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Abstract5

COVID-19 pandemic is a global threat to human health and economy that requires urgent6

prevention and monitoring strategies. Several models are under study to control the disease7

spread and infection rate and to detect possible factors that might favour them, with a focus8

on understanding the correlation between the disease and specific geophysical parameters.9

However, the pandemic does not present evident environmental hindrances in the infected10

countries. Nevertheless, a lower rate of infections has been observed in some countries,11

which might be related to particular population and climatic conditions.12

In this paper, infection rate of COVID-19 is modelled globally at a 0.5° resolution,13

using a Maximum Entropy-based Ecological Niche Model that identifies geographical ar-14

eas potentially subject to a high infection rate. The model identifies locations that could15

favour infection rate due to their particular geophysical (surface air temperature, precipi-16

tation, and elevation) and human-related characteristics (CO2 and population density). It17

was trained by facilitating data from Italian provinces that have reported a high infection18

rate and subsequently tested using datasets from World countries’ reports. Based on this19

model, a risk index was calculated to identify the potential World countries and regions20

that have a high risk of disease increment.21
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The distribution outputs foresee a high infection rate in many locations where real-22

world disease outbreaks have occurred, e.g. the Hubei province in China, and reports a23

high risk of disease increment in most World countries which have reported significant24

outbreaks (e.g. Western U.S.A.). Overall, the results suggest that a complex combination25

of the selected parameters might be of integral importance to understand the propagation26

of COVID-19 among human populations, particularly in Europe. The model and the data27

were distributed through Open-science Web services to maximise opportunities for re-28

usability regarding new data and new diseases, and also to enhance the transparency of the29

approach and results.30

Keywords: Ecological Niche Modelling, Coronavirus, SARS-CoV-2, COVID-19,31

Maximum Entropy32

1. Introduction33

The spread of the COVID-19 pandemic, caused by the SARS-CoV-2 virus, is signifi-34

cantly afflicting both society and the global economy, and urgently calls for the develop-35

ment of systems capable of monitoring and predicting the risk of infection. The modelling36

of SARS-CoV-2 spread is being approached with heterogeneous methodologies, ranging37

from pure time series analysis to ecological models using climatic parameters, especially38

temperature and humidity (Giuliani et al., 2020; Nickbakhsh et al., 2020; Sajadi et al.,39

2020; Wang et al., 2020). However, the pandemic seems to be spreading in all World40

cities without evident environmental hindrances. Nevertheless, some countries are experi-41

encing a lower rate of disease cases that might be related to their particular population and42

climatic conditions, but the exact effect of these conditions on infection rate is still unclear43

(Roser et al., 2020). Several approaches have been used to estimate the potential spatial44
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outreach of the virus and the geophysical and climatic data that may foster disease trans-45

mission. Ecological Niche Models (ENMs) have been extensively and effectively used in46

this context (Davison, 2007; Misra and Kalita, 2010; Wahlgren, 2011; Costa and Peterson,47

2012; Zhang et al., 2019). ENMs’ aim is to predict the presence of a particular species in48

a geographical area by correlating species-specific occurrence records in its native habitat49

(presence records) with specific environmental parameters (Elith and Leathwick, 2009).50

The species’ niche can be defined as the space within a hypervolume of numerical vectors51

- corresponding to environmental parameter ranges - which is correlated with the species’52

presence, and that fosters population persistence (Hutchinsonian ecological niche). Accu-53

racy in the identification of this hypervolume can also be enhanced if the species’ absence54

information is included in the model, as either expert-estimated or mathematically simu-55

lated information (Pearson, 2012; Chuine and Beaubien, 2008; Peterson et al., 2011; Coro56

et al., 2015b, 2016). ENMs have heterogeneous approaches and implementations, for ex-57

ample they can explicitly model a species’ environmental preferences and physiological58

limits (mechanistic models), or they can automatically estimate the correlation between59

the parameter vectors and the species’ presence (correlative models). Once the model has60

estimated the species’ ecological niche, it can then project the niche characteristics across61

the native geographical area to reproduce the actual species’ distribution, and subsequently62

extrapolate across another area (even at the global scale) to discover new potential suitable63

places for the species’ persistence. Most ENMs that predict virus’ spread use correla-64

tive approaches implemented as machine-learning or statistical models. These models can65

reach a high prediction accuracy on disease outreach because viruses and pandemics are66

known to be supported by particular geophysical characteristics and, potentially, by eco-67
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logical and socioeconomic changes (Earn et al., 2000; Scheffer, 2009; Morse et al., 2012;68

Carlson et al., 2016; Scheffer and Van Nes, 2018). ENMs have been extensively used to69

discover these characteristics directly, or indirectly by tracing viruses’ principal vectors70

(Linden, 2006; Peterson et al., 2006; Tachiiri et al., 2006; Medley, 2010; Walton et al.,71

2010; Fuller et al., 2013; Valiakos et al., 2014; Zhu and Peterson, 2014; Signorini et al.,72

2014; Samy et al., 2016). In particular, the Maximum Entropy model (MaxEnt) has been73

often used as an ENM due to its flexibility to work with both presence and presence/ab-74

sence data scenarios (Phillips et al., 2004; Elith et al., 2011; Coro et al., 2013, 2015b).75

Also, MaxEnt can estimate the influence of each parameter on the identification of the76

niche, i.e. the most important parameters to understand a virus’ preferred conditions. For77

these reasons, MaxEnt has often been used to trace the ecological niche of a virus based78

on pure geophysical parameters or human-related parameters (e.g. population density and79

urbanised area), and also to understand how climate change might foster the virus’ spread80

(Peristeraki et al., 2006; Miller et al., 2012; Koch et al., 2016; Samy and Peterson, 2016).81

In this paper, MaxEnt is used to estimate a global-scale distribution of SARS-CoV-282

high infection rate, and consequently of potential COVID-19 high spread rate. Differing83

from the other cited works, this model concentrates on infection rate rather than on abso-84

lute spread numbers. Further, the proposed model uses a complex combination of param-85

eters to identify locations that could favour infection due to their particular geophysical-86

and human-related characteristics. As a result, it predicts a high probability of infection87

increase in many actual known infection areas, e.g. the Hubei province in China. The88

presented ENM is trained based on locations in Italy that have reported a high rate of new89

infections. Also, it facilitates geophysical (surface air temperature, precipitation, and ele-90
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vation) and human-related (carbon dioxide and population density) data-vectors associated91

with these locations. The implemented model produces a probability map where higher92

values indicate a correlation with high infection rate; lower non-zero values indicate a93

lower correlation, and zero indicates unsuitable conditions for infection increase. A risk94

index is also calculated out of the produced probability distribution and identifies most95

World countries, with known high COVID-19 spread rate, as high-risk zones. Overall,96

the present work suggests that the involved parameters may play a key role in monitoring97

COVID-19 spread rate. The research question answered by the present work is: Given the98

climatic, geophysical, and human-related parameters that other studies have individually99

correlated with a high COVID-19 infection rate, and that are publicly accessible, can we100

infer their overall weights and predict infection rate with high accuracy?101

This paper is organised in the following way: Section 2 describes the used data and the102

modelling approach and subsequently Section 3 reports performance evaluation metrics,103

model’s parametrisation, and performance at predicting global high-infection-rate zones.104

Section 4 discusses results and conclusions, reporting the possible applications and future105

extensions of the presented model.106

2. Material and Methods107

2.1. Data108

2.1.1. Data Selection Methodology and Data Availability109

The methodology presented in this paper aims to be repeatable, reproducible, and re-110

usable for experiments on COVID-19 and other diseases. For this reason, only data which111

met the principles of findability, accessibility, interoperability, and re-usability were used112
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(FAIR data). Geospatial data accessible through representational standards, published on113

public geospatial services, were preferred in order to maximise their usage in the im-114

plemented model and further experiments. All used data (Table 1) were post-processed115

and transformed into gridded raster files, and were made available through the Zenodo116

open-access repository (Coro, 2020a) and the Unidata Thredds service of the D4Science117

e-Infrastructure (Coro, 2020b) while respecting their primary sources’ citation require-118

ments. The model used an annual data set so as not to be limited to the last winter/spring119

season.120

2.1.2. Training and Test Data121

The Italian Civil Protection Department - the national body that deals with emergency122

events - publishes daily updates on the number of people infected, recovered, and mortali-123

ties from COVID-19 per region and province (Italian Civil Protection Department, 2020).124

Data up to the end of March 2020 (Figure 1-a), i.e. the period of maximum infection125

rate in Italy, were used as a reference to identify locations with high infection rates on126

the basis of the derivative of the values. Among all available COVID-19 global reports,127

Italian data are particularly applicable to train an ENM because (i) Italy has been the first128

European country to be both heavily impacted by the virus and to study the virus, and (ii)129

infections in Italy have been reported on the basis of tens of thousands blanket tests. In130

Italy, a correlation between temperature and humidity increase and COVID-19 spread has131

been assessed (Italian Ministry of Health, 2020; Tuscany Regional Health Agency, 2020;132

Scafetta, 2020), in agreement with studies on other areas (Section 2.1.3). Indeed, despite133

the easing of the lockdown to lower levels and the consequential increase of human in-134

teractions, the disease spread has been decreasing from May 2020 (GEDI, 2020). At the135
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end of April 2020, the Italian Prime Minister presented a plan of progressive lockdown136

level reduction, which also included possible regional restrictions in the case of a localised137

disease rate increase (Italian Government, 2020). However, significant increments were138

not observed and thus special regional restrictions were not applied. To better understand139

this phenomenon, Italy has started national projects to investigate the cause and effect re-140

lationships between the lockdown, environmental factors, and tourism, and to publish data141

and results under FAIR principles (CNR, 2020). Due to this range of considerations, Italy142

presents an optimum scenario to apply the proposed analysis. However, other countries143

are experiencing a high infection rate but have climatic conditions that are very different144

from the European ones. The identification of all these conditions would require more145

significant research and data collection initiatives.146

For the scopes of the presented experiment, Italian locations with a high virus infection147

rate were selected, by first calculating average rates of infected people per province and148

then by studying the distribution of these quantities. A total of 54 provinces was selected149

by applying this approach (the detailed table is available in Coro (2020a)). A Chi-squared150

test confirmed that the distribution of infection rates could be approximated by a log-151

normal distribution. Consequently, provinces with a high infection rate were identified and152

selected as those with infection rates over the geometric mean of the rates. These data were153

used as reference observations of the modelled phenomenon to train an ecological niche154

model. It is worth noting that using average infection rate instead of absolute infection155

counts helps reducing a data bias due to the number of undetected cases of infection in156

Italy.157

John Hopkins University publishes daily updates regarding COVID-19 infections and158
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mortality statistics by collecting reports from the World countries (Dong et al., 2020).159

Data are given at a national scale for most countries, and at a regional scale for other coun-160

tries (e.g. China, U.S.A., and Canada) (Figure 1-b). Unfortunately, reports from different161

countries are poorly comparable between them, given the different countries approaches162

to disease identification and monitoring (Reuters, 2020). Thus, mixing these data with163

Italian province data was not optimal for modelling. Nevertheless, global data were used164

as a reference to test the prediction performance of an aggregated risk index built upon165

the model’s output (Section 2.3). To this aim, the countries/regions with the highest infec-166

tion rates were selected using the same statistical analysis applied to Italian data, which167

resulted in 72 locations (the detailed table is available in Coro (2020a)).168

2.1.3. Input Parameters169

Surface air Temperature and Precipitation170

The NASA Earth Exchange platform hosts long-term daily forecasts between 1950 and171

2100 at a 0.25° resolution for minimum and maximum surface air temperature and pre-172

cipitation at the surface (NASA-NEX, 2020). Forecasts come from 20 weather models173

developed by the Coupled Model Intercomparison Project Phase 5 (CMIP5, 2019). The174

D4Science e-Infrastructure hosts these data sets averaged in time and space, for 2018 and175

at a 0.5° resolution as gridded NetCDF-CF files (Coro and Trumpy, 2020a). In particular,176

data of average surface air temperature and precipitation (Figures 1-c and -d) were used177

due to their correlation with COVID-19 and similar viruses (Casanova et al., 2010; Chan178

et al., 2011; Chaudhuri et al., 2020; Ficetola and Rubolini, 2020; Ma et al., 2020; Oliveiros179

et al., 2020; Qi et al., 2020; Wang et al., 2020; Wu et al., 2020), and their general coupled180

involvement in virus ecological niche models (Patz, 1998; Fuller et al., 2013; Valiakos181
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et al., 2014; Carlson et al., 2016). Additionally, precipitation was also used as a surrogate182

of humidity (Chen et al., 2012; Masunaga, 2012; Baskerville and Cobey, 2017). Italian183

provinces present a high variability of surface air temperature and precipitation. At the184

same elevation, there are temperature differences as high as 7° and precipitation differing185

of more than one order of magnitude. This variability increases the representativeness of186

Italian provinces as a training set.187

Elevation188

The United States National Geophysical Data Center (NGDC) hosts a global dataset of ele-189

vation and depth at a 0.33° resolution (ETOPO2, NOAA (2001)), which includes localised190

correction and integration of satellite, ocean sounding, and land data. Elevation has been191

used in several ecological niche models for viruses (Peterson et al., 2006; Miller et al.,192

2012; Valiakos et al., 2014) and thus was included in this experiment. The D4Science193

e-Infrastructure hosts a FAIR ETOPO2 dataset as a gridded NetCDF-CF file (Coro and194

Trumpy, 2020a,b) down-sampled at a 0.5° resolution (Figure 1-e).195

2.1.4. Human-related Parameters196

Carbon Dioxide197

The Copernicus Atmosphere Monitoring Service hosts a global-scale uniform distribution198

of carbon dioxide (CO2) flux with monthly estimates (CAMS, 2019) deriving from both199

human and natural activity. A FAIR dataset of averaged data from January 1979 to De-200

cember 2013 with a 0.5° spatial resolution is hosted by D4Science (Coro and Trumpy,201

2020a) as a gridded NetCDF-CF file (Figure 1-f). This dataset aims at combining CO2202

values preceding the higher industrialisation rate of the last decades with the natural pres-203

ence of CO2 in the soil. It summarises both natural emission and the evolution of human204
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emission (Coro and Trumpy, 2020b). For the scope of this paper, this dataset was used205

as a surrogate of air pollution and human-related activity, which are generally correlated206

with virus spread and may foster COVID-19 spread (Lam et al., 2016; Ye et al., 2016; Clay207

et al., 2018; Tasci et al., 2018; Godzinski and Suarez Castillo, 2019; Liu et al., 2019; Han208

et al., 2020; ISPRA, 2020; BBC, 2020). Alternative parameters of CO2, correlated with209

air pollution, were also tested but produced more adverse results (Section 3.2).210

Population Density211

Studies on complex systems’ dynamics have highlighted that epidemics happen only be-212

yond a critical threshold of population density that depends on infectivity, recovery, and213

mortality rates (Earn et al., 2000; Scheffer, 2009). The Center for International Earth Sci-214

ence Information Network openly publishes up-to-date population density data as gridded215

datasets with resolutions ranging from 30” to 1° (Warszawski et al., 2017). For the scopes216

of this paper, the Gridded Population of the World dataset - Version 4, was used at a 0.5°217

resolution (Figure 1-g) to include population density factors that could be correlated with218

infection rate.219

2.2. Modelling220

The experiment presented required training of MaxEnt models with several alterna-221

tive parametrisations in order to identify the model with the highest performance and the222

best combination of parameters (Section 2.3). To this aim, the gCube DataMiner cloud223

computing platform was used. This is an open-source system that is able to process big224

data and offers over 400 free-to-use processes as-a-service from multiple domains (Coro225

et al., 2015a; Assante et al., 2019). This platform maximises the re-usability of processes226

through a standard Web Processing Service (WPS) interface (Coro et al., 2017). Further,227
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DataMiner parallelises the training of models on a network of 100 machines while choos-228

ing the best computational configuration among a range of powerful multi-core virtual229

machines (Ubuntu 14.04.5 LTS x86 64 with 16 virtual CPUs, 16 GB of random access230

memory and 100 GB of storage capacity). Additionally, the system stores all trained231

models and their respective parametrisations under the standard and exportable Prov-O232

ontological format (Lebo et al., 2013). This representation allows to recover the complete233

set of input/output data and metadata which enable any other authorised user to reproduce234

and repeat an experiment (provenance of the computation). The Open Science concepts of235

re-usability of processes, and of reproducibility and repeatability of the experiments, allow236

the implementation of a methodology that can, in principle, be extended to analyse other237

diseases (Section 4). To this aim, DataMiner hosts a MaxEnt model as-a-service (CNR,238

2019; Phillips et al., 2019), which can work on textual input files (CSVs) - that include239

pairs of coordinates related to a certain phenomenon - and FAIR input geospatial data.240

The WPS interface allows (i) inclusion of this service in complex workflows through a241

wide range of workflow management systems which support this standard (Berthold et al.,242

2009; QGis, 2011; Wolstencroft et al., 2013), and (ii) re-use of the service across multiple243

domains (Coro et al., 2013, 2015b, 2018; Coro and Trumpy, 2020b).244

2.2.1. Model Description245

MaxEnt is a machine learning model commonly used in ecological niche modelling246

(Phillips et al., 2004, 2006; Phillips and Dudik, 2008; Baldwin, 2009; Coro et al., 2015b,247

2018). It simulates a probability density function π(x̄) defined on real-valued vectors248

of parameters x̄ taken at locations where a species occurs in its native habitat (Pearson,249

2012; Coro et al., 2018). The advantage of MaxEnt with respect to other models is that250
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it can learn from positive examples only. Thus, it does not necessarily need absence data,251

which are instead automatically estimated. Considering the high-infection-rate of Italian252

provinces as species occurrences, the parameters associated with these areas were treated253

as a positive example of input vectors to train the model. One drawback of MaxEnt, is that254

its prediction performance is very sensitive to data quality (Elith and Leathwick, 2009),255

an additional consideration for using only Italian data and not combining data from other256

countries (Reuters, 2020).257

The MaxEnt training algorithm adjusts the model’s internal variables so that (i) the258

simulated density function π(x̄) is compliant with pre-calculated mean values at training-259

set locations and (ii) the entropy of the density function H = −∑π(x̄) ln(π(x̄)) is max-260

imum for these locations (Elith et al., 2011). MaxEnt maximises the entropy function for261

training locations divided by the entropy values of the parameters of random points taken262

in the training-set area (background points, Phillips et al. (2006)). The model involves a263

linear combination of the input parameters, whose coefficients reproduce the influence of264

each variable on the prediction of the training set locations (percent contribution). Fur-265

ther, the model estimates the dependency of the performance on the permutation of each266

parameter in the training vectors (permutation importance).267

In this experiment, MaxEnt uses the data vectors x̄ of Italian high-infection-rate provinces268

(and of background points in Italy) to estimate the probability density π(x̄) = P (high −269

infection − rate∣x̄) that a location would foster a high infection rate. To this aim, the270

model estimates the ratio between the probability density f(x̄) of the vectors across Italy271

and the probability density in the high-infection-rate locations f1(x̄). The Bayes’ rule272
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defines the relation between P (high − infection − rate∣x̄), f(x̄), and f1(x̄):273

P (high − infection − rate∣x̄) = f1(x̄)P (high − infection − rate)
f(x̄)

with P (high − infection − rate) being the prior distribution of high-infection-rate zones274

in Italy (prevalence), fixed to 0.5 by default (i.e. no prior assumption is given). MaxEnt275

hypothesises that the optimal f1(x̄) distribution is the closest distribution to f(x̄), because276

without any training-set location there would be no expectation about certain conditions277

over the others (i.e. f(x̄) is a null model for f1(x̄)). Also, the model constraints f1(x̄) to278

reflect the observations on the training set, i.e. f1(x̄) should estimate high probability on279

parameters’ values close to the parameters’ means over the training set. The model uses280

Kullback-Leibler divergence (relative entropy) to measure the distance between the two281

functions:282

d(f1(x̄), f(x̄)) =∑
x̄

f1(x̄)log2 (
f1(x̄)
f(x̄)

)

The aim of the training algorithm is to minimise this distance under the above constraints,283

which in turn maximises the entropy of the target probability density. It can be demon-284

strated that this characterization uniquely determines f1(x̄) as belonging to the following285

family of Gibbs distributions (Phillips et al., 2006):286

f1(x̄) = f(x̄)e
η(x̄)

with η(x̄) = α+β h(x̄); α being a normalization constant that makes f1(x̄) sum to 1; h be-287

ing an optional transformation of the vectors x̄ that possibly models complex relationships288
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between parameters; β being the vector of coefficients that reports the percent contribu-289

tion of each parameter. Thus, the ratio f1(x̄)/f(x̄) is equal to e
η(x̄) , i.e. MaxEnt needs290

to solve a log-linear model based on the background and training vectors to estimate the291

α and β parameters, which can be implemented through a penalised maximum likelihood292

algorithm (Phillips and Dudík, 2008).293

After the training phase, the parameters’ percent contribution can be used to select the294

most influential parameters for the model. This potentially allows to use MaxEnt as a filter295

to select those parameters carrying the highest quantity of information (Coro et al., 2015b,296

2013, 2018). A MaxEnt model trained on 0.5° resolution parameters can be reasonably297

used to produce probability distributions at the same resolution. Given the semantics of298

the selected training locations, the model produced a distribution function that could be299

interpreted as a global-scale probability distribution for SARS-CoV-2 high infection rate.300

2.3. Evaluation Metrics301

The model training phase estimates the average Area Under the Curve (AUC), i.e.302

the integral of the Receiver Operating Characteristic (ROC) curve that plots sensitivity303

( True Positives
True Positives+False Negatives ) against 1-specificity (1− True Negatives

True Negative+False Positives ). AUC val-304

ues closer to 1 indicate high classification performance of training sites. Reference cut-off305

thresholds on π were also calculated during the training phase (Phillips et al., 2019) and306

represent (i) the value balancing omission rate ( False Negatives
True Positives+False Negatives ) and sensitiv-307

ity (balanced threshold), (ii) the value at which sensitivity and specificity are equal, and308

(iii) the minimum threshold at which all training locations are correctly classified as high-309

infection-rate areas.310

In order to numerically estimate the prediction performance of the trained model, a risk311
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index was also calculated, defined as the normalised density of non-zero MaxEnt proba-312

bility locations (McGeoch et al., 2006; Coro et al., 2018) for all countries/regions reported313

in the global dataset of infection rates (Section 2.1). High-risk zones were identified as314

those with a risk index higher than the geometric mean of the risk values. Accuracy on315

the correct identification of high-infection-rate countries/regions as high-risk zones was316

calculated as n. of high−infection−rate areas identified
overall n. of high−infection−rate areas . Moreover, agreement between high-risk317

zones’ classification and high-infection-rate country/region reports was calculated using318

Cohen’s Kappa (Cohen et al., 1960). This statistical coefficient estimates the agreement319

between the two classifications with respect to purely random classifications (agreement320

by chance). An overall interpretation of this value was assigned using Fleiss’ tables (Fleiss,321

1971).322

3. Results323

3.1. Global-scale distribution and Performance324

The MaxEnt model was trained using different combinations of parameters associated325

with Italian locations reporting a high rate of infections up to the end of March 2020 (Sec-326

tion 2.1). Training the model on all parameters produced the highest AUC and optimal327

estimates for the three model’s thresholds (Table 2-a). When the model was trained with328

any other parameter subset, AUC resulted lower. This property indicates that all parame-329

ters bring useful information to estimate training set locations correctly. Nevertheless, the330

percent contribution and permutation importance of carbon dioxide, surface air tempera-331

ture, and precipitation are much higher than the ones of elevation and population density332

(Table 3). The model using all parameters also indicates a correlation with high infec-333
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tion rate for particular parameter ranges (i.e. the boundaries of the niche hypervolume):334

CO2 has the highest correlation around 0.03 (0.01;0.08) g C m−2 day−1 (moderate-high),335

air temperature around 11.8 (8.0;16.0) °C (moderate-low), and precipitation around 0.3336

(0.2;0.45) 10−4 kg m−2 s−1 (moderate).337

The model was projected at the global scale to produce a global infection-rate probabil-338

ity distribution at a 0.5° resolution (Figure 2). For each cell, this map reports the probabil-339

ity that the cell has suitable conditions for infection increase. Locations with a value higher340

than the balanced threshold (π(x̄) ≥ 0.4) can be classified as high-infection-rate locations,341

whereas the other two thresholds indicate medium infection-rate (0.1 ≤ π(x̄) < 0.4) and342

low infection-rate (0.008 ≤ π(x̄) < 0.1) locations. Zero probability locations indicate343

unsuitable areas for an infection rate increase.344

As a qualitative evaluation, it can be observed that the model correctly and precisely345

identifies the locations of real World high infection rates, e.g. the Hubei Chinese region,346

Western United States, and most of Europe. Instead, wrongly classified places are, for347

example, Peru and Brazil, that have parameter ranges out of the niche hypervolume. The348

identification of the climatic/geophysical parameters fostering infection rate increase in349

these countries would require further research, based on a more extensive and globally350

shared data collection (Section 3.3).351

In order to quantify the prediction accuracy of the map, the risk index was used to select352

high-risk zones and compare them with global reports of high infection rates (Figure 3 and353

Table 2-b). Accuracy at predicting high-infection-rate countries/region reached 77.25%,354

and the overall agreement (0.46) was good according to Fleiss’ classification. This result355

indicates that most countries/regions are correctly and non-randomly classified, and thus356
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the model has extracted a correct characterisation of the actual risk of infection increase357

based on the considered parameters.358

3.2. The weight of the CO2 parameter359

The high correlation of CO2 with high infection rate requires a further investiga-360

tion, starting from the correlation between air pollution and COVID-19 spread (Section361

2.1.4). The Copernicus Atmosphere Monitoring Service provides FAIR data correlated362

with greenhouse gas concentration and fluxes, i.e. methane (CH4), nitrous oxide (N2O),363

and CO2 (CAMS, 2020). The CH4 and N2O influence on prediction performance was364

evaluated by substituting these parameters to CO2 in the all-parameter model (individual365

models), and then by using them together with CO2 (mixed model). The aggregated data366

used for this analysis were published as FAIR data on Zenodo (Coro, 2020a). Execut-367

ing the MaxEnt individual models revealed that CH4 and N2O have a much lower per-368

cent contribution (∼52% for both models) to infection rate prediction than CO2 (87.2%).369

Furthermore, their individual models reported a lower AUC (0.90 v.s. 0.994 of the CO2370

model). However, in these models, CH4 and N2O were always the parameters having the371

highest percent contribution to infection rate prediction. This property indicates that the372

parameters correlated with greenhouse gases concentration are of high importance for pre-373

diction accuracy, which confirms the correlation between air pollution and infection rate374

highlighted by other studies (Section 2.1.4). The mixed model further confirmed this re-375

sult because it gained the same performance as the CO2 individual model to predict high376

risk zones (77.25%). However, the mixed model reported a much higher percent contri-377

bution of CO2 (85.9%) than of CH4 (0.4%) and N2O (0.4%). This result indicates that378

CH4 and N2O are not adding a substantially more predictive information than CO2. Over-379
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all, this analysis indicates that CO2 is the correct choice to represent air pollution in the380

experiment.381

3.3. Training and input data completeness382

In order to evaluate if Italian provinces were a sufficient representative training set383

for the reported experiment, the all-parameter MaxEnt model was executed by incremen-384

tally adding more World areas to the training set. First, the geographical areas of large385

cities correctly predicted by the original model were added, i.e. Madrid, London, Istan-386

bul, Buenos Aires. This operation did not change the model’s risk prediction performance387

(77.25%), which indicates that Italian provinces are strong representation of the correctly388

detected World cities. As an additional step, World city areas that were wrongly predicted389

by the original model were incrementally introduced, i.e. São Paulo, Lima, Santiago de390

Chile, Guayaquil. This process produced a continuously decreasing AUC, also if CH4 and391

N2O were used instead of CO2. When involving these World cities, one major effect on392

the parameter ranges was a change in the upper confidence limit, which increased for tem-393

perature (from 16.0 to 18.8 °C) and precipitation (from 0.45 to 0.6 10−4 kg m−2 s−1) and394

the decreased for CO2 (from 0.08 to 0.05 g C m−2 day−1). The decreasing AUC, indicates395

that these ranges are not able to make the model cover all the areas of the training set. This396

result indicates that the used input parameters are insufficient to understand the infection397

rate increase in these areas, independent of the use of Italian provinces as the training set.398

4. Discussion and Conclusions399

This paper has presented a methodology to estimate a geographical probability distri-400

bution of high infection rate for SARS-CoV-2, based on geophysical and human-related401
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parameters. A risk index has been proposed based on this probability distribution, to402

identify global countries and regions that would mostly favour a high infection rate. A403

good concurrence with country-reported data and a moderate-high accuracy at predict-404

ing high-infection-rate countries/regions indicates that the model was able to identify real405

conditions of increased infection rate in many World areas. Generally, the model indi-406

cates a high infection rate in areas characterised by an annual moderate-high level of CO2,407

moderate-low temperatures, and moderate precipitation. The most notable result is that,408

although the model was trained only with Italian cities, it assigns a high-infection-rate409

probability and a high-risk classification to most real World scenarios where a high in-410

fection rate has been actually reported. Also, the results indicate that climatic parameters411

such as air temperature and precipitation (or air humidity) play a critical role at defin-412

ing locations that may be subject to a high infection rate. The model also indicates a413

temperature range which other studies have also correlated with the spread of COVID-19414

(Sajadi et al., 2020). Additionally, estimated high-rates in moderate-precipitation regions415

might be related to reduced transmission in high-humidity zones (Wang et al., 2020). Car-416

bon dioxide is the most influential parameter, which is correlated directly with pollution417

(which concurs with COVID-19 spread, Han et al. (2020)) and indirectly with population418

density. Correlation with population density could be one reason for the lower influence419

of this parameter on prediction performance. However, the fact that all parameters are420

necessary to achieve the optimal model performance indicates that they all contain com-421

plementary information. Thus, population density is not entirely covered by CO2. Indeed,422

it affirms the complex system dynamics theory that if a population is vulnerable to a virus423

and its density exceeds a threshold, an epidemic will occur (Scheffer, 2009). In the case of424
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SARS-CoV-2, the presented results indicate a likely scenario where, after this threshold,425

population density does not influence infection rate anymore. This observation is valid in426

Italy, where provinces with population densities distant of almost two orders of magnitude427

have reported similar infection rates for a long period (e.g. Lucca and Naples). As for428

elevation, the model indicates that this is not a discriminant feature, as also demonstrated429

by the variability in the altitudes of high-infection-rate Italian provinces. However, eleva-430

tion brings some information to the model - probably related to drier weather conditions -431

because without this parameter the model’s AUC decreases.432

Currently, the complete set of parameters correlated with COVID-19 infection rate433

increase remains unknown. The reported results indicate that the used parameters are434

sufficient to predict the situation in Europe and in many World countries, however there are435

additional unknown factors to be investigated in the misidentified countries (e.g. Brazil,436

Ecuador, and Peru). The identification of all these factors is a broader question that goes437

beyond this paper and would require on-the-field data collection and a global-scale effort,438

also to make data available under FAIR principles.439

The proposed Open Science-oriented methodology is quickly reusable on new infec-440

tions and epidemics, for example, to predict the risk that a particular country will be subject441

to a high rate of cases of a new infection. Also, the results may be the basis of other mod-442

els that may refine the resolution of the presented model and revise the parameters used.443

One fundamental step is to collect and prepare FAIR data correlated to infection rate as444

open-access standardised geospatial datasets. The D4Science e-Infrastructure can be used445

freely and openly to this aim. Moreover, the Maximum Entropy process was published as446

a free-to-use service (CNR, 2019) intended for global health-care systems and epidemic447
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prevention organizations, and for possibly contributing to COVID-19 spread control.448

Overall, the presented results clearly indicate and identify that the influence of geo-449

physical, climatic, and human-related parameters on COVID-19 infection rate should be450

further investigated. As a future extension, the model will be enhanced by increasing the451

projection resolution to 0.1° on specific areas to produce regional-scale distributions. The452

corresponding cloud computing service will be used to (i) explore a more extensive set of453

parameters taken from open-access repositories, (ii) understand the importance of climatic454

factors with respect to human-related factors in COVID-19 infection rate, and (iii) detect455

seasonal trends.456
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Data Primary Source

Infection per Italian Province Italian Civil Protection Department

World Infections John Hopkins University

Surface Air Temperature NASA Earth Exchange Platform

Precipitation NASA Earth Exchange Platform

Elevation United Stated National Geophysical Data Center

Carbon Dioxide Copernicus Atmosphere Monitoring Service

World Population Density Center for International Earth Science Information Network

Table 1: Summary of all used data along with their primary sources. Details about how these data were
accessed and post-processed are given in the article.
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Model Performance - a

AUC 0.994

Balanced omission-

sensitivity threshold

0.4

Equal training sensi-

tivity and specificity

threshold

0.1

Minimum training

presence threshold

0.008

Risk Index Performance - b

Accuracy 77.25%

Kappa 0.46

Kappa Interpretation Good

Table 2: Report of (a) the performance and optimal thresholds of the trained MaxEnt model, and (b) the
performance of the risk index on the identification of global high-infection-rate countries/regions.
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Parameter name Percent

contribution

Permutation

importance (%)

Carbon Dioxide 87.2 52.8

Surface Air Temperature 7.6 40

Precipitation 5.3 6.9

Elevation 0.01 0.01

Population Density 0.01 0.2

Table 3: Percent contribution and permutation importance of the parameters involved in the presented ex-
periment, as estimated by the optimal Maximum Entropy model.
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Figure 1: Visual comparison of the global-scale data used in the presented model: (a) number of infections
in Italian provinces (31 March 2020), (b) global infections (31 March 2020), (c) surface air temperature, (d)
precipitation, (e) elevation, (f) carbon dioxide, (g) World population.
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