

Guest Editors:

Lorenzo Desideri, Luc de Witte, Rabih Chattat and Evert-Jan Hoogerwerf

Organisers

ALMA MATER STUDIORUM Università di Bologna

TECHNOLOGY AND DISABILITY Volume 31, Supplement 1, 2019

Special Issue: AAATE 2019 Conference – Global Challenges in Assistive Technology: Research, Policy & Practice, 27–30 August 2019, Bologna, Italy Guest Editors: Lorenzo Desideri, Luc de Witte, Rabih Chattat and Evert-Jan Hoogerwerf

CONTENTS

Foreword by AAATE President	S1
Foreword by the Conference Chairs	S3
Committees	S5
Part 1: Special Thematic Sessions	S7
Part 2: Aging	S109
Part 3: Mobility	S125
Part 4: Sport	S133
Part 5: Communication	S137
Part 6: Rehabilitation and Assistive Robotics	S147
Part 7: Education, Learning and Intellectual Disability	S155
Part 8: Service Delivery and Outcome Research	S165
Part 9: Policy	S177
Part 10: Digital Health	S183
Part 11: User Participation	S189
Part 12: Internet of Things	S195
Part 13: (e)Accessibility	S199
Part 14: Platform Speeches	S203
Author Index Volume 31, Supplement 1	S207

Special Thematic Sessions:

- 1. Cognitive Accessibility of Digital Resources
- 2. User Participation in Software Development
- 3. Making STEM Accessible to Disabled People
- 4. Appropriate Wheelchairs a Global Challenge Reflect, Review, Strategize/Revolutionize

5. Eye gaze technology: accessibility, usability and effect on participation and communication for persons with severe disabilities

- 6. Employing MOOCs and OERs in Teaching Digital Accessibility
- 7. Al and Inclusion Exploring the issues as well as the successes

8. Creating a Match: Supporting student participation across the educational continuum with technology

- 9. Good Practices in AT Service Delivery
- 10. Play, Children with Disabilities, and Robotics. State of the Art and New Developments
- 11. Innovative Approaches in Building Inclusive Educational Environments with Technology

12. Developing Assistive Technology Together with End-users, Business, Healthcare and Knowledge Institutes - Challenges and Benefits

13. Challenges and Open Issues in Indoor and Outdoor Accessible Mobility

14. Pathological Speech Processing for Healthcare and Wellbeing

15. Robotics and Virtual Worlds for wheelchair users - from ideas to reality: Innovation, Training, and Roadmap to Market (The ADAPT project)

- 16. AT2030: A New Approach
- 17. Care Robotics in Europe and Asia; A Multicultural Perspective
- 18. Social Robotics for Assistive Technology

working memory while using the natural language interface (NLI).

These techniques mostly stem from state-of-the art research in dialogue interfaces to ontologies that we have expanded and adapted for their use in accessibility. We also demonstrate the integration of techniques that adapt the NLI to the specific needs of blind users, as most current research on NLIs does not focus on accessibility.

Key results: This submission deals with the novel research question of how to enable dialogue-based access to diagrams, and it is the first of its kind we have been able to find in the literature. Heuristic evaluation of our methodology has shown that NLIs are a satisfactory approach to non-visual access to diagrams, their key advantage being the lack of necessary previous training of the users and that it requires no extra software or hardware besides what blind Web users are accustomed to employ for surfing the Web.

Conclusion: Our research shows how natural language interfaces are a promising novel approach to non-visual accessibility of diagrams. We hope that the proposed NLP pipeline will be exploited by other authors fostering future research in accessibility to visually displayed STEM materials.

Keywords: Non-visual diagrams, natural language, accessibility.

*Corresponding author. E-mail: Tomas.Murillo_ Morales@jku.at

Technology Support for Inclusive STEM Laboratories: State-of-the-Art and Open Challenges

Marion Hersh^{a,*} and Barbara Leporini^b ^aBiomedical Engineering, University of Glasgow, Glasgow G12 8LT, Scotland ^bISTI-CNR, Via G. Moruzzi, 1, 56124 – Pisa, Italy

Background: This research is motivated by the importance of science, technology, engineering and mathematics (STEM), including for many careers, understanding increasingly important public debates and policy formulation on issues such as cybersecurity/ privacy management and genetically modified organisms and for personal life e.g. budgeting. STEM accessibility seems to have received less attention than that of other subjects. Particular areas of difficulty/exclusion are laboratories, fieldwork and access to formulae. This presentation will focus on laboratories.

Method: There are three main components:

- 1. A review of the literature.
- 2. An examination of the authors' previous work.
- 3. An evaluation of the issues drawing on the authors' experience as disabled people working in STEM.

Key results: The relatively limited literature dating back to at least the 1980s recognises that disabled students require similar laboratory experiences to other students and that disabled people do not raise particular safety issues despite the use of health and safety considerations as a pretext to exclude them. Both design for all and adaptations for specific individuals and people with particular impairments are required. The former includes an uncluttered layout, wide aisles, good signage, adjustable height tables and seating and commonly used equipment close together. Demonstrators and technicians should have training in working with disabled students and staff and in supporting particular disabled students.Both the increasing capabilities of technology and the role of assistants have been noted. However, technology can support a more independent lab experience. The use of remote computer controlled labs and virtual simulations have been suggested, but should not replace physical lab accessibility. Accessibility of this software can be improved by text labels, keyboard access, personalised settings and auditory feedback, which should have an 'on/off switch'. However, challenges are still available for working remotely and effectively with certain experiments, such as to get back information on what is happening, or on the colour or reaction of particular substances. Talking lab probes were introduced in the 1980s, but not mass produced due to cost. More recently, free script files have been developed to make Vernier lab probes compatible with the JAWS and Window Eyes screenreaders to allow real time access to data by blind and dyslexic people. A handheld computer with screenreader has been developed as a portable data collector. Light microscopes have been made accessible to physically disabled users through a remote viewing web-based application. Mounting a video camera can avoid the need to use the eyepiece. A motorised microscope with an automatic load slider can be used by physically disabled and low vision users. Low-tech adaptations, including easy-grip handles, lower seating and 3D tactile models, could benefit all laboratory users.

Conclusion: Technology has considerable not fully tapped potential in improving lab accessibility. Initial work could focus on:

 Developing a wide range of equipment with speech output and screenreader compatibility.

S20

- Developing precision robot manipulators compatible with a range of equipment which can carry out manual operations and be operated by various assistive devices.
- Using adjustable-height benches and equipment, easy-grip devices, tactile models.

Keywords: STEM, lab accessibility, accessible equipment, low tech adaptations, assistive devices.

*Corresponding author. E-mail: marion.hersh@glasg ow.ac.uk

InftyReader Lite: Converting e-Born PDF into Various Accessible Formats

Katsuhito Yamaguchi^{a,*} and Masakazu Suzuki^b

^aJunior College Funabashi Campus, Nihon University, 7-24-1 Narashinodai, Funabashi, Chiba 274-8501, Japan

^bInstitute of Mathematics for Industry, Kyushu University, 744, Motooka, Nishi-Ku, Fukuoka 819-0395, Japan

Background: One of the most serious problems in digitized STEM (science, technology, engineering and mathematics) contents, which are usually provided in PDF, is their poor accessibility. From the viewpoint of computerized processing to convert PDF into an accessible form, PDF can be classified into two types. "Eborn PDF" is produced originally from an electronic file such as a document in Microsoft Word, LaTeX, Adobe InDesign, etc. (without copy protection). We refer to all the others as "image PDFąőąŕ. The most significant advantage of e-born PDF is that the information on each character/symbol such as its character code, font type, coordinates on a page is embedded in it.

In ICCHP2016, we reported a method to recognize STEM contents in e-born PDF, in which character information extracted directly from a document was combined with analysis technologies of Mathematical OCR (optical character recognition). It was very effective; however, in the inside of mathematical formulas, a font rectangular-area extracted from e-born PDF by a PDF parser often differs significantly from the graphical area of the original character image. Thus, it cannot be used for mathematical-structure analysis as it stands. To correct that, we still had to use OCR engines in our STEM-OCR software, "InftyReader".

Method: We have recently adopted a new powerful PDF parser that also provides us with "vector-image information" for printing characters/symbols. Using

it, we can get the true graphical area of the original character image even in the inside of mathematical formulas. It allows us to develop new software, "InftyReader Lite (IRL)" that does not need any commercial OCR engines for recognizing STEM contents in eborn PDF. Since its recognition process no longer depends on image OCR, accurate conversion into text and mathematical-structure analysis can been done even if characters/symbols have color ornaments or a background image.

Key results: IRL can recognize just e-born PDF; however, IRL can convert it into various accessible formats as same as the standard version of InftyReader. That is, a recognition result can be exported in IML (the original xml in Infty software), La-TeX source, XHTML with MathML, MS Word, Multimedia DAISY ("Digital Accessible Information System": an international standard format for accessible e-books), accessible EPUB3, "ChattyBookaőaŕ, "PDF with TeX", etc. Here, ChattyBook is audio-embedded HTML5 with JavaScript which can be read with a popular browser on various platforms (Internet Explorer, Chrome, Fire Fox, Safari). ChattyBook has the almostsame functionality and operability as DAISY. In Japan, many multimedia-DAISY textbooks are now converted into ChattyBooks, and thousands of print-disabled students (mostly ones with developmental reading disorder) use them. PDF with TeX is a new-type of accessible PDF, in which text information is embedded, in actual reading order, in the background of the original-PDF page image. Mathematical parts are represented in LaTeX, and it is totally accessible for print-disabled people to read STEM contents with a screen reader.

Conclusion: IRL should be a good/low-cost solution for print-disabled people to convert (inaccessible) STEM contents in e-born PDF automatically/easily into various accessible formats.

Keywords: e-born PDF, accessibility, conversion, DAISY, STEM

*Corresponding author. E-mail: eugene@mail.sciacc ess.net

An Investigation into Pedagogical and Opportunity Barriers in STEM Education of Visually-Impaired Nigerians: Why Disabled People Must be Involved Bamidele Chika Agbakuribe

Department of Guidance and Counselling, Faculty of Education, University of Abuja, PMB 117, Abuja, Nigeria.