes which may pass a
test (the result set is4T,1t{). This will be elaborated upon shortly. A
natural equivalence between processes immediately suggest itself:

p ~8’q if for every o¢ D", R(o,p) = R(0,q).

However as mentioned above it will be more fruitful to consider
instead preorders, i.e. relations which are transitive and reflexive. A
preorder & generates an equivalence =% in a natural way, X = (E N3 ).
Preorders are more primitive than equivalences and therefore we may use
them to concentrate on more primitive notions which combine to form the

- B
equivalence a, . The preorders are based on:

Definition 5.1

a) p may satisfy o if T ¢ R(o,p) ,
b) p must satisfy o if {T{ = R(o,p) ' D“

Thus p may satisfy o if there is a resulting successful computa-
tion whereas p must satiﬁz o if every resulting computation is success-
ful. ‘

8-
Definition 5.2 a) pEg q if for all 069' p mey satisfy o implies
’ q may satisfy o

b) p :;Z' q if for all 068” p must satisfy o implies
g must satisfy o
o . L a0 o .
f and 1 fpi and . . ,
C)pglql only if pk, q pLy a r o
The following is trivial to estaklish
Proposition 5.3 p«?—q if and only if pfv?q.
e & 5 O )
In /DeH83/ it is shown how ,Cv » s b . arise in a natural way

respectively from the Hoare, Smyth and Egli-Milner Powerdomains,/?ﬂ’oﬁsﬂ\y¥8/.

In the next section we apply this general theory of testing to
transition systems. To do so we need to specify.

@ - a set of processes
6/ — a set of observers
States - a set of states, together with a subset of successful
states.
Comp ~ a method of assigning to every observer 'and process a

non-empty set of computations {sequences of states).

-5



§6. Testing Transitions Systems

§6.1 Testing Equivalences

In this section we show how to view Labelled Transition Systems
as a particular instance of the general setting of the previous section.

Processes will be LTS's over an alphabet A of elementary actions.
The set of all such processes will be denoted by "C and ranged over by
Ty vV, T., T ....
1 2 o

Observers will be LTS's over the alphabet A U l,w}, where
w & A and is the event we will use to "report success'". The set of
observers we will use to experiment on transition sys&cms will be
denoted byf and ranged over by E, El’ EZ... .

States will be pairs «p, e where p is_a state of a process and e
is a state of an experiment. A successful state is a state whose right
component 1is abl° to perform a w-move. Wi Wl eR Sy Yhet o Wole
C\lv{r %-t&: % Ownz &\X x-‘,g—, Twro %WPonml dbes,

Computations: given two transitions systems T, E fromZand Ere—
spectively, with initial states t and e a computation is a sequence
o LompuLal ol
of states such that the initial state is <% , €% and
o)

o

<t , ey =T <1 _, e >1ft—¥—>t ande-=2>e or

n n , n+l n+1 +1 — n+l -
——’71: and e -T-ve .

n+l .

¢t , ev—-as ¢t -, e > ift—a—)t and e -~a-ye .
n n n+1 n+l n n+l - n n+l

Mcreover every computation is maximal, i.e. it is such that if it is
finite (i.e. it contains.a finite sequence of states) with final ele-
ment ¢t , e > than does not exists a pair«t , e > such that

<.tn, en>r1—n~>n<t , € for MeA UATE. We w1fl let Comp (T,E) denote the
set of computations from<t , € >, whan T awd T ove efeny gv-ow‘ the
e{sv\'\'{xT we w2 Sty aQso Cow‘P (1-0 25) .

From the general setting and from the previous instantiations we have

Definition 6.1.1

T may satisfy E if there exists s ¢ A* such that
<t ;€ > =s=p¢t ,eyand e —-w-—p
o) n n n

T must satisfy E 1f‘/g(t ,e ? -Nl-—> Lt ,ey —-H -y ... is a
(fln:.te or infinite) ~computation then there
exists ny 0 such that en-w—> .- O
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After these definitions we can introduce the three preorders on LTS
generated by them and the corresponding equivalence relations.

Definition 6.1.2

‘I‘l %3 T2 if for all Eé€ g T may satisfy E implies T2 may satisfy E

Tl %2 T2 if for all Ee E’ T must satisfy E implies T2 must satisfy E

T & T ifT & T dT L _ T. : '
171 2 * F1R3 ¥ T =

In the sequel we illustrate with a couple of examples the kind of
equivalences 1induced by the previous definitions. 2’-1 and %1 will be

abbreviated as ™~ and L&, .

Examgle

4 v Y v ¥ _
T = o~ = T
' 2

b X L b

a) Suppose Tl may satisfy E. If eo,:w:) then we have T_ may satisfy E;
otherwise Tl may satisfy E implies e0=a=) e'-w-y or eo=b=) e"-w-» , in
both cases we have T_ may satisfy E. A similar analysis will show that
T, may satisfy E impl%es T may satisfy E for all E<¢ s.

b) Suppose ’I‘l must satisfy E. Since both T, and T_ do not diverge we
have that e -w-y "implies T _must satisfy E. If e —-w> we have that

T must satoisfy E implies that for every e sugh that e ==» e_ we must
have that e_=b=y e'_ -w-> and that if el=a=7 e then @" -w-» . It is
easy to see that in this cases T_ must satisfly E. Again a similar
analysis? will show that T2 must satisfy E implies T1 must satisfy E for
all E€ .

Proof

j=
Example

o
Lo

S P



a) T1 may satisfy E implies e0=w$> or eo=a%»e“4m% ; in both cases we
have T_ may satisfy E.

b) Sin%e the initial state of T_ diverges we have that

Tl must satisfy E implies that eo—wé an& so we have T2 must satisfy E.

2. Tl’;j; T,

It is easy to verify that if E is such that its only transitions are
eo~aﬁ e1~w$-then T2 must satisfy E while T  must satisfy E.
ES

a

§6.2 Alternative Characterizations

In the previous section we proposed a general approach to investi-

gate the behaviour of a program or a process. The general situation may’ -

be expressed as follows. Given a set of processes and a set of 'rele-
vant" tests we consider equivalent two process if they pass exactly the
same tests. In the first part of this section we have adapted this
general setting to a particular model of computation: transition sys-
tems, by defining sets of relevant tests and what it means for a system
to pass a test. Tough very intuitive the equivaiences (preorders)
obtained in this way are very difficult to verify. However at least in
the case of transition systems it is possible to give alternative
characterizations of the equivalences (preorders) which are independent

from the notion of experimenter. It ic based on the sequences (finite

or infinite) of actions each system may perform and on the set of
experiments the system must accept. These new characterization allow us
to understand the similarities of testing equivalences with Kennaway's
weak equivalence and to gain insight’ into their discriminating power.
This is the subject of the rest of the section. The various definitions
we give (M9§l’ after, etc.) will be based on the ones of section 1.

Let -T. = (P, A, -y , p ) and T, = (Q, A, %>, qo) be two transition
systems, and pu.be defined as in definition 1.3.

Definition 6.2.1

Given any state p of a transition system T we say
i. pllgif pl)
ii. plas if pll and p =a»p' implies pﬂ}s

As might be expected1Ts denotes the negation ofl}s.

—4&~-
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Definition 6.2.2

Tl %3 if Traces(po) < Traces(q )
Tl 5'2 T2 if for all Sé A*, for all finite L& A, pJ],s implies
l&s and
ii. (po after s) MUST L implies (qo after s) MUST ‘L
T &' T ifTE T andT.T T ‘
1 ~1 2 173 2 1~2 "2 =

Before proving the main characterization theorem we need some lemmas.

Lemma 6.2.3 If T1 %2 T2 then for all s ¢ A* pal[,s implies

i. qc;{{/s
ii. seTraces(qO) implies se Traces(po)

Proof

i. Suppose there exists s = a_... a such that pi!/s and q'ﬂ“s. Then if
we choose E such that its set of states is given by 4 e. | O <ig n?; U
e, e f its initial state 'is e and its transition reiaﬁlon is given
by{e -—T—> e, 878 e i O<1<n{U 4e -T-y e , e SV e }then

Tl must satlsfy E and T2 must ,s/atlsfy E i. e. Tl%Z

ii. Suppose there exists s < - S a such that p»ﬂs, s ¢ Traces(q )
and ‘s qf Traces(p ). Then if we choose E similar to %he one of case 1. :
but such that the transition relation is extended with en-—an—> e_ we :

f
have again Tl must satlsfy E while ’I“2 must ,é'atlsfy E. >

Lemma 6.2.4 If (q after s) MUST L for some finite L & A then

s &€ Traces(q). N E :
Proof Suppose s % Traces(q), then q after s = ﬁ and we have by 5
definition @ MUST L for every finite L < A. - ;

[}

Lemma 6.2.5
If pdys and T &' _ T _ then s ¢ Traces implies s ¢ Iraces ).
o LES T, ¢ (q ) imp é (p
Proof Suppose there exists some s such that s eTraces(q ) pibs and
Traces(po) By the previous lemma (p after s) MUST L %or every
finite L < A. Since q\ﬂ,s by definition of ', ,and moreover from every
state there is a finite number of outgoing arcs we have that
U%Inlt(q )[ q'e q after s{ is finite. Consequently, since A is infinite,
we can find an a such that g -sa) Then (po after s) MUST ‘Sa‘ while
(q0 after s) ME}éT % l», which contraddicts the Tact that Tli: '2 5 o

We are now ready to prove the main characterization theorem.

-48 -



Theorem 6.2.6

T T T 1fandonly1fT1:’ T for i=1,2,3.
1~i 2

Proof Because of the way i and %’l have been defined we need only
to prove the theorem for i = 2,

i = 3:

Le# s = al.... an, ai A and E be such that the set of its states is
given by ),e,\ 0<i'¢ n% U \{q {, the initial state is e, and the
transition relatlon is Le, -a ~ve, \ 0g<i<n { U ;{e ——w—) q ; Then s e
Traces(pc) if and only 1f T :anay sa%lsfy E for any Te ?f The clalm is an
easy corollary of this fact.

i=2:

~a. We prove first that T_L T _ implies Tlf\-;'z T . : :
From lemma 6.2.3 we have that pJ s implies q s for all s & A*. We are
left to prove that for all finite Lec A, for all se¢ A* we have '
(p after s) MUST L implies (q after s) MUST L. Let s be a_.... a ‘and
E be a transition systems whose set of states is given by {e‘\ Og?g nf
U %e , € { with eo as initial state and whose transition Il*elation is
given by{e -~ ew, e -a —) el 1l O0<ice n{ {en—a—)ew \ag L}- U

{e —~W-) e } It is easy fo Check that (po after s) MUST L implies

Tl must satisfy E which in turn implies T2 must satisfy E by
hypothesis. The latter implies (g after s) MUST L since we have either
that s éijaces(qo) or that for all g such that q0=s=} g, g = a = for

some aé& L.

b. Tlg'z T2 implies Tl% T .

Suppose there exist E ¢ ¥ such that T  must satisfy E, we have to prove
that T_ must satisfy E. We will prove that if there exist c¢_,

02 & Comn{(p , e ), with ¢ unsuccessful, then there exists an
unsuccessful ¢ c € Comp(p , € ). We have that c¢_ may be unsuccessful
for a number og" reasons © 2

i. c = £Qq , e7 - P oo —MH 2 (q s € 7, and(qn, e ) -4-» for all
MGA U/,Z?, e—-y{-—) and qJJ, and e {}for all Ogign.

ii. 02 = <qo, eo> ~H P e —ﬁn—)<q » €% —M4~Y .... and qh’{l\or e'ﬂ\ for
some positive h, k £€n and e -y~ or all 0 £i< h or O g£ic¢ Kk

i

respectively. T

iii. 02 is such that for all states, ¢ q , en>, reacheable in a finite
, n
number of steps we have qJJ’ and e w,, en—ﬁ-) and <qn, en> =a=p for
some a€A.

In all these cases we can prove that there exist c_-€ Comp(p , e )
' o o}
which is unsuccessful; this is sufficient to prove the claim.

_20.-




i. We have that there exists s ¢ A* such that <q , eo7 =8=) 44 , € >,
lizs, e\ﬁ/s and (q after s) MUST Inlt(en) e may have either p s,
1n Wthh case 51nce e =s=r there exist an unsuccessful computaglon

0
fromé¢p , € 5, or p\kfs, in which case we have that T ,t;,‘ T implies
that if s ¢ Tr‘aces(q ) than s eTraces(p ) and so that t}eere exist ¢
such that 4,p , e >-sw><p , € >, s:mce T = and after s

o} o}
MUST Init(e ) then (po after s) MUST Imt(en?, and both in ¢. and
02 E goes trough the same sequence of states, we have that Cl is
unsuccessful.

ii. We have that there exists se Traces(qg ) ] Traces(e ) such that qﬂ\s

or e’ﬁs. We have that this and Tl ,L;'? T2 imply p’é)s or e '{)\s; si?lce
o)

) 4 Q
E may go trough the same sequences of states we have that there
exist and unsuccessful computation from <po, eo>.

iii. We have that q*U/ for all states of the computation, i.e. we have
that for any se A* such that <q y € % =s=N <q , € >, q»Xl/s and’ -
either p g\s or <p ’ eo> =S=p < pm,oen> , for some m > 8 With
reasonlng similar to case i. we can prove that there exist an
unsuccessful cl. o

§7. Alternative Forms of Testing

Many of the notions (observer, state, computation) used in §5 to
set up the general framework for testing systems seem very natural and
correspond to precise intuiticns; on the contrary the way of tabulating
the possible oltcomes of observation and especially the way of noting
the types of computations generated by testing a process p with an
observer o, is more debatable. In particular there are various possible
ways of tabulating the effects of testings (observations) which lead to
infinite or divergent computations.

In §5 we-  chose to consider successful a computation with a
diverging state which had gone through a successful state before going
through the diverging one. Thic choice has been vindicated by the
simple alternative characterization of +the equivalences the derived
general framework induces on transition systems. We could have taken an
apparently more natural approach by considering successful only those
computations which never go through divergent states, 1.e. we could
have considered successful a computation only if whenever it cannot
progress any further it 1is able to report a success. The present
section will be dedicated at discussing this alternative choice by
first slightly modifying the general setting of §5 and then applying
this to labelled transition systems as in §6.' In section 5 we had:
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L e R(o,p) if there exists ¢ ¢ Comp(o,p) such that ¢ is unsuccessful

The new approach will imply that given any observer o and any
process p we get a new result set R'(o,p) such that

1l € R'(o,p) if there exists ¢ € Comp(o,p) such that
a. ¢ is unsuccessful
or

b. ¢ is infinite -

T & R'{o,p) if T & R{o,p)

When applied to transition systems this would imply new defini-.
tion for must satisfy and new preorders (must' satisfy, %2, 5 ). Note
that the definition of may satisfy and E are not influenc;c% by the
present changes. If we keep the same notation and conventions of the

previous section we have:

Definition 7.1

T must' satisfy E if if ¢t , eo>=/~tl= tl,e =p = ....=ﬂn.—.?74tn, en> -
is a computation then en—w-> . g

and

Definition 7.2 . i

TlE.Z T2 if for all Ee € 'I‘1 must' satisfy E implies §
¥ . N
. T2 must' satisfy E
T.._ T ifT. L _ T and T & _ T .
1zl "2 1¥2 "2 1~3 2 (o
As for E?-’ also for %, it is possible to give an alternative

char‘acter‘izationl which is independent from the notion of observers and
is based on the set of sequences a process may perform and on the
notion of MUST of section 4. The characterization will allow to under-
'stand precisely the difference between the equivalences obtained by
immersing transitions systems in the two different general settings and
in particular the relationships between E and %2. Given two transition
systems Tl and Tz, if we let D(s, p) = )\a\ agh, p(rsaz‘we have:
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Definition 7.3

T L' T_ if for all sé A*¥ and for all finite L € A,

142 2
¥ LN D'(S’po) = Q’ and p_{s implies
i. agds : !
ii. (p, after s) MUST L ‘implies (q, after s) MUST L 3

As we did in the previous section with E— and Q'i we can prove
— L. i '
that - and ;“_/'2 coincide. As before we need some lemmas.
Y A )

2

;

Lemma 7.4

If T. and T_ are two transition systems with initial state p, and
q, respectively then T L' T_ and e%/s implies ‘
i 1=2 2 °
i. qO\{Ls i
ii. s &Traces(q,) implies s ¢Traces(p,)

]
4
‘%
:
:

-

Proof

To prove i. .suppose there exists a trace s such that pgﬁts and

q, s then we can prove there exists an experiment E such that
T. must satisfy E and T_ must satisfy E. If s = a ... an it will be
enough to have an E such %hat its set of states R is given by
{a,l 021 gn1t U 4qu, q, is its initial state and its transition
relation is given by ,{q'—w—-)q ,» 4.=a_-» q, O« ianU zq -w-> g {. .

.. 1 £ i i i+1 n+1l %‘
To prove ii. suppose there exists s = a é“an such that s ¢ Traces qo)
and s #Traces(po) then the experimenter E egual to E but such tha*ls:
q -w-» would be such that T _ must satisfy E and T_ must sqn,/isfy E .
n+1l 1 2 7

- =

Lemma 7.5 - |

S e st

SREETIIE

IfT.T' T and pg“’s then seTréces(qo) implies s¢ Traces(p )

1= 2 2 .
Proof It follows the same lines of the proof of lemma 6.2.5.. o
Theorem 7.6 .
"T. L T if and enly if T. 2! T .
12 2 ¥ 1%2 2
Proof
. (=)

The proof follows the same pattern of the one for part a. of theorem
6.2.6, with E replaced by E', defined as follows. The set of states of
B is { ei1 0Ogignlu 4éw, ef}, the initial state is e, and the
transition relation is given by 4ei—w—} e , e —-a_ -y ei+l\ 0<i<¢n ’-U
a{en-—aﬁ ewj acg Lg. In fact it is not difgicull.t %o prove that given an s
such that p(;l],s and an L such that L ] D(s, p,) = ﬁ, we have that

(p0 after s) MUST L rom lemma 7.3 we have also pall»s implies q‘;u/s.

@ :MP?:&S T‘i \mwﬁ‘ "aé“:&,gv E' whiel, UO\I \n\”ao‘ﬂ\es:s) pr‘ei{s
Tz, m%‘\". 5J:S¥\f ' ol 'H«-f- QeTer ;\Mio(’:zs (clo uﬂhr s ) WusT L/v
—23~



b. (&=) ' : :

Also this proof follows the same pattern of the one for theorem 6.2.6
(part b.). We have that c¢_ € Comp(q, e,) may be unsuccessful for a
number of reasons; we consider only one of them since the others are
treated exactly in same way as in theorem 6.2.6.

We may have that there exists an s & Traces(qo) N Traces(e ) such that
£Q,, €. =8S=p Ld, €9, qall/s, eo\}},s and ¢q, e» —4—> for all He A U))Z', wf.
Th}'.s implies (qo after s) MUST Init(e). If Init(e) {1 D(s, po) =Q/then
we have also (po after s) MUST Init(e) and this implies there exists -
& & Comp(po, eo) which is unsuccessful: ¢q_ , € y=S=2¢(D, €? ~/,f—} for all
MEATU XZ’, w}. 1f Init(e) {1 D(s, po) # Q’then we would have there exists
P& D, after s such that there exist an a & Init(e) ) Init(p) such that
LP, e,y =sa=p L p', e'> and p'ﬁ i.e. there is an infinite computation
from ¢p,, e, » and so an unsuccessful one. : fas

The alternative characterizations of T,; and% given in defini-
tion 6.2.2 and definition 7.2 should suffice to convince .the reader
that, in case we consider only transition systems which do not contain
divergent states, the two preorders coincide. In the next section we
will state and prove this interrelations formally. Anyway in case the
systems considered have diverging states the two rpreorders are very
different. In particular the preor‘de:r‘r‘;’-2 seems to overestimate the fact
that after periorming a particular action a system may diverge, in fact
it overstimate divergence up‘ to the point to ignore the fact that the
system may perform that action. Some examples will help to understand
this point. )

- ]

Examgle

& b E_ b

&~
]
<

o~

R4 , .

®

In fact we have (T after s) MUST L implies (V after s) MUST L for
all s ¢ A* and for all finite L& A ~ J\ af. These result does not
correspond to any intuitive notion of approximation. T




Examgle

g @

LY

This result can be proved with reasoning similar to the previous ones.
" Anyway also this equivalence does not match intuitions about the beha-
viour of systems. In fact we have that T , after it has accepted an.
a—experiment , will certainly accept the c-experiment while T _ may or
may not accept ¢ depending on which a-experiment it has accepted. Note
that we have TEZ V, since T MUST Jaf while V MUST [af, and T & T,
since ('I‘l after a) MUST }‘c{ while ('I’2 after a) M_QS_T ,{c} In fact we
started with the general setting which generates % s sirlce it seemed
more natural than the general setting which generates & _, but the
difficulties has in handling divergent terms convinced us to study

further only T :

o
Y2
=

2

§8. Comparisons and Discussion

-

The alternative characterizations for% and % and the one for
Kennaway's weak equivalence suggest that there are stzrong similarities
between them. In this section we relate with each other the various
equivalences we have presented by first stressing the similarities
between 3T and E— . ’g/ and = (we prove they coincide if we consider only
strongly convergent transition systems) and then by using previous
results about the relation between weak equivalence and observational
equivalence (% ). We first define formally what we mean by strongly

convergent transition systems.

Definition 8.1

A transition system T = {(Q, A, -H> qo) is strongly convergent
if and only if for all s ¢A¥* g =s=)gq implies_q‘}y a

We may now state the main results, in general their proofs will
trivially follow from results of the previous sections.

/




Proposition 8.2

If T and T are two strongly convergent transition systems then

T T T if and only if T. % T, .
1¥2 "2 ne ondy 1%2 "2

Proof Straightforward from theorem 6.2.6 and theorem 7.6. ' o

Proposition 8.3

If Tl and T2 are two strongly convergent transition systems then

i. T. = T implies T ™~ T
17 2 mpd 172 2
ii. T.~ T implies T ~ T
172 72 171 2

iii. T.~_ T implies TR T .
171 2 171 2
ive T.®2_ T implies T 5? T
171 2 1 2
V. T.¥ T impli T, T
1,2.2 implies ol >

Proof

i. Follows from theorem 6.2.6 and theorem 4.6, the two theorems which
give an alternative characterization of the two equivalences.

ii. From theorem 6.2.6 we have that p, 3 a, if and only if
Traces(p, ) = Traces(q,) and that pls tog  .er with T1 E;z T2
implies Traces(p ) = Traces(q,). This implies that - does not
give any contrlbutlon in the deflnltlon of]: (l—ﬂ 1ffL, and\— )
when ~e consider only strongly convergent tran51tlon systems.

iii. Follows from proposition 8.2.
iv. Follows from reasbnings similar to the cnes for ii.
Vo Like i., v. follows from theorem 6.2.6 and theorem 4.6. fuy

This proposition allow us to conclude that the equivalences
obtained by testing transition systems ( ﬂ]_ L L s 53 and Es ) they all
coincide with Kennaway's weak equivalence when we restrict “ourself to
strongly convergent systems and that the differences between the two
general settings for testing systems shows themselves only in case we
‘have divergent systems. Moreover the last proposition and previous
theorems about the relationships between Milner's observational
equivalences and weak equivalence allow a precise taxonomy of the
equivalences presented up to now, at least for strongly convergent
systems.

s

In the general case we can only prove thai:gé2 is coarser than Eﬁz.
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Proposition 8.4

If T and T_ are two transition systems then
T T implies = T
1~2 "2 TP 1%2 2
Proof Follows from theorem 6.2.6 and theorem 7.6. In fact we have,
(P after s) MUST L implies (Q after s) MUST L for all L€ A  implies
(P after s) MUST L' implies (Q after s) MUST L’

for every L' & A', A' & A. - a

T

This proposition together with the last two examples is indeed
sufficient to shows that ¢ 5 forces more identifications than :52.
. ~

Another equivalence worth mentioning and relating to the others
before concluding our excursus is failure equivalence, introduced in
/HBR81/ and studied at lenght in /Br83/. This equivalence as discussed
in /DeN83/ has difficulties in coping with divergent terms; we will
‘consider only its restriction to strongly convergent terms. The reason -
we have not discussed it previously is that it turns out to be simply a
reformulation of the alternative characterizations of the testing

nd L .

equivalences generated by = a =
~2 ~2

Definition 8.5

If Tl and T2 are two strongly convergent transition systems then
T = T _ if and only if for all s ¢ A*, for all finite LA

1 £f 2
3Dq. q, =s=q and Init(g)NL = o4
if and only if v
- 3p. p, =sPp and Init(p) L = ¢ 0

Theorem 8.8
If T. and T_ are two strongly convergent transitions systems then
T o T i%andon%.yifo T .
1 £ 2 1 2 2
Proof From theorem 6.2.6 and definition 6.2.2 we have that
‘Tle.’z T2 if and only if for all sé&A*, for all finite LEA
(p, after s) MUST L iff (q, after s) MUST L
and from the definition of MUST given in §4 we have:
Tl-?fz T2 if and only if for all se¢ A* for all finite Lc A
Ya. q, =s¥ q, implies Init(q)f) L ¢ }f
if and only if
Yo- p, =s>D, implies Init(p)f) L:{ 9/

The claim follows from simple logical manipulations. a

’

~21-




ACKNOWLEDGMENTS

The author whishes to thank Matthew Hennessy, with whom most of
the ideas presented in the paper were developed, for many detailed
co/'rriments on a first draft. Thanks are due also to Anna Passerotti and
Manuela Mennucci Bernardini for their accurate typing.

28~




References

LNCS n
~Verlag.

/BR83/
/BrR83/

/6ar82/
/DeNg3/
/DeH83/
/Hen82/

/HM80/

/HM83/
/HoaB82/

/HBRS;/

denotes Lecture Notes in Computer Science Volume No. Springer-—

Brookes S.D. A Model for Communicating Sequential Processes,
Ph. D. thesis. University of Oxford, 1983. ’

Brookes $S.D., Rounds W.C. Behavioural Equivalence Relations
induced by Programming Logics, Proc. ICALP '83, LNCS 154, 1983.

Darondeau, Ph. An enlarged definition and complete axiomatiza—
tion of observational congruence of finite processes, LNCS 137,
pp. 47-62, 1982.

De Nicola, R. A Complete Set of Axioms for a Theory of
Communicating Sequential Processes, Proc. FCT '83, LNCS 158,
1983. : .

De Nicola, R. and Hennessy, M. Testing Equivalences for Proces-
ses, Technical Report CSR-123-82, University of Eéinburgh. To
appear 1in Theoretical Computer Science. A Short version in
Proc. ICALP '83, LNCS 154, 1983.

Hennessy, M. Powerdomains and nondeterministic recursive defini-
tions, LNCS 137, pp. 178-193, 1982.

Hennessy, M., Milner, R. On observing Nondeterminism and Concur-
rency, LNCS 85, pp. 299-309, 1980.

Hennessy, M. Milner, R. Algebraic Laws for Nondeterminism and
Concurrency, Technical Report—- CSR-133-83, University of
Edinburgh. To appear in Journal of ACM.

Hoare, C.A.R. A Model for Communicating Sequential Processes.
Technical Monograph Prg-22, Computing Laboratory, University of
Oxford, 1982.

Hoare, C.A.R., Brookes, S.D., and Roscoe, A.D. A Theory of
Communicating Sequential Processes, Technical Monograph Prg-16,
Computing Laboratory, University of Oxford, 1981. To appear in

.Journal of ACM.

- /Kel76/

/Ken81/

/M1180/

Keller, R. Formal Verification of  Parallel Program,
Communication of ACM No. 19, Vol. 7, 1986.

Kennaway, J.K. Formal semantics of nondeterminism and paral-
lelism, Ph.D. thesis, University of Oxford, 1981.

Milner, R. A Calculus of Communicating Systems, LNCS 92, 1980.

_.J/%,-




/Mil84/

/Moo56/

/OH83/

/Pio76/
/Plo81/
/San82/
/$co76/

/Smy78/

Milner, R.™ A Complete Inference System for a Class of Regular
Behaviours, J.C.C.S., Vol. 28, No. 3, 1984.

Moore, E. Gedanken Experiments on Sequential Machines, Automata
Studies, edited by Shannon, C.E. and McCarthy, J., Princeton
University Press, 1956,

Olderog, E.R. and Hoare, C.A.R. Specification-Oriented Seman—
tics for Communicating Processes, Proc. ICALP '83, LNCS 154,
1983. ‘ :

Plotkin, G. A Powerdomain Construction, SIAM J. on Computing,
No. 5, pp. 452-486, 1976.

=

Plotkin, G. A Structural Approach to Operational Semantics,
Lecture Notes Aharus University, DAIMI-FN-19, 1981. . '

Sanderson, M.T. Proof Techniques for CCS, Ph. D. thesis,
University of Edinburgh, CST-19-82, 1982.

Scott, C.S. Data types as lattices. SIAM Journal on Computing,
Vol. 5, No. 3, 19786.

Smyth, M.B. Power Domains, JCCS, Vol. 2, pp. 23-26, 1978.

/Stoy77/ Stoy, J. Denotational Semantics: the Scott-Strachey approach

to Programming Language Theory, MIT Press, 1977.

i
i
¥
{

H
'



