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The statistical properties of turbulent flows are fundamentally different from those of systems
at equilibrium due to the presence of an energy flux from the scales of injection to those where
energy is dissipated by the viscous forces: a scenario dubbed “direct energy cascade”. From a
statistical mechanics point of view, the cascade picture prevents the existence of detailed balance,
which holds at equilibrium, e.g. in the inviscid and unforced case. Here, we aim at characterizing
the non-equilibrium properties of turbulent cascades in a shell model of turbulence by studying
an asymmetric time-correlation function and the relaxation behavior of an energy perturbation,
measured at scales smaller or larger than the perturbed one. We shall contrast the behavior of
these two observables in both non-equilibrium (forced and dissipated) and equilibrium (inviscid and
unforced) cases. Finally, we shall show that equilibrium and non-equilibrium physics coexist in the
same system, namely at scales larger and smaller, respectively, of the forcing scale.

I. INTRODUCTION

Understanding non-equilibrium systems is one of the
most challenging open problem of modern statistical me-
chanics [1, 2]. A key aspect of non equilibrium phenom-
ena is the presence of currents induced by some external
constraints, which entail the breaking of detailed bal-
ance and, consequently, of the time-reversal symmetry,
or, equivalently, imply the positivity of entropy produc-
tion [3–5]. Measuring entropy production is not an easy
task as it requires to measure the log-ratio between the
probability of a long trajectory of the system and that of
its time reversed [6]. This is feasible in relatively simple
Markov models but it is hard in general non-equilibrium
systems. However, non-equilibrium properties can be in-
ferred by other means: suitable asymmetric time correla-
tion functions can be constructed to unmask the breaking
of time reversal symmetry providing a proxy for the de-
parture from equilibrium [7–9]. Looking at the time evo-
lution of response functions, which describe how some
system variables relax to their statistically steady state
after a perturbation on the same or different degrees of
freedom, can reveal aspects of the asymmetries between
degrees of freedom induced by the presence of currents
[10–12].
Fluid flows maintained by an external supply of ki-

netic energy, acting at large scales, which is dissipated
into heat at small scales by viscous forces are character-
ized by a turbulent-state which is an important example
of non-equilibrium statistically steady state [13–15]. In
such a turbulent-state, a current of energy flows from
the large to the small scales thanks to the nonlinearity of
the Navier-Stokes equation (NSE), with a constant (on

∗ Corresponding author: massimo.cencini@cnr.it

average) flux across the scales – after Richardson this
is dubbed the direct energy cascade scenario [14]. Typi-
cally the energy cascade is studied in terms of single time
statistical objects, e.g. the third order moment of the ve-
locity differences between points at distance r is directly
linked to the energy flux via the celebrated 4/5 law [14],
which is one of the few exact results that can be obtained
on the turbulent-state and entails a spatial asymmetry
in the statistics of the fluctuations of the velocity field.
Much fewer studies attempted a direct study of the en-
ergy cascade, and the consequential asymmetries, with
reference to the time evolution of the flow [8, 9].

In this paper, we aim at studying the temporal prop-
erties of the turbulent energy cascade in terms of two
statistical tools: asymmetric time correlations and re-
sponse functions. We apply these tools to shell mod-
els [16–18] that are relatively (with respect to NSE) low
dimensional dynamical systems that phenomenologically
(and to some extent quantitatively) reproduce the main
features of the turbulent energy cascade. Such models
are constructed without a spatial structure using a dis-
crete number of Fourier shells with an associated com-
plex variable, representing the velocity fluctuation at that
scale (inverse of wavenumber). This simplified structure
makes, in comparison to real fluid flows, the study of the
temporal properties easier while maintaining the main
phenomenological features of the problem [19–21]. In
particular, we consider the so-called Sabra shell model
[22] and study suitable asymmetric time correlations of
the energy at a given shell and response functions to en-
ergy perturbations. Specifically, concerning the latter,
we test non-diagonal responses, i.e. we study how a per-
turbation of the energy at a given shell alters the re-
laxation of the energy of neighboring shells both in and
against the direction of the energy flux. Previous studies
in the shell model [23, 24] focused on diagonal response
functions considering perturbations of the shell velocity.
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While such a procedure is interesting with respect to the
fluctuation dissipation relations [11, 25, 26], it is not able
to reveal the asymmetries induced by the cascade, which
are, instead, clearly detected when perturbing the shell
energy and looking at non-diagonal response functions.

At first we compare the behavior of the asymmetric
time correlations and response functions either when the
system is forced and dissipated or unforced and inviscid.
In the latter case, unlike the former, an equilibrium state
establishes similarly to the well known absolute equilib-
rium of the truncated Euler equations [13, 27], which
were numerically studied by looking either at the tran-
sient stages leading to the equilibrium state [28] or at the
spatio-temporal decorrelation of two copies of the system
[29]. The inviscid shell model represents a toy model
version of the truncated Euler equations. The asymmet-
ric time correlations of the energy vanish for the invis-
cid (equilibrium) shell model while are clearly different
from zero in the forced and dissipated (non-equilibrium)
shell model, quantifying the breaking of time reversibil-
ity. In particular, we show that it is enough to look at
the short time behavior of such correlations which is as-
sociated to the third order moment of the shell energy
rate of change, similarly to what observed in Ref. [9] for
tracer dynamics. Similarly, clear asymmetries in the re-
laxation of energy at wavenumbers smaller or larger than
the perturbed shell distinguish the non-equilibrium and
equilibrium cases and the direction of the cascade in the
former case. Then, we apply these tools to the case in
which the shell model is forced at intermediate scales. At
scales smaller than the forced one the usual energy cas-
cade is expected while, as we will show, at larger scales
the behavior of correlations and responses is compatible
with an equilibrium state as conjectured [14] and to some
extent shown also in direct numerical simulations of NSE
[30, 31] and experiments [32], although this was recently
challenged [33, 34].

The paper is organized as follows. In Sec. II we in-
troduce the shell model for turbulent energy cascade and
make a resume of its main properties. Section III presents
the main tools used to probe the non-equilibrium prop-
erties of the energy cascade, namely the asymmetric cor-
relation functions and the non-diagonal energy response
functions. In Sec. IV we present the results, in particular:
first we contrast the behavior of the asymmetric correla-
tions of the shell energy in the shell model forced at large
scales with those of the inviscid and unforced shell model;
then we explore the non-diagonal energy response func-
tions in the same settings; finally we consider the forced
shell model and explore the behavior of the two quantities
at scales larger and smaller than the forcing scale in order
to ascertain the equilibrium or non-equilibrium charac-
ter of the former. Section V is devoted to conclusions
and offers a perspective on future investigations. Several
Appendices complement the main text: App. A provides
some details on the simulations including a table with the
parameters; App. B discusses some subtleties related to
the computation of the asymmetric correlation functions;

App. C complements the study of the inviscid unforced
shell model; finally, App. D provides a derivation for the
small time behavior of the energy response functions.

II. MODEL

Shell models are finite-dimensional dynamical systems
designed to reproduce the phenomenology of the turbu-
lent energy cascade [16–18]. The basic idea is to consider
a discrete set of wavenumber kn=k02

n−1, the shells with
index n = 1, . . . , N . A single complex variable, un, is
used to represent the velocity fluctuations at scale kn.
The velocity variables {un}Nn=1 evolve with a set of equa-
tions formally analogous to the Navier-Stokes equation
in Fourier space:

u̇n= iknQ[u, u]−νk2nun+fn , (1)

where ν is the viscosity and fn the forcing. The quadratic
term Q(u, u) is built to ensure that in the unforced and
inviscid limit (fn = ν = 0), as for the three-dimensional
Euler equation, the dynamics preserves both energy E
and helicity H , that, for the shell model, read

E =

N
∑

n=1

en , (2)

H =

N
∑

n=1

(−1)nknen , (3)

where en = |un|2/2 is the energy of shell n. Yet there
is some freedom in choosing the quadratic term Q(u, u);
here, we consider the Sabra model [22], for which

Q(u, u) = 2un+2u
∗

n+1− 1
2un+1u

∗

n−1+
1
4un−1un−2 , (4)

where ∗ denotes complex conjugation, with boundary
conditions u−1 = u0 = uN+1 = uN+2 = 0. The choice to
restrict the quadratic interactions to neighboring shells
is justified by the idea that the energy cascade is local in
scale [13], i.e. the energy transfer is mainly due to the in-
teraction with close-by scales. As demonstrated in many
studies (see, e.g., Refs. [16–18]), shell models, including
the Sabra [22], display the same phenomenology of the
turbulent energy cascade.
The forcing fn, usually localized around some scale

1/knf
(fn 6= 0 for n ∼ nf ), injects energy at a rate

ǫ =
∑

n〈ℜ{fnu∗

n}〉, where 〈·〉 denotes time averages and
ℜ{·} the real part. The nonlinear term transfers the en-
ergy at smaller scales, on average, with a constant flux
equal to ǫ. And, at large enough wavenumber, the vis-
cous term becomes important and removes the energy at
a rate ν

∑

n k
2
n〈|un|2〉 = νΩ = ǫ (Ω being the enstrophy).

In this way, a non-equilibrium steady state is established,
which can be described by the energy balance equation

ĖM = −ΠM − νΩM +

M
∑

m=1

〈ℜ{fmu∗

m}〉 , (5)
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where EM =
∑M

m=1〈em〉 and ΩM =
∑M

m=1 k
2
m〈em〉

(M ≤ N) are the average energy and enstrophy up to
wavenumber M , respectively; while

ΠM=∆M+1+
1
2∆M , ∆m=kmℑ{um+1u

∗

mu∗

m−1} , (6)

ℑ{·} denoting the imaginary part, is the energy flux
transferred to shells > M (viz. minus the rate of en-
ergy loss from shells ≤ M) due to the nonlinear terms.
Notice that EN = E and ΠN = 0, since the non-linear
term preserves energy, so that when summing over all
the shells Ė = ǫ − νΩ = 0, i.e. energy is conserved on
average. For shells m between the forced one (nf ) and
that where dissipation becomes effective the average en-
ergy flux is constant Πm = ǫ (as Ėm = 0 for each m
at stationarity), which is the hallmark of the energy cas-
cade. From Πm = ǫ and (6) one can dimensionally see
that un ∼ (ǫk−1

n )1/3 which is the Kolmogorov 1941 [14]
prediction for the shell model, which allows to estimate
the dissipative wavenumber as knd

≈ (ǫ/ν3)1/4.

Remarkably, shell models also reproduce some quan-
titative aspects of the statistical properties of turbulent
flows as, for instance, the anomalous scaling of the veloc-
ity structure functions (moments of velocity differences),
which can be expressed as 〈|un|p〉 and, in the inertial
range (nf < n < nd), are found to scale as

Sp(kn) = 〈|un|p〉 ∼ k−ζ(p)
n (7)

with ζ(p) very close to the exponents measured in tur-
bulent flows, and thus deviating from the Kolmogorov
dimensional prediction p/3.

In the inviscid and unforced case (ν = fn = 0), the sys-
tem sets on an equilibrium statistically stationary state
while evolving on a manifold dictated by the value of
the energy and helicity, akin to the one of truncated Eu-
ler equations [13, 27] (see also Refs. [28, 29]). Thus, the
SABRAmodel does offer a nice laboratory to contrast the
equilibrium and non-equilibrium properties of the Euler
and Navier-Stokes equations, which is the aim of this pa-
per.

We will consider the Sabra model forced at large scales
and contrast it with the unforced inviscid case and, also,
the Sabra model forced at intermediate scales. In the
latter case one expect that at scales above the forcing
the physics will be akin to that of the inviscid case (i.e.
equilibrium) and below the forcing scale characterized by
a direct energy cascade (i.e. non-equilibrium) [30–32, 35].

We conclude this section mentioning that in the rest
of the paper we shall present simulations obtained by us-
ing a forcing which imposes a fixed energy input ǫ = 1.
However, we tested that the results remain qualitatively
unchanged by using a constant forcing on a single shell.
Appendix A provides other details on the numerical im-
plementation and the parameters which have been used.

III. PROBING THE NON-EQUILIBRIUM
PROPERTIES OF THE TURBULENT CASCADE

Let us now present the main statistical mechanics tools
we used to characterize the non-equilibrium properties
of the energy cascade, namely: asymmetric correlation
functions, which allow for detecting irreversibility [7–9],
and response functions [11], which by describing how ob-
servables at a given shell n behave after a suitable per-
turbation is performed at shell m allow for highlighting
the asymmetries between shell variables induced by the
energy flux.

A. Testing the breaking of time-revesal symmetry
via asymmetric correlation functions

The hallmark of out-of-equilibrium systems is the
breaking of the time-reversal symmetry that, mathe-
matically, stems from the absence of detailed balance
with the associated positive entropy production [3–5].
However, entropy production is a global quantity diffi-
cult to measure. Here, to detect temporal asymmetries,
we take an alternative route by looking at the behav-
ior of suitable correlation functions. Indeed, as made
clear e.g. by Onsager [36], for any choice of observable
functions f and g of the system state, at equilibrium
one has 〈f(t)g(0)〉 = 〈f(0)g(t)〉 due to time reversibility.
This result entails that if there exist f and g such that
〈f(t)g(0)〉 6= 〈f(0)g(t)〉 the system is out-of-equilibrium,
and the difference 〈f(t)g(0)〉 − 〈f(0)g(t)〉 can be taken
as a proxy of the distance from equilibrium. The func-
tions f and g could refer to different observables of the
system, e.g. different dynamical variables, or if the same
observable is used one must consider appropriate func-
tions thereof.
Here, following Refs. [7, 8], after denoting with x(t) a

statistically stationary signal representing the temporal
evolution of an observable of the system, we will con-
sider asymmetric time-correlation functions of x to de-
tect breaking of time reversal and thus the signature of
non-equilibrium. In particular, we consider the function
[8]

Ψx(τ) ≡ 〈x2(t)x(t + τ)〉 − 〈x(t)x2(t+ τ)〉 , (8)

which, for a stationary signal, can be equivalently written
as

Ψx(τ) =
1
3 〈[x(t + τ)− x(t)]3〉 ≡ Φx(τ) . (9)

This latter expression was used in [9] to reveal the ir-
reversibility of tracers dynamics in turbulence. While
mathematically Φx(τ) = Ψx(τ), in numerical computa-
tion of Eqs. (8) and (9) some differences may appear due
to unlike statistical convergence, especially at small time
lags. Such differences, as discussed in Appendix B, if not
properly considered may lead to spurious results.
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In particular, in the case of the shell model, we shall
compute the above introduced correlation function us-
ing as observable the instantaneous energy at shell n, i.e.
x(t) = en(t) = 1

2 |un(t)|2, and consider different shells.
As clear from Eq. (9), this choice is expected to provide
also some hints on the energy cascade process as it in-
forms us about how the energy of a shell varies in time.
We notice that taking as x(t) the signal of the real or
imaginary part of the shell velocity leads to results es-
sentially indistinguishable from equilibrium. This means
that it is important to use proper observables.

B. Testing asymmetries among the degrees of
freedom via non-diagonal response functions

One of the most distinguishing aspects of out-of-
equilibrium systems is the presence of currents, e.g. of
matter or energy [37]. Besides breaking the time-reversal
symmetry, as discussed in the previous section, these cur-
rents generate asymmetries in the degrees of freedom of
the system. In the specific case of turbulence, energy
flows from the injection scale towards smaller scales un-
til it is dissipated at very small ones. Thus there is a
wide range of scales, which increases with the Reynolds
number [15], interested by such an asymmetry. In other
systems the lack of symmetry may lead to spatial inho-
mogeneity between the degrees of freedom [12].
A powerful statistical mechanics tool to explore such

asymmetries is the study of response functions (RFs)
[11]. The idea is rather simple, if we consider generic
time-dependent observables having M components with
A(t) = {Am(t)}m=1,...,M and B(t) = {Bn(t)}n=1,...,M ,
and we denote with A

′(t) and B
′(t) their trajectory after

a perturbation of one of the components of A, then the
usual definition of (impulsive) response function reads:

RAm,Bn
(t) =

B′

n(t)−Bn(t)

A′

m(0)−Am(0)
≡ δBn(t)

δAm(0)
, (10)

where δ[·] is the difference between the value in the per-

turbed system and that in the unperturbed one, while [·]
denotes the statistical average over many different real-
izations of the experiment. The above formula measures
how much an instantaneous perturbation on Am influ-
ences, on average, the variable Bn at later times.
In the case of the shell model a natural observable to

perturb is the energy at a given shell em(t) = 1
2 |um(t)|2

and then to look at the effect of the perturbation on
the energies at shells larger (scales smaller) and smaller
(scales larger) than m. Owing to the energy flux a
clear asymmetry between the two directions should be
expected, while it should be absent in the equilibrium
case, i.e. in the inviscid and unforced limit. To the best
of our knowledge previous attempts to measure the re-
sponse functions in the shell model [23, 38] only con-
sidered diagonal responses with respect to infinitesimal
perturbations on the shell velocity um at a given scale.

Here, the main novelty is to perturb the energy by a non-
infinitesimal amount (somehow similarly to Ref. [39]) and
to explore non-diagonal responses, Rem,en(t) (n 6= m). In
the following, we shall denote such response function as
Rm,n(t) to ease the notation.

In principle, it is not needed to physically perturb
a system in order to study the response functions. In
the linear perturbation regime, RFs are linked, via the
fluctuation-dissipation relations (FDRs), to suitably de-
fined correlation functions [11, 25, 26]. As an impor-
tant example, we mention the Green-Kubo formulas [25]
which link the response to an external field with correla-
tions computed at equilibrium. FDRs, originally derived
for equilibrium Hamiltonian systems, apply also to non-
equilibrium systems as any response can be expressed
as correlation functions whose functional form depends
on the invariant measure of the system [40, 41]. It is
worth stressing that there is still a certain confusion in
the literature on this aspect. Indeed, FDRs hold under
very general assumptions and are only slightly more com-
plicated for dissipative chaotic systems. Such complica-
tions, which are independent of the equilibrium or non
equilibrium nature of the system, arise due to the sin-
gular character of the invariant measure. However, with
the addition of a small amount of noise in the dynamical
equations (i.e. smoothing the measure) it is still possible
to compute RFs via some correlation function [42–44].
This idea has been exploited, e.g., in the context of the
shell model in [38].

In general, for all systems which cannot be directly
probed via perturbations (the climate is in this respect
an example of utmost importance [45, 46]) it is crucial
to exploit FDRs to understand the possible effect of lo-
cal disturbances. However, in our study we shall directly
study the energy RFs, since from a computational point
of view exploiting FDRs as in Refs. [42–44] would anyway
require a modification of the equation with the addition
of noise and a huge statistics in order to allow for can-
cellations in the correlation functions [38].

IV. RESULTS

We present now the results obtained with numerical
simulations performed on the Sabra shell model, of both
inviscid and viscous type. We will highlight the dif-
ferences between a system at equilibrium (the former)
and a system out-of-equilibrium (the latter). We shall
first discuss the test of irreversibility (Sec. III A) and the
response-functions (Sec. III B) for the shell model either
forced at large scales (run-LSF) or unforced and invis-
cid (run-Eq), for the parameters see Table I of App. A.
Then we shall discuss the shell model forced at interme-
diate scales (run-ISF), showing that the physics at scales
larger than the forcing scale is akin to the inviscid model
(equilibrium) while at scales smaller than the forcing is
that of the non-equilibrium energy cascade.



5

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

10-2 10-1 100

(a)

Ψ
e n

(τ
)

τ

n=5
n=6
n=7
n=8
n=9

n=10
n=11

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

0 1 2 3 4 5 6 7 8

(b)

Ψ
e n

(τ
)

τ

n=3
n=4

n=5
n=6

n=7
n=8

n=9
n=10

FIG. 1. Asymmetric time-correlation functions Ψen(t) at varying n as labeled. (a) Turbulent case, shells n in the inertial
range. Different functions show a qualitatively similar behavior, and symmetry under time reversal is absent. Statistics: 6 · 105

samples. (b) Inviscid case, shells n as labeled in the range with energy equipartition. Small fluctuations around zero are
compatible with Ψen(t) = 0. Statistics: 5 · 105 samples.

A. Irreversibility

As discussed in Sec. III A in order to test the irre-
versibility of the energy cascade we focus on the energy
signal en(t) = |un|2/2 at shell n (by varying n). In par-
ticular, we measure the asymmetric correlation function
Ψ (8) or, equivalently, Φ (9), which we rewrite as

Ψen(τ) =
〈e2n(t)en(t+ τ)〉 − 〈en(t)e2n(t+ τ)〉

〈e3n(t)〉
=

= Φen(τ) =
1

3

〈[en(t+ τ) − en(t)]
3〉

〈e3n(t)〉
, (11)

to simplify the notation we have used the same symbol,
even if the two quantities are now made nondimensional.
We also recall that the two different expressions should
coincide for a stationary signal, but can be numerically
different for finite statistics (see App. B).
The inviscid and unforced shell model reaches an equi-

librium statistically stationary state with no net currents
and, thus, detailed balance holds, implying that forward
and backward dynamics are indistinguishable. As a con-
sequence we should expect that Ψen(τ) = Φen(τ) = 0.
Conversely, for the forced and dissipated shell model, ow-
ing to the presence of an energy flux from the large to the
small scales, the dynamics is irreversible and Ψen(τ) 6= 0.
Such expectations are well verified as shown in Fig. 1:
apart from unavoidable fluctuations, Ψen(τ) = 0 for the
inviscid model (Fig. 1b), while for the forced model is
clearly different from zero (Fig. 1a) and, actually, it dis-
plays several interesting features.
First of all, for small time lags Ψen(τ) is negative while

it becomes positive at larger time lags and then it ap-
proaches zero at much larger τ ’s. This is consistent with
the idea that energy decreases on a fast time scale and
increases over a longer time scale (notice that by station-
arity 〈en(t + τ)〉 = 〈e(t)〉). This is similar to the flight-
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FIG. 2. Same as Fig. 1(a) with time rescaled by (a) τn =
k−0.76
n (see text for a discussion) and (b) k−0.5

n , where 0.5 was
chosen in such a way to line up the maxima. The vertical
dashed lines are drawn to guide the eyes making clearer the
line up.

crash events described in Ref. [9] but at the level of a
single shell. The fact that the energy loss is faster than
the energy gain is physically understood from the fact
that the time scale of the shell decreases with the scale
as τn ∼ (unkn)

−1 ∼ k
−2/3
n (where we used Kolmogorov

scaling). Therefore, it takes longer to receive energy from
larger and slower scales (smaller n) than to transfer it to
smaller scales (larger n). However, as already clear from
Fig. 1a, in the temporal behavior of Ψen(τ) several time-
scales are at play. Indeed one can see that the short time
minima depends on the shell index n while the large-
time decay of the curves is essentially independent of n,
as the curves reach zero at about the same time. The
presence of many time scales is even clearer by looking
at Fig. 2, showing that different rescaling of the time lags
depending on the scale as kβn are needed to make either
the minima (β ≈ 0.76, Fig. 2a) or the maxima (β ≈ 0.5,
Fig. 2b) line up. While we have no clear understanding
of the latter exponent, the first one can be understood as
follows.

As discussed in the next section and Appendix B, at
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FIG. 3. (a) Asymmetric moments −Aq(kn) (Eq. (14)) vs the shell number n = log2(kn/k0), for increasing q = s/3 with
s = 4, . . . , 9 (from bottom to top). The moments for q < 1 are positive (not shown) and A1(kn) = 0 by stationarity. The lowest
and highest shells are omitted. (b) Symmetric moments Sq(kn) (Eq. (13)) (empty symbols) and asymmetric ones −Aq(kn)
(filled symbols) rescaled by their value at n = 3 for three values of q, as labeled. The black solid lines display the prediction
(15). Inset: the ratio −Aq(kn)/Sq(kn), with q = s/3 for s = 1, . . . , 9 from bottom to top. Statistics is over 2.5 · 106 samples.

short times it should hold

Ψen(τ) = Φen(τ) ≈
〈ėn3〉
〈e3n〉

τ3 . (12)

Equations (7) and (15) (see next section) imply that

〈ėn3〉/〈e3n〉 ∼ k
3−ζ(9)+ζ(6)
n . From our simulations we get

ζ(6) ≈ 1.70(2) and ζ(9) ≈ 2.43(6). If we now re-scale τ in
Eq. (12) with τn ∼ k−β

n by requiring that the expression
does not depend on n we have β = (3− ζ(9)+ ζ(6))/3 ≈
0.76(3), which is well compatible with Fig. 2a. We also
notice that Ψen is the difference of two disconnected, sin-
gle scale and multi-time correlation functions that, as
thoroughly discussed in Ref. [20], should involve a whole
hierarchy of fluctuating eddy-turnover times from the
shortest up to the largest. In Ref. [20] it was discussed
the general framework of multi-time and multiscale corre-
lation functions, similarly to Ψen : one can define suitable
correlations involving energy at different shells and dif-
ferent times, which besides providing information on the
irreversibility can also further characterize the physics of
the energy cascade. However, this goes beyond the aim
of this work and we leave it for possible future studies.

1. Power fluctuations

The negativity of Ψen(τ) for small τ can be further
scrutinized by studying directly the τ → 0 limit. Indeed
by expanding Eq. (11) for small τ (see Appendix B, also
for a discussion on the subtle numerical aspects related
to the short time behavior of Ψ and Φ) it is easy to realize
that the initial negativity means that 〈ė3n〉 < 0, while we
know by stationarity that 〈ėn〉 = 0: this means that the
statistics of ėn is negatively skewed, which confirms the
fact that it is more probable to lose than to gain energy
on the short time. This observation was originally made

in Ref. [9] in the context of irreversibility of Lagrangian
trajectories in turbulence, and further analyzed in [21]
in both direct numerical simulations and in shell model
version of Lagrangian motion. In particular, in Ref. [21]
it was introduced a set of symmetric and asymmetric
moments to probe the asymmetry of the distribution.
Here, following [21], we consider the moments:

Sq(kn) = 〈|ėn|q〉/ǫq (13)

Aq(kn) = 〈ėn|ėn|q−1〉/ǫq (14)

where the normalization by ǫq is only to make the quan-
tities dimensionless. Numerical simulations show that
Aq(kn) > 0 for q < 1 and < 0 for q > 1, for q = 1
is zero by stationarity. Moreover, as shown in Fig. 3a,
the asymmetric moments display a power law behavior,

−Aq(n) ∼ k
α(q)
n . To rationalize the exponents α(q) we

can use dimensional analysis in the spirit of the multi-
fractal model [14]. Noticing that ėn is energy divided by
time, we can assume that for each shell one has to use its
own characteristic eddy turnover time, that dimension-
ally can be estimated as τn ∼ 1/(|un|kn), so that

〈ėqn〉 ∼ 〈|un|2qkqn|un|q〉 ∼ kqnS3q(kn) ∼ kq−ζ(3q)
n , (15)

where we used (7) in the last two steps. It should be
noted that this argument is purely dimensional, thus it
applies both to the symmetric and asymmetric moments.
It is worth stressing that it is not obvious a priori that
Sq(kn) and −Aq(kn) should scale in the same way nor
that the asymmetric moment can be guessed with a di-
mensional argument, indeed it depends on cancellations
which cannot be controlled. However, Fig. 3b shows that
Sq(n) and −Aq(n) possess the same scaling behavior (see
also the inset) and agree with the prediction (15).



7

-0.4
-0.35
-0.3

-0.25
-0.2

-0.15
-0.1

-0.05
 0

 0.05
 0.1

 0.15

 0  0.1  0.2  0.3  0.4  0.5

(a)
R

m
,n

(t
)

t

m=11, n=12
m=11, n=10

-2
-1
0
1
2
3
4

 0  0.002  0.004

x10-2

R
m

,n
(t

)

t -0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.01  1

(b)

R
m

,n
(t

)

t
 30  40  50  60  70

t

m=7, n=8
m=7, n=6
m=6, n=9

R(∞)
eq

R(∞)
corr

x10-4

R
m

,n
(t

)

t

-0.5
0

0.5
1.0
1.5
2.0

 0  0.005  0.01  0.015  0.02
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Sabra model. Initial energy perturbation: δm=11 ≃ 9.93 · 10−3. (b) Inviscid Sabra model. The initial transient is plotted with
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with more distance between m and n, in order to show the common asymptotic value. The dot-dashed line shows R
(∞)
eq which

is the value that would be reached if perfect energy equipartition occurs, the dashed line shows R
(∞)
corr which is the asymptotic

value taking into account the boundary corrections (see App. C and main text). Initial perturbation δm=6 = δm=7 ≃ 1.79 ·10−3 .
The insets of both figures are enlargements of the initial-time range, showing respectively a non-zero and a zero first derivative
at t = 0. In all figures statistics is over 5 · 105 realizations.

B. Energy response functions

In order to detect the scale asymmetry between shells,
caused by the average energy flux from large to small
scales, we study non-diagonal RFs on the shell energies
en(t) (see also Sec. III B):

Rm,n(t) =
δen(t)

δem(0)
, (16)

the first index referring to the perturbed shell and the
second to the shell one looks at. To fix the initial energy
perturbation δem(0) of each experiment we introduce the
following perturbation on the velocity at t = 0:

um =
√
2emeiθm −→ u′

m =
√

2(em + δm)eiθm (17)

where θm is the phase of um, and
√
2em its modulus. The

constant δm quantifies the magnitude of the initial energy
perturbation while keeping the phase of um fixed, and is
such that: δem(0) = δm. The phases are crucial for the
energy transfer [47] that is why we keep them constant.
Moreover, we consider a non-infinitesimal perturbation:
specifically, we choose δm to be a finite fraction of the
typical fluctuation of the shell energy, namely its stan-
dard deviation:

δm = fσen =
f

2

√

〈|un|4〉 − 〈|un|2〉2 , (18)

in which f ≃ 0.2 was used.
In Fig. 4 we compare the RFs Rm,n with n−m = ±1

in the turbulent (panel a) and inviscid (panel b). The

functions in Fig. 4(a) clearly display the asymmetry be-
tween degrees of freedom mentioned before: in the turbu-
lent system the opposite sign of the “forward” (towards
smaller scales) and “backward” (towards larger scales)
RFs reveals the presence of an overall energy current,
displacing energy from larger to smaller scales. The dif-
ferent amplitudes and relaxation times relates to the fact
that larger scales have larger amplitudes and are slower
than the smaller scales. On the other hand, such an
asymmetry is clearly lost in the inviscid system, as shown
in Fig. 4(b): the RFs are all positive, and after an ini-
tial transient they approach a common non-zero asymp-
totic value. This trend is explained as follows. In the
inviscid system energy (but also helicity) is conserved,
therefore the energy perturbation brings the system to a
larger constant-energy hyper-surface in phase space. As-
suming a perfect energy equipartition one can compute

the expected long-time value R
(∞)
eq = 1/N , however as

discussed in Appendix C boundary effects prevent per-
fect equipartition. Taking them into account one can

compute a corrected asymptotic value, R
(∞)
corr , which fits

better with the data as shown in Fig. 4(b)
It is equally interesting to notice that short shell-

distance RFs show non-zero initial derivatives in the tur-
bulent case, whereas they are zero in the inviscid system
(see the insets of Fig. 4). Briefly, this is due to the pres-
ence or absence, respectively, of energy cascades in the
system, since these derivatives are related to the order-
three correlator describing the energy flux through the
shells, as detailed in Appendix D.

To offer a more complete investigation of the turbulent
cascade we also studied the response of shells further-
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apart from the perturbed one. Owing to the fact that
the energy spectrum decays as a power law, in the main
panel of Fig 5(a) we show the relative energy deviation,

δm
〈en〉

Rm,n =
δen(t)

〈en〉
, (19)

for n > m. The advantage of the relative deviation
(19) is that it allows for normalizing the amplitude of
the response making possible the comparison of the re-
sponse of shells at different distances from the perturbed
one. Figure 5(b) shows the same for shells smaller than
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FIG. 6. Energy spectrum 〈en〉 for the Sabra shell model with
forcing at intermediate scales. The three regimes of energy
equipartition, power-law scaling and viscous damping can be
identified. The dashed line corresponds to the scaling 〈en〉 ∼

k
−ζ(2)
n , with ζ(2) ≈ 0.74(4). Inset: average flux Πn (6) out

of shell n. There is a clear transition from zero to positive
outward flux. The small arrows in both figures indicate the
forced shells. Statistics: 106 samples.

the perturbed one. The insets represent the usual (non-
normalized) RFs. The energy deviations in the forward
direction collapse nicely onto the same curve, apart from
the functions with n−m = 1, 2. These two are the only
functions whose index n is in the same wave-number triad
of shell m, so a difference with the other functions can
be expected. On the other hand, the energy deviations
in the backward direction lack any kind of similarity be-
tween themselves, and their short-time value, before the
relaxation, can be indeed positive (energy gain) or nega-
tive (energy loss) for different values of n−m. Unlike the
forward functions, the backward ones show smaller am-
plitudes as the distance from the perturbed shell grows.
Overall, a correct interpretation of the latter RFs requires
a better understanding of how the different time-scales
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involved, from the slowest to the one with shell index
max{m,n}, contribute to the energy deviation, in the
same way as assumed for multi-time multi-scale correla-
tion functions [20]. And this is out of the scope of the
present work.

C. Equilibrium/non-equilibrium at scales
larger/smaller than the forcing scale

So far we have discussed either the case of the inviscid,
unforced shell model or the forced shell model, showing
how asymmetric energy correlations or the energy RFs
can reveal the asymmetries and breaking of time reversal
induced by the energy flux from the scale of forcing to
the smaller scales. It is now natural to wonder what does
happen at scales larger than the forcing scale. Since such
scales are not directly influenced neither by the forcing
nor by the viscous damping and owing to the direct cas-
cade, it has been conjectured that the physics of these
large scales should be akin to the equilibrium one [14].
Numerical [30, 31, 35, 48] and experimental [32] studies
indeed seem to confirm that many aspects of the scales
above the injection scale are well captured by absolute
equilibrium theory [27]. Two recent studies [33, 34], how-
ever, seem to point to the fact that deviations from equi-
librium can be detected in direct numerical simulations.
In particular, in Ref. [33] it is shown that the third order
velocity structure function is not zero (as a Gaussian-
equilibrium statistics would have prescribed) but decays
as the second power of the scale. This observation is
substantiated by an inspection of the Kàrmàn-Howarth-
Monin equation [14], which ultimately shows that such
deviations can be ascribed to non-local interactions that,
however, are absent by construction in the shell model.
Furthermore, the k-dependence of the energy spectrum
at large scales appears to be determined by the momen-
tum injected by the forcing: for instance a solenoidal,
localized-in-space forcing would yield a large-scale spec-
trum not compatible with absolute equilibrium [34].
From the above discussed works one can realize that

it is interesting to investigate the behaviors of asymmet-
ric correlations and energy response functions at scales
smaller and larger of the forcing scale. To this aim we
now study the Sabra model with N = 30 shells forced
at intermediate scales (i.e. nf = 13) so to have enough
range of scales at shells larger and smaller than the forced
ones (see Appendix A for details).
Figure 6 shows the energy spectrum, 〈en〉, and the en-

ergy flux, Πn, (see inset): energy equipartition and zero
energy flux obtained for shells smaller than the forced
ones are good indicators of statistical equilibrium. At
first we study the asymmetric correlation (11) to test
the time asymmetry of the energy evolution at scales be-
low/above the forcing one. As shown in Fig. 7, Ψen(τ) for
n > nf (main panel) is akin to the results of Fig. 1(a) ob-
tained with the usual large scale forcing, while for n < nf

(see inset) is statistically compatible with zero, as ex-

pected in an equilibrium regime (Fig. 1(b)). Then we
investigate the relaxation of an energy perturbation, ei-
ther perturbing a shellm > nf (i.e. in the energy cascade
range) or a shell m < nf (i.e. at scales larger than the
forcing scale). Figure 8(a) displays the normalized RFs,
i.e. the relative energy deviations, when the perturbed
shell is larger than the forced ones, and their behavior
retain the features shown by both forward and backward
normalized RFs. Conversely, Fig. 8(b) refers to the case
where the perturbation acts on a shell smaller than forced
ones: as in the inviscid model, all RFs are positive and
reach a common asymptote whose value is again found,
in first approximation, by assuming energy equipartition
among the degrees of freedom.
Summarizing, the behavior of both the asymmet-

ric correlation and the energy response functions gives
strong evidence that, in the shell model, the physics of
the scales larger than the forcing one is compatible with
the equilibrium as in the inviscid shell model. We remark,
however, that there could be some properties which can
deviate from equilibrium. The dynamics clearly does not
preserve neither the energy nor the helicity and it is un-
clear what will be the effect on, e.g., the spectrum at the
scales which match the forcing scales. As discussed in
Appendix C, in the inviscid case oscillations in the spec-
tra are expected at the boundary given by the largest
shell, this will be clearly modified by the presence of the
forcing. A confirmation of this difference is found in the
good estimate of the asymptotic value computed with
the perfect-equipartition assumption: boundary correc-
tion appears not necessary (Fig. 8(b)). In Ref. [33] it
was pointed out that there are detectable deviations from
Gaussianity at scales larger than the forcing scale for the
Navier-Stokes equations. We studied a similar quantity,
namely the third order velocity correlation function (not
shown), and we found it to vanish as also confirmed by
the analogous of the Kàrmàn-Howarth-Monin equation
for the shell model. This difference is likely due to the
fact that the quadratic interaction term is local in shell
models.

V. CONCLUSIONS

In this work we used asymmetric time correlation func-
tions and response functions to finite perturbations to as-
certain the breaking of time reversal symmetry and asym-
metries between the degrees of freedom in a simplified
model for the energy cascade in turbulence, i.e. the Sabra
shell model [22]. We focused on the energy of a given shell
and showed that by looking at a suitable time correlation
of the energy one can clearly distinguish the case of a
forced shell model displaying the direct energy cascade
of energy to the case of an unforced and inviscid model.
In the latter case the asymmetric correlation vanishes
(meaning time reversible dynamics) while in the former
it is definitely different from zero and the behavior un-
derstandable in terms of the Richardson energy cascade
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where N∗ is the number of shells for which energy equipartition holds. In both cases statistics is over 2 · 105 realizations.

scenario. Similarly, clear differences between equilibrium
(inviscid-unforced case) and non-equilibrium (forced vis-
cous case) physics are clearly detectable using the energy
response function, that is, perturbing the energy at given
shell and looking at the time relaxation of the energy at a
distant shell (either above or below the perturbed one). A
net difference is observed in the forced case while looking
at shells larger (scales smaller) or smaller (scales larger)
than the perturbed one, as a consequence of the average
energy current from large to small scales. Here the main
novelty with respect to previous studies has been to per-
turb directly the energy and not the velocity. The quan-
tities studied in this paper thus allow to observe (and,
even if unnecessary, confirm) the celebrated Richardson
cascade scenario from the perspective of non-equilibrium
Statistical Mechanics. Finally, we considered the case of
a shell model forced at intermediate scales so to allow
for scrutinizing the behavior of both quantities at scales
larger or smaller than the forcing scale. The emerging
figure seems to confirm the view that scales larger than
the forcing display properties which can be ascribed to
the equilibrium physics of the unforced-inviscid model.

There are at least two interesting perspectives emerg-
ing from our study. Within the context of simplified
models it would be interesting to explore, using the two
tools we introduced, the shell model with the nonlin-
ear term changed so to preserve energy and enstrophy,
i.e. to mimic the two-dimensional Navier-Stokes equa-
tion [49–51]. In two dimensions an inverse (i.e. toward
the large scales) energy cascade accompanied by a direct
cascade of enstrophy takes place. However, in the shell
model it has been shown that the latter is expected to dis-
play a spectrum akin to the enstrophy equipartition one
[50]. Similarly to the extension of hydrodynamic turbu-
lence to noninteger dimensions [52, 53], in shell models

a tuning of the coupling parameter of nonlinear interac-
tions can be associated to a continuous variation of the
system dimensionality. An interplay of equilibrium and
cascades is observed at varying this parameter [51, 54].
It is thus interesting to inquire whether the equilibrium
or non-equilibrium character can be distinguished using
the tools introduced in this work. Even more interest-
ing would be to adapt our tools to the case of three-
dimensional Navier-Stokes turbulence and, in particular,
to explore their behavior at scales larger than the forcing
scale where some features seem to be ascribable to equi-
librium [30–32] while others show deviations from equi-
librium [33, 34]. It could be not surprising, but surely
very interesting, to discover that some properties are well
captured by the equilibrium physics and others are not.
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Appendix A: Numerical details of simulations

The Sabra model (1-4) was integrated by means of a
4th order Runge-Kutta algorithm, with exact integration
of the linear term (see e.g. [55]). In the turbulent case,
the shell velocities were first initialized according to the

scaling law: |un| ∼ k
−1/2
n , and each complex velocity



11

with a random phase. In the inviscid and unforced shell
model we fixed the total energy E = 0.13 and distributed
it equally among all shells as |un| =

√

2E/N , with phase
assigned randomly as well. Then, in both cases, we let the
system evolve for a long enough transient of time (many
turnover times) until a stationary state is reached, after
which we start our measurements. As for the forcing fn
in Eq. (1), we inject energy at scale nf and nf + 1 by
imposing

fk =

{

ǫ/(2u∗

k) for k = nf , nf + 1
0 otherwise

(A1)

so that the energy power
∑

n ℜ(fnu∗

n) = ǫ is constant.
In all our simulation ǫ = 1.
Table I summarizes the parameters we used in the sim-

ulations.

Parameter run-LSF run-EQ run-ISF

∆t 5 · 10−5 5 · 10−5 10−5

N 24 15 30

k0 2−4 2−4 2−10

nf 1 N.A. 13

ν 10−6 0 5 · 10−7

TABLE I. Values of the parameters used in numerical simu-
lations. Run-LSF and Run-ISF correspond to the forced shell
model, i.e. the turbulent case, with forcing at large scales or
intermediate scales, respectively, while run-EQ denotes the
equilibrium case, i.e. the unforced inviscid shell model. The
parameters are the time step (∆t), the number of shells (N),
the smallest wave number (k0), the shell number where the
forcing is acting (nf ), and the viscosity (ν). In the forced
runs the forcing acts on shell nf and nf + 1 in such a way to
fix the energy injection rate to ǫ = 1.

Appendix B: Issues on the numerical computation of
asymmetric correlation functions Ψen(t)

In this Appendix we discuss some delicate issues about
the numerical computation of the correlation functions
(8) and its equivalent form (9). First of all, we can rewrite
Eq. (9) as

Φx(τ) = Θx(τ) + Ψx(τ) , (B1)

with Θx = 1
3 (〈x3(t + τ)〉 − 〈x3(t)〉). Owing to the as-

sumed stationarity of x(t), it must hold Θx(τ) = 0, and
thus Φx(τ) ≡ Ψx(τ). However, in numerical evaluation,
due to the way cancellations are realized, the two equiva-
lent functions Ψx and Φx have different pros and cons, as
discussed below. In the following we will drop the sub-
script x and the time dependence from the x variable to
ease the notation.
The obvious advantage of computing Ψ(τ) is that, es-

pecially at large τ , it guarantees the cancellation of the
term Θ(τ), as this is automatically imposed. This can

be appreciated from Fig. 9 where one can see that, at
large τ , the curves obtained computing Ψ tend to be
smoother than those obtained by computing Φ, although
both curves do convey the same result. However, as it
will be shown below, problems due to statistical conver-
gence can manifest at small τ , while the computation
of Φ(τ) is more efficient in ensuring the cancellations at
small τ ’s. To realize such issue it is useful to expand in
series Θ(τ), Ψ(τ) and Φ(τ):

Θ(τ) = 〈x2ẋ〉τ +
1

2
〈[2xẋ2 + x2ẍ]〉τ2

+
1

6
〈[2ẋ3 + 6xẋẍ+ x2 ...x ]〉τ3 + . . . (B2)

Ψ(τ) = −〈x2ẋ〉τ − 1

2
〈[2xẋ2 + x2ẍ]〉τ2

− 1

6
〈[6xẋẍ+ x2 ...x ]〉τ3 + . . . . (B3)

Φ(τ) =
1

3
〈ẋ3〉τ3 + . . . . (B4)

Since Φ = Ψ also Ψ(τ) should behave the same way
at small τ . In order to see this it is useful to rewrite
Eqs. (B2-B3) as

Θ(τ) =
1

3

d

dt
〈x3〉τ +

1

2

d

dt
〈[x2ẋ]〉τ2 + 1

6

d2

dt2
〈x2ẋ〉τ3 (B5)

Ψ(τ) = −1

3

d

dt
〈x3〉τ − 1

2

d

dt
〈[x2ẋ]〉τ2

− 1

6

[

d2

dt2
〈x2ẋ〉 − 2〈ẋ3〉

]

τ3 . (B6)
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FIG. 9. Correlation function Ψen(τ ) and Φen (τ ) for
n = 5, 7, 9 versus τ . Statistics is over 5 · 105 samples. In-
set: short time behavior (τ < 1) of the same correlation
functions with inverted sign and in logarithmic y scale. The
dashed and dash-dotted lines denote respectively a linear
and a cubic dependence on τ . Statistics over 106 samples.
Notice that computing the running average (not shown) of
〈e2nėn〉 = d/dt〈e3n〉/3 one can clearly see the slow convergence
to zero, which is responsible for the spurious linear behavior.
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Now, clearly all the terms of the form dk/dtk〈[. . .]〉 should
vanish by stationarity, so that Ψ(τ) = 1

3 〈ẋ3〉τ3. However,
the statistical convergence of dk/dtk〈[. . .]〉 → 0 may be
hard to be obtained with a finite statistics leading to
spurious O(τ) terms. The inset of Figure 9 does illus-
trate precisely this problem. As one can see the small τ
behavior of Ψ when computed for the energy of shell 5
and 7 starts with a spurious linear behavior and does re-
cover the correct τ3 behavior only at sufficiently large τ ’s,
while Φ does always display the correct τ3 dependence.
For shell 9 the two curves do coincide, this is simply due
to the fact that shell 9 is much faster than 7 and 5 so
that statistical convergence, and thus the cancellations,
can be realized more easily.
We conclude this appendix by noticing that in Ref.[8],

it was reported a linear behavior at small τ for an ex-
perimental time series of a turbulent velocity flow. As
discussed above, we strongly believe that the linear be-
havior have a spurious origin. It would thus be very
interesting to re-analyze the data using Φ(τ) instead of
Ψ(τ) for confirmation.

Appendix C: Energy equipartition in the inviscid
shell model

As discussed in App. A, for the inviscid shell model
we start from an initially equiparted spectrum. How-
ever, as shown in Fig. 10, after a long average the en-
ergy spectrum shows clear departures from equipartition
at large shell indexes, where oscillations do appear. A
few more simulations (not shown), performed at chang-
ing the number of shells while keeping the energy per
shell constant in the initial condition, demonstrate that
the oscillations remain confined to the last 5-6 shells. In-

 0.006

 0.007

 0.008

 0.009

 0.01

 2  4  6  8  10  12  14

〈e
n〉

n

unperturbed
perturbed

FIG. 10. Energy spectra of unperturbed and perturbed invis-
cid Sabra shell model. The fit on the equiparted region of the
spectra, appertaining to the shells which are far enough from

the lower boundary, lead to the value R
(∞)
corr. Initial perturba-

tion δm=7 ≃ 1.79 · 10−3.

deed by appropriately shifting the shell axis we observed
that the oscillations do superimpose. This demonstrates
that such oscillations are due to the boundary conditions
which in the shell model, having a single variable per
shell, are expected to have a stronger effect than in the
truncated NSE. The main consequence of such oscilla-
tions is to alter the equipartition value of the energy far
from the boundary, so to invalidate the naive expecta-

tion R
(∞)
eq = 1/N for the asymptotic value of the energy

response functions, as discussed in the main text. In or-
der to determine the corrected (effective) value we have
run a long simulation after a perturbation and computed
the average spectrum: this way one can directly measure
the energy shift in the far from boundary shells, which
display equipartition (see Fig. 10). Due to this effect, the
actual difference between the two equipartition values is
larger than it would be in the case of perfect equipar-
tition, meaning that the asymptotic value of Rm,n(t) is
slightly larger than expected (see Figure 4(b)).

Appendix D: Initial time-derivatives of Rm,n(t)

In this Appendix we focus on the initial time deriva-
tives of the energy response functions, showing that they
provide information on the direction of the average en-
ergy flux among shells (where present).
From Eqs. (1-4) we can derive the following equation

for the rate of change of energy at shell n:

den
dt

= In + Tn +Dn , (D1)

where the three terms are the input power In = ℜ{fnu∗

n},
the non-linear transfer of energy

Tn = −[∆n+1 − 1
2∆n − 1

2∆n−1] , (D2)

and the dissipated power Dn = −νk2n|un|2 = −νk2nen.
For the sake of readability we omitted the time de-
pendence in all the dynamical quantities. The trans-
fer term explicitly shows that, by construction of the
model, energy is directly exchanged between neighbors
and next-to-neighbors shells, i.e. within a “range” (or
distance) 2. The real quantities ∆n, defined as ∆n =
knℑ{u∗

n−1u
∗

nun+1} (see also Eq. (6)), play a key role in
the following argument.
In both inviscid and turbulent cases (assuming in the

latter to restrict ourselves in the inertial range so that the
forcing is absent and the dissipation can be neglected) we
can express the initial time derivative of Rm,n using (D1)
as follows:

dRm,n

dt

∣

∣

∣

∣

t=0

=
1

δm

[

T ′

n(t)− Tn(t)
]

∣

∣

∣

∣

t=0

, (D3)

where primed quantities refer to the perturbed system.
Let us start from the inviscid case. As shown in the in-

set of Fig. 4b, the time-derivative of Rm,n is zero for t = 0
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for any n, which can be understood as follows. Clearly, if
|n−m| > 2 the perturbed shell m does not directly inter-
act with shell n, which is thus unaware of the perturba-
tion for some time and, consequently, dRm,n/dt

∣

∣

t=0
= 0.

On the other hand if |m − n| ≤ 2 the shell n will in
principle be affected by energy perturbation via the non-
linear term. However, at equilibrium, we should expect
the shell velocities to be statistically independent and
Gaussian. Now, by using Eq. (D1) with In = Dn = 0,
for n = m+ 1 it is easy to derive that

dRm,m+1

dt

∣

∣

∣

∣

t=0

∝ 1
2 (δ∆m+1 + δ∆m)

∣

∣

∣

∣

t=0

. (D4)

where δ∆m = kmℑ{u∗

m−1δu
∗

mum+1} and δ∆m+1 =
km+1ℑ{δu∗

mu∗

m+1um+2}, and in general δf denotes the
difference between variable f in the perturbed and unper-
turbed systems. Under the assumption that the average
over many realization is equivalent to the statistical av-
erage, one finds that the triple moments factorize into
the product of three single moments, two of which are
zero. With the same reasoning one can conclude that
the derivative should be zero also for n = m − 2,m − 1
and m+ 2.
We now discuss the turbulent case. For |m−n| > 2 the

same reasoning relying on the distance between pertur-
bation and response applies, so that the initial deriva-
tives of the RFs should be zero. For |m − n| ≤ 2,
one can construct the following argument. First, we
rewrite the perturbed velocity (17) in terms of um as

u′

m =
√

1 + δm/emum, so that

δum=(u′

m−um)=

(

√

1 +
δm
em

−1

)

um≡αmum , (D5)

where we notice that αm is a real positive quantity for
δm > 0. Then, the equation (D3) can be explicitly writ-
ten as:

δm
dRm,n

dt

∣

∣

∣

∣

t=0

=−
[

δ∆n+1− 1
2δ∆n− 1

2δ∆n−1

]∣

∣

∣

∣

t=0

, (D6)

where

δ∆n

∣

∣

t=0
=knℑ

[

δm,n−1αn−1u
∗

n−1u
∗

nun+1 (D7)

+δm,n αnu
∗

n−1u
∗

nun+1 + δm,n+1αn+1u
∗

n−1u
∗

nun+1

]

n R.h.s. of (D6)

m− 2 −αm∆m−1

∣

∣

t=0
< 0

m− 1 αm

[

1
2
∆m−1 −∆m

]∣

∣

t=0
< 0

m+ 1 αm

[

1
2
∆m + 1

2
∆m+1

]
∣

∣

t=0
> 0

m+ 2 αm
1
2
∆m+1

∣

∣

t=0
> 0

TABLE II. Initial time derivatives of Rm,n(t) for |n−m| ≤ 2.

where the Kronecker delta δa,b imposes that at least
one of the three shell velocities involved has to be the
initially-perturbed one, otherwise there will be no con-
tribution, as seen in the previous case.
Computing the sign of the initial time derivative of

the RFs amounts to studying terms of the kind (indices
omitted):

δ∆ ∼ kαℑ
{

uuu
}

= α∆, (D8)

but α is positive by definition (see Eq. (D5)), and it can
be shown [22] that 〈∆〉 is positive on average, as it is
related to the energy flux (6). Again we will assume that
∆ = 〈∆〉.
Once established this result let us reconsider (D6) and

(D7). In Table II we explicitly write the non-zero terms,
when varying n in the range of indices we are studying.
Given that ∆n > 0, at least for n in the inertial range,
we have that backward RFs start with negative slope,
while forward ones with positive slope. Concerning the
case n = m−1, where the sign of the expression is not as
straight-forward as the others, the negativity of the r.h.s.
comes from an explicit result found in Eq. (16) of [22].
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