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Abstract

The development of kinetic energy (KE) functionals is one of the current challenges

in density functional theory (DFT). The Yukawa non-local KE functionals [Phys. Rev.

B 103, 155127 (2021)] have been shown to describe accurately the Lindhard

response of the homogeneous electron gas (HEG) directly in the real space, without

any step in the reciprocal space. However, the Yukawa kernel employs an exponen-

tial function which cannot be efficiently represented in conventional Gaussian-based

quantum chemistry codes. Here, we present an expansion of the Yukawa kernel in

Gaussian functions. We show that for the HEG this expansion is independent of the

electronic density, and that for general finite systems the accuracy can be easily

tuned. Finally, we present results for atomistic sodium clusters of different sizes,

showing that simple Yukawa functionals can give superior accuracy as compared to

semilocal functionals.
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1 | INTRODUCTION

Kohn-Sham (KS) Density Functional Theory (DFT) is one of the most used approaches for the calculation of the electronic properties of quantum

systems [1–4]. The accuracy of KS-DFT is directly related to the approximations made for the exchange-correlation (XC) functional and hundreds

of different XC functionals have been developed [5–7]. A linear-scaling alternative to KS-DFT is the Orbital-Free (OF) DFT [8–10], for which

different implementations have been made available recently [11–16].

In OF-DFT the main quantity to be approximated is, instead of XC, the non-interacting kinetic energy (KE) functional

Ts ¼1
2

X
iσ

ð
jrϕiσðrÞj2d3r¼ Ts½n�, ð1Þ

where i indicates occupied orbitals and σ is a spin–index. The KE is known exactly in terms of KS orbitals, which are not available in OF-DFT: thus,

one of the biggest challenges in DFT [17,18] is the definition of Ts in terms of the electronic density n. Note that the KE functional is also a core

quantity in related approaches, such as density-embedding [19,20] and quantum-hydrodynamic theory [21–25]. Current approximations to Ts½n�
are based on (i) semilocal functionals [26–36] and on (ii) non-local functionals with a Lindhard kernel [37–50].
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Semilocal functionals display an explicit dependence on the real space quantities (n,rn, r2n, …) and can be efficiently applied to both finite

and periodic systems. Note that finding accurate analytical expressions for semilocal functionals can be very cumbersome: thus, recently,

machine-learning techniques have been largely used for this task [51–55]. Despite recent progresses [33], the overall accuracy is quite limited,

especially for molecular systems.

Non-local functionals are more accurate but are necessarily defined in the reciprocal space, as no analytical expression nor simple numerical

treatment exists for the Lindhard function in the real space [38,56–59]. Despite recent advances [49,60], calculations of isolated systems have to

be performed in the periodic space with the use of a large supercell approach (to avoid interactions of periodic replicas).

Thus, both classes of functionals have positive and negative features. Recently, we have introduced a new class of KE functionals, named

Yukawa-Generalized Gradient Approximation (yGGA), with the following general form [61,62]:

TyGGA
s ¼

ð
τTFðrÞFs½pðrÞ,qðrÞ,yαðrÞ�d3r, ð2Þ

where τTFðrÞ¼ ð3=10ÞnðrÞkFðrÞ2 [with kFðrÞ¼ ð3π2nðrÞÞ1=3 and nðrÞ being the Fermi wave vector and the electron density, respectively] is the

Thomas-Fermi (TF) kinetic energy density (KED), Fs is the enhancement factor, p¼ jrnj2=ð4k2Fn2Þ is the reduced gradient, q¼r2n=ð4k2FnÞ is the

reduced Laplacian, and

yαðrÞ¼
3πα2

4kFðrÞuαðrÞ with uαðrÞ¼
ð
nðr0Þe�αkFðrÞjr�r0 j

jr� r0j dr0 ð3Þ

is the reduced Yukawa potential (with α being a parameter). The reduced Yukawa potential is a novel and useful input quantity for the construc-

tion of advanced kinetic functionals. In fact, it possesses several useful properties [61]: (i) it is a local quantity but it entails non local-features;

(ii) it is positive, adimensional, and invariant under the uniform scaling of the density [63]; (iii) it shows a well-defined system-size dependence, in

contrast to other semilocal indicators, hence it is a good quantity to add additional information into semilocal functionals (see a more detailed dis-

cussion in [61]). The inclusion of a normalized non-local indicator to extend the applicability of Generalized Gradient Approximation (GGA) func-

tionals has been also recently tested for the development of machine-learned XC functionals [64].

A key point of the reduced Yukawa potential yα is that it yields a non-linear contribution to the linear response function of the HEG, so that

the Lindhard function can be well reproduced [61,62]. This is a fundamental improvement with respect to conventional KE functionals based only

on semilocal ingredients (such as p and q), which yield an incorrect polynomial linear response function [36,61,62].

Actually, only a few yGGA kinetic functionals have been proposed using the linear ansatz

Fsðp,q,yαÞ¼
5
3
pþyαGðp,qÞ, ð4Þ

where 5
3p is the von Weizsäcker (vW) KE enhancement factor. Among these we mention the yuk3 and yuk4 functionals [61] which are defined by

α¼1:3629 and

Gðp,qÞ ¼GðxÞ¼ T4ðxÞ, yuk3 ð5Þ

Gðp,qÞ ¼ T3:3 �40p=27ð ÞT2 40q=27ð Þ, yuk4 ð6Þ

where

TaðxÞ ¼ 4eax

aðeaxþ1Þþ
a�2
a

, ð7Þ

x ¼40ðq�pÞ=27: ð8Þ

The a parameter for the yuk3 (a¼4) and yuk4 (a¼3:3 and 2) functionals have been optimized on jellium clusters [61]. Current applications of

yGGA functionals are limited to spherical systems, where Equation (3) can be easily computed. Very recently, applications to extended systems

have been presented [16]. The calculation of the integral in Equation (3) is not straightforward in quantum chemistry codes, which make use of a

Gaussian basis set for the representation of the electronic density: in fact, the integral is not analytical and thus needs to be evaluated numerically,

which is computationally expensive. Instead, the following integral
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VðrÞ¼
ð
gaðr0Þgbðr0Þ

e�aðrÞjr�r0j2

jr� r0j dr0, ð9Þ

where ga and gb are Gaussian basis functions, can be evaluated analytically and thus quite efficiently. The integral in Equation (9) is just the

(Gaussian) screened electrostatic potential generated at point r by the charge distribution described by the basis set product gagb. Similar integrals

are present in hybrid functionals with local range separation [65] or in molecular mechanics with generalized interaction [66].

The simple substitution in Equation (3) of the exponential term with a Gaussian one is, however, not a feasible solution because the use of

the Gaussian screening in place of the exponential one would alter the linear response properties of the functional, thus making a whole redefini-

tion of the KE functional necessary. For this reason, in this work, we explore a different path and we consider a Gaussian expansion of the original

Yukawa kernel in order to preserve the original formulation of the functional and, at the same time, benefit from the computational efficiency of

the Gaussian functions.

The aim of this work is to provide a first step towards the application of yGGA functionals in Gaussian-based quantum chemistry codes by

developing an efficient computational scheme for the calculation of yα within a Gaussian basis set. We will not consider here instead the develop-

ment of more advanced yGGA functional forms able to treat inhomogeneous systems such as (all-electron) atoms and molecules, leaving this topic

for a future work. Thus, we will limit our testing to jellium spheres and sodium clusters (with pseudopotentials) which constitute a proper working

framework for the actually available yGGA functionals. This choice is by no means limiting the validity of the results on the accuracy of the devel-

oped approximation. As a final note, we remark that for the evaluation of the KE potential of yGGA functionals, additional integrals are required

[61]. The evaluation of those integrals in a Gaussian basis set requires different routines or automatic differentiation techniques [16,67]. In this

work, we will limit our attention to the evaluation of the KE total energies and kinetic energy density.

2 | GAUSSIAN EXPANSION OF THE YUKAWA KERNEL

We consider the following Gaussian expansion of the Yukawa kernel:

e�ωkFðrÞjr�r0j

jr� r0j ’
XM
p¼1

cp
e�ωpk

2
F ðrÞjr�r0j2

jr� r0j , ð10Þ

where ω is a positive parameter (i.e., the analogous of α in Equation 3), whereas ωp and cp are coefficients to be optimized by minimization of the

quantity

Eðfωpg,fcpg;rÞ¼
ð

e�ωkFðrÞjr�r0j

jr� r0j �
XM
p¼1

cp
e�ωpk

2
F ðrÞjr�r0j2

jr� r0j

 !2

dr0: ð11Þ

It is straightforward to show (see Appendix A) that

Eðfωpg,fcpg;rÞ¼ 2π
kFðrÞFðfωpg,fcpgÞ, ð12Þ

where

Fðfωpg,fcpgÞ¼ 1
ω
þ ffiffiffi

π
p XM

p,q¼1

cpApqcq�2
ffiffiffi
π

p XM
p¼1

cpbp, ð13Þ

with

Apq ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωpþωq

p , ð14Þ
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bp ¼ eω
2=ð4ωpÞ 1ffiffiffiffiffiffi

ωp
p 1�erf

ω

2
ffiffiffiffiffiffi
ωp

p
 !" #

: ð15Þ

Therefore, we can neglect the shape factor 2π=kF and focus on the factor Fðfωpg,fcpgÞ. Because the latter is independent of the position and

the density, the minimization will result in a universal approximation of the Yukawa kernel (within the chosen Gaussian expansion space). Such an

optimization for the kernel is equivalent to optimizing yαðrÞ for a uniform electronic density, that is, for the HEG. Note that these two important

properties are strictly related to the choice of including the denominator jr� r0j into the minimization (see Equation 10).

To minimize Fðfωpg,fcpgÞ, we consider in the first step its variation with respect to the coefficients cp, setting it equal to zero. Then, we read-

ily obtain the equation

X
q¼1

Apqcq ¼ bp: ð16Þ

The F function at the optimized fcpg coefficients is thus

FðfωpgÞ¼ 1
ω
� ffiffiffi

π
p XM

p,q¼1

bpA
�1
pq bq, ð17Þ

i.e. a non-linear function of fωpg only.

To minimize FðfωpÞg we employ the following strategy. We define a set of M ωp parameters that form a geometric series [68] within the

interval [ωmin,ωmax]. Using this set the value of F depends only on two parameters, ωmin and ωmax. We then minimize F by scanning over a wide

range of ωmin and ωmax values. After this accomplishment we have a quasi-optimal set of ωp (distributed in a geometric series between the opti-

mized ωmin and ωmax). In a final step we use this quasi-optimal set as a starting point for a further multivariate minimization of FðωpÞ where now all

the ωp parameters are free to vary.

The results of the minimization of F for different values of M are reported in Figure 1. Note that in this study we only consider the fixed value

α¼1:3629 as in the yuk3 and yuk4 functionals; other values of the α parameter could be easily considered in a similar manner but they are not

investigated in this work. The plot shows that the accuracy of the approximation increases quite fast (exponentially) with the number of Gauss-

ians, whereas its cost scales only linearly. However, for relatively large values of M (M≥10), numerical errors occur in the solution of the linear

system in Equation (16), as the matrix A has a very large condition number, and the improvement is only marginal.

Thus, from a pragmatic point of view we can select three levels of approximation with increasing computational cost: loose (F≈10�4, M¼3),

medium (F≈10�6, M¼6), and high (F≈10�8, M¼9). The corresponding values of ωp and cp are reported in Table 1.

To benchmark the effectiveness of the approximations we consider the values of several indicators computed for the three model spherical

one-electron densities [69]

2 4 6 8 10 12
M

1e-08

1e-06

0.0001

0.01

F

F IGURE 1 Values of F for different numbersM of Gaussians.
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nHðrÞ¼ e�2r

π
, nGðrÞ¼ e�r2ffiffiffi

π
p 3

, nCðrÞ¼ ð1þ rÞe�r

32π
, ð18Þ

which are models for atomic, molecular and solid-state densities. The indicators are designed to assess the effect of the approximation

ΔyαðrÞ¼ yGα ðrÞ�yαðrÞ, where yGα ðrÞ denotes the quantity yα computed using the Gaussian approximation for the Yukawa potential. For any linear

yGGA functional with general form

TyGGA
s ¼ TvW þ

ð
τTF ½n�ðrÞyα½n�ðrÞGðp,qÞdr, ð19Þ

where TvW ¼5p=3, the error induced by Δyα is

ΔTyGGA
s ¼

ð
τTFðrÞGðp,qÞΔyαðrÞdr: ð20Þ

Hence, we consider the two indicators corresponding to Gðp,qÞ¼1 and Gðp,qÞ¼Gyuk3ðp,qÞ. That is

ϵ �
ð
τTFðrÞΔyαðrÞdr, ð21Þ

ζ �
ð
τTFðrÞGyuk3ðp,qÞΔyαðrÞdr: ð22Þ

The indicator ϵ is not only a measure of the error for the simplest linear yGGA, but provides also an indication of the density weighted error

on Δyα.

The values of the indicators for the three model densities at the various levels of approximation are reported in Table 2 together with the

corresponding values of TyGGA
s , for comparison. The space profile of the corresponding integrands are shown in Figure 2.

These numbers confirm that, at different density regimes, the expected errors are quite small already with the lightest approximation (M¼3Þ
and become very small for larger values of M.

3 | COMPUTATIONAL DETAILS AND IMPLEMENTATION

To test the Gaussian approximation of the Yukawa potential, we have implemented it into the in-house code jkinplot, which is able to handle

systems with radial symmetry. Thus, we could compute both the exact and the approximate Yukawa contributions for several jellium spheres and

the sodium atom (see Appendix B for details) as well as various kinetic approximations. We used the same setup as in [61] for these calculations.

TABLE 1 Optimized values of the ωp and cp parameters for different values of M (i.e., the number of Gaussians).

M¼3 M¼6 M¼9

ωp cp ωp cp ωp cp

0.3450 0.27663 0.1891 0.08688 0.1369 0.03314

2.0803 0.43380 0.6077 0.27877 0.3450 0.16366

25.1512 0.24289 2.2002 0.28762 0.9311 0.24504

9.6803 0.18982 2.6728 0.21743

58.6704 0.10168 8.4791 0.15181

712.5598 0.04648 30.7659 0.09372

135.5610 0.05306

822.0016 0.02737

9984.8049 0.01242

SARCINELLA ET AL. 5 of 14

 1097461x, 2023, 19, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/qua.27188 by C

nr R
om

a, W
iley O

nline L
ibrary on [09/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



To test more realistic systems, that is, sodium clusters, we implemented the Gaussian approximation of the Yukawa potential into the locally

modified version of ACESII [70] quantum chemistry code. The integrals have been realized according to [66] (see Sec. F1 in Supporting informa-

tion file) and implemented in the plot module program.

The sodium clusters geometries were taken from [71] and reoptimized using the def2-TZVP basis set and the Local Density Approximation

(LDA) exchange-correlation functional. All calculations employed the LANL08 basis set with the corresponding effective core potential (ECP) [72]

so we finally have one electron per Na atom. A simple cubic Cartesian grid, enclosing the cluster, such that the electron density on all the cube

facets is below the threshold 10�6 a.u., has been employed. We chose a grid step of 0.5 bohr, which is sufficient to grant converged kinetic ener-

gies up to 1e-3 Ha, because of the absence of core electrons and the metallic character of the sodium clusters considered.

The yGGA functionals are compared to different local and semilocal kinetic functionals, such as the LDA TF functional, the functionals

employing the full vW term, that is, TFvW, PGS [47], PG1 [47], VT84f [30], the gradient expansions GE2 and GE4, and one functional based on

the asymptotic expansion of the semiclassical neutral atom, revAPBEk [29].

4 | RESULTS

In this section, we consider several results where the Gaussian approximation of the Yukawa potential has been used to generate the yα ingredi-

ent and compute yuk3 and yuk4 kinetic energies. Initially, we consider jellium spheres, where the Yukawa potential can also be computed exactly,

due to the spherical symmetry. Thus, we can accurately benchmark our approximation. Then, we consider a set of sodium clusters that can only

be simulated using the Gaussian approximation proposed in this paper.

TABLE 2 Values of the indicators ϵ (Equation 21) and ζ (Equation 22) for the three model densities of Equation (18).

Density Indicator
M

TyGGA
s

3 6 9

H ϵ �1.851E-3 �3.199E-5 2.454E-7 1.75541

ζ �9.314E-4 �1.608E-5 1.267E-7 0.88538

G ϵ 1.899E-3 �1.572E-5 2.133E-6 2.61056

ζ 9.690E-4 �8.103E-6 1.099E-6 1.33851

C ϵ �1.308E-4 �9.477E-7 2.721E-7 0.26283

ζ �6.589E-5 �4.748E-7 1.377E-7 0.13270

Note: The last column reports the yGGA kinetic energies (in Ha) obtained from Equations (21) and (22) by using the full yα in place of Δyα.

1e-12

1e-09

1e-06

1e-03
H

1e-12

1e-09

1e-06

1e-03
G

|τT
F
∆y

α| [
a.

u.
]

M=3
M=6
M=9

0 1 2 3 4 5 6 7 8
r [a.u.]

1e-12

1e-09

1e-06

1e-03
C

F IGURE 2 Integrand of the indicator ϵ (Equation 21) for the three model densities H, G, and C.
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4.1 | Jellium spheres

Table 3 reports the kinetic energy computed with the yuk3 kinetic functional for various jellium spheres together with the errors on this quantity

obtained employing the Gaussian approximation with M¼3,6,9 Gaussians, respectively. Inspecting the data, we see that the errors induced by

the Gaussian approximation are quite significant when only M¼3 Gaussians are employed, but they immediately drop to much smaller values for

M¼6 and especially M¼9. In fact, the mean absolute error (MAE) due to the introduction of the Gaussian approximation is, for M¼6, about four

times smaller than the intrinsic MAE of the yuk3 functional (i.e., the mean difference jEyuk3�EKSj); when M¼9 Gaussians are used, the error of

the approximation is one order of magnitude smaller than the intrinsic one. Similar considerations apply also for the mean absolute relative

error (MARE).

The performance of the Gaussian approximation can be further analyzed by considering its behavior for the individual systems. In this case

we find that the inaccuracies grow slightly with the number of electrons as well as for smaller values of the Wigner-Seitz parameter rs (i.e., for

larger densities). The increase is, however, quite limited such that even the worst-behaving system, the jellium sphere with 438 electrons and

rs ¼2, displays an error of only 0.07 (0.47) Ha for the approximation with M¼9 (M¼6) Gaussians. This must be compared with the intrinsic accu-

racy of the yuk3 for this case, that is 1.45 Ha.

TABLE 3 Kinetic energy (Ha) for jellium clusters of different sizes (N = 40, 92, 138, 254, 438) and Wigner-Seitz radii (rs = 2, 3, 4, 5, 6),
obtained with KS calculation (EKS) and according to the kinetic functional yuk3 (Eyuk3).

N, rs EKS Eyuk3 M¼3 M¼6 M¼9

40, 2 8.834 8.705 0.246 0.018 0.002

40, 3 4.255 4.201 0.114 0.008 0.001

40, 4 2.529 2.502 0.065 0.005 0.001

40, 5 1.690 1.676 0.042 0.003 0.000

40, 6 1.217 1.211 0.030 0.002 0.000

92, 2 21.979 21.578 0.739 0.065 0.009

92, 3 10.282 10.152 0.334 0.029 0.004

92, 4 5.990 5.943 0.190 0.017 0.002

92, 5 3.941 3.928 0.122 0.011 0.001

92, 6 2.802 2.804 0.085 0.007 0.001

138, 2 33.420 32.878 1.221 0.113 0.016

138, 3 15.545 15.331 0.549 0.051 0.007

138, 4 9.025 8.926 0.311 0.029 0.004

138, 5 5.924 5.875 0.200 0.018 0.003

138, 6 4.204 4.181 0.139 0.013 0.002

254, 2 63.491 62.429 2.513 0.246 0.036

254, 3 29.214 28.797 1.124 0.110 0.016

254, 4 16.839 16.642 0.634 0.062 0.009

254, 5 10.990 10.890 0.406 0.040 0.006

254, 6 7.762 7.711 0.282 0.028 0.004

438, 2 110.857 109.405 4.678 0.474 0.072

438, 3 50.773 50.112 2.086 0.211 0.032

438, 4 29.175 28.825 1.175 0.119 0.018

438, 5 18.994 18.794 0.752 0.076 0.011

438, 6 13.387 13.267 0.523 0.053 0.008

MAE 0.254 0.742 0.072 0.011

MARE (%) 1.06 3.45 0.32 0.04

Note: The columns on the right contain the errors between Eyuk3 and the kinetic energies computed with yuk3, but employing the Gaussian expansion, for

three different numbers of Gaussian function (M¼3,6,9). The last lines report the mean absolute error (MAE) and mean absolute relative error (MARE) for

yuk3 with respect to KS as well as the MAE and MARE of the various approximations with respect to the "exact" yuk3 (Eyuk3).
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The fact that the errors grow slightly for systems with larger densities may seem counter-intuitive with what one could expect from

Equation (12), which includes a shape factor 2π=kF (i.e., the error on the bare Yukawa approximation grows for smaller densities). However, we

need to recall (see Equations 21 and 22) that the error induced in the kinetic functional is of the order of τTFyα, thus it changes as τ
TF=kF ≈ n4=3.

This behavior is confirmed by the data plotted in Figure 3. For this reason the regions with small density tend to contribute less to the functionals

inaccuracies and overall the errors compensate such that, in fact, they finally grow linearly with the number of electrons, but with a very small pre-

factor (about 2e-4 for M¼9 and about 1e-3 for M¼6).

4.2 | Sodium clusters

The results for jellium clusters, reported in the previous subsection, indicate that the Gaussian approximation of the Yukawa potential may be suf-

ficiently accurate to allow yGGA calculations in diverse systems. Thus, we are now in the position of being able to test yGGA kinetic functionals

on atomistic systems beyond spherical symmetry. This is what we attempt in this section, where we employ this approximation to compute the

kinetic energies of various sodium clusters. However, the currently available yGGA functionals have not been developed to treat the density cusp

present at the core of the atoms. Thus, we will focus on the valence electrons only using ECPs in our calculations. In particular, for the sodium

atom we will use just one valence electron.

As a preliminary test, we thus consider a single sodium atom, and in Figure 4, we report the density, the screened Yukawa potential (used in

the yuk3 functional) and errors due to the Gaussian expansions.
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The plot shows that, although the density shape is rather different from the jellium one considered so far, the error induced by the Gaussian

approximation is very small, especially when M¼9 Gaussians are used to expand the Yukawa kernel.

Here, it is also worth to note that the yuk3 functional is quite accurate in reproducing the KE of the sodium atom, as shown in Figure 5, where

we report the kinetic energy density for different functionals. In this case (just one electron) the exact KS corresponds to the vW functional. Thus,

functionals without the full vW term (i.e., TF and GE2) are quite inaccurate. In particular, large differences among functionals are related to the

description of the density peak at r¼2:7 a.u., where p is vanishing and q is negative. GE2 and PGS simply recover TF at this point, as p¼0 at the

peak. Instead yuk3 gives a very small value, as both G and yα are less than 1, see Figure 5b. In particular, G is less than 1 because q is negative,

and thus x (see Equation 8) is negative, whereas yα is less than 1 as it includes a system-size dependence [61]. Thus the term yαG in the yuk3 func-

tional, see Equations (4) and (5), is very small for this one electron system.

Then, we report in Table 4 the kinetic energy errors of various functionals, ranging from LDA to yGGA, for several sodium clusters. The data

show that yGGAs, especially yuk3, are quite accurate for sodium clusters, being competitive and slightly better than the best meta-GGAs, twice

as better than most GGAs (e.g., GE2) and more than three times better than GE4 and TF. These are quite encouraging results for further develop-

ment of the yGGA functionals. Note that the yuk3 has no empirical parameter fitted on atomic systems.

The good performance of yuk3 can be traced back to its superior ability to describe the valence region of the sodium atoms. This is illustrated

in Figure 6b) where the yuk3 kinetic energy density is compared to the exact KS one and to other conventional functionals. All functionals reduce
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F IGURE 5 Sodium atom with ECP: (a) spherical averaged kinetic energy density for different functionals, (b) values of the indicators p, q, yα
and the function G, see Equation (5). In the core and in the tail the density vanishes, thus p, q, yα diverge.

TABLE 4 Absolute values of the relative errors, in percent, for the kinetic energies, according to different kinetic functionals, for sodium
clusters with different number of atoms N.

N 16 20 24 30 34 40 Avg

TF 23.88 21.99 21.90 21.12 20.63 20.18 21.62

TFvW 27.51 24.95 23.78 22.46 21.78 20.40 23.48

GE2 18.17 16.78 16.83 16.28 15.92 15.68 16.61

GE4 25.82 19.49 23.39 23.09 19.89 19.08 21.79

yuk1 12.89 15.67 16.72 18.11 18.84 20.13 17.06

yuk3 4.50 6.18 7.12 7.80 8.16 8.62 7.06

yuk4 7.91 8.90 9.66 10.19 10.38 10.84 9.65

PGS 9.55 8.84 7.88 7.28 6.94 6.26 7.79

PG1 13.35 12.24 11.27 10.53 10.14 9.31 11.14

VT84f 20.90 19.04 17.93 16.83 16.26 15.06 17.67

revAPBEk 19.10 17.68 17.68 17.10 16.72 16.45 17.45

Note: The last column contains the average value for each cluster. The best result for each column is highlighted in bold.
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to almost the same value at the atomic core, where the density and the gradient are vanishing (due to the ECPs). Near the core, TF and GE2 fail

to reproduce the first large oscillation, which is instead reproduced by PGS and yuk3, as also shown in Figure 5. Another important region is the

main density peak at about r¼�6:5 a.u. Here p¼0 and thus TF, GE2, PGS all give the same τ, which is however much larger than the exact KS

one, which is instead well reproduced by the yuk3 functional. At r¼�6:5 a.u. we have that both yα and the functional G are less than one (see

Figure 6c), thus the correct KED, smaller than the TF one, is obtained. Overall, the yuk3 curve nicely follows all the peaks of the exact KS: this is

not the case for PGS, which nevertheless gives accurate (due to error balancing) total energies.

Finally, we recall that the KED is not uniquely defined: for example a term linear in q can be added, without changing the total energy. Despite

better KED can be obtained adding a Laplacian term [73–75], the overall KED might not be always positive. Thus, in Figures 4 and 6 we have

compared the positive definite KED, which is well defined.

5 | CONCLUSIONS

In this work, we have shown how to perform KE calculations with Yukawa based functionals in conventional Gaussian-based quantum chemistry

codes. We show that the Yukawa kernel can be expanded in Gaussian functions, with universal (i.e., independent of the density) coefficients and

exponents. With M¼9 Gaussians the Yukawa potential can be reproduced with negligible errors as compared to reference calculations, for differ-

ent systems (one-electron density, jellium clusters, sodium atom).

We then tested the yuk3 functional on sodium clusters, using pseudopotentials, as the yuk3 functional cannot reproduce the electronic cusp

correctly. The results for the yuk3 functional show a non-trivial high accuracy for total kinetic energy. We found that the non-locality and the

size-extensivity of the yα ingredient plays a key role in this context. Considering that the yuk3 functional does not include any empirical parameter

fitted on atomic systems and it represents only the simplest form (a linear one) of yGGA functional, a significant improvement can be expected

for more sophisticated yGGA functionals.
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APPENDIX A: DERIVATION OF EQUATION (12)

We apply to Equation (11) the variable substitution r� r0 ¼ x to obtain

E¼
ð

e�ωkFðrÞjxj

jxj �
XM
p¼1

cp
e�ωpk

2
F ðrÞjxj2

jxj

 !2

dx ðA1Þ
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Hence,

E ¼4π
ð∞
0

e�ωkFðrÞx�PM
p¼1

cpe�ωpk
2
F ðrÞx2

 !2

dx

¼4π
ð∞
0
e�2ωkFðrÞx dx|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

I

2
6664

þ
ð∞
0

XM
p¼1

cpe
�ωpk

2
F ðrÞx2

 !2

dx

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
II

�2
XM
p¼1

cp

ð∞
0
e�ωpk

2
F ðrÞx2�ωkFðrÞx

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
III

dx

3
77775:

ðA2Þ

We now solve the three terms I, II, and III:

I¼
ð∞
0
e�2ωkFðrÞx dx¼ 1

2ωkFðrÞ , ðA3Þ

II ¼
ð∞
0

PM
p¼1

cpe�ωpk
2
F ðrÞx2

 !2

dx

¼PM
p

PM
q

ð∞
0
cpcqe�ðωpþωqÞk2F ðrÞx2 dx

¼
ffiffiffi
π

p
kFðrÞ

XM
p

XM
q

cpcqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωpþωq

p ,

ðA4Þ

III ¼�2
PM
p¼1

cp

ð∞
0
e�ωpk

2
F ðrÞx2�ωkFðrÞxdx

¼�
ffiffiffi
π

p
kFðrÞ

XM
p¼1

cp
eω

2=ð4ωpÞffiffiffiffiffiffi
ωp

p 1�erf
ω

2
ffiffiffiffiffiffi
ωp

p
 !" #

:

ðA5Þ

Putting all the terms together we finally obtain Equation (12).

APPENDIX B: GAUSSIAN SCREENED COULOMB INTEGRALS IN SPHERICAL SYMMETRY

The integrals containing the Yukawa kernel can be easily computed numerically for spherical systems. For conventional integrals with the expo-

nential screening, see app. B of [61].

For integrals in which the Gaussian kernel appears, the computation for systems with radial symmetry is also straightforward. Let us consider

two spherically-symmetric functions fðrÞ and aðrÞ and study the integral

h½a�ðrÞ¼
ð
fðr0Þe�aðrÞjr�r0j2

jr� r0j dr0: ðB1Þ

Later we can set aðrÞ¼ωkFðrÞ2. The spherical symmetry allows us to compute the integral on the z-axis alone:

h½a�ðrÞ ¼
ð∞
0

ðπ
0
2πr02 sinðθÞfðr0Þ

� e�aðrÞðr02þr2�2r0rcosðθÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr02þ r2�2r0rcosðθÞÞ

q dr0 dθ:
ðB2Þ
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We can use the substitution aðrÞ½r02þ r2�2r0rcosðθÞ� ¼ t2 and rewrite the integral over θ as

2πfðr0Þr0ffiffiffiffiffiffiffiffi
aðrÞp

r0

ðkþ
0
e�t2 dt�

ðk�
0
e�t2 dt

� �

¼ π3=2fðr0Þr0ffiffiffiffiffiffiffiffi
aðrÞp

r
erf kþð Þ�erf k�ð Þ½ �,

ðB3Þ

where we used the symbols kþ ¼ ffiffiffiffiffiffiffiffi
aðrÞp ðr0 þ rÞ and k� ¼ ffiffiffiffiffiffiffiffi

aðrÞp jr0 � rj. Finally, we write the integral as

h½a�ðrÞ¼ π3=2ffiffiffiffiffiffiffiffi
aðrÞp

r

ð∞
0
r0fðr0Þ erf kþð Þ�erf k�ð Þ½ � dr0: ðB4Þ

We can calculate this expression at r¼0 (using the Taylor expansion of the error function):

h½a�ð0Þ¼4π
ð∞
0
r0fðr0Þe�að0Þr02 dr0: ðB5Þ
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