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A B S T R A C T

The advancements in peer-to-peer wireless power transfer (P2P-WPT) have empowered the portable and mobile
devices to wirelessly replenish their battery by directly interacting with other nearby devices. The existing
works unrealistically assume the users to exchange energy with any of the users and at every such opportunity.
However, due to the users’ mobility, the inter-node meetings in such opportunistic mobile networks vary, and
P2P energy exchange in such scenarios remains uncertain. Additionally, the social interests and interactions
of the users influence their mobility as well as the energy exchange between them. The existing P2P-WPT
methods did not consider the joint problem for energy exchange due to user’s inevitable mobility, and the
influence of sociality on the latter. As a result of computing with imprecise information, the energy balance
achieved by these works at a slower rate as well as impaired by energy loss for the crowd. Motivated by
this problem scenario, in this work, we present a wireless crowd charging method, namely MoSaBa, which
leverages mobility prediction and social information for improved energy balancing. MoSaBa incorporates two
dimensions of social information, namely social context and social relationships, as additional features for
predicting contact opportunities. In this method, we explore the different pairs of peers such that the energy
balancing is achieved at a faster rate as well as the energy balance quality improves in terms of maintaining low
energy loss for the crowd. We justify the peer selection method in MoSaBa by detailed performance evaluation.
Compared to the existing state-of-the-art, the proposed method achieves better performance trade-offs between
energy-efficiency, energy balance quality and convergence time.
1. Introduction

Energy of any mobile device is the most important resource for
ensuring its continued functionality. With the increased introduction of
applications as well as growing engagement and dependence of users
towards their mobile phones, the already ‘limited’ energy resource of
the mobile and portable devices is becoming more precious and vital. In
this regard, the recent advancements in wireless power transfer (WPT)
technologies have empowered the portable and mobile devices to be
independent of the wired chargers, and instead use the wireless charg-
ing techniques for replenishing their batteries for seamless execution of
running applications [1,2]. For example, devices which enable wireless
charging process for these mobile devices are wireless charging pads
and mobile charging vehicles [3,4]. In the near future, we can expect
that the specific advancements in peer-to-peer (P2P) WPT methods will
allow any mobile device to replenish its battery by directly interacting
and exchanging energy wirelessly from the nearby mobile devices.
In this regard, the use of P2P-WPT-based mobile charging techniques
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provide increased flexibility for the mobile and portable devices to con-
tinue exchanging energy while maintaining their mobility. Specifically,
in constrained environments, where external chargers might not be
available, the P2P-WPT techniques can provide the only practical and
effective solution.

With the rapid developments in WPT standards (e.g. Qi [5]), the
leading smart-phone manufacturers have incorporated wireless charg-
ing standards in their mobile portable devices [6]. The wireless charg-
ing market is also experiencing growth in a rapid pace of 23.15%
with an estimated total market of 7.43 Billion [7]. Consequently, the
adoption of P2P-WPT techniques for various new applications also
emerged. Two such applications are wireless powered communication
networks and crowd charging. In the first type, the deployed nodes
focus on harvesting energy from a hybrid access point and use it to
transmit their information [8,9]. Whereas, in crowd charging, any node
of the network can engage in energy exchange with any other node
vailable online 27 April 2022
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without the presence of any access point. Therefore, the energy ex-
change in crowd charging is distributed and multiple pairs can engage
simultaneously. Typically, in P2P-WPT techniques deployed for such
crowd charging applications, an important aspect is to achieve the
state of ‘energy balancing’ over the whole network such that all the
nodes reach an equal energy level. Energy balancing of any network
helps in replenishing the battery levels of nodes that have drained
their energy, and thereby, helps in enhancing the functional lifetime
of the network. However, such networks also face the problem of
uncertain and opportunistic meetings between the nodes due to their
mobility. Due to such uncertainty, the inter-meeting duration between
the nodes varies, and the energy exchange between the nodes in such
cases remain impaired by the varying energy loss (energy losses are
inevitable in each WPT interaction, due to the wireless attenuation).
Subsequently, the resulting network may have the crowd with un-
balanced energy levels and high value of energy variation distance
across devices. Therefore, in such cases, to ensure the quality of energy
balancing, it is equally important to consider both the amount of energy
to be exchanged and the available duration of exchange.

In the existing literature, the P2P-WPT techniques assume nodes to
exchange energy at every available opportunity [10] with other nodes.
Furthermore, few techniques also unrealistically consider all the nodes
to be available for energy exchange with all other nodes [11]. The
energy exchange duration in such techniques are also not bounded by
the inter-meeting duration between the corresponding users [12]. In
reality, any node can meet only a fraction of the crowd over the course
of movement. As a result, the nodes cannot have knowledge about all
the other nodes, rather only partial information about the rest of the
nodes. Therefore, the selection of peers using distributed knowledge
may result in high and varying energy loss as well as low average
network energy. In this regard, a centralized peer selection method
with knowledge on users’ mobility will have advantages due to the
availability of information on different pairs of peers and their potential
energy loss.

In addition to above challenges, the energy balancing techniques
in crowd charging also depend on the social interactions and the
interests of the users, which influences the mobility of the users [13]
as well as the energy sharing between them. The existing P2P-WPT
techniques only consider social interactions between groups of users
or between individual users [14,15]. However, they did not consider
the joint problem for energy exchange due to user’s inevitable mobility
and social influences. Therefore, the energy balancing process in these
techniques did not exploit all the opportunities between different pairs
of nodes. With a centralized knowledge-based peer selection method
having the information about the social interests and interactions of the
users, the crowd can intelligently explore the pairs of peers to achieve
faster energy balance with lower energy loss and higher energy in the
network.

1.1. Contributions

In this paper, we present a mobility and social-aware energy
balancing method, named 𝑀𝑜𝑆𝑎𝐵𝑎, which applies centralized
nowledge-based peer selection algorithm in P2P-WPT. The objective
f the proposed method is to maximize the number of nodes which
eaches energy balancing while reducing the energy loss and variation
istance. To achieve these objectives, 𝑀𝑜𝑆𝑎𝐵𝑎 first collects the mo-

bility information of the nodes as well as the social information. We
explore two distinct dimensions of social information—social context
and contacts (or, relations) information. Thereafter, an 𝑂(𝑘) Markov
predictor is applied to predict the future mobility information. Next, in
two incremental steps, the peers are selected based on the information
on social context and contacts such that the energy loss and variation
distance among the crowd is minimized. For social contexts, we incor-
porate the location-based interests in this model. Whereas, for social
contacts, the self-reported social contacts are identified. In summary,
the contributions made in this paper are as follows,
2

• We explore best matching of pairs of peers considering their mo-
bility and social information such that the total network energy
after energy balancing is maximized.

• We leverage the maximum contact among each pair of peers such
that the energy loss during the exchange is minimized.

• The energy balancing quality for the crowd is maximized consid-
ering their mobility and social information.

• In MoSaBa, we incorporate social information as an additional
feature for predicting contact opportunities. The two dimensions
of social information, namely social context and social relation-
ships, are included incrementally in our work.

In our previous work [16], we have addressed the problem of
mobility-aware energy balancing for P2P-WPT. In this work, we extend
our previous work with scope of exploiting user’s interests and social
contacts for enhanced peer selection in P2P-WPT. Specifically, our ex-
tended work studies the joint problem for energy exchange due to user
movement with their social interests as well as interactions between
the users and their social friends. Consequently, using the centralized
knowledge-based algorithm, we explore further opportunities in peer
selection for P2P-WPT with the specified objectives to enhance the
energy balance quality.

The rest of the paper is organized as follows. Section 2 summarizes
the related literature in the domain of P2P-WPT. Next, in Section 3,
we describe the network model and key concepts of the proposed
method with an example scenario highlighting the main concepts of the
method. The proposed mobility and social-aware wireless energy bal-
ancing method is presented in Section 4. We explain the performance
evaluation scenario and highlight the incremental benefits of the social-
related components of the proposed method in Section 5. Subsequently,
in Section 6, we discuss the state-of-the-art benchmarks and results of
the proposed method in comparison to them. Finally, we conclude the
paper in Section 7, pointing directions for future research.

2. Related works

The state-of-the-art on P2P-WPT can be classified into three differ-
ent categories based on their objectives and working methodology. In
the following, we discuss works from each category and highlight the
value proposition of our proposed work compared to these.

In the first category, we discuss the works which focus on balancing
the available crowd energy while maintaining low energy loss. [17,10]
considered scenarios with both loss-less and lossy WPT, and computed
the upper bound of the time required for the energy balancing of the
whole crowd in both the scenarios. Although, the loss-less P2P-WPT is
not realistically possible, this study provides a theoretical foundation
for analyzing P2P-WPT performance of a distributed crowd. The au-
thors device three different P2P-WPT methods for loss-less and lossy
scenarios targeting different objectives such as minimizing energy loss,
minimizing time to reach energy balance, and knowledge about other
nodes’ energy status. In another work [18], Michizu et al. proposed
a method for balancing the energy of the crowd while minimizing
the energy loss in the WPT process. In contrast to the works in this
category, in our work, we present a fine-grained realistic P2P-WPT
among the users, as well as, we leverage the mobility information of
the users to improve the peer selection during WPT.

In the second category, we discuss the works which focus on reshap-
ing the network energy graph of the crowd—from arbitrary graphs to a
well-defined formation. For example, Madhja et al. proposed two differ-
ent method to distributively form a star type network graph [19], and a
tree type network graph [20]. In similar direction, Bulut et al. [21], de-
vised a method for dynamically assigning roles to nodes and changing
the graph hierarchy in the process—some of the nodes were selected to
provide energy for the other nodes of the crowd such that the all the
nodes of the crows remained functional. Another related work by Bulut

et al. [22] analyzed the benefits of energy sharing between nodes to
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reduce inefficient utilization of energy. The authors explored the WPT
interaction opportunities between the users, and based on it, assigned
users to one-another for P2P energy exchange. [23] proposed another
method which first identifies the important nodes in the network that
are well connected with rest of the nodes, and then, these nodes are
chosen as power source node for rest of the nodes. However, the
assumed power transmission efficiency is high, and therefore, may be
less effective is real-life. The proposed work, in contrast to the works of
this category, explores both the mobility information of the users and
social relations between them for improving the WPT peer selection
process.

Finally, for the third category, we discuss the works which focus
on joint objectives of energy as well as ICT services. For example,
Dhungana et al. [24] proposed a method to enhance content delivery in
the network by providing incentives to nodes which carry the content
towards delivering at the destination. In another work [25], the authors
devised a method to reduce the dependency of users on wired charging.
The authors proposed to assign users from the crowd for engaging
in WPT such that it maximizes the charging relief throughout the
crowd. The aspect of social network was also explored for devising
strategies for peer selection for P2P-WPT among a crowd. Raptis [14]
first proposed this idea of socially-motivated energy exchange among
the peers, and accordingly, presented two different methods which en-
able energy exchange between individuals explicitly considering their
social relations. Advancing the direction of social influence on energy
balancing, Bulut and Dhungana [15] studied the problem in the context
of opportunistic networks. The method devised by the authors was
targeted for achieving better energy balance in terms of variation dis-
tance. However, the social structure considered by the authors remains
non-generic to realistic social networks, and the method also incurred
additional energy loss. In our proposed work, we consider realistic
social structure where individual users can be friends with any other
individual. We also consider the realistic meeting between the users
influencing the P2P-WPT process between themselves.

Inference: The existing works for energy balance in P2P-WPT ex-
hibit unrealistic, coarse-grained and inefficient peer selection for P2P-
WPT leading to higher energy loss and variable energy distribution in
the resulting crowd. Additionally, the energy balancing processes in the
existing works only partially consider the social dimension influencing
the P2P meeting. Subsequently, these methods remain limited in ex-
ploring all the P2P meeting opportunities. In comparison to this, the
proposed method explores the joint problem for energy exchange due
to user’s inevitable mobility and social influences.

3. Network model and key MoSaBa concepts

We assume 𝑚 users each carrying a mobile device,  =
{𝑢1, 𝑢2,… , 𝑢𝑚}, present over the area of interest A consisting of 𝑛
ocations L = {1,2,… ,𝑛}. The location of any node 𝑢𝑖 at time 𝑡 is
enoted as 𝑙𝑖𝑡, and the locations of all the nodes are referred as, 𝙻(𝑡) =
𝑙1𝑡 , 𝑙

2
𝑡 ,… , 𝑙𝑚𝑡 }. 𝑡 = {𝐸𝑡(1), 𝐸𝑡(2),… , 𝐸𝑡(𝑚)} are the energy levels of the

nodes at time 𝑡. For simplicity, we consider that all the nodes have
homogeneous WPT hardware, and thus, have an equal total battery ca-
pacity. In this work, we employ one-dimensional abstraction suggested
by Friis formula for the power received by one antenna under idealized
conditions given another antenna some distance away. However, as
mentioned in our previous work [26], we can apply a more detailed
vectorial model which arises naturally from fundamental properties
of the superposition of energy fields. However, we note that in large-
scale wirelessly powered networks modeling there is always a trade-off
to strike between fine-grained modeling accuracy and feasibility of
(i) combinatorial problem definition, (ii) algorithmic design and (iii)
simulation execution. Our current modeling approach has been widely
accepted in the related literature (for example, see [27,11,12]) and has
been accepted by the community as a credible way to abstract large
scale networked systems that are already quite complex to model.
3

The transfer of energy between the nodes is impaired by the loss of
nergy in the process, and subsequently, the receiving node can only
eceive a fraction of the transmitted energy. For example, if 𝑒 energy
s transferred from node 𝑢𝑖 to 𝑢𝑗 over a time duration (𝑡, 𝑡′), and the
nitial energy levels of these nodes at time 𝑡 were 𝐸′

𝑡 (𝑖) and 𝐸′
𝑡 (𝑗), the

emaining energy of these nodes at time 𝑡′ will be,

𝐸′
𝑡 (𝑖), 𝐸

′
𝑡 (𝑗)

)

=
(

𝐸𝑡(𝑖) − 𝑒, 𝐸𝑡(𝑗) + (1 − 𝛽)𝑒
)

, (1)

here the energy loss factor is denoted by 𝛽 ∈ [0, 1). We also assume
hat 𝛽 remains constant during the whole WPT process, as typically in
he related literature, such as [14,15]. In addition, the energy transfer
etween any two nodes 𝑢𝑖 and 𝑢𝑗 does not have any effect on the
nergy levels of other nodes (∀𝑢𝑘 ∈  , 𝑢𝑘 ≠ 𝑢𝑖, 𝑢𝑗), and is also mutually
xclusive of the energy transfers between any other pairs of nodes (𝑢𝑘
nd 𝑢𝑙, ∀𝑢𝑘, 𝑢𝑙 ≠ 𝑢𝑖, 𝑢𝑗).

Further, we define the energy distribution of the deployed nodes
𝑡(𝑢)) at any given time 𝑡, over the sample space of set of nodes  as,

𝑡(𝑢) =
𝐸𝑡(𝑢)
𝐸𝑡( )

where, 𝐸𝑡( ) =
∑

𝑢∈
𝐸𝑡(𝑢) (2)

ubsequently, the average network energy can be computed as,

𝐸𝑡 =
𝐸𝑡( )
𝑚

. (3)

The parameter energy variation distance among the deployed nodes
provides an overall estimate of the energy distribution of the whole
network. To compute the variation distance, we use the probability
theory and stochastic processes defined as described by [10,12]. We
consider, two probability distributions, namely 𝑃 and 𝑄, defined over
the sample space of  . Now, the total variation distance, 𝛿(𝑃 ,𝑄), is
computed using Eq. (4).

𝛿(𝑃 ,𝑄) =
∑

𝑥∈
|𝑃 (𝑥) −𝑄(𝑥)| (4)

In our model, the devices are carried by users and are therefore
characterized by a human like mobility pattern. We assume that the
users move from one location to another following their own interest.
Therefore, the users’ movement for visiting different places depends
on diverse factors, such as the interest to visit the place as well
as the number of social connections in that place. In Section 4, we
mathematically define the user movement and subsequently discuss the
proposed method.

Thus, the number of users at different location vary over time due
to the movement of users from one location to another. We use the
following definition to compute this,

Definition 1. The number of users at any location 𝑙 at a given time 𝑡
is defined by 𝜙𝑡(𝑙). It is computed as the number of users 𝑢𝑖 ∈  for
which 𝑙 = 𝑙𝑖𝑡 in 𝐿(𝑡),

𝜙𝑡(𝑙) = |𝙻(𝑡)|𝑙=𝑙𝑖𝑡 ∀𝑢𝑖 ∈  (5)

In our model, we assume that users meet one another when they
remain at the same location at the same time and also, spend a certain
duration of time. To perform P2P-WPT between two users, the specific
conditions for valid contact between the users need to be satisfied.

Definition 2. A valid contact (𝜈𝑡𝑖𝑗) is defined as the contact between
any two nodes 𝑢𝑖 and 𝑢𝑗 for a duration of (𝑡′, 𝑡′′) satisfying the following
conditions ∀𝑡 ∈ (𝑡′, 𝑡′′),

𝜈𝑡𝑖𝑗 =

{

1, (𝑙𝑖𝑡 , 𝑙
𝑗
𝑡 ) ≤ 𝑑𝑟𝑒𝑞 and (𝑡′′ − 𝑡′) ≥ 𝑡𝑚𝑖𝑛,

0, otherwise
(6)

where we represent the distance between the locations of 𝑢𝑖 and 𝑢𝑗 by
(𝑙𝑖𝑡 , 𝑙

𝑗
𝑡 ) and the required allowable distance for performing WPT is de-

noted by 𝑑𝑟𝑒𝑞 . 𝑡𝑚𝑖𝑛 refers to the minimum time required for performing
successful P2P-WPT energy transfer.

All the symbols used in our proposed method are listed in Table 1.
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Table 1
List of symbols.
Symbol Meaning

𝑚 The number of users/mobile devices
 The set of users
𝑛 The number of locations
L The set of the localized nodes
𝑙𝑖𝑡 Location of any user 𝑢𝑖 at time 𝑡
𝙻(𝑡) The set of the locations of all the users at time 𝑡
𝑡 The set of energy levels of the nodes at time 𝑡
𝛽 The energy loss factor
𝛼 The rate of energy transfer per unit time
𝐸𝑡(𝑢) Total network energy at time 𝑡
𝐸𝑡 Average network energy at time 𝑡
𝛿(𝑃 ,𝑄) Total variation distance for two probability distributions, 𝑃 and 𝑄
𝜙𝑡(𝑙) The number of users at any location 𝑙 at a given time 𝑡
𝜈𝑡𝑖𝑗 Valid contact between any two users 𝑢𝑖 and 𝑢𝑗
𝙷𝑖𝑡 The mobility history of user 𝑢𝑖 till time 𝑡
𝙿𝑖𝑡 The set of transition probabilities of user 𝑢𝑖 till time 𝑡
𝙻𝑖(𝑡) The sequence of locations visited by user 𝑢𝑖 till time 𝑡
𝚉𝑖(𝑡) The set of arrival times at 𝙻𝑖(𝑡)
𝚂𝑖(𝑡) The set of duration of stay at 𝙻𝑖(𝑡)
𝑐𝑖 The location context of user 𝑢𝑖
𝑁(𝑐𝑖 , 𝙷𝑖𝑡) The number of times the pattern 𝑐𝑖 appear in 𝙷𝑖𝑡
𝑆𝑡𝑎𝑡𝑒[𝑖] Current state of user 𝑢𝑖
𝜆𝑡(𝑢𝑖) The time elapsed for user 𝑢𝑖
𝜏 𝑖,𝑙𝑡 Average stay duration of user 𝑢𝑖 in any location 𝑙
𝑢𝑖 ,𝑙

𝑡 Location attachment of user 𝑢𝑖 towards location 𝑙
𝑠𝑐 (𝑢𝑖 , 𝑢𝑗 ) PeerSelectivity based on social contexts between users 𝑢𝑖 and 𝑢𝑗
(𝑢𝑖 , 𝑢𝑗 ) Social Connection between users 𝑢𝑖 and 𝑢𝑗
𝑢𝑖

𝑡 Social Attachment of user 𝑢𝑖 at time 𝑡
𝑠𝑐𝑟(𝑢𝑖 , 𝑢𝑗 ) PeerSelectivity based on social context and relations between users 𝑢𝑖 and 𝑢𝑗
𝑤𝑙 , 𝑤𝑠, 𝑤𝑒 The weightage for the location attachment, social attachment and energy components
Fig. 1. The network model with an example scenario.
3.1. MoSaBa main concept

In Fig. 1, we present a diagram of the network model with an
example scenario. This figure shows one of the locations of the whole
scenario area having different number of users present in that location
at any specific time. We show that each user has ‘location attachment’,
which determines the expected time before the user can move to
another location. The social relations among these users are depicted
in the ‘social relations domain’. Similarly, the ‘battery power domain’
shows the current remaining energy status of these users. The users
present at the same location can engage in P2P-WPT with the other
users (transmits or receives energy depending on their battery level).
Based on all these information, in the proposed method, the peers are
4

selected for P2P-WPT to reach energy balance throughout the crowd.
For example, as shown in Fig. 1, the location 𝐿𝑖 has four different
users. These four users have different location attachment values and
different remaining energy. Also, social contacts between these users
are known. From the figure, it is evident that 𝑢2 and 𝑢3 can transmit
energy to other two nodes, i.e., 𝑢1 and 𝑢4, because they have suitable
energy levels, and due to their social relationships, we can predict that
they will remain co-located for sufficient amount of time. Now, based
on all these information, our proposed method will select the peers
such that the crowd energy is balanced with low energy loss and high
remaining energy. The other locations of the scenario also goes through
same situation. The users move from one location to another based on
the influence of social/location attachment.
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4. Mobility and social-aware wireless energy balancing

This section presents the proposed MoSaBa method in detail. First,
n Section 4.1, we discuss the prediction of user mobility. Then, in
ection 4.2, we discuss social contexts for the users, and compute
he impact of social contexts and user mobility in peer selection for

PT. Next, in Section 4.3, we compute and discuss the influence of
ocial relations on the peer selection process. Subsequently, we present
he mobility and social-aware energy balancing process adopted in
oSaBa. For each part, we present an algorithm enlisting the steps

ollowed in the proposed method.

.1. User mobility prediction

We employ the 𝑂(𝑘) Markov predictor [28,29] to predict the fu-
ure locations of the users. It is considered as one of the promising
rediction-based approaches for human mobility prediction, and also
or prediction based on past location history [30]. Here, the 𝑂(𝑘)
arkov predictor considers the mobility history of the users and the

ecent 𝑘 locations, which is called the location context, to predict the
uture locations. For each user, the corresponding location history
s searched for the location context, and subsequently estimate the
robabilities for moving to any location next.

The mobility prediction model needs two sets of information—the
obility history (𝙷𝑖𝑡) and the set of transition probabilities (𝙿𝑖𝑡). The
obility history 𝙷𝑖𝑡 consists of three sets of information—the sequence

f locations visited till time 𝑡 by user 𝑢𝑖 (𝙻𝑖(𝑡) = {𝑙𝑖1, 𝑙
𝑖
2,… , 𝑙𝑖𝑡}), the set

f arrival times at these locations (𝚉𝑖(𝑡) = {𝑧𝑖1, 𝑧
𝑖
2,… , 𝑧𝑖𝑡}), and the set of

uration of stay at these locations (𝚂𝑖(𝑡) = {𝑠𝑖1, 𝑠
𝑖
2,… , 𝑠𝑖𝑡}). The transition

probability 𝑝𝑖𝑎𝑏 ∈ 𝙿𝑖𝑡 refers to the probability of moving from location 𝑙𝑖𝑎
to location 𝑙𝑖𝑏 for any user 𝑢𝑖. The values of the transition probabilities
re computed from the information stored in the location history set.
his process is repeated for all the users with their corresponding

nformation.
It is noteworthy to mention that the P2P-WPT method requires

nformation for both locations as well as the meeting duration between
he users to determine the suitable pairs of peers. Therefore, at any
iven time 𝑡, the model computes the transition probability (𝑃𝑖(𝑙𝑖𝑡+1 =

𝑥|𝙷𝑖𝑡)) for different locations (𝑥 ∈ L) as well as an estimate of the stay
uration—i.e. whether the user can move to any other location within
he next 𝛥𝑡 time.

We first compute the location context 𝑐𝑖 of user 𝑢𝑖 by extracting
he sequence of recently visited 𝑘 locations from 𝙻𝑖(𝑡). Thus, 𝑐𝑖 =
𝙻𝑖(𝑡 − 𝑘 + 1, 𝑡) = {𝑙𝑖𝑡−𝑘+1, 𝑙

𝑖
𝑡−𝑘+2,… , 𝑙𝑖𝑡−1, 𝑙

𝑖
𝑡}. As mentioned previously,

to compute the transition probabilities and estimate of stay duration,
the mobility predictor uses the location context information to find
matching patterns in the location history 𝙻𝑖(𝑡). Next, we compute the
set of duration for any such possible location 𝑥 using the following,

𝑆 𝑖
𝑥 = {𝑠𝑖𝑡|𝑠

𝑖
𝑡 = 𝑧𝑖𝑡+1 − 𝑧𝑖𝑡 where 𝙻𝑖(𝑡 − 𝑘 + 1, 𝑡 + 1) = 𝑐𝑖𝑥} (7)

where 𝑐𝑖𝑥 is the sequence of locations assuming the location 𝑥 will
be visited after 𝑐𝑖. Next, using the duration set 𝑆 𝑖

𝑥, the conditional
probability 𝑃 𝑖

𝑥(𝑡 ≤ 𝑠 < 𝑡 + 𝛥𝑡|𝑐𝑖, 𝑡) for the user to move to location 𝑥
within 𝛥𝑡 time period of the current elapsed time 𝑡. Here, we use the
CDF predictor described in [29], and subsequently we can compute the
following:

𝑃 𝑖
𝑥(𝑡 ≤ 𝑠 < 𝑡 + 𝛥𝑡|𝑐, 𝑡)

≈ 𝐶𝐷𝐹 (𝑠 < 𝑡 + 𝛥𝑡) − 𝐶𝐷𝐹 (𝑠 < 𝑡)

= 1
|𝑆𝑖

𝑥|

∑

𝑠∈𝑆𝑖
𝑥

𝐼(𝑠 < 𝑡 + 𝛥𝑡) − 1
|𝑆𝑖

𝑥|

∑

𝑠∈𝑆𝑖
𝑥

𝐼(𝑠 < 𝑡) (8)

where 𝐼(⋅) refers to the indicator function.
We compute the transition probability for any possible location

∈ L as,

𝑖(𝑙𝑖𝑡+1 = 𝑥|𝙷𝑖𝑡) ≈ 𝑃 (𝑙𝑖𝑡+1 = 𝑥|𝙷𝑖𝑡) =
𝑁(𝑐𝑖𝑥, 𝙷𝑖𝑡)

𝑖 (9)
5

𝑁(𝑐𝑖, 𝙷𝑡)
Here, 𝑁(𝑐𝑖𝑥, 𝙷𝑖𝑡) and 𝑁(𝑐𝑖, 𝙷𝑖𝑡) denote the number of times the pattern
𝑖𝑥 and 𝑐𝑖, respectively, appear in 𝙷𝑖𝑡.

It is important to note that the 𝑂(𝑘) Markov predictor will fail to
provide the predictions in case the current location context has not
appeared till (𝑡 − 1) time (i.e., 𝑁(𝑐𝑖, 𝙷𝑖𝑡−1) = 0). In such situation, the
𝑂(𝑘 − 1) predictor is applied next for finding the location predictions,
and the process is followed again in case of the model being unable
to predict. In case all previous estimations are failed, the ‘order-0’
predictor computes the most frequently visited location for the user,
i.e., 𝑙 = argmax𝑙∈𝙻𝑖(𝑡) 𝑁(𝑙, 𝙷𝑖𝑡).

Next, we estimate whether the user can move to any location 𝑥
ithin 𝛥𝑡 time. With the information on the given location context 𝑐𝑖
nd time 𝑡, we can compute that,

𝑖(𝑥|𝑐𝑖, 𝑡) = 𝑃𝑖(𝑥) × 𝑃 𝑖
𝑥(𝑡 ≤ 𝑠 < 𝑡 + 𝛥𝑡|𝑐𝑖, 𝑡) (10)

Subsequently, we can compute the most likely next location for time
+ 1,
𝑖
𝑡+1 = argmax

𝑥∈𝙻𝑖(𝑡)
𝑃 (𝑙𝑖𝑡+1 = 𝑥|𝑐𝑖, 𝑡) (11)

Similarly, the mobility predictor estimates the probable locations for
each mobile node 𝑢𝑖 ∈  .

In the following, we discuss the process followed by the nodes for
performing P2P-WPT, based on the already computed information. The
objective of the P2P-WPT method is to an energy balance of the whole
network such that the energy loss and the energy variation distance
is minimized. Ideally, at energy balance, each node of the network
should attain the average network energy (𝐸𝑡) either by transferring
or receiving energy. However, as the WPT process is impaired by the
loss of energy during the process, the nodes cannot practically reach 𝐸𝑡,
rather can achieve 𝐸

∗
. As shown by [11], the computation of average

network energy with energy loss is as follows,

𝐸
∗
=

−(1 − 𝛽) + 2
√

(1 − 𝛽)
𝛽

∀𝛽 ∈ [0, 1], 𝑚 ⟶ ∞ (12)

[11] showed that 𝐸
∗

∈ [0, 1] for 𝛽 ∈ [0, 1]. It is important to note
that if we select the users with energy at the opposite side of 𝐸

∗

for engaging in P2P-WPT, the energy loss in the process will be re-
duced. Additionally, the users having energy closer to 𝐸

∗
should be

elected for exchanging energy first, such that the decrease of energy
ariation distance in each iteration will be higher compared to other
ombinations.

In our scenario, the mobility of the users impacts the number of
sers they can meet as well as the duration of such meetings. There-
ore, it is important to carefully choose the peers in each iteration.
lgorithm 1 describes the steps for mobility-aware energy balancing. As
iscussed, to minimize the energy loss and energy variation distance,
e choose a pair of nodes (𝑢𝑖, 𝑢𝑗) having their current energy values at

he opposite side of 𝐸
∗
, and also, their current energy levels are closest

to the target energy balance level (𝐸
∗
). Next, for each of such chosen

pairs of peers, P2P-WPT is performed according to the steps mentioned
in the Algorithm 4, as explained in Section 4.4.

4.2. Impact of social context on peer selection for P2P-WPT

In this section, we discuss the impact of the social context on peer
selection for P2P-WPT. The social context considered in this work refers
to user’s interest in visiting different places depending on the category
of the place or the things the place offers. We model the concept of
social context in such way that the users’ preferences are not required
to be known a priori.

Towards modeling the impact of social contexts, continuing from
the previous sections, we define the following parameters. Our model
utilizes the information that we already have in the following com-
putations. We first compute the average stay duration, as shown in
Definition 3, for any user at any specific location.
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Algorithm 1: Mobility-aware Energy Balancing
1 Inputs: Set of energy levels 𝑡, Set of predicted location

{𝑙𝑖𝑡}∀𝑢𝑖∈ , Set of stay duration {𝑆 𝑖
𝑥}

𝑡
𝑥∈𝙻𝑖(𝑡)

.
2 Output: Energy balance of the network.
3 Compute 𝐸

∗
;

4 Initialize 𝑆𝑡𝑎𝑡𝑒[⋅] ⟵ 𝐼𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒;
5 while 𝑡 ≤ 𝑇 do
6 for 𝑢𝑖 ∈  and 𝑆𝑡𝑎𝑡𝑒[𝑖] = 𝐼𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 do
7 Find the node with energy closer to 𝐸

∗
,

𝑢𝑖 ⟵ arg min𝑢𝑖∈ |𝐸
∗
− 𝐸𝑡(𝑖)|;

8 MobiEnergyBalance(𝑡, 𝑢𝑖, 𝑡, 𝑆𝑡𝑎𝑡𝑒[⋅]);
9 for 𝑢𝑖 ∈  and 𝑆𝑡𝑎𝑡𝑒[𝑖] = 𝐼𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 do
10 Compute 𝑡′ ⟵ min𝑢𝑖∈ {𝜆𝑡(𝑢𝑖)};
11 if 𝑡′ < 𝑡 + 𝛥𝑡 then
12 𝑢′𝑖 ⟵ arg min𝑢𝑖∈ {𝜆𝑡(𝑢𝑖)};
13 MobiEnergyBalance( ′

𝑡 , 𝑢′𝑖 , 𝑡
′, 𝑆𝑡𝑎𝑡𝑒[⋅]);

14 if Current time = 𝑡 + 𝛥𝑡 then
15 Get {𝑙𝑖𝑡+𝛥𝑡}∀𝑢𝑖∈ and {𝑆 𝑖

𝑥}
𝑡+𝛥𝑡
𝑥∈𝙻𝑖(𝑡)

from mobility predictor;
16 Update 𝑡 ⟵ 𝑡 + 𝛥𝑡;

17 Function MobiEnergyBalance(𝑡, 𝑢𝑖, 𝑡, 𝑆𝑡𝑎𝑡𝑒[⋅]):
18 for 𝑢𝑗 ∈  and 𝑢𝑗 ≠ 𝑢𝑖 do
19 if 𝜈𝑡𝑖𝑗 = 1 then
20 𝑁𝑡(𝑢𝑖) ⟵ 𝑁𝑡(𝑢𝑖) ∪ 𝑢𝑗 ;

21 if 𝐸𝑡(𝑖) > 𝐸
∗
then

22 Compute 𝑢𝑗 ⟵ arg min𝑢𝑗∈𝑁𝑡(𝑢𝑖)(𝐸
∗
− 𝐸𝑡(𝑗));

23 EnergyBalance(𝑡, 𝑢𝑖, 𝑢𝑗 , 𝑆𝑡𝑎𝑡𝑒[⋅]);
24 else
25 Compute 𝑢𝑗 ⟵ arg min𝑢𝑗∈𝑁𝑡(𝑢𝑖)(𝐸𝑡(𝑗) − 𝐸

∗
);

26 EnergyBalance(𝑡, 𝑢𝑗 , 𝑢𝑖, 𝑆𝑡𝑎𝑡𝑒[⋅]);

Definition 3. Average stay duration (𝜏𝑖,𝑙𝑡 ) defines the average time any
user 𝑢𝑖 spends in any location 𝑙 till time 𝑡. It is computed as using the
following equation,

𝜏 𝑖,𝑙𝑡 =
∑

𝑡 𝑠
𝑖
𝑡

𝑁(𝑙, 𝙷𝑖𝑡)
𝑠𝑖𝑡 ∈ 𝑆 𝑖

𝑙 , 𝑢𝑖 ∈  (13)

Here, 𝑁(𝑙, 𝙷𝑖𝑡) denotes the number of times 𝑢𝑖 has visited location 𝑙.

Next, we compute the location attachment for any user towards any
location. This parameter helps us in conceptualizing the impact of
location-based social context in users’ mobility. As mentioned previ-
ously, from the P2P-WPT point of view, the estimation of the meeting
times between pairs of users is expected to be beneficial. Based on the
information of location attachment, subsequently, we compute the pa-
rameter called PeerSelectivity, which quantifies the benefit of selecting
this pair of nodes towards reaching the goal of energy balance. We
explain this parameter in Definition 5. In Algorithm 2, we provide the
steps followed for social context-aware peer selection towards energy
balancing in P2P-WPT.

Definition 4. Location attachment (𝑢𝑖 ,𝑙
𝑡 ) refers to the interest of any

user 𝑢𝑖 towards staying at location 𝑙 based on his/her interests matching
with that of this location’s. This is computed as the fraction of total time
the user spends in any location with respect to the total time spent in
different places visited by this user. Mathematically,

𝑢𝑖 ,𝑙
𝑡 =

𝜏𝑖,𝑙𝑡
∑ 𝑖,𝑙 𝑢𝑖 ∈  (14)
6

𝑙∈𝙷𝑖 𝜏𝑡
Algorithm 2: Social Context-aware Energy Balancing
1 Inputs: Set of energy levels 𝑡, Set of stay duration {𝑆𝑖

𝑥}
𝑡
𝑥∈𝙻𝑖(𝑡)

.
2 Output: Energy balance of the network.
3 Function SocialContext(𝑡, 𝑢𝑖, 𝑡, 𝑆𝑡𝑎𝑡𝑒[⋅]):
4 for 𝑢𝑗 ∈  and 𝑢𝑗 ≠ 𝑢𝑖 do
5 if 𝜈𝑡𝑖𝑗 = 1 then
6 𝑁𝑡(𝑢𝑖) ⟵ 𝑁𝑡(𝑢𝑖) ∪ 𝑢𝑗 ;

7 Compute 𝜏 𝑖,𝑙𝑡 and 𝑢𝑖 ,𝑙
𝑡 for 𝑢𝑖;

8 for 𝑢𝑗 ∈  and 𝑢𝑗 ≠ 𝑢𝑖 do
9 Compute 𝜏𝑗,𝑙𝑡 and 𝑢𝑗 ,𝑙

𝑡 for 𝑢𝑗 ;

10 if 𝐸𝑡(𝑖) > 𝐸
∗
then

11 Set 𝐸1 ⟵ 𝐸
∗
, 𝐸2 ⟵ 𝐸𝑡(𝑗);

12 Compute 𝑢𝑗 ⟵ arg min𝑢𝑗∈𝑁𝑡(𝑢𝑖) 𝑠𝑐 (𝑢𝑖, 𝑢𝑗 );
13 EnergyBalance(𝑡, 𝑢𝑖, 𝑢𝑗 , 𝑆𝑡𝑎𝑡𝑒[⋅]);
14 else
15 Set 𝐸1 ⟵ 𝐸𝑡(𝑗), 𝐸2 ⟵ 𝐸

∗
;

16 Compute 𝑢𝑗 ⟵ arg min𝑢𝑗∈𝑁𝑡(𝑢𝑖) 𝑠𝑐 (𝑢𝑖, 𝑢𝑗 );
17 EnergyBalance(𝑡, 𝑢𝑗 , 𝑢𝑖, 𝑆𝑡𝑎𝑡𝑒[⋅]);

Definition 5. PeerSelectivity (𝑠𝑐 (𝑢𝑖, 𝑢𝑗 )) defines the selectivity factor
between the peers 𝑢𝑖 and 𝑢𝑗 based on their social contexts (the first
part of the Eq. (15) refers to the social context dimension). In other
words, this parameter quantifies the benefit of selecting this pair of
nodes towards reaching the goal of energy balance. The lower the value
of selectivity factor, the better the corresponding pair is for the crowd
energy balance. It is computed as,

𝑠𝑐 (𝑢𝑖, 𝑢𝑗 ) = 𝑤𝑙 ×
(

|𝑢𝑖 ,𝑙
𝑡 − 𝑢𝑗 ,𝑙

𝑡 |

)

+𝑤𝑒 ×
(𝐸1 − 𝐸2

𝐸𝑚𝑎𝑥

)

(15)

where 𝐸1 and 𝐸2 refers to required energy levels for energy balancing.
For example, when 𝐸𝑡(𝑖) > 𝐸

∗
, 𝐸1 = 𝐸

∗
and 𝐸2 = 𝐸𝑡(𝑗). Similarly,

or 𝐸𝑡(𝑖) < 𝐸
∗
, the values are opposite, i.e., 𝐸1 = 𝐸𝑡(𝑗) and 𝐸2 = 𝐸

∗
.

𝐸𝑚𝑎𝑥 refers to the maximum possible energy level of any user, and thus,
0 ≤ 𝐸1, 𝐸2 ≤ 𝐸𝑚𝑎𝑥. Here, 𝑤𝑙 and 𝑤𝑒 denote the weightage for the
location attachment and energy components, respectively.

To motivate the usage of the ‘social context’ dimension, as well as to
demonstrate its effectiveness in the P2P-WPT process, we evaluate the
performance of the social context-aware algorithm over the mobility-
aware algorithm using simulations. Please refer to Section 5.3 for the
detailed results.

4.3. Impact of social relations on peer selection for P2P-WPT

In this section, we present the concepts for modeling the impact
of social relations on peer selection for P2P-WPT. Continuing from the
previous section, here, we introduce few more parameters to quantify
the impact of users’ social relation on peer selection. First, we maintain
a parameter named Social Connection ((𝑢𝑖, 𝑢𝑗 )) to note the social
connections between the users 𝑢𝑖 and 𝑢𝑗 . Next, we compute the social
attachment for any user depending on the number of social connections
the user has in its current location in that specific time. It is important
to note that this information needs to be computed at each iterations,
unlike the location attachment, as the value changes according to the
location as well as other users present in that location.

Definition 6. Social Connection ((𝑢𝑖, 𝑢𝑗 )) refers to the existence of
any social connection, i.e., holds the value of the edge (𝑢𝑖, 𝑢𝑗 ) on the
social graph between these users. In practice, this information can
be computed from the users’ self reported social network data. It is
mathematically defined as,

(𝑢𝑖, 𝑢𝑗 ) =

{

1, Social edge exists(𝑗 ≠ 𝑖),
(16)
0, otherwise
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Algorithm 3: Social Context and Relations-aware Energy
alancing
1 Inputs: Set of energy levels 𝑡, Set of stay duration {𝑆𝑖

𝑥}
𝑡
𝑥∈𝙻𝑖(𝑡)

.
2 Output: Energy balance of the network.
3 Function SocialContextRelations(𝑡, 𝑢𝑖, 𝑡, 𝑆𝑡𝑎𝑡𝑒[⋅]):
4 for 𝑢𝑗 ∈  and 𝑢𝑗 ≠ 𝑢𝑖 do
5 if 𝜈𝑡𝑖𝑗 = 1 then
6 𝑁𝑡(𝑢𝑖) ⟵ 𝑁𝑡(𝑢𝑖) ∪ 𝑢𝑗 ;

7 Compute 𝜏 𝑖,𝑙𝑡 and 𝑢𝑖 ,𝑙
𝑡 for 𝑢𝑖;

8 Compute (𝑢𝑖, 𝑢𝑗 ) and 𝑢𝑖
𝑡 for 𝑢𝑖;

9 for 𝑢𝑗 ∈  and 𝑢𝑗 ≠ 𝑢𝑖 do
10 Compute 𝜏𝑗,𝑙𝑡 and 𝑢𝑗 ,𝑙

𝑡 for 𝑢𝑗 ;
11 Compute (𝑢𝑖, 𝑢𝑗 ) and 𝑢𝑖

𝑡 for 𝑢𝑗 ;

12 if 𝐸𝑡(𝑖) > 𝐸
∗
then

13 Set 𝐸1 ⟵ 𝐸
∗
, 𝐸2 ⟵ 𝐸𝑡(𝑗);

14 Compute 𝑢𝑗 ⟵ arg min𝑢𝑗∈𝑁𝑡(𝑢𝑖) 𝑠𝑐𝑟(𝑢𝑖, 𝑢𝑗 );
15 EnergyBalance(𝑡, 𝑢𝑖, 𝑢𝑗 , 𝑆𝑡𝑎𝑡𝑒[⋅]);
16 else
17 Set 𝐸1 ⟵ 𝐸𝑡(𝑗), 𝐸2 ⟵ 𝐸

∗
;

18 Compute 𝑢𝑗 ⟵ arg min𝑢𝑗∈𝑁𝑡(𝑢𝑖) 𝑠𝑐𝑟(𝑢𝑖, 𝑢𝑗 );
19 EnergyBalance(𝑡, 𝑢𝑗 , 𝑢𝑖, 𝑆𝑡𝑎𝑡𝑒[⋅]);

Definition 7. Social Attachment (𝑢𝑖
𝑡 ) defines the overall social at-

achment any user 𝑢𝑖 has with the other users (∀𝑢𝑗 ∈  , 𝑗 ≠ 𝑖) at time 𝑡.
t is computed as the number of users socially connected with 𝑢𝑖 among

all the users present at the same location at time 𝑡.

𝑖
𝑡 =

∑

∀𝑢𝑗∈ ,𝑗≠𝑖 (𝑢𝑖, 𝑢𝑗 )

𝜙𝑡(𝑙)
(17)

Definition 8. PeerSelectivity based on social context and relations
(𝑠𝑐𝑟(𝑢𝑖, 𝑢𝑗 )) defines the selectivity factor between the peers 𝑢𝑖 and
𝑢𝑗 based on their social contexts. It is computed as,

𝑠𝑐𝑟(𝑢𝑖, 𝑢𝑗 ) = 𝑠𝑐 (𝑢𝑖, 𝑢𝑗 ) +𝑤𝑠

×
(

|𝑢𝑖 ,𝑙
𝑡 − 𝑢𝑗 ,𝑙

𝑡 |

)

(18)

where 𝑤𝑠 refers to the weightage for the social attachment in the
P2P-WPT process.

Based on the information of social connections and the dynamically
computed social attachment, we compute the selectivity factor for any
pair of peers. The selectivity factor also considers both the location and
social attachment. Algorithm 3 lists the steps followed for the social
context and relation-aware peer selection for P2P-WPT.

To motivate the effect of social relations in P2P-WPT, we evaluate
and compare the performance of the social context and relation-aware
peer selection method. Please refer to Section 5.4 for the detailed
evaluation results.

4.4. P2P energy balancing

In Algorithm 4, we discuss the steps followed for P2P-WPT between
any selected pair of peers. Here, among the pair, the user which is
having energy closer to the 𝐸

∗
(considering the energy loss in the

rocess), is allowed to reach the target energy balance level (i.e, 𝐸
∗
)

irst. This energy exchange is bounded by the energy transfer limit
𝛼.𝑡𝑝2𝑝), which is the possible value of energy that can be transferred
ithin the duration 𝑡 with 𝛼 rate of energy transfer per unit time.
7

𝑝2𝑝
Algorithm 4: P2P Energy Balance
1 Inputs: Set of energy levels 𝑡, Nodes 𝑢1 and 𝑢2, Set of flags

𝑆𝑡𝑎𝑡𝑒[⋅].
2 Output: Updated energy levels and state, time elapsed.
3 Function EnergyBalance(𝑡, 𝑢1, 𝑢2, 𝑆𝑡𝑎𝑡𝑒[⋅]):
4 Get stay duration for 𝑢1 and 𝑢2 as 𝑠1 and 𝑠2;
5 Compute effective P2P meeting time, 𝑡𝑝2𝑝 ⟵ min(𝑠1, 𝑠2, 𝛥𝑡);
6 if [𝐸𝑡(𝑢1) − 𝐸

∗
](1 − 𝛽) < [𝐸

∗
− 𝐸𝑡(𝑢2)] then

7 Check whether required energy transfer is within
effective meeting time,
𝜂 ⟵ (|𝐸𝑡(𝑢1) − 𝐸

∗
| ≤ 𝛼.𝑡𝑝2𝑝)?0 ∶ 1;

8 Update the energy levels considering the energy transfer
limit, 𝐸𝑡(𝑢1) ⟵ 𝐸

∗
+ 𝜂[𝐸𝑡(𝑢1) − 𝐸

∗
− 𝛼.𝑡𝑝2𝑝];

9 𝐸𝑡(𝑢2) ⟵ 𝐸𝑡(𝑢2)+[𝐸𝑡(𝑢1)−𝐸
∗
−𝜂(𝐸𝑡(𝑢1)−𝐸

∗
−𝛼.𝑡𝑝2𝑝)](1−𝛽);

10 Time required for P2P energy exchange,
𝜆 ⟵

1
𝛼 [𝐸𝑡(𝑢1) − 𝐸

∗
− 𝜂(𝐸𝑡(𝑢1) − 𝐸

∗
− 𝛼.𝑡𝑝2𝑝)];

11 if Current time < 𝑡 + 𝜆 then
12 Set 𝑆𝑡𝑎𝑡𝑒[𝑢1] ⟵ 𝐵𝑢𝑠𝑦, 𝑆𝑡𝑎𝑡𝑒[𝑢2] ⟵ 𝐵𝑢𝑠𝑦;
13 if 𝜂 = 0 and Current time = 𝑡 + 𝜆 then
14 Set 𝑆𝑡𝑎𝑡𝑒[𝑢1] ⟵ 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒, 𝑆𝑡𝑎𝑡𝑒[𝑢2] ⟵ 𝐼𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒;

15 else
16 Check whether required energy transfer is within

effective meeting time,
𝜂 ⟵ (|𝐸

∗
− 𝐸𝑡(𝑢2)| ≤ 𝛼.𝑡𝑝2𝑝)?0 ∶ 1;

17 Update the energy levels considering the energy transfer

limit, 𝐸𝑡(𝑢1) ⟵ 𝐸𝑡(𝑢1) −
[𝐸

∗
−𝐸𝑡(𝑢2)]−𝜂[𝐸

∗
−𝐸𝑡(𝑢2)−𝛼.𝑡𝑝2𝑝]

(1−𝛽) ;

18 𝐸𝑡(𝑢2) ⟵ 𝐸
∗
− 𝜂[𝐸

∗
− 𝐸𝑡(𝑢2) − 𝛼.𝑡𝑝2𝑝] ;

19 Time required for P2P energy exchange,
𝜆 ⟵

1
𝛼 [𝐸

∗
− 𝐸𝑡(𝑢2)] + 𝜂[𝛼.𝑡𝑝2𝑝 + 𝐸

∗
− 𝐸𝑡(𝑢2)];

20 if Current time < 𝑡 + 𝜆 then
21 Set 𝑆𝑡𝑎𝑡𝑒[𝑢1] ⟵ 𝐵𝑢𝑠𝑦, 𝑆𝑡𝑎𝑡𝑒[𝑢2] ⟵ 𝐵𝑢𝑠𝑦;
22 if 𝜂 = 0 and Current time = 𝑡 + 𝜆 then
23 Set 𝑆𝑡𝑎𝑡𝑒[𝑢1] ⟵ 𝐼𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒, 𝑆𝑡𝑎𝑡𝑒[𝑢2] ⟵ 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒;

24 Update 𝜆𝑡(𝑢1) ⟵ 𝜆, 𝜆𝑡(𝑢2) ⟵ 𝜆;

Here, 𝑡𝑝2𝑝 is computed as minimum of stay durations of the nodes and
𝛥𝑡 – the actual duration of time for which the energy exchange can be
possible. Based on these information, the energy levels of the users are
updated, and the time elapsed for the participating users (𝜆𝑡(𝑢𝑖), 𝜆𝑡(𝑢𝑖))
are also updated. During the process, the state variable 𝑆𝑡𝑎𝑡𝑒[⋅] keeps
track of the current state, Incomplete, Busy, or Complete, of the users.
For example, the state of the users remains Busy during the P2P energy
exchange process. The users which are yet to reach the target energy
balance have Incomplete state, and those who have achieved energy
balance are marked as Complete. Here, the users with state Incomplete
but with elapsed time within the current time iteration’s duration,
i.e., 𝜆𝑡(𝑢𝑖) < 𝛥𝑡, are again considered as candidates for possible energy
balance. Then, when the current iteration ends, i.e., 𝑡 + 𝛥𝑡, these steps
are repeated for each iteration till the final time 𝑇 .

4.5. Complexity of the algorithms

In this section, we explain the computational complexity of the
proposed algorithms and its theoretical analysis. The Algorithms 1, 2,
and 3 have an execution time in 𝑂(𝑚3), where 𝑚 denotes the number
of users. Here, in all three algorithms, the peer selection process has
an execution time in 𝑂(𝑚2) as it requires 𝑚− 1 comparisons to find the

first peer, and then 𝑚− 2 comparisons to find the second peer for each
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first peer. Now, peer selection is performed for 𝑚 number of nodes.
Therefore, the whole process has an execution time in 𝑂(𝑚3).

On the other hand, the Algorithm 4 has a constant execution time
(𝑂(1)), as it only updates the energy levels of the two selected nodes
each time. Whereas, the execution time for mobility prediction algo-
rithm is in 𝑂(𝑇 ), where 𝑇 denotes the number of iterations.

5. Performance evaluation of the social-related dimensions of
MoSaBa

5.1. Simulation settings

For performance evaluation, our experiments are based on an ar-
tificially generated scenario and not explicitly a dataset setting. We
consider a crowd of 100 users each carrying a mobile device equipped
with P2P-WPT facilities. The overall area has 5 different locations,
where these 100 users are randomly distributed. In some of the exper-
iments, we have considered 125 and 150 users present over the same
number of locations. The stay duration in each location is influenced
by user’s interests and social interactions. The users spend a random
time distributed over 10–40 min in each location before moving to the
next randomly selected location. Additionally, with the influence of
the socially connected users, any user spends a random time in each
location randomly distributed over [0, 𝑓 ], where 𝑓 is the number of
socially connected users at that location at that time. The inter-meeting
duration for any pair of users is therefore random. It is important to
note that in this simulation, both the location attachment and social
attachment values are incorporated randomly. However, we can also
preset these values for the users based on their preferences and self-
reported social profiles. The users can engage in P2P-WPT with other
users during their stay at the same location. The initial energy of the
users are randomly distributed over [0, 100] units. We consider the
wireless charging rate of 𝛼 = 0.5 which closely mimics a real Qi
charger1 (a Qi charger with capacity of 7.5 Wh will have 𝛼 ≈ 0.675.
In our experiments, we consider the energy loss rate 𝛽 = 0.2 − 0.4. We
choose 𝑤𝑙 = 𝑤𝑠 = 𝑤𝑒 = 0.33 to emphasize equal weightage for all three
components shown in Eq. (18).

We design our experiments to be performed over multiple ‘rounds’
or ‘iterations’. For example, in each iteration of the experiment, the
users move to a randomly chosen location, stay for the mentioned
random duration, and engage in P2P-WPT with their chosen peers.
Therefore, an iteration actually refers to a virtual boundary within
which the scope of decisions (about P2P meetings) remain. In all the
experiments, we execute the concept of iterations, and accordingly, the
decisions on finding peers are taken. It is noteworthy to mention that
energy exchange between any two peers is limited by their meeting
duration. Therefore, the concept of time is well enforced within the
experiments. We perform the simulations using a laptop with an i5-
1135G7 processor with possible CPU speed of 2.4–4.2 GHz and 16 GB
of RAM. During the simulations, the CPU speed remains within 2.4–
2.6 GHz and utilization remains < 12%. We repeat the experiments 50
times and consider the average values for statistical smoothness.

5.2. Evaluation metrics

• Total network energy : Total network energy refers to the total net-
work energy of all the nodes in the experiment at each iteration.
This metric computes the remaining energy of the network in each
iteration and helps us understand the energy loss occurring in
each method. It is important to note that energy loss also increases
with increased amount of energy exchanged.

1 https://www.belkin.com/th/chargers/wireless/charging-pads/boost-up-
ireless-charging-pad-7-5w/p/p-f7u027/
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• Total energy variation distance: The total energy variation distance
measures the energy variation distance resulting between the
nodes at each iteration. Using this metric, we can understand the
quality of the energy balance—the lower the number the better
the quality of energy balance.

• Number of P2P meetings: This metric refers to the number of times
a pair of peers engage in energy exchange. Using this metric, we
can understand the number of P2P opportunities enabled by each
method.

• Number of nodes that reach energy balance: This metric counts the
number of nodes which achieves energy balance or the expected
energy target level.

• Execution time: This metrics shows the actual CPU execution time
in each iteration of the simulation for any method.

5.3. Effect of social context in P2P-WPT

In order to motivate the usage of the ‘social context’ dimension
in the P2P-WPT process, as well as to demonstrate its effectiveness,
we evaluate the performance of the social context-aware algorithm
over the mobility-aware algorithm using simulations. For this experi-
ment, we considered 100 users deployed over an area with 5 different
locations, and energy loss rate 𝛽 = 0.2. We consider 𝑤𝑙 = 𝑤𝑠 =
0.5 to emphasize equal weightage for both components. Rest of the
parameters remain same as explained in Section 5.1.

In this setting, location attachments, and therefore, social links,
are inferred by the algorithm automatically by monitoring patterns
of co-location between nodes. However, we can also preset the lo-
cation attachment for the users based on their preferences. In the
following, we present the comparison of the social context-aware al-
gorithm (marked as 𝑤∕𝑠𝑜𝑐𝑖𝑎𝑙𝑐𝑜𝑛𝑡𝑒𝑥𝑡) over the mobility-aware algo-
rithm (marked as 𝑤∕𝑜𝑠𝑜𝑐𝑖𝑎𝑙𝑐𝑜𝑛𝑡𝑒𝑥𝑡) with respect to the four metrics—
total network energy, total energy variation distance, number of P2P
meetings, and number of nodes that reached energy balance.

In Fig. 2(a), the results for the total network energy is shown for
𝑤∕𝑜𝑠𝑜𝑐𝑖𝑎𝑙𝑐𝑜𝑛𝑡𝑒𝑥𝑡 and 𝑤∕𝑠𝑜𝑐𝑖𝑎𝑙𝑐𝑜𝑛𝑡𝑒𝑥𝑡. With the increase in iterations,
the overall network energy reduces due to the energy loss during
P2P-WPT between nodes. It can be seen from the results that in
𝑤∕𝑠𝑜𝑐𝑖𝑎𝑙𝑐𝑜𝑛𝑡𝑒𝑥𝑡, the overall network energy remains higher compared
to 𝑤∕𝑜𝑠𝑜𝑐𝑖𝑎𝑙𝑐𝑜𝑛𝑡𝑒𝑥𝑡. This can be attributed to the fact that the energy
oss in 𝑤∕𝑠𝑜𝑐𝑖𝑎𝑙𝑐𝑜𝑛𝑡𝑒𝑥𝑡 is less compared to 𝑤∕𝑜𝑠𝑜𝑐𝑖𝑎𝑙𝑐𝑜𝑛𝑡𝑒𝑥𝑡 method.
ext, we compute the total energy variation distance for each itera-

ion, and the results are shown in Fig. 2(b). We find that the total
nergy variation distance reduced when social context is considered.
lso, in the initial iterations (1–10), the reduction in the variation
istance in the 𝑤∕𝑠𝑜𝑐𝑖𝑎𝑙𝑐𝑜𝑛𝑡𝑒𝑥𝑡 method is much higher compared to

the 𝑤∕𝑜𝑠𝑜𝑐𝑖𝑎𝑙𝑐𝑜𝑛𝑡𝑒𝑥𝑡 method. This can be attributed to the fact that
𝑤∕𝑠𝑜𝑐𝑖𝑎𝑙𝑐𝑜𝑛𝑡𝑒𝑥𝑡 method promotes higher number of P2P interactions
during the initial iterations (1–5), which in turn helps in rapid re-
duction of the energy variation distance. Fig. 2(c) shows the results
for the number of P2P interaction between the users, i.e., the number
of selected pairs of peer, in each iteration. Consequently, the number
of nodes which achieve the target energy balance is also higher in
𝑤∕𝑠𝑜𝑐𝑖𝑎𝑙𝑐𝑜𝑛𝑡𝑒𝑥𝑡 compared to 𝑤∕𝑜𝑠𝑜𝑐𝑖𝑎𝑙𝑐𝑜𝑛𝑡𝑒𝑥𝑡, as shown in Fig. 2(d). As
higher number of nodes start energy exchange in 𝑤∕𝑠𝑜𝑐𝑖𝑎𝑙𝑐𝑜𝑛𝑡𝑒𝑥𝑡, the
total energy variation distance also decreases quickly. We also note that
after each iteration, the total network energy remains higher in 𝑃𝑆𝐶 .
Thus, we can infer that the overall energy balance in 𝑤∕𝑠𝑜𝑐𝑖𝑎𝑙𝑐𝑜𝑛𝑡𝑒𝑥𝑡
enhances compared to 𝑤∕𝑜𝑠𝑜𝑐𝑖𝑎𝑙𝑐𝑜𝑛𝑡𝑒𝑥𝑡. Additionally, the results shown
in Figs. 2(c) and 2(d) show that 𝑤∕𝑠𝑜𝑐𝑖𝑎𝑙𝑐𝑜𝑛𝑡𝑒𝑥𝑡 converges quickly
compared to 𝑤∕𝑜𝑠𝑜𝑐𝑖𝑎𝑙𝑐𝑜𝑛𝑡𝑒𝑥𝑡.

https://www.belkin.com/th/chargers/wireless/charging-pads/boost-up-wireless-charging-pad-7-5w/p/p-f7u027/
https://www.belkin.com/th/chargers/wireless/charging-pads/boost-up-wireless-charging-pad-7-5w/p/p-f7u027/
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Fig. 2. Performance results showing effects of social context in P2P-WPT (𝛽 = 0.2, 𝑚 = 100).
Fig. 3. Performance results showing effects of social relations in P2P-WPT (𝛽 = 0.2, 𝑚 = 100).
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.4. Effect of social relations in P2P-WPT

To motivate the effect of social relations in P2P-WPT, we evaluate
nd compare the performance of the social context and relation-aware
eer selection method, named as 𝑤∕𝑠𝑜𝑐𝑖𝑎𝑙𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 with the social
ontext-aware method, named as 𝑤∕𝑜𝑠𝑜𝑐𝑖𝑎𝑙𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠. For this experi-
ent also, we considered 100 users deployed over an area with 5
ifferent locations, and energy loss rate 𝛽 = 0.2. Here, we consider 𝑤𝑙 =

𝑠 = 𝑤𝑒 = 0.33 to emphasize equal weightage for all three components.
he movements of the users remain same as described in Section 4.2.
dditionally, with the influence of the socially connected users, any
ser spends a random time in each location randomly distributed over
0, 𝑓 ], where 𝑓 is the number of socially connected users at that location
t that time. Rest of the parameters remain same as explained in
ection 5.1.

We discuss the results for 𝑤∕𝑠𝑜𝑐𝑖𝑎𝑙𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 and 𝑤∕𝑜𝑠𝑜𝑐𝑖𝑎𝑙𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠
ith respect to the four metrics—total network energy, total energy
ariation distance, number of P2P meetings, and number of nodes
hat reached energy balance. Figs. 3(a) and 3(b) present the total net-
ork energy and the energy variation distance, respectively. Whereas,
igs. 3(c) and 3(d) shows the number of P2P interactions and the
umber of nodes achieving the target energy balance level. It can be
een from the results that in 𝑤∕𝑠𝑜𝑐𝑖𝑎𝑙𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠, the resulting network
aintains higher total network energy compared to 𝑤∕𝑜𝑠𝑜𝑐𝑖𝑎𝑙𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠
ethod with an equal number of nodes reaching energy balance

evel. In case of the number of P2P interactions, 𝑤∕𝑠𝑜𝑐𝑖𝑎𝑙𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 and
∕𝑜𝑠𝑜𝑐𝑖𝑎𝑙𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 enable nearly equal number of iterations in iterations
–5. In the next few iterations 𝑤∕𝑠𝑜𝑐𝑖𝑎𝑙𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 enables higher number
f P2P interactions between the users. As a result of this, the number
f nodes which achieves energy balance increases gradually while
eeping the energy loss minimum and the total remaining energy of
he network higher. However, due to increased interactions during the
nitial iterations, the energy variation distance rapidly decreases in
∕𝑜𝑠𝑜𝑐𝑖𝑎𝑙𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 and it remains less than that of 𝑤∕𝑠𝑜𝑐𝑖𝑎𝑙𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠.
herefore, we can conclude that 𝑤∕𝑠𝑜𝑐𝑖𝑎𝑙𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 method can achieve
etter performance for total network energy with trade-off over the
9

nergy variation distance. t
. Performance comparison of MoSaBa with alternative
pproaches

In this section, we present the performance evaluation of the pro-
osed MoSaBa method with the alternative approaches from the state-
f-the-art. We first explain the chosen benchmarks, and then, discussed
he results comparing with these approaches in detail.

.1. Benchmarks

To compare the performance of the proposed mobility and social-
ware energy balancing method 𝑀𝑜𝑆𝑎𝐵𝑎, we consider three state-
f-the-art methods as benchmarks—𝑀𝑜𝑏𝑖𝑊 𝐸𝐵 [16], 𝑃𝐺𝑂 [11] and
𝐹𝑇 [14]. The first benchmark 𝑀𝑜𝑏𝑖𝑊 𝐸𝐵 presents mobility-aware
nergy balancing for P2P-WPT as described by Ojha et al. [16]. In
𝑜𝑏𝑖𝑊 𝐸𝐵, the algorithm has knowledge about the user mobility and

everages this information during peer selection for P2P-WPT. The peer
election process chooses the nodes with energy closest to the target
nergy balance level first, and then selects another node which has
nergy in the other side of target optimal energy level (compared to the
irst node). Based on this criteria nodes are chosen in pairs of peers and
hey participate in energy exchange until reaching the optimal energy
evel. 𝑀𝑜𝑏𝑖𝑊 𝐸𝐵 does not take into account any social information
n its computation. The next benchmark 𝑃𝐺𝑂 refers to greedy optimal
nergy balancing algorithm presented by Dhungana et al. [11]. In 𝑃𝐺𝑂,
airs of peers are chosen such that they have energy closest to and
n opposite side of the optimal average energy. Next, each such pair
eeps exchanging energy until one of the nodes reaches the optimal
nergy level first. However, this method did not consider user mobility
nd rather selects nodes based on the energy condition only. The
hird benchmark is 𝑃𝐹𝑇 , which refers to the friend transfer protocol
epicted by Raptis et al. [14]. In this algorithm, two users exchange
nergy only in case they are social friends. In such interaction, the
sers splits their energy equally and exchanges energy until they reach
hat level. All three benchmarks consider the energy loss during P2P
xchange. For all the benchmarks, we made few adjustments to enable
air comparison with the proposed method. For example, we consider
ach P2P-WPT exchange duration bounded by the inter-node meeting
uration, which is decided randomly in the experiments. Also, in 𝑃𝐹𝑇 ,

he P2P interactions select nodes with energy value at the opposite
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Fig. 4. Performance comparison of 𝑀𝑜𝑆𝑎𝐵𝑎 with the benchmark methods (𝛽 = 0.2, 𝑚 = 100).
ide of the energy target level (not any two different energy values),
s considered in the proposed method.

We choose these three benchmarks from the state-of-the-art, so as
o cover the three different dimensions considered in our proposed
ethodology—energy (current energy of any node), mobility and so-

ial aspects. 𝑀𝑜𝑏𝑖𝑊 𝐸𝐵 considers both mobility and energy aspects,
hereas 𝑃𝐺𝑂 and 𝑃𝐹𝑇 considers the energy and social aspects respec-

ively. Thereby, we believe these three methods will provide a fair
enchmark for the evaluation of the proposed method, 𝑀𝑜𝑆𝑎𝐵𝑎.

.2. Results

In the following, we first present the results for all the methods with
00 nodes and energy loss rate 𝛽 = 0.2. Subsequently, in Section 6.2.5,
e discuss the results for all four metrics varying the number of nodes

o 125 and 150. Then, in Section 6.2.6, we discuss the results for all
our metrics with varying values of 𝛽 at 0.3 and 0.4. We also show the
ctual execution time for all the methods with respect to iterations.

.2.1. Total network energy
In Fig. 4(a), we present the results for the total network energy at

ifferent iterations. Due to the effect of energy loss, with increase in
teration the total network energy reduces. From the results, we can
ind that the total network energy in the proposed 𝑀𝑜𝑆𝑎𝐵𝑎 method
emains higher compared to all the benchmarks. This attributes that the
nergy loss in the proposed method is lowest among all the methods.
n 𝑃𝐹𝑇 , the energy loss is highest among all. This is due to the fact
hat in 𝑃𝐹𝑇 , the nodes exchanges energy with other nodes if they
riend. As a result, the nodes may engage in exchanging higher amounts
f energy, and subsequently, the energy loss also increases. On the
ther hand, in case other three methods, the energy exchange process
s regulated by selecting the nodes with energy closest and opposite
o the optimal energy level first. Due to such selection, the energy
oss value remains lower. However, compared to 𝑃𝐺𝑂, in the initial
terations (1–5), 𝑀𝑜𝑏𝑖𝑊 𝐸𝐵 has higher energy loss due to its higher
umber of P2P interactions in that duration (depicted in Fig. 4(c)). On
he other hand, in 𝑀𝑜𝑆𝑎𝐵𝑎, although the number of P2P interactions
n the initial iterations are higher, the mobility and social-aware peer
election ensures low energy loss, and thus, the total network energy
emains higher than others.

.2.2. Total energy variation distance
Fig. 4(b) depicts the results for the total energy variation distance

t different iteration. From the results it is evident that during the
nitial iterations (1–5), the energy variation distance in all the methods
ecreases rapidly according to the number of interactions in each
ethod. Both 𝑀𝑜𝑆𝑎𝐵𝑎 and 𝑀𝑜𝑏𝑖𝑊 𝐸𝐵 enable higher number of P2P

nteractions in the initial iterations. However, the energy variation
istance in 𝑀𝑜𝑆𝑎𝐵𝑎 remains higher compared to 𝑀𝑜𝑏𝑖𝑊 𝐸𝐵 only
uring the initial iterations, and finally, by the middle of the exper-
ment (iteration 15) the both the methods reach nearly equal value
f energy variation distance. For the other two methods the energy
ariation distance remains higher. Among these two methods, in 𝑃𝐹𝑇 ,

the energy variation distance value remains nearly same for most of
10
experiments (especially after iteration 10) due to nearly no interactions
between nodes in those iterations. Therefore, from these results, we can
understand that the proposed method is able to achieve a good quality
of energy balance in terms of minimizing both energy variation distance
as well as the energy loss.

6.2.3. Number of P2P meetings
In Fig. 4(c), the number of P2P interactions between the nodes in

different iterations are noted. As discussed previously, the number of
P2P interactions in the initial iterations (1–5) are very high in all the
methods. However, after that such events reduce—as some of the nodes
reach energy balance, the effective number of nodes which can be
considered as a potential peer also reduce. We note from the results that
the proposed method 𝑀𝑜𝑆𝑎𝐵𝑎 enables P2P interaction opportunity for
the users in rest of the experiment especially during iterations 5–20,
𝑀𝑜𝑆𝑎𝐵𝑎 provides higher number of P2P interactions compared to that
of the benchmarks. The number of nodes which achieve the target
energy balance level also increases rapidly in this duration. Therefore,
we can infer that our proposed method converges quickly as well as
provides better P2P-WPT opportunities.

6.2.4. Number of nodes that reach energy balance
In Fig. 4(d), we provide the number of nodes which achieve the

target energy balance level. From the results, we can find that only
in 𝑀𝑜𝑏𝑖𝑊 𝐸𝐵 and in the proposed method 𝑀𝑜𝑆𝑎𝐵𝑎, more that 50%
nodes reach energy balance within iteration 4. However, in 𝑀𝑜𝑆𝑎𝐵𝑎,
energy balance of more than 70% nodes is achieved within iteration
5. Also, the proposed method can reach highest number of nodes
reaching the energy balance level while maintaining a lower energy loss
and energy variation distance. From these facts, we can conclude that
the proposed method, 𝑀𝑜𝑆𝑎𝐵𝑎, has better quality of energy balance
among all the methods.

6.2.5. Effect of number of nodes
Here, we present the results for all the evaluation metrics varying

the values of number of nodes and discuss their effects on these metrics.
In Figs. 5(a) and 6(a), we present the results for total network energy
for 125 and 150 nodes, respectively. These results show similar patterns
of behavior among the methods as depicted for 100 nodes. However,
due to presence of increased number of nodes, the overall energy in
the network is higher. From the results, we can find that the proposed
method 𝑀𝑜𝑆𝑎𝐵𝑎 maintains the lowest values of energy loss and thus,
the total network energy in this case remains highest. With increase in
the number of nodes, the methods are able to find increased number
of P2P opportunities. As a result, in our proposed method, the energy
loss rate remains lowest among all the methods.

Figs. 5(b) and 6(b) present the results for total energy variation
distance achieved in the different methods for 125 and 150 nodes,
respectively. The results for this metric also follows similar pattern
as with 100 nodes. However, with the increase in number of nodes,
the total energy variation distance value increases for all the nodes. In
the proposed method, the comparative increase in the energy variation
distance between 100–125 to 125–150 is lower compared to rest of
the methods. Although, it is important to note that the total network
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Fig. 5. Performance comparison of 𝑀𝑜𝑆𝑎𝐵𝑎 with the benchmark methods (𝛽 = 0.2, 𝑚 = 125).
Fig. 6. Performance comparison of 𝑀𝑜𝑆𝑎𝐵𝑎 with the benchmark methods (𝛽 = 0.2, 𝑚 = 150).
Fig. 7. Performance comparison of 𝑀𝑜𝑆𝑎𝐵𝑎 with the benchmark methods (𝛽 = 0.3, 𝑚 = 100).
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nergy remains highest in the proposed method. Thus, we can argue
hat proposed method 𝑀𝑜𝑆𝑎𝐵𝑎 is better in conserving the network
nergy.

In Figs. 5(c) and 6(c), we present the number of P2P meetings
or 125 and 150 nodes, respectively. It is important to note from the
esults that the percentage of nodes engaged in P2P meetings during
he initial iterations (1–5) has increased more in the proposed method
ompared to the benchmarks. This is due to the fact that with an
ncrease in number of nodes, the proposed method is able to find more
airs of peers in the initial iterations. Therefore, we can infer that with
n increase in the number of nodes, the proposed method converges
uickly compared to the benchmarks.

Figs. 5(d) and 6(d) show the results for the number of nodes which
chieve energy balancing for 125 and 150 nodes respectively. Here, the
ercentage of nodes which reached energy balancing increases slightly
or all the methods. Similar to other metrics, in this case also, the
ncrease in potential number of peers has resulted in increased number
f nodes that achieves energy balance level. Therefore, considering
ll other results, we can infer that the proposed P2P-WPT method,
𝑜𝑆𝑎𝐵𝑎, is scalable with number of nodes.

.2.6. Effect of energy loss rate
In Figs. 7(a) and 8(a), we present the results for the total network

nergy metric for 𝛽 value of 0.3 and 0.4, respectively. With increase
n the energy loss rate, all of the methods experience higher energy
oss. However, the energy loss remains lower in the proposed method
ompared to the benchmarks, where the nodes lose energy quickly.
lso, the rate of decrease of the total network energy is highest in case
11

f 𝑃𝐹𝑇 , as in this case, the nodes engage in higher amount of energy
xchange compared to other methods, and subsequently, the energy
oss increases rapidly in this method. Both 𝑀𝑜𝑏𝑖𝑊 𝐸𝐵 and 𝑃𝐺𝑂, which
acilitate energy based peer selection, result in comparatively lower
mount of energy loss than 𝑃𝐹𝑇 . However, in case of the proposed
ethod, 𝑀𝑜𝑆𝑎𝐵𝑎, the energy loss remains lowest due to incorporating

oth energy and location/social-aware decision making.
Figs. 7(b) and 8(b) shows the results for the total energy variation

istance for 𝛽 value of 0.3 and 0.4, respectively. With increase in the
nergy loss rate, the difference in energy variation distance between
he methods reduces. We can also notice that the initial iterations (1–
) show comparatively less decrease in the variation distance. This
s due to the fact that higher rate of energy loss has increased the
ndividual energy variation distance or the nodes reach the desired
alue of energy balance with increased number of iteration. Therefore,
s expected, higher loss affects the energy balancing process by having
igher energy variation between nodes and thereby delaying the energy
alance process.

In Figs. 7(c) and 8(c), we present the results for the number of P2P
eetings in case of 𝛽 value of 0.3 and 0.4, respectively. The number

f P2P interactions enabled by the different methods significantly in
he initial iterations (1–5) and also reduces slightly during the early to
iddle iterations (5–15). Thus, the results for this metric also suggests

he slower progress of energy balancing process.
Figs. 7(d) and 8(d) shows the results for number of nodes that reach

he energy balancing level for 𝛽 value of 0.3 and 0.4, respectively.
he increase of energy loss rate affects the number of nodes that
chieve energy balancing for all the methods. However, as the proposed
ethod 𝑀𝑜𝑆𝑎𝐵𝑎 is able to find comparatively higher number of P2P
opportunities (and also for more prolonged period), the number of
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Fig. 8. Performance comparison of 𝑀𝑜𝑆𝑎𝐵𝑎 with the benchmark methods (𝛽 = 0.4, 𝑚 = 100).
Fig. 9. Comparison of execution time for all the methods (𝛽 = 0.2).

odes achieving energy balance remains significantly higher compared
o the benchmarks. However, with increase of energy loss rate, the
nergy variation distance also increases (although the difference be-
omes less in initial iterations rather than in later iterations). Therefore,
e can infer that the proposed method can provide comparatively
etter quality of energy balancing for increased energy loss rate, with
erformance trade-off in energy variation distance.

.2.7. Execution time
In Figs. 9(a) and 9(b), we show the actual CPU execution time

n each iteration of the simulation for the proposed and benchmark
ethods. From the results, it is evident that the execution time remains
igher in the early iterations (1–5) for all the methods. This is due to the
act that most of the P2P meetings happen in those iterations leading
o higher value of execution time. Consequently, the execution time re-
uces in the later iterations (6–30) with the reduction of P2P meetings.
lso, both 𝑀𝑜𝑆𝑎𝐵𝑎 and 𝑀𝑜𝑏𝑖𝑊 𝐸𝐵 results in higher execution time
ompared to 𝑃𝐺𝑂 and 𝑃𝐹𝑇 . Such behavior is attributed to the higher
umber of P2P meetings executed in both 𝑀𝑜𝑆𝑎𝐵𝑎 and 𝑀𝑜𝑏𝑖𝑊 𝐸𝐵
ompared to the other two methods. Similarly, with the increase of
he number of nodes from 100 to 150, the execution times for all the
ethods increase with higher number of P2P meetings. Therefore, we

an infer that the execution time is correlated with the number of P2P
eetings in each iteration.

From the results of execution time, we see that the average decision
elay in the busiest iterations, i.e., in iterations 1–5 when most of the
2P meetings are performed, is < 1 ms only. For a large set of nodes,

there might be cases where multiple nodes are with same energy level—
i.e., more than one node with energy closest to as well as belongs in
the same side of 𝐸

∗
. In such cases, we need to prioritize any one among

hese nodes (for simplicity, we can choose first occurring node), and the
ther nodes (having same energy level) will experience a decision delay
f < 1 ms only. Therefore, in the current scenario and given conditions,
e can apply the proposed heuristic for scenarios with high number of
odes.

. Conclusion

In this paper, we present a wireless crowd charging method, named
oSaBa, by exploiting the mobility information and social relations
12
of the users. In contrast to the existing literature, we also consider
more fine-grained and realistic assumption in the underlying P2P-WPT
process. In MoSaBa, the mobility prediction for the users is performed
by using the Markov predictor. Thereafter, we quantify and compute
the impact of social contexts as well as social relations on the peer
selection process. Based on these information, we explore different
pairs of peers for energy exchange such that the crowd achieves en-
ergy balance faster while maintaining an overall low energy loss.
Simulation-based results show that the energy balance quality improves
in the proposed method—due to low energy loss, the overall energy
of the crowd after energy balancing remains higher. Compared to the
existing works, in MoSaBa, more number of users successfully achieve
the desired energy balance level. Also, the proposed method has faster
convergence compared to the benchmarks. Therefore, we can conclude
that the proposed method is able to achieve performance trade-offs
between energy-efficiency, energy balance quality and convergence
time. In future, we plan to extend the proposed method in a real-world
application with heterogeneous devices. We also plan to incorporate
more additional energy loss for the users (due to different activities
e.g. mobility, communication) and maintain more fine-grained energy
expenses.
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