
1. Introduction
Aquifers host 30% of global freshwaters (Shiklomanov, 1993), and play an important role in addressing water 
needs worldwide, especially in countries with extensive arid regions (United Nations, 2022). In Mexico, 39.5% 
of the consumed water is supplied through ∼35,300 hm 3/year groundwater, extracted from ∼300,000 wells and 
used for agriculture (71%), public supply (21%), industry and electric energy (excluding hydroelectric) (8%) 
(CONAGUA,  2022b). Although Mexico is not considered “water-poor”, large discrepancies in recharge and 
consumption rates and patterns exist: only 20% of the total annual rainfall occurs where 76% population lives and 
90% irrigated lands are maintained (Hernandez, 2003). In 2020, the National Waters Commission (CONAGUA) 
identified 157 overexploited aquifers near densely populated cities and large farmlands, and 48 threatened by 
salinization and/or marine intrusion (CONAGUA, 2022b). Land subsidence resulting from groundwater overex-
ploitation has also been documented in major cities of Central Mexico (Cabral-Cano et al., 2008; Carreon-Freyre 
et  al., 2011). Topographic lowering, tilting and deformation, apparent uplifting of deeply founded structures, 
surface cracking and faulting are very common impacts that aquifer-system compaction causes on Mexican urban 
landscapes (Carreón Freyre, 2010; Figueroa-Miranda et al., 2018), and in many other countries (Galloway & 
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Burbey, 2011). Knowledge of aquifer-systems’ hydraulic and geological properties is therefore essential to under-
stand their response to groundwater withdrawal, identify pathways to sustainable groundwater management, and 
mitigate impacts due to overexploitation.

In this work, we analyze the correlation between land deformation, groundwater deficits, extractions and aquifer 
storage changes in the whole of Central Mexico. We focus on a 700,000 km 2 area hosting >85.2 million inhabitants 
(i.e., ∼68% of the Mexican population; INEGI, 2022), and encompassing the Trans-Mexican Volcanic Belt (TMVB; 
Ferrari et  al., 2012) and several hydrological-administrative regions (RHA), including Lerma-Santiago-Pacíf-
ico, Balsas and Aguas del Valle del México (Figure 1a). Here, yearly availability of renewable freshwater (that 
can be sustainably exploited) ranges between ∼140 and ∼8,900 m 3/inhabitant (CONAGUA, 2022b). The area 
encloses large discharge zones of regional groundwater flow systems (Kachadourian-Marras et al., 2020), and 
groundwater footprints of its aquifers are 9.1 ± 2.6 times their area (Gleeson et al., 2012). Licensed extractions 
amount to ∼17,500 hm 3/year in total (CONAGUA, 2022b), and regional depletion rates reach 0.1 m/year (Wada 
et al., 2010).

We undertake a quasi-continental land subsidence hotspot survey through satellite Interferometric Synthetic 
Aperture Radar (InSAR; Rosen et al., 2000). Hydrogeological studies have started to use this technique along 
with piezometric data to estimate elastic and inelastic storage of aquifers worldwide (e.g., Bell et al., 2008; Bonì 
et al., 2016; Chaussard, Bürgmann, et al., 2014; Hoffmann et al., 2001; Miller et al., 2017; Ojha et al., 2018). 
While some wide-area (Chaussard, Wdowinski, et  al.,  2014; Cigna et  al.,  2019), multi-city (Castellazzi, 
Arroyo-Domínguez, et  al.,  2016) or single-city (e.g., Brunori et  al.,  2015; Cigna et  al.,  2012; Osmanoǧlu 

Figure 1. Location of the study area in Central Mexico: (a) Population, renewable freshwater per capita and groundwater use in each hydrological-administrative 
region; and (b) footprints of the six Sentinel-1 tracks used for the Interferometric Synthetic Aperture Radar (InSAR) survey, overlapped onto extent of the 
Trans-Mexican Volcanic Belt (TMVB). Maps created with ESRI ArcMap.
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et al., 2011; Pacheco-Martínez et al., 2015) InSAR assessments exist for Central Mexico, an up-to-date snapshot 
of present-day subsidence has not yet been provided for this vast region as a whole. Moreover, none of such stud-
ies has investigated holistically how subsidence correlates with aquifer management data or piezometric records 
from the national monitoring network.

By filling these gaps, for the first time, we establish semi-theoretical relationships to assess the compaction rates 
and volumes resulting from groundwater exploitation, which could be used to inform future management strate-
gies of this vital resource in Mexico and potentially other countries, toward adaptation to climate change impacts 
on the water balance, and changing needs and shifts in groundwater use by a growing world population.

2. Methods
2.1. Quasi-Continental InSAR Survey

We exploited 1677 C-band VV-polarized Interferometric Wide (IW) swath SAR scenes acquired by the Coperni-
cus Sentinel-1 mission (Torres et al., 2012), along six descending tracks (Figure 1b). Each stack consists of ∼60 
scenes with 12 days revisit, 250 km swath, 5 (ground range) by 20 (azimuth) m resolution, and 31°–46° incidence 
angles (θ). A 2 years-long period (2019–2020) allowed trading-off the yearly release of aquifer management data 
(Section 2.2) for SAR stacks sufficiently long to provide robust outputs.

We used the parallelized Small BAseline Subset (SBAS) InSAR method (Casu et al., 2014), adapted for IW data 
(Manunta et al., 2019) and integrated in ESA's Geohazards Exploitation Platform (GEP). Geohazards investiga-
tions in a few Mexican cities (Cigna & Tapete, 2021a, 2021b, 2022) proved this technique capable to estimate 
displacement velocity with mm/year accuracy against geodetic data (Cigna et al., 2021), and thus suitable to 
attempt a quasi-continental survey.

Interferograms were 20  ×  5 multi-looked to reduce phase noise, resulting in ∼90  m ground spacing. Topo-
graphic components were subtracted using the 30  m resolution Shuttle Radar Topography Mission elevation 
model (Farr et al., 2007). As horizontal displacement components in the region are much lower than vertical 
(Blewitt et  al.,  2018), these were assumed negligible and SBAS-derived Line-of-Sight (LOS) estimates VLOS 
were converted to the vertical direction as VU = VLOS/cosθ, with θ varying across the swath. The reference points 
were set within zones devoid of short-wavelength scale deformation (e.g., onto stable, non-consolidating lith-
ologies), and outside well-known subsiding areas identified in past studies (Castellazzi et al., 2018; Chaussard, 
Wdowinski, et al., 2014; Cigna et al., 2019). No post-processing calibration between adjacent frames was done, 
to preserve the local reference of each dataset. This enabled filtering out regional signals (not of interest to study 
compaction at aquifer scale).

A continuous VU map was generated via inverse distance weighting interpolation of point-wise outputs, and then 
spatially integrated (x,y) within each aquifer boundary. Assuming VU indicates aquifer-system compaction, this 
enabled the computation of the compaction volume rate, ΔSsat:

Δ𝑆𝑆sat = ∬ 𝑉𝑉𝑈𝑈 (𝑥𝑥𝑥 𝑥𝑥)𝑑𝑑𝑥𝑥 𝑑𝑑𝑥𝑥 (1)

2.2. Aquifer Balance and Storage

Groundwater balance parameters for 321 aquifer-systems were extracted from their latest management reports 
(CONAGUA, 2022a) and updates in the Official Federal Gazette (Secretaría de Gobernación, 2021a, 2021b). The 
balance refers to aquifer-systems considered as water-yielding hydraulic units (Poland et al., 1972), with their 
composing sediments and complex structure. Inputs into the system (i.e., recharge, R) include vertical recharge 
from rainfall/precipitation (P), horizontal inflow from adjacent aquifers (Qin) and incidental recharge from irri-
gation, canal seepage and distribution and sewage network leaks (I). Outputs (i.e., discharge, D) are natural 
outflows, for example, evapo-transpiration (ET), horizontal outflow to other aquifers (Qout), discharge through 
springs (Qs) and baseflow to surface streams (Qb), plus anthropogenic outflow through groundwater extraction 
(Qext). If Qext/R ≥ 1.1, the system is “overexploited” (CONAGUA, 2022b).



Geophysical Research Letters

CIGNA AND TAPETE

10.1029/2022GL098923

4 of 12

The difference between recharge and natural and human-induced discharge in a given time period identifies the 
aquifer-system storage change (ΔS), either volumetric gain (if ΔS > 0) or loss (ΔS < 0):

Δ𝑆𝑆 = 𝑅𝑅 −𝐷𝐷 = 𝑃𝑃 +𝑄𝑄in + 𝐼𝐼 − 𝐸𝐸𝐸𝐸 −𝑄𝑄out −𝑄𝑄𝑠𝑠 −𝑄𝑄𝑏𝑏 −𝑄𝑄ext (2)

ΔS depends on hydraulic head change Δh and storativity (S *) of the n layers i composing the system (i.e., the 
amount of water released from storage per unit aquifer surface A and Δh; derived from pumping tests, laboratory 
experiments, or lithology), and can be expressed based on the aquifer-system thickness change Δb:

Δ𝑆𝑆 =

𝑛𝑛
∑

𝑖𝑖=1

𝑆𝑆∗
𝑖𝑖 𝐴𝐴𝑖𝑖Δℎ𝑖𝑖 = 𝐴𝐴Δ𝑏𝑏 (3)

In saturated confined aquifer-systems, skeletal storativity (S *k) is the main component of S *, as it is typically 
greater than the amount attributed to pore-water (Sw). S *k sums up inputs from both coarse-grained (aquifers) 
and fine-grained (aquitards) sediments composing the system, with the latter being several orders of magnitude 
higher (Riley, 1998) and involving both elastic (recoverable) and inelastic (unrecoverable) stress ranges (S′ke and 
S′kv, respectively), as opposed to only elastic (Ske) stress at aquifers (Sneed, 2001).

When hydraulic heads drop below the historical minimum experienced by the aquifer (i.e., pre-consolidation 
head, hpc), aquitards deform inelastically, with fine-grained sediments rearrangement and pore-volume permanent 
reduction (Terzaghi, 1925). Thus, for compacting aquifer-systems, S′kv prevails and equals (Riley, 1969):

𝑆𝑆 ′

kv
= 𝑆𝑆 ′

skv
𝑏𝑏0 =

Δ𝑏𝑏𝑢𝑢

Δℎ
 (4)

where S′skv is the specific storativity, b0 the initial thickness and Δbu the ultimate system compaction in response 
to a sustained Δh (Helm, 1984). Ultimate compaction is achieved when heads in the aquitard (slow-draining units, 
with very low hydraulic conductivity) equilibrate those in adjacent aquifers. The time for the aquifer to reach 93% 
Δbu is proportional to S′skv and b squared, and inversely proportional to conductivity (Riley, 1969; Scott, 1963) 
thus, depending on aquifer characteristics, can be months- to decades-long (Helm, 1978). On the other side, the 
aquitard-drainage model implies that compaction may still happen as a result of Δh, even after the heads stopped 
declining or started to recover.

In unconfined aquifers, groundwater is mostly released by gravity drainage rather than from specific storage, 
hence their storativity approximately equals the specific yield Sy (typically 0.1–0.3; Lohman, 1972).

2.3. Piezometric Monitoring

Hydraulic head change rates Δh/Δt at >3,500 locations within the study area were estimated based on the national 
piezometric monitoring network database (CONAGUA, 2020). For each piezometer, this provides n yearly obser-
vations of the static level (li), going back as far as 1981, depending on instrument installation date and meas-
urement campaigns conducted. The long-term Δh/Δt was computed by linearly fitting li observations at each 
piezometer. To match the satellite observation period, the 2019–2020 Δh/Δt was also calculated at 190 piezom-
eters (where li data allowed).

By approximating Δb with InSAR-derived vertical displacements, the 2019–2020 Δb/Δh ratio allowed a rough 
computation of Sy for unconfined and S′kv for confined aquifers. For confined systems, this assumes Δh as repre-
sentative of the average declines occurring in the coarse-grained layers during 2019–2020. When Δbu is not yet 
reached, this approach enables a transient, lower-bound estimation of S′kv (Figueroa-Vega et al., 1984).

2.4. Groundwater Availability

Official Mexican Standards (CONAGUA,  2015) establish that annual groundwater availability (DMA) of an 
aquifer-system is calculated as its total recharge minus: (a) the portion of natural discharge (Dnc) committed 
as surface water through springs and rivers, or preserved to guarantee ecosystem conservation and avoid poor 
quality water inflow, and (b) the total extraction volume (Qlic), licensed in the Public Registry of Water Rights 
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(REPDA) database (CONAGUA, 2022b) or pending registration, plus reserves and regulations/planning-related 
volumes:

DMA = 𝑅𝑅 −𝐷𝐷nc −𝑄𝑄lic (5)

DMA indicates the groundwater amount that might be extracted from the aquifer-system, in addition to Qlic 
and Dnc, without endangering the ecosystem. A status of “availability” is identified if DMA > 0 (or “deficit” if 
DMA < 0), based on which new extraction licenses can be (or cannot) be granted.

In turn, the Federal Rights Law (CONAGUA, 2021) defines the availability index (Id) as:

𝐼𝐼𝑑𝑑 =
DMA

𝑅𝑅 −𝐷𝐷nc

 (6)

This allows for aquifers categorization into zones of decreasing groundwater exploitation rights cost: #1 
(Id ≤ −0.1), #2 (−0.1 < Id ≤ +0.1), #3 (+0.1 < Id ≤ +0.8) and #4 (Id > +0.8).

When DMA and/or Id were not included in the Gazette for a specific year, they were computed according to 
Equations 5 and 6.

3. Results
3.1. Evolution of Groundwater Availability

Present-day DMA data show that recharge and discharge are roughly balanced for 38% of the aquifers (±5 hm 3/
year), but 114 are in deficit (Figure 2a). The most notable occur at Mexico City Metropolitan Area (−507 hm 3/
year) and Cuautitlán-Pachuca (−183 hm 3/year), as well as to their northwest at San Juan del Río Valley and 
Pénjamo-Abasolo, where extraction rates are remarkable (Figure 2b). In turn, aquifers with the lowest Id are simi-
larly distributed (Figure 2c), with 24% in zone #1 and negative peaks at Santa María del Río (−4.1) and Pastor 
Ortiz-La Piedad (−2.6), where deficits largely exceed the net natural inflows.

Multi-temporal data stacking depicts the decadal evolution recorded in 2013–2022. Only 22% aquifers show 
increased DMA (Figure  2d), for example, Silao-Romita (+236  hm 3/year) and León Valley (+126  hm 3/year), 
mainly due to decreased groundwater extraction (Figure 2e). Conversely, the greatest drops were at Los Naranjos 
(−166 hm 3/year) and Cuautitlán-Pachuca (−128 hm 3/year), driven by boosted extractions. The total number of 
overexploited systems increased from 53 in 2011 to 57 in 2022 (Figure 2f), and followed a trend similar to that 
characterizing the whole country. The proportion of zone #3−#4 aquifers decreased from 66% in 2014 to 54% in 
2022, while zone #2 doubled and zone #1 increased by +1%.

3.2. Land Subsidence Hotspots

The InSAR survey identifies ∼35.7 million coherent targets across the area (Figure 3a), with land cover-controlled 
distribution, hence denser networks over urbanized and arid lands (e.g., RHA VII) and sparser across rural/vege-
tated landscapes (e.g., coastal zones of RHAs V and X). VU in 2019–2020 ranges within ±0.5 cm/year for most 
landmass, though several land subsidence hotspots are found at major cities and agricultural districts within the 
TMVB and, to a lesser extent, northern regions.

The main hotspots and their highest (negative) VU in cm/year are (Figures 3b–3i): Mexico City Metropolitan Area 
(−45); Chaparrosa (−22), east of Fresnillo (−16), Loreto (−13), San Ramón, El Barril and San José de Lourdes 
(−12) in Zacatecas; Villa de Arista (−19) in San Luis Potosí; Aguascalientes Valley (−17) and city (−14); Jocote-
pec (−16), Ciudad Guzmán (−15) and Guadalajara (−13) in Jalisco; Tecamachalco Valley (−15) and Totolcingo 
(−13) in Puebla; Zamora (−12) and Morelia (−8) in Michoacán; León (−12), Irapuaro (−12), Celaya (−10) and 
El Saucito (−10) in Guanajuato; and Toluca (−9) in México. The survey also provides the first account of land 
compaction at several previously unmapped towns, including Etzlatlán and Ameca (−6) in western Jalisco, and 
the city of Oaxaca (−7). Subsidence at Mexico City, Aguascalientes and Morelia, its relationship with urbaniza-
tion and groundwater use, and the induced risk on urban infrastructure are discussed in dedicated investigations 
(Cigna & Tapete, 2021a, 2021b, 2022).
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The hotspot at the southeastern margin of the area (Figure  3a) depicts the 2020 Mw 7.4 earthquake-induced 
deformation (Wen et al., 2021), a signal not linked with aquifer depletion, therefore filtered out in the following 
analysis.

3.3. Aquifer-System Storage Loss and Compaction

Hydrographs at most piezometers show steadily declining h and no obvious rises. Long-term Δh/Δt exceeds 
−5 m/year at several sites in the TMVB and RHA VII (Figure 2g). Storativity S estimations based on InSAR 
and piezometric data are lower than those used for aquifer-system balance, though generally seem to correlate 
(Figure  2h). For systems with Sy of ∼0.05 (e.g., Calvillo Valley), estimations typically range between 0.003 
and 0.021, with median at 0.008. The latter increases to 0.074 for systems with Sy of 0.16 (e.g., Aguascalientes 
Valley).

Figure 2. Groundwater availability in the aquifer-systems of Central Mexico: present-day (a) annual availability (DMA), (b) licensed extractions (Qlic) and (c) zonation 
(CONAGUA, 2022a); changes in (d) DMA, (e) Qlic, (f) condition and zonation; (g) long-term hydraulic head change rate (Δh/Δt); (h) distribution of observed storativity 
(S) against aquifer-system balance values (boxes: interquartile range; lines: minimum/maximum); and (i) modeled storage change (ΔS). Notation: AV, Aguascalientes 
Valley; C-A, Chalco-Amecameca; CH, Chupaderos; C-P, Cuautitlán-Pachuca; CV, Celaya Valley; EB, El Barril; LN, Los Naranjos; LV, León Valley; MCMA, 
Mexico City Metropolitan Area; OJ, Ojocaliente; P-A, Pénjamo-Abasolo; P-P, Pastor Ortiz-La Piedad; SJR, San Juan del Río Valley; SMR, Santa María del Río; S-R, 
Silao-Romita; TV, Toluca Valley; TX, Texcoco. Maps created with ESRI ArcMap, plots with MS Excel.
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Figure 3.
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Highly exploited aquifer-systems loosing non-renewable storage are concentrated in RHAs VII, VIII, and XIII 
(Figure 2i). Here, the modeled ΔS loss rate reaches −280 (Cuautitlán-Pachuca), −215 (Pénjamo-Abasolo), and 
−201 (Celaya Valley) hm 3/year, resulting from withdrawal of 637, 440, and 515 hm 3/year, respectively.

InSAR-derived VU fairly correlates with aquifer-system balance parameters (Figure 4a). Approximately 40% of 
the observed VU variation across Central Mexico is explained by the variance of DMA. The figure drops to 35% 
and 22% when considering Qlic and ΔS, respectively. The three RHAs encompassing most hotspots generally 
show higher correlation with each parameter, though slight different linear fits. The semi-theoretical relationships 
between VU and aquifer management parameters (Figure 4a) show that, in region VII: VU [cm/year] = −0.08*Qlic 
−1.84 (with Qlic in hm 3/year); in region VIII: VU = −0.02*Qlic −3.44; while in region XIII: VU = −0.04*Qlic 
−6.61. Looking at single systems, the subsidence to licensed withdrawal rate ratio VU/Qlic is aligned with the 
region they belong to (e.g., in region XIII, −0.04 × 10 −4 hm −2 at Mexico City Metropolitan Area, where Qlic 
is 1,020 hm 3/year), or divergent due to aquifer-specific conditions (e.g., −0.16  ×  10 −4 hm −2 at Texcoco and 
−0.46 × 10 −4 hm −2 at Chalco-Amecameca, where Qlic is 426 and 99 hm 3/year, respectively). At Chupaderos (VII) 
in Zacatecas, VU/Qlic is −0.12 × 10 −4 hm −2.

Correlations improve for the InSAR-derived aquifer-system compaction ΔSsat (Figure 4b), which appears much 
better explained by Qlic (47%) and ΔS (30%) across the whole area. The compaction volume to withdrawal rates 
relationships are: ΔSsat [hm 3/year] = −0.05*Qlic −2.09 (Central Mexico); ΔSsat = −0.11*Qlic −0.36 (region VII); 
ΔSsat = −0.05*Qlic −1.78 (VIII); and ΔSsat = −0.06*Qlic −2.75 (XIII). Single aquifer-systems often compact more 
than others within the RHA, for example, −0.18 ΔSsat/Qlic rate is observed at Chalco-Amecameca and Texcoco, 
three-times steeper than region XIII's. Similarly, at Ojocaliente ΔSsat/Qlic is −0.12, two-times steeper than region 
VIII's.

Across both the whole of Central Mexico and single RHAs, InSAR-derived ΔSsat are ∼10%–15% of the modeled 
ΔS provided in the management reports.

4. Discussion
The agreement between InSAR-derived VU and aquifer DMA confirms the association between these two vari-
ables for the whole of Central Mexico, thus spatially extending initial observations that were limited only to the 
Lerma-Santiago-Pacifico watershed (Castellazzi, Martel, et al., 2016). DMA is, however, a management parame-
ter identified by CONAGUA to avoid damage to ecosystems (Section 2.4), whereas it does not (directly) quantify 
groundwater level/volume change in each aquifer-system. Hence, prediction of future compaction under different 
extraction scenarios could better be based on the aquifer-system subsidence (rate or volume) to liquid withdrawal 
Qlic relationships, or on the site-specific subsidence to hydraulic head decline ratios Δb/Δh.

Despite the weak correlation between VU and Qlic observed at wells within single subsidence hotspots, such as 
Mexico City (Chaussard et al., 2021) and Morelia (Cigna & Tapete, 2022), our analysis provides evidence of a 
moderate association between compaction and extractions at aquifer-system scale (Figures 4a and 4b). Assump-
tions made to derive the semi-theoretical relationships (VU to Qlic, and ΔSsat to Qlic) are to be accounted for 
when exploiting them to attempt predictions. First, the relationships refer to the whole of Central Mexico or 
one of its RHAs, thus may not reflect the specific behavior or characteristics of a single aquifer-system (e.g., 
complex structure, local consolidation conditions, or aquitard thickness). For instance, city-scale investigations 
in Mexico City and Aguascalientes (Cigna & Tapete, 2021a, 2021b) demonstrated that the main predictor of VU 
is unconsolidated sediment thickness, rather than pumping rate. Moreover, the semi-theoretical relationships do 
not directly account for the time-lag between head changes and aquitard compaction, or varying aquifer properties 
with depth and time. More sophisticated approaches at site-scale could address this (e.g., Li et al., 2022; Zhang 
et al., 2022). Therefore, future research may focus on testing whether the relationships could be tailored for differ-
ent aquifer-system types and characteristics, by also incorporating other input variables. Lastly, estimation of 
ΔSsat assumes that deformation is purely due to aquifer compaction. Even if long-wavelength and major unrelated 

Figure 3. Land subsidence in Central Mexico detected by 2019–2020 Sentinel-1 Interferometric Synthetic Aperture Radar (InSAR): (a) regional overview and main 
hotspots: (b) Mexico City; (c) Chaparrosa, Fresnillo, San Ramón, El Barril and San José de Lourdes; (d) Villa de Arista; (e) Loreto and Aguascalientes Valley; (f) 
Jocotepec, Ciudad Guzmán and Guadalajara; (g) Tecamachalco Valley and Totolcingo; (h) Zamora, Sahuayo and Ocotlán; (i) León, Irapuaro, Salamanca, Celaya and 
El Saucito; (j) Toluca; and (k) Morelia. Maps created with ESRI ArcMap. Basemap credits: ESRI, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, 
USDA, USGS, AeroGRID, IGN, and GIS User Community.
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signals were masked out (Section 2.1), any local scale process (e.g., settlement due to engineering works) might 
still contribute to ΔSsat, though only marginally, compared with aquifer compaction signals.

For normally consolidated systems, the steadily declining Δh at the piezometers of the national network suggests 
that, at those sites, heads increasingly dropped below hpc, thus exceeding pre-consolidation stress and causing 
irreversible aquifer-system deformation. InSAR-derived S and compaction therefore reflect inelastic components 
only, and Δb/Δh relationships provide a lower limit of subsidence magnitude in response to further step-increase 

Figure 4. Correlation between land subsidence and aquifer-system balance parameters in Central Mexico. Licensed groundwater withdrawal (Qlic), annual groundwater 
availability (DMA) and modeled storage change (ΔS) are compared with Interferometric Synthetic Aperture Radar (InSAR)-derived (a) highest (negative) vertical 
displacement velocity (VU) and (b) total compaction volume rate (ΔSsat) at each aquifer-system. Linear fits with determination coefficients (R 2) are provided for the 
whole area (solid black line) and regions VII, VIII, and XIII (dashed lines). Notation: AV, Aguascalientes Valley; C-A, Chalco-Amecameca; CH, Chupaderos; MCMA, 
Mexico City Metropolitan Area; OJ, Ojocaliente; TX, Texcoco. Plots created with MS-Excel.
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in effective stress beyond the pre-consolidation value (Figueroa-Vega et al., 1984). Anyway, the yearly tempo-
ral granularity of the piezometric data prevents the detection of short-term or seasonal signals, therefore any 
short-term variations cannot be investigated with the available dataset.

Subsidence and Δh generally show low correlation within single hotspots, for example, Mexico City (Solano Rojas 
et al., 2015), Aguascalientes (Cigna & Tapete, 2021b) and Morelia (Cigna et al., 2012), given the leading role of 
other factors in determining compaction rates and patterns (e.g., aquitard thickness, geological structures). Never-
theless, the moderate agreement between the storativity S used for aquifer-system modeling and InSAR-derived 
values at the monitoring network (Figure 2h) encourages future research efforts to investigate the relationship 
between Δh and compaction across the region. Discerning storativity components for unconfined and confined 
layers of the same system would also require further investigation. The discrepancies between observed compac-
tion volumes and modeled storage changes (ΔSsat vs. ΔS) could part be explained by the different time periods, 
namely, 2019–2020 for the InSAR survey versus as far as the 1980s for the reference aquifer-system studies. 
In some cases, indeed, the higher modeled ΔS figures could be driven by greater extraction rates adopted in 
the past. Another potential influence may come from assumptions made during the modeling (e.g., use of a 
single-layer system, with homogeneous S throughout), which could mask out site-specific conditions. The tran-
sient nature of S estimations until ultimate compaction (Sections 2.2−2.3) could also play a role in lowering down 
InSAR-derived figures.

5. Conclusions
There is general consensus that in several areas of Central Mexico groundwater is extracted at the expense of 
non-renewable storage of aquifer-systems, causing land subsidence and other environmental impacts (e.g., saltwa-
ter intrusion, quality degradation, spring discharge and river flow reduction). This work provides semi-theoretical 
relationships (Figure 4) to link groundwater use information at aquifer-system scale with compaction and storage 
loss, potentially enabling predictions of subsidence rates and volumes for different groundwater management 
scenarios. While these relationships may need further tailoring at local scale, they provide a first high-level 
assessment of the potential additional compaction resulting from increased pressure on groundwater resources 
(or also, reduced pressure induced by managed recharge; Cruz-Ayala & Megdal, 2020). Given population growth 
and renewable freshwater availability drop expected in 2030 (CONAGUA, 2022b), this is key information to feed 
into decision making and water management strategies.

Data Availability Statement
Aquifer management data are freely distributed by CONAGUA (https://sigagis.conagua.gob.mx/gas1/sections/
Disponibilidad_Acuiferos.html), while Sentinel-1 and Sentinel-2 imagery by ESA via Copernicus Open Access 
Hub, after user registration and catalog search (https://scihub.copernicus.eu/).
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