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tanks and are highly flexible structures that can significantly deform under gust

loads. In the recent experiment by Martinez-Carrascal and González-Gutiérrez

[J. Fluids and Structures 100, 103172 (2021)] the complex problem of the fuel

sloshing inside a flexible wing structure was significantly simplified by considering a

partially filled vertically heaving tank attached to a system of springs. In the present

research a Smoothed Particle Hydrodynamic model was adopted to evaluate the

energy dissipated in the three-dimensional sloshing flow obtained using the same tank

motions. From a numerical point of view the simulation of such a violent flow is rather

challenging, the involved vertical accelerations being as large as 106. The resulting

flow is extremely complex because of the severe turbulence developed, the violent

impacts and the considerable fragmentation of the air-liquid interface. The role of

the viscosity is investigated by taking into account two different liquids. Finally,

some comparisons between three-dimensional results and previous two-dimensional

studies are also discussed.
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I. INTRODUCTION

Sloshing flows are those occurring when free surface waves are generated inside a tank.

They are caused by any disturbance to partially filled liquid containers. As clarified in

Ibrahim 1 , depending on the type of disturbance and container shape, the liquid surface

can experience different types of motion including simple planar, rotational, symmetric,

asymmetric, quasi-periodic or chaotic. The interaction with the container walls may induce

significant global and local loads because of the impacts of the travelling waves. The basic

problem of liquid sloshing involves the estimation of the hydrodynamic pressure distribution,

forces, moments and natural frequencies of the free surface oscillation. The sloshing motion is

characterised by an infinite number of natural frequencies, but only the few lowest modes are

the most likely to be excited by the tank motion. Moreover, the nonlinear effects associated

with the free-surface motion are different from nonlinear water waves in ocean and rivers,

presenting amplitude jumps, parametric resonance, chaotic motion and nonlinear sloshing

mode interaction (Ibrahim 1 , Faltinsen and Timokha 2). These sloshing modes may directly

affect the stability and performances of moving containers. Because of this, a large number

of studies have been recently dedicated to the damping/suppression of unwanted oscillations.

On the other hand, sloshing flows can be effectively used to dampen the oscillations of

a structure. Tuned Liquid Dampers (TLD) exploit the liquid sloshing motion in a tank

in order to counteract the external forces and dissipate energy. These dampers are of

great interest in many engineering fields, spanning from the control of building stability

(Tamura et al. 3 , Novo et al. 4 , Kareem et al. 5 , Yamamoto and Sone 6) or the rolling motion

of ships (Bass 7) in the civil engineering, to aerospace where the suppression of spacecraft

instabilities is of fundamental importance during the ascent or landing stages (Graham and

Rodriguez 8 , Abramson 9).

From the physical point of view, the study of the dissipation induced by a free-surface

flow is arduous, especially in the presence of wave breaking. Cooker 10,11 performed decay

experiments with a free oscillating tank, suggesting that hydraulic jump theory can provide

some insight into the dissipation mechanisms. Perlin et al. 12 presented a review of studies

dedicated to the dissipation caused by wave breaking. From a numerical point of view,

potential flow theory (Frandsen 13) as well as shallow water approximation (Ardakani and

Bridges 14 , Ardakani et al. 15) have been adopted for the simulation of sloshing flows and
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the study of energy dissipation. In his pioneering works Demirbilek 16,17,18 investigated

the dissipation in sloshing waves both theoretically and numerically, by considering a

linearized stream function formulation of 2D momentum equations. Some results of the

influence of both Froude and Reynolds numbers on the dissipation values were deduced

but no validation was provided. More recently, Reed et al. 19 investigated experimentally

and numerically the effects of large amplitude sloshing on a TLD, while Marsh et al. 20

performed a numerical study regarding the analysis of damping properties of egg-shaped

sloshing tanks. In Bouscasse et al. 21 and Bouscasse et al. 22 a dynamical system involving a

driven pendulum filled with liquid was studied experimentally and numerically by Smoothed

Particle Hydrodynamics (SPH), focusing on the mechanical energy dissipation of the system.

A recent and attractive example of an industrial sloshing problem, that has increasingly

received attention, concerns the kerosene containers placed inside aircraft wings subjected to

external wind gusts. Although typical attitude corrections cause weak fuel sloshing motions

because of the low accelerations involved, sudden strong gusts accelerate the fuel transversely

up to values of 10g, which results in amplitudes comparable to the tank dimensions and

frequencies higher than 5 Hz (see Gambioli and Malan 23). This fluid motion, which several

experiments have demonstrated to play a role on the damping of the wing vibrations, is

significantly different from typical sloshing flows: the fuel is continuously broken into several

jets and drops, whilst violently slamming alternately upward and downward against the tank

walls.

Disregarding their industrial impact, very few studies dealing with vertically sloshing

flows are found in the literature. Experimentally, one of the first studies dealing with this

problem was Bredmose et al. 24 and, more recently, Gambioli and Malan 25 . Titurus et al. 26

carried out an experimental campaign devoted to reproducing the same conditions as those

found for aircraft wing tanks, at model scale. In those experiments, a partially filled tank

was bounded to an elastic beam, which was deformed and released in such a way that

the tank moved with a heaving oscillatory motion, where accelerations up to 10g could

be reached. Constantin et al. 27,28 discussed a combination of experiments and analytical

studies, where the sloshing-induced energy dissipation was investigated with a controlled

vertically oscillating and partially filled fluid container. The authors also suggested a particle

ballistic model to further explain the nature of the damping saturation point. In Martinez-

Carrascal and González-Gutiérrez 29 a one-degree-of-freedom experimental campaign on a
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partially filled heaving tank attached to a system of springs was carried out. In that case

the damping action of the sloshing flow on the tank oscillations was studied in detail, by

taking into account several non-dimensional parameters.

Ongoing European projects, such as the EU-SLOWD (Gambioli et al. 30) are planning

ambitious experimental campaigns in the future that include a full scale aircraft wing

structure with the corresponding fuel tanks. This structure will be excited to the most

critical conditions for which sloshing effects are likely to be relevant.

From the numerical point of view, violent internal flows are challenging to simulate and

mesh-based numerical approaches may suffer from significant mass loss if ad-hoc strategies

are not adopted (see e.g. Broglia and Durante 31). Conversely, particle based approaches

such as SPH are more suitable for these kinds of simulations where the free surface is strongly

and rapidly deformed in jets and fragmented in sprays and drops.

In Marrone et al. 32 , the initial stages of such violent flows, where the liquid is mainly

driven by inertia because of the strong accelerations, are referred to as “shaken flow”.

Later stages of the problem, where most of the energy has been dissipated and the

tank accelerations become smaller than gravity, are classified as “sloshing flows”. In

Marrone et al. 32 , the X-LES-SPH method was used to study the energy dissipation

mechanisms, occurring in shaken flows, for tanks subjected to vertical oscillatory motions

with accelerations as high as 106. In a second paper by Marrone et al. 33 the experiments of

Martinez-Carrascal and González-Gutiérrez 29 were used as reference for comparisons with

the numerical simulations.

In the present paper the same experimental campaign of Martinez-Carrascal and

González-Gutiérrez 29 is taken into account and, similarly to Marrone et al. 32 , the X-LES-

SPH approach is adopted for the simulation of the liquid phase only, neglecting the air phase.

Unlike the work of Marrone et al. 32 and Marrone et al. 33 , where the analysis was entirely

carried out under the 2D assumption, here the analysis is fully 3D, thus implying additional

complications in accurately resolving the flow field, as will be stressed in the following.

One of the typical drawbacks of the standard SPH method is the so-called “tensile

instability” which develops inside the fluid domain inducing numerical cavitations in low

pressure regions. Conversely, in the X-LES-SPH model adopted in the present work, a

particle shifting technique (PST) enforcing uniform distributions, discussed in Sun et al. 34 , is

adopted to avoid the development of tensile-instability. Furthermore, the use of PST largely
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Figure 1. Experimental snapshots of the SDOF vertical sloshing water experiments carried out in

Martinez-Carrascal and González-Gutiérrez 29 for 50% filling level.

.

improves the accuracy of the integral interpolations allowing a more accurate evaluation

of pressure and vorticity fields. Finally, a Large Eddy Simulation (LES) approach based

on the classical Smagorinsky model is included in the numerical scheme (see Di Mascio

et al. 35 , Antuono et al. 36 for details) so that the energy contributions coming from

unresolved turbulent scales are taken into account.

The paper is organized as follows: in section II the experimental conditions are outlined;

in section III the governing equations are introduced; in section IV the numerical scheme

is discussed; in section V some considerations on the energy dissipation are presented; in

section VI the simulations with oil and water are discussed and the results compared with

the 2D outcomes. Furthermore, a deep insight into energy dissipation is offered in section

VI B. Finally, conclusions are given in section VII.

II. PROBLEM DESCRIPTION

In the present numerical study the conditions adopted in the experimental campaign by

Martinez-Carrascal and González-Gutiérrez 29 are applied. In that work a violent sloshing

flow in a vertically moving tank was experimentally studied. A tank measuring 10×6×6 cm

is connected to a set of 6 springs, 3 on the upper side and 3 on the lower side, as sketched

in figure 1.

In the present work, water and oil are considered as sloshing liquids. The tank is filled

up to 50% of its volume (water mass of <; = 0.18 kg and oil <; = 0.162 kg).
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Figure 2. Experimental box sketch with highlight of the filled volume. The axes scales are in cm.

Bottom-right: an enlarged view of the liquid meniscus.

When the springs are released, for both the liquids, the tank oscillates at a characteristic

frequency of about 50 = 1/) = 6.51 Hz. At time C = ) the tank reaches its maximum vertical

displacement 2� = 1.14! and a maximum deceleration about −9.36. The maximum velocity

*max of about 2.33 m/s is reached by the tank at C = 0.747) during the first rising stage,

while the maximum acceleration 0<0G of about More details on the experiment can be found

in the article by Martinez-Carrascal and González-Gutiérrez 29 .

The problem geometry considered in the present work is sketched in figure 2, where L =

10 cm, D = 6 cm, W = 6 cm and H = 3 cm. In the same plot the liquid menisci due to the

contact angle between the lateral walls and the liquid surface are depicted and enlarged in

the inset. The Reynolds number of the problem is referred to the maximum tank velocity

(Re = *<0G!/a) where a is the kinematic viscosity of the fluid.

The tank motions are imposed and are only in the vertical direction. The law of motion

is taken from acceleration measurements in Martinez-Carrascal and González-Gutiérrez 29

and the motion follows a decay law. The kinematic viscosity, a, for the water and oil are,
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respectively, 10−6<2/B and 5 × 10−5<2/B. The resulting Reynolds numbers for water and

oil using the above quantities are equal to 233,000 and 4660.

III. GOVERNING EQUATIONS

In the present work a three-dimensional fluid domain Ω is considered with its boundaries

which are composed by the tank walls mΩ� and the free surface mΩ� . The flow evolution is

governed by the Navier-Stokes equations (see also Marrone et al. 32,33):
�d

�C
= − d div(u) , �u

�C
= g + div(�)

d

�4

�C
=
� : �

d
,

�r

�C
= u, ? = 5 (d)

(1)

with �/�C the Lagrangian derivative, r the material points positions, u the flow velocity,

d the fluid density, 4 the specific internal energy, � the stress tensor, � the rate of strain

tensor and g the gravitational acceleration.

The liquid is assumed to be Newtonian and the flow isothermal, while the surface tension

effects are neglected, i.e: � = [−? + _ div(u)] � + 2 `�, where ` and _ are the primary

and secondary dynamic viscosity of the liquid and � is the identity tensor.

The eq. (1) can be solved either in an Inertial Frame of Reference (I-FoR) where the tank

is moving or in a Non-inertial Frame of Reference (Ni-FoR) which moves with the tank. If

the fluid motion is considered within the Ni-FoR, the non-inertial accelerations f #� due to

the tank motion must be taken into account in the governing equations 1:
�d

�C
= − d div(û) , �û

�C
= ĝ + f #� +

div(�̂)
d

�4

�C
=
�̂ : �̂

d
,

� r̂

�C
= û, ? = 5 (d)

(2)

where the hat symbol ˆ is used for the quantities described in the Ni-FoR.

Although the description of the phenomena in both frames of reference does not affect the

evaluation of the energy dissipated during the liquid motions, different numerical approaches

may lead to different numerical errors, depending on this choice. In order to avoid numerical

errors due to the tank motion, in the present work the Ni-FoR is considered.

By considering that the temperature is assumed to be constant since the effects of its

variation are negligible with a good approximation, as we underlined above, the pressure ? is
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assumed to depend on the density only. Furthermore, since a weakly-compressible condition

is assumed, a simple linear equation of state can be adopted:

? = 220 (d − d0) (3)

where 20 plays the role of a constant speed of sound of the liquid and d0 is the density at

the free-surface (where ? is assumed to be equal to zero).

The weakly-compressible hypothesis implies the following requirement:

20 � max

(
*<0G ,

√
(Δ?)<0G
d0

)
(4)

where *<0G and (Δ?)<0G respectively are the maximum fluid speed and the maximum

pressure variation expected (with respect to the zero pressure free-surface level) in Ω. By

considering that the time integration is performed with a time step related to the value of

20, the latter is always set lower than its physical counterpart (in the present work, about

two orders of magnitude lower). The constraint (4), however, must be checked in order to

guarantee the weakly-compressible regime.

The simplifications adopted for the physical model are, in summary:

• the air phase is not considered;

• thermal conductivity and surface tension are neglected;

• a weakly-compressible condition is obtained with an artificial speed of sound.

Neglecting the gas phase may appear inappropriate for violent sloshing simulations where

the air entrapment is unavoidable. For instance, Lamarre and Melville 37 estimated that

the work done against buoyancy in entraining air accounted for up to 50%. However, in the

present case the rapid succession of impacts against, alternatively, the ceiling and the floor of

the tank makes the flow rather different from a breaking wave. Further, in Marrone et al. 38 ,

it was shown that, although the air phase plays a relevant role in the flow evolution, the

evaluation of the energy dissipation in violent flows even under the single-phase hypothesis

is still accurate enough. A further confirmation can also be found in Bouscasse et al. 21,22

where the study of the mechanical energy dissipation induced by sloshing and wave breaking

in a fully coupled angular motion system was investigated. In that work it was shown

that a single-phase SPH model is able to correctly predict the experimental fluid dissipated
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energy. Another confirmation is given in39 for the application to spillway hydraulics where an

extensive comparison is made between the single-phase and two-phase water–air modelling

approaches.

As far as surface tension effects are concerned, these are relevant above all during

the initial stage. As remarked in Marrone et al. 32,33 , during the initial intense vertical

acceleration, a Rayleigh–Taylor instability develops. The latter is triggered by the fluid

meniscus formed at the intersection between the lateral walls and the liquid surface and

numerically modelled as indicated in figure 2. In the evolution just afterwards, the role of

the surface tension becomes negligible according to the velocity and length scales considered,

as also explained in Calderon-Sanchez et al. 40 , since the Weber number, We = d*2
<0G !/f

(where f is the surface tension coefficient of the liquid considered) is larger than 4,000 for

both the liquids considered in this work. Therefore, the surface tension force terms are

neglected while initial effect of surface tension is recovered by appropriately setting the

initial meniscus free-surface deformation with an angle \ = 45◦ (see inset of figure 2).

Finally, as clarified in Marrone et al. 41 and in Meringolo et al. 42 , the energy dissipation

related to the water impacts as predicted by using the artificial speed of sound within the

weakly-compressible assumption (see equation (1)) is consistent with the one predicted by

incompressible flow models.

A. Subgrid models

As reported in section II the water test-case is characterised by a Reynolds number

equal to 233,000. Therefore, in the numerical scheme a subgrid model for the turbulent

viscosity is needed. For the choice of the sub-grid models the articles by Christensen and

Deigaard 4344 are considered. In those works a simple LES with Smagorinsky model is

adopted for simulating breaking waves. The same LES model was adapted in the SPH

framework by Di Mascio et al. 35 and further enhanced in Antuono et al. 36 by introducing

LES modelling in a quasi-Lagrangian formalism. The latter formulation is one adopted also

in the present work. More complex models, such as the dynamic LES model adopted in Lubin

and Glockner 45 , can be also considered for future works but they should be preliminary

adapted and validated in the SPH framework. As remarked in Labourasse et al. 46 it is worth

noting that turbulence models in violent free-surface and multiphase flows still remain an

9



open problem nowadays.

IV. NUMERICAL SCHEME

The X-LES-SPH model presented in Antuono et al. 36 , Meringolo et al. 47 is here briefly

recalled and the interested reader is addressed to the detailed discussions therein. The

governing equations (1) are discretized according to the Smoothed Particle Hydrodynamics

numerical approach:

dd8
dC

=
∑
9

[
−d8 (u 98 + Xu 98) + (d 9 Xu 9 + d8 Xu8)

]
· ∇8,8 9+ 9 + Dd

8

d8
du8
dC

=
∑
9

[
−(? 9 + ?8) � + d0(u 9 ⊗ Xu 9 + u8 ⊗ Xu8)

]
· ∇8,8 9+ 9 + LE8 + d8g

dr8
dC

= u8 + Xu8, +8 (C) = <8
/
d8 (C), ? = 220(d − d0)

(5)

where the index 8 refers to the considered particle and 9 refers to neighbour particles of

8. The vector LE8 is the net viscous force acting on the particle 8, while Xu is the Particle

Shifting velocity field which acts on the spatial distribution of the particles during their

motion, rearranging them in a more regular configuration. The mass <8 of the 8−th particle

is assumed to be constant during its motion. The particles are set initially on a Cartesian

lattice with spacing ΔA, and hence, the volumes +8 are initially set as ΔA3. The particle

masses <8 are calculated through the initial density field (using the equation of state and

the initial pressure field) and remain constant during the time evolution. The volumes +8

change in time accordingly with the particle density (see bottom line of eq. (5)). The spatial

gradients are approximated through the convolution with a kernel function ,8 9 . Following

Antuono et al. 36 , a C2-Wendland kernel is adopted in the present work.

The time derivative 3/3C used in (5) indicates a quasi-Lagrangian derivative, i.e.:

3 (•)
3C

:=
m (•)
mC
+ ∇(•) · (u + Xu)

since the particles are moving with the modified velocity (u+Xu) and the first two equations

of (5) are written following an Arbitrary Lagrangian-Eulerian approach. Because of this,

the continuity and the momentum equations contain terms with spatial derivatives of Xu

(for details, the interested reader is referred to Antuono et al. 48).

The notation u 98 in (5) indicates the differences (u 9 −u8) and the same holds for Xu 98 and

r 98. The spurious noise in the pressure field is filtered out through the diffusive term Dd

8
,
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introduced by Antuono et al. 49 . Following Antuono et al. 36 , this term is included together

with a LES model as follows:



Dd

8
:=

∑
9

X8 9 7 98 · ∇8,8 9 + 9

7 98 := 2

[
(d 9 − d8) −

1

2

(
〈∇d〉!8 + 〈∇d〉!9

)
· r 98

]
r 98

| |r 98 | |2

X8 9 := 2
aX
8
aX
9

aX
8
+ aX

9

aX8 := (�X ;)2 | |�8 | |

(6)

where �X is a dimensionless constant (typically set to 6.0), while ; = 2.7ΔA is the radius of

the support of the kernel , for three spatial dimensions (; = 4ΔA in two dimensions, see

Marrone et al. 32) and represents the length scale of the filter adopted for the LES sub-grid

model. | |�| | is a rescaled Frobenius norm, namely | |�| | =
√

2� : �. The superscript ! in

(6) indicates that the gradient is evaluated through the renormalized gradient equation, i.e.:

〈∇d〉!8 =
∑
9

(d 9 − d8) L−18 ∇8,8 9 + 9 , L8 :=

[∑
:

(r: − r8) ⊗ ∇8,8: +:

]
(7)

where L8 is the renormalization matrix (see e.g Antuono et al. 50).

The viscous forces LE are expressed as:


LE8 :=  

∑
9

(` + `)8 9 ) c8 9 ∇8,8 9 + 9  := 2(= + 2)

c8 9 :=
u8 9 · r8 9
| |r 98 | |2

`)8 9 := 2
`)
8
`)
9

`)
8
+ `)

9

`)8 := d0 (�( ;)2 | |�8 | |
(8)

where = is the number of spatial dimensions and �( is the so called Smagorinsky constant,

set equal to 0.18 (see Smagorinsky 51 and Bailly and Comte-Bellot 52). The viscous term

(8) contains both the effect of the physical viscosity ` as well as of the one related to the

turbulent stresses `)
8

(see also the pioneering articles53,54).

When considering violent free-surface flows, | |�| | can exhibit a singular behaviour in

the limit ; → 0, especially during impacts, and can reach unlimited values; therefore, in

order to avoid stability issues the terms `)
8 9

and X8 9 are limited with upper bounds equal to,

respectively, `)
8 9
= 0.1 ; 20 d0/ and X8 9 = 0.1 ; 20.
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Finally, consistently with32, the Particle Shifting velocity Xu is given by:


Xu∗8 = −*max ;

∑
9

[
1 + '

(
,8 9

, (ΔA)

)= ]
∇8,8 9+ 9

Xu8 = min

(
| |Xu∗8 | |,

max 9 | |u8 9 | |
2

,
*max

2

)
Xu∗

8Xu∗
8


(9)

The constants ' and = are respectively set to 0.2 and 4 as in Sun et al. 34 , Monaghan 55 . The

second equation of (9) is introduced to limit the magnitude of the shifting velocity for the

sake of robustness. Since formulae (9) are proportional to the smoothing length, the finer

the spatial resolution the lower the intensity of Xu, thus guaranteeing that Xu8 induces small

deviations on the physical particle trajectories. As documented in Sun et al. 34 , the use of

the Particle Shifting Technique (PST) leads to regular particle distributions and increases

the accuracy and the robustness of the scheme. Further, as shown in Marrone et al. 32 the

use of a PST is crucial in the considered problem where the occurrence of tensile instability

is expected due to the development of intense negative pressure. As discussed in detail in

Sun et al. 34 and Antuono et al. 48 the use of a PST alters the exact conservation of the

angular momenta and may induce errors on the conservation of the total volume occupied

by the fluid. The latter inconvenience is substantially limited by including the PST within

an Arbitrary Lagrangian-Eulerian framework. We remark that total volume preservation is

also influenced by time stepping and the adopted CFL conditions as discussed below.

It is worth noting that the shifting velocity close to the free surface has to be modified to

be consistent with the kinematic boundary condition along such an interface. In particular,

the normal component of Xu to this interface has to be nullified while the tangential

component is maintained unaltered (for more details, see Sun et al. 34). In Khayyer et al. 56

it was shown that the choice of the PST in the free-surface region may also adversely affect

the mechanical energy of the scheme. However, as also shown in Sun et al. 34 the PST

adopted in the present work has only a minor influence on the mechanical energy (see also

the recent work in Michel et al. 57).

A 4th-order Runge-Kutta scheme is adopted to integrate in time system (5). The time

step, ΔC, is obtained as the minimum over the following bounds as set by Courant-Friedrichs-

12



Lewy conditions:
ΔCE = 0.031 min

8

;2 d8

(` + `)
8
)
, ΔC0 = 0.3 min

8

√
ΔA

‖a8‖
, ΔC2 = 0.6

(
;

20

)
,

ΔC = min(ΔCE ,ΔC0 ,ΔC2)

(10)

where ; is the radius of the kernel support, ‖a8‖ is the particle acceleration, ΔCE is the time

step related to viscosity, ΔC0 is the advective time step and ΔC2 is the acoustic time step (see

e.g.58). For the problem addressed in this work the last two constraints are always the most

restrictive. Specifically, the term ΔC0 plays a relevant role when shifting velocity is large,

e.g. during impacts. This contributes to a better preservation of the volume occupied by

the fluid. The latter was checked at the end of the simulations where it was verified that

the relative error on the total volume is maintained below 5%.

A. Boundary conditions

The governing equations (1) are coupled with kinematic and dynamic free-surface

boundary conditions on mΩ� , while on the solid surfaces mΩ� the no-slip boundary

condition needs to be enforced. Concerning the former, free-surface boundary conditions

are intrinsically satisfied in SPH methods (see Colagrossi et al. 59). On the other hand, in

SPH it is difficult to resolve thin wall boundary layers (WBL) unlike mesh-based methods.

Indeed, the use of smaller particles close to the walls implies large CPU costs linked to the

explicit time integration of the scheme, as the time steps decrease proportionally to the

particle size. Consequently, if the fluid viscosity is significantly low (i.e. high Reynolds

numbers) very thin WBLs are developed. Because they are too demanding in terms of

computational resources to be well resolved, a simple no-penetration boundary condition

(free-slip) is preferred.

In the present paper the Reynolds number of the simulations with water is about 233,000.

From a rough estimation of the WBL thickness it turns out that, with the maximum spatial

resolutions adopted, the near wall regions are still under-resolved so that free-slip conditions

are preferred. Conversely, the simulations with oil are performed at a Reynolds number of

about 4,660. The same particle size as for water is sufficient to resolve the boundary layer

developed by the oil, thus allowing the no-slip conditions to be considered.
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An evaluation of the limit of the free-slip assumption for the water simulations is given

in Marrone et al. 32 . It was concluded that for the kind of violent free-surface flows studied

in the present work, the energy dissipation is not substantially affected by the choice of

the wall boundary conditions. This result is also linked to two opposing phenomena: the

wall friction implies a further energy dissipation mechanism but, on the other hand, it slows

down the run-up of the liquid jet, decreasing the intensity of the liquid impact against the

tank walls.

V. CONSIDERATIONS ON THE ENERGY DISSIPATION

Following the analysis performed in Antuono et al. 60 and in Meringolo et al. 47 the X-

LES-SPH energy balance can be written as:

¤E" + ¤E� = P+ + PCDA1+ + PN + P4GC PN := PX + P(Xu) (11)

where E" is the mechanical energy of the particle system, formed by kinetic energy E and

potential energy E%. The elastic potential energy E� is defined as:

E� = E� (d0) + 220
∑
8

(
log

d8

d0
+ d0

d8
− 1

)
<8 (12)

where the state equation (3) has been considered and E� (d0) is the internal energy at rest

(i.e. d = d0). Within the weakly compressible regime, the elastic energy term E� is generally

negligible in the energy balance; hence it is not considered in the following discussion.

The external power P4GC exerted by the tank walls on the fluid is evaluated through the

mutual interaction between fluid and solid particles, as detailed in Antuono et al. 60 and in

Cercos-Pita et al. 61 . The power related to the viscous forces is directly evaluated through

the expressions (8) as:

P+ + PCDA1+ =
 

2

∑
8

∑
9

( ` + `)8 9 ) c8 9 u8 9 · ∇8,8 9 +8 + 9 (13)

where the quantity PCDA1
+

refers to the viscous dissipation of the modelled sub-grid scales,

whereas P+ refers to the resolved scales. Finally, the term P# takes into account the effect

of the density diffusion PX (see Meringolo et al. 47):

PX =
∑
8

?8

d8

∑
9

X8 9 78 9 · ∇8,8 9 +8 + 9 (14)
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and the effect related to the particle shifting Xu, i.e. P(Xu). Both these terms are linked

to the stability of the scheme and are both included in P# , likewise a numerical diffusion

term. Finally, the discrete form of the energy dissipated, E38BB, can be expressed as:

E38BB =
∫ C

C0

P38BB 3C, P38BB := P+ + PCDA1+ + PN (15)

where C0 is the initial time instant of the simulation.

During the impacts energy losses occur, therefore the weakly-compressible approach acts

in such a way that acoustic waves, coming from the conversion of mechanical energy and

travelling at velocity 20, are formed and then dissipated through the density diffusion term,

i.e. PX, as investigated in Meringolo et al. 47 .

When no impacts occur and vortices are generated during post-impact events, the

mechanical energy is mainly dissipated by the viscous terms (P+ + PCDA1+
) rather than by

PX. However, by increasing the spatial resolution both P# and PCDA1
+

decrease, whereas P+
increases. Indeed, as suggested by Pope 62 , for a good LES simulation the resolved turbulent

kinetic energy should be greater than the energy associated to eddy viscosity. Therefore, the

power associated to real viscosity P+ (which depends upon the resolved velocity gradients)

should be greater than P# and PCDA1
+

. It is worth noting that even in the discrete form

E� , P+ , PCDA1
+

and PX are invariant under coordinate changes from inertial to non-inertial

reference frame.

Finally, integrating in time the energy balance (11) between the time instants C0 and C

we obtain:

E" (C) − E" (C0) = W4GC + E38BB , W4GC := −
∫ C

C0

�I (C) EC0=: (C) 3C (16)

where �I is the vertical force exerted by the liquid on the tank and EC0=: the vertical velocity

of the tank. By subtracting the inertial term from �I, the force �
3H=
I linked to the deformation

of the liquid inside the tank is obtained:

�
3H=
I (C) := �I (C) − ";8@D83 [−6 − 0C0=: (C)] (17)

with ";8@D83 the mass of the liquid contained in the tank and 0C0=: the vertical tank

acceleration. According to such a decomposition, the energy balance can be rewritten as:
[E" (C) − EBC0C" (C)] − [E" (C0) − E

BC0C
" (C0)] = W

3H=
4GC + E38BB ,

W3H=
4GC := −

∫ C

C0

�
3H=
I (C) EC0=: (C) 3C , EBC0C" := ";8@D83

(
1

2
E2C0=: + 6 IC0=:

) (18)
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where EBC0C
"

is the mechanical energy of liquid linked to the tank motion only. The term IC0=:

refers to the tank bottom vertical elevation from its initial position, where it is assumed

E" (C0) = EBC0C"
(C0). The dynamical work W3H=

4GC is the work related to the fluid domain

deformation only, i.e. due to the sloshing motion. At the final time of the simulation C 5 the

liquid may be assumed at rest, so that the left-hand side of equation (18) becomes negligible

and it follows that:

E38BB (C 5 ) = −W3H=
4GC (C 5 ) (19)

From this relation it results that from the measure of the force �I on the tank and its

velocity EC0=: it is possible to evaluate the experimental dynamical workW3H=
4GC and therefore

the liquid dissipation E38BB (C 5 ).

VI. NUMERICAL RESULTS

In this section the law of motion resulting from the experiment of Martinez-Carrascal and

González-Gutiérrez 29 is imposed on the tank. The law of motion presents an exponential

decay due to the energy that is quickly dissipated by the liquid, and to a lesser extent, by

the springs and the supporting rails.

In addition to the study of the energy dissipation under decaying motion, this test case

allows for a comparison of the obtained forces (and related work) acting on the tank with

those recorded in the experiment. The maximum amplitude of the oscillation motion, taken

from recordings in the experiment, is 2�/! = 1.14. The frequency of motion is defined as

50 =
√
:/< / 2c = 6.51 Hz, where : is the spring stiffness and < the sum of the masses

of the tank, the liquid and the springs. The period ) = 1/ 50 = 0.154s is assumed as the

reference time scale. The reference velocity is *<0G = 2c�/) = 2.33 m/s. The corresponding

Reynolds number depends on the fluid tested: for the water Re = 233,000, whereas for the

oil it is 4,660.

In figures 3 and 4 the recorded motion of the tank is plotted in terms of, respectively,

elevation and acceleration of the tank considering both water and oil. When the tank is

filled with water the motion is more rapidly damped with respect to the oil case. This

is inline with the analysis performed in Bouscasse et al. 22 and is linked with the higher

fragmentation phenomena, occurring at higher Reynolds number, which induce a larger

fluid energy dissipation. In figure 4 the portion of the time evolution for which the flow is
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Figure 3. Tank motion recorded in the experiment of Martinez-Carrascal and González-

Gutiérrez 29 : tank with water (solid line) tank with oil (dashed line).

Figure 4. Tank acceleration recorded in the experiment of Martinez-Carrascal and González-

Gutiérrez 29 : tank with water (solid line) tank with oil (dashed line).

in the “shaken flow” regime is highlighted. According to Marrone et al. 32,33 , the “sloshing”

regime is assumed to be attained when 0C0=:/6 ≤ 1, where 0C0=: is the tank acceleration. The

maximum acceleration reached during the experiment is close to 10g which is of the same

order of magnitude as limit design cases of an airliner wing during a wind gust Gambioli

et al. 63 .

The resolution is the same for both cases with # = 75 = �/ΔA the discretization of the

liquid depth at rest, so that the final number of particles is about 2.8 million. The adopted

speed of sound is 20 = 40 m/s resulting in an initial time step ΔC = 20 `B. However, during

17



the simulation the time step decreases due to the constraint ΔC0 in equation (10) resulting, at

the end of the simulation, in a total number of iteration of about 350, 000. This large number

is the main reason for the challenging computational cost of these simulations although the

number of particles may not appear to be so large (see also Pilloton et al. 64).

A. Flow field comparisons

In this section the results obtained from 3D simulations for both oil and water cases are

discussed. The same results are also compared to the outcomes of the 2D simulations from

Marrone et al. 33 . In figures 5 and 7 the vortex structures of oil simulations are depicted

along with the vorticity fields obtained from 2D simulations at the same simulation time.

The 3D vortex structures are identified through the Q-criterion calculated as:

& =
�2 − �2

2
(20)

where � is the spin tensor, i.e the anti-symmetric part of the velocity gradient tensor.

Specifically, iso-surfaces with Q=50 are depicted. For the sake of clarity the 3D free-surface

is made transparent. A rendering of the free surface for the first two time instants is provided

at the bottom of figure 5. In figures 6 and 8 the same is reported for the water test case.

The 3D flow evolves similarly to the 2D one discussed in Marrone et al. 33 : in the initial

stage, during the first upward acceleration of the tank, a small free-surface wave is generated

due to the collapse of the menisci at the lateral walls. The waves travel from the lateral

walls towards the centre of the tank. When the tank inverts its acceleration direction for the

first time, a Rayleigh-Taylor instability is triggered. The inception of this instability starts

from the small gravity waves generated by the menisci collapse. The fluid viscosity plays a

significant role in the intensity of this first impact.

As shown in figure 5, for the oil case in 2D (top-right plot) two main thin jets moving

towards the tank ceiling are discernible close to the lateral walls; similarly, in 3D (top-left

and bottom-left plot) a thin film of fluid moves, parallel to the lateral walls, towards the tank

ceiling. The water case, shown in figure 6, is clearly more energetic as a large part of the

fluid in the middle of the tank moves upward. In 2D the rising fluid is essentially distributed

onto the main diverging jets, with several other smaller jets ejected at the same time. In 3D

the moving liquid forms four main jets corresponding to the four tank corners. The small
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Figure 5. Top, middle: comparisons between 3D (left) and 2D (right) simulations of oil sloshing.

In 3D the iso-Q surfaces for & = 50 are plotted against the vorticity in 2D. Bottom: rendering of

the free surface at the same time instants. Low resolution videos are available as supplementary

material (Multimedia view).
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Figure 6. Top, middle: comparisons between 3D (left) and 2D (right) simulations of water

sloshing. In 3D the iso-Q surfaces for & = 50 are plotted against the vorticity in 2D. Bottom:

rendering of the free surface at the same time instants. Low resolution videos are available as

supplementary material (Multimedia view).

structures observed in 2D are not visible in this case as the resolution is significantly coarser
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(# = 400 versus # = 75).

When the fluid impacts the ceiling (middle plots and bottom-right plot of figures 5 and

6), the different flow dynamics explained above induce different types of impacts: in the

oil case when the jets impact the ceiling the rectangular film expands over the ceiling and

produces large and tangled vortex tubes occupying a large region of the tank wall; in the

water case a larger amount of liquid impacts slightly in advance with respect to the oil case.

This generates a pocket at the centre of the tank ceiling enclosing the vortex structures

generated by the previous impingement of the liquid jets. The 2D evolution for water is

quite similar to its 3D counterpart, whereas for the oil the impact is not complete at the

Figure 7. Comparisons between 3D (left) and 2D (right) simulations of oil sloshing. In 3D the

iso-Q surfaces for & = 50 are plotted against the vorticity in 2D. The corresponding times of 2D

simulations are reported at the top left of the corresponding frame. Low resolution videos are

available as supplementary material (Multimedia view).
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same simulation time and only the impinging of the two initial jets occurs (see middle right

plot of figure 5). After the first impact, the fluid starts a series of cyclical impacts against

the ceiling and the floor of the tank. As shown in figure 7 and 8, in 2D the fluid is mostly

fragmented in multiple jets and the energy is dissipated in free-surface re-connections and

the consequent generation of vorticity. Lower viscosity is associated to thinner jets and a

larger number of vortices, as visible in the water vorticity fields shown in the right column

of figure 8. Conversely, the oil case is characterised by thicker jets and the liquid covers

almost the entire solid surface.

In the 3D simulations a proliferation of vortex tubes during the impacts is observed.

Figure 8. Comparisons between 3D (left) and 2D (right) simulations of water sloshing. In 3D

the iso-Q surfaces for & = 50 are plotted against the vorticity in 2D. The corresponding times of

2D simulations are reported at the top left of the corresponding frame. Low resolution videos are

available as supplementary material (Multimedia view).
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Figure 9. Comparisons between rendered free surfaces of oil (top) and water (bottom) sloshing

for later times. On the left column C = 16.5) , on the right C = 20) .

This is particularly evident for the water case (left column of figure 8) in which highly

entangled vortex structurs are spread all over the liquid domain at the impact instant. On

the other hand, higher viscosity levels correspond to a smaller number of vortex tubes, mostly

characterised by larger diameter size (left column of figure 7). When the transition from the

“shaken” flow regime to the “sloshing flow” regime occurs, as explained in Marrone et al. 33 ,

the flow is still highly fragmented with vorticity distributed on a wide range of length scales.

Afterwards, the fluid regains its initial compact shape with gravity waves travelling over the

liquid surface and impacting against the lateral walls and, occasionally, the tank ceiling. On

the left column of figure 9 a time instant close to the transition from shaking to sloshing is
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depicted for both oil and water. At this stage of the flow the vorticity content is very low

and, therefore, it was chosen to plot only the free surface.

On the right column of figure 9 a time instant for which the sloshing regime is fully

attained is shown: for the water case a weak swirling motion is also observed (see also

Faltinsen and Timokha 2). The latter induces a sloshing flow component also across the

length of the tank (i.e. the G direction) whereas the oil exhibits a sloshing wave only across

the tank width (i.e. the H direction).

1. Pressure field evolution

In this section the flow evolution is studied by considering the computed pressure fields.

In figure 10 the numerical pressure fields are reported for the initial stage of the oil sloshing

in 2D and in two orthogonal centre slices in 3D. At time C = 1.00) the tank reaches its

maximum vertical position and the tank acceleration is at its lowest value equal to −9.36. As

a consequence, the pressure field is characterised by a large negative “hydrostatic” component

d (0C0=: + 6) H with a value on the tank bottom of about −8.3d 6 �. When such a negative

pressure value is reached the classic SPH model may suffer from the development of numerical

instability, known as tensile instability. The appearance of this instability causes the fluid

to numerically cavitate causing an unphysical sudden detachment from the tank bottom

(see32 for a detailed discussion). Conversely, in the present model the tensile instability is

controlled through the adoption of the PST described in section III, thus avoiding such a

significant drawback. After that, at C = 1.15) the negative pressure component significantly

decreases as the fluid is ejected towards the tank roof. In the 3D simulation the fluid ejection

is anticipated with respect to 2D since in the former case the flow instability is triggered

earlier. When the rising liquid sheet impacts the roof positive pressure peaks of about 8 d 6 �

are observed.

During the subsequent impact events, the pressure peaks reach higher values, as reported

in figure 11, where the impact at C = 2.56) at the bottom causes pressure levels of about

40d 6 �. At this stage the flow configuration is quite complex and, consequently, the pressure

distribution is heterogeneous across the fluid domain. At the end of the simulation C = 26.25)

when a smooth sloshing regime is attained, the pressure field is again close to the expected

values of the hydrostatic distribution d 6 �. A similar behaviour in terms of evolution and
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Figure 10. Comparisons between 3D (left) and 2D (right) pressure field for oil sloshing at the

initial stage of the flow evolution: time C = 1.02) (top row) and C = 1.15) (bottom row).

values of the pressure field is found also for the water simulation which is not reported here

for the sake of brevity.

B. Discussion of the energy dissipation

In this section the dissipated energy predicted by the numerical solver is analysed and

compared to experimental data. In figure 12 the dissipated energy, E38BB (see eq. (15)),

computed by SPH is plotted against the non-dimensional time for four different spatial

resolutions varying from # = 22 to # = 75. A 1.5 ratio between two successive discretization

levels was adopted. In the same figure the evaluation of the dynamical work done by solid

walls in the experiments at the final time, −W3H=
4GC (C 5 ) (see eq. (18)), is also reported. As

stressed in section V, the dynamical work is related to the fluid dissipated energy by relation
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Figure 11. Comparisons between 3D (left) and 2D (right) pressure field for oil sloshing at time

C = 2.56) (top row) and at the end of the simulation C = 26.25) (bottom row).

(19) where it is highlighted that E38BB and −W3H=
4GC are expected to be very close at the final

stage of the simulation when the fluid is almost at rest. The dissipated energy is made

non-dimensional by the potential energy ΔE = d,6 !,� 2� = 0.201 J for water and 0.181

J for oil.

In the left plot of figure 12 the convergence analysis of E38BB is shown for the oil test case.

No significant variations are observed for the different resolutions: this suggests that even

the lowest discretisation, # = 22, is sufficient to resolve the inertial range of the turbulent

cascade. This aspect is further inspected in figure 13. The final value of E38BB is quite close

to the experimental evaluation of −W3H=
4GC .

For the water case, right plot of figure 12, the situation is significantly different:
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Figure 12. Convergence of the dissipated energy for oil (left) and water (right). With the dashed

line, the experimental data obtained for −W3H=
4GC at final time, as shown in figure 17.

convergence of the dissipated energy is not attained for the considered resolutions. Even if

the experimental value is close to the result at # = 75, it is expected that a further increase

in the resolution will result in a larger value of the final dissipated energy. This aspect is

further discussed later in the section. Beside the above observation, it is worth noting that

the dependency on the spatial resolution is reduced when increasing it, even if the rate of

convergence is still very low.

In figure 13 the different energy components specified by (15) are reported for both liquids

and for the highest resolution # = 75. Even if, as already mentioned, the final values are

very close to each other, the various contributions are differently distributed. Considering

that the resolution is the same, for the lower Reynolds number case the dissipation coming

from the viscous terms of resolved scales is the most prominent contribution (accounting

for about the 62%). Conversely, for the water case it accounts for about 5% of the total

dissipation. This difference is to be ascribed to the resolution adopted, which is sufficient

to describe correctly the energy dissipated by the viscous terms in the inertial range only at

the Reynolds regime of the oil.

Coherently, the contribution from the sub-grid scales, ECDA1
+

significantly exceeds the

others in the water case, where it amounts to 74% of the total dissipation. This is a

typical clue of an incomplete description of the inertial range which results in a higher
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Figure 13. Time histories of the dissipated energy for oil (left) and water (right). The different

components are highlighted and drawn with different line colors.

turbulent viscosity `) , depending on the local value of the velocity gradient | |�| |. For

the oil simulations the resolution is sufficient to have smooth local velocity gradients, thus

limiting the contribution from modelled viscous stress to 33.2%. The dissipated energy

related to numerical diffusion E=D< follows the same behaviour as ECDA1
+

.

In figure 14 the ratio between the turbulent and the fluid viscosity `)/` is reported

on a volume slice for both cases and two different resolutions. The fields are evaluated at

C = 5.2T, where the flow is in the shaken regime. Considering the oil case (top plots), for

the higher resolution the ratio is lower than 0.5 almost everywhere, thus indicating that the

sub grid scales are well modelled and that the inertial range is correctly captured. Also in

the coarser case the ratio does not exceed 5.0, which is still a good value for a well resolved

LES simulation (Sagaut 65).

Conversely, the turbulent viscosity largely exceeds the fluid one for the water case even

at the highest resolution # = 75: the observed values are around `)/` ≈ 30, whereas for a

good LES the ratio should be of order O(1) (Sagaut 65). For coarser resolution the sub-grid

scales are, a fortiori, not adequately modelled and the cut-off of the energy exchange takes

place within the inertial range (Aprovitola and Denaro 66). These aspects provide further

elements for the discussion of the convergence analysis in figure 12: it can be easily concluded

that for the water test case the highest resolution is still too coarse to obtain a convergent
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Figure 14. Slice of `) /` for the oil (top) and water (bottom) simulations with different resolutions.

On the left the finer resolutions, on the right the coarser ones.

result. Regarding this topic, in Marrone et al. 33 an in-depth study was performed in the

2D framework.

Although in 2D the effect of the vorticity is more intense and a direct comparison with

3D is not possible, in the former work it was observed that a result close to a convergent

limit was obtained at Re=233,000 with a spatial resolution as high as # = 400. In that case

the observed maximum ratio was `)/` = 5 (shown in figure 15 at time C/)=4.55). Such a

resolution in 3D corresponds to about 430 million of particles and 425 days of computing

time on 1000 cluster cores.

In figure 16, the comparison between the vertical force acting on the box coming from

the 2D, 3D simulations and experiments is reported. Note that the total weight of the liquid
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Figure 15. `) /` ratio distribution for the 2D case at Re=233,000 using a spatial resolution N=400

(Marrone et al. 33).

mass d6!,� has been subtracted from the vertical force, so that a null force is measured

when the tank is at rest. As highlighted in Martinez-Carrascal and González-Gutiérrez 29

and in Marrone et al. 33 , before and during the first impact an unphysical overshoot of the

force is recorded in the experiments. This is related to incorrect load cell measurements and

caused by the release mechanism. For ease of discussion in the present work that part of

the experimental recording has been removed and only the later stage of the evolution is

considered for comparison hereinafter.

For the water case the 2D and 3D results are rather similar, although the resolutions for

the two approaches are significantly different (i.e. # = 400 versus # = 75). Conversely, for

the oil case the force predicted in 2D underestimated the 3D force, and this is mainly linked

to effects of the boundary layer region on whole walls of the 3D box. For both water and

oil the force peaks are better resolved in the 3D solution with respect to its 2D counterpart

in which they are rather smoothed. The predicted forces in 3D are, generally, in good

agreement with the experimental data and follow quite closely the damped oscillations of

the vertical force on the box.
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Figure 16. Time histories of the vertical force on the box compared with the 2D and experimental

outcomes of Martinez-Carrascal and González-Gutiérrez 29 . Top plot, the oil case; bottom plot,

the water case.

In figure 17 the time histories of the dynamical work −W3H=
4GC defined in (18) are reported

for both fluids. In the top plot of figure 17 the dynamical work for the oil is shown together

with the experimental data by Martinez-Carrascal and González-Gutiérrez 29 and a 2D

simulation at # = 200. The comparison shows a fair agreement between the numerical

solution and the experiments. The 3D solution after an initial overlapping with the

experimental data, at around C/) = 6 slightly diverges and overestimates the dynamical

work. On the other hand, the 2D solution underestimates the dynamical work during the

entire time evolution. The final gap between the numerical outcomes and the experimental

value is about 9% and 13% respectively for the 3D and the 2D solutions. As far as the water

simulations are concerned, the dynamical work is reported in the bottom plot of figure 17.

In this case too, the 3D solution is in better agreement with the experimental data than the
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Figure 17. Time histories of the dynamical work compared with experiments and 2D simulations

for oil (top plot) and water (bottom plot).

2D solution. However, it is important to recall that the resolution adopted for the water is

not sufficient and, most likely, a further increase in the numerical resolution could lead to a

different final value of the dissipated energy.

It is worth noting that the final value ofW3H=
4GC observed in the 3D solutions is very close

to the final value of E38BB for both water and oil cases. This is expected from eq. (19) but

it is not a trivial result from a numerical point of view, as the two quantities are computed

in very different ways: E38BB is measured during the simulation by means of eq. (15) while

W3H=
4GC is computed a posteriori through eq. (18).

Summarising, the 3D simulations tend to overestimate the energy dissipation and this is

probably linked to the role of the air phase which is neglected in the present work. In this

regard, further investigations are needed. However, taking into account the air phase with

an SPH model leads to a considerable increase in the CPU costs linked to the doubling of
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the total number of particles and to a further reduction in the time step.

On the other hand, in order to obtain a more reliable validation procedure, further

improvements are also needed from the experimental side. It is important to underline,

indeed, that the experimental estimation of W3H=
4GC is challenging since even small time

delays of a few milliseconds between the force and the tank velocity measurements may

induce significant errors in the evaluation of the external work. Therefore, a sensitivity

analysis targeting this specific quantity is needed in order to measure the uncertainty which

affects the reference data.

C. CPU costs

In this subsection details on the CPU costs are given. The 3D simulation at highest

resolution # = �/ΔA=75 required 350,000 time iterations involving 2,800,000 particles with

a kernel support containing an average number of 80 neighbours. This simulation ran for

about 7 days using 240 cores on the Liger cluster machine in Ecole Centrale de Nantes which

is equipped with 12-core Intel Xeon (Haswell) E5-2680v3 processors.

It is worth noting that those CPU costs are quite high since they are related to a research

code which is not optimised for industrial applications. The high CPU costs are also related

to the evaluation of the different energy components needed for the analysis presented in

this work.

VII. CONCLUSIONS

In the present paper, the work of Marrone et al. 33 was extended to the 3D framework.

Challenging numerical simulations of the violent sloshing flow in a moving tank were

performed with specific focus on the prediction of the mechanical energy dissipated by the

fluid during the motion. Two different Reynolds numbers, corresponding to oil and water,

were considered and the numerical outcomes were compared to existing experimental data.

The X-LES-SPH approach was adopted and its capabilities in simulating these kinds of flows

were discussed.

Three-dimensional features of the flow were observed and compared to previous 2D studies

and experiments. As far as forces exerted by the fluids are concerned, the final 3D results
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are generally closer to the experiments with respect to the highly resolved 2D simulations

performed in Marrone et al. 33 , in terms of both force peaks and overall envelop.

For the oil test-case we found that, as in 2D, a convergent result was reached, providing

an overestimation of the energy dissipation of about 10% with respect to the reference

experimental result. As for the water test-case, a fully converged solution was not reached

due to the higher Reynolds number of the flow. However, comparing the numerical outcome

to the reference experimental result an overestimation similar to the one obtained with

oil is expected also for this case. Since the uncertainty of the experimental results was

not quantified, it is difficult to assess an acceptable range of error as even small time

errors between the force and the tank velocity measurements in the experiment may induce

significant errors in the evaluation of the external work. To quantify more precisely the

capability of the present model to tackle such problems, future studies using periodic sloshing

motions should be considered such as the experimental campaign recently performed by

Saltari et al. 67 . The use of a purely periodic motion would allow applying a statistical

approach at the cost of a longer simulation time.

LIST OF SYMBOLS

�(: Smagorinsky constant.

�
3H=
I : Vertical force exerted by the liquid on the tank without the inertial component.

�I: Vertical component of the force exerted by the liquid on the tank.

�: Tank filling height.

!: Length of the tank and reference length of the problem.

#: Number of particles along the liquid depth at rest.

&: Second invariant of velocity gradient tensor (&-criterion vortex identification).

*<0G: Maximum fluid speed.

+8: Volume of 8−th particle.
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,8 9 : Kernel function centered on particle 8 and related to particle 9 .

ΔA: Average distance between particles.

ΔC0: Advective time step.

ΔC2: Acoustic time step.

ΔCE: Viscous time step.

ΔC: Integration time step.

Ω: Fluid domain.

LE8 : Net viscous force acting on particle 8.

f #� : Non-inertial accelerations.

r: Material point position.

u: Velocity field.

Xu: Particle shifting velocity field.

X8 9 : Intensity of the diffusion Dd between particles 8 and 9 .

Dd: Diffusive term in the continuity equation.

E�: Elastic potential energy.

E : Kinetic energy.

E" : Mechanical energy.

E%: Potential energy.

E38BB: Dissipated energy.

P(Xu): Power related to the Particle Shifting.

P# : Power related to numerical dissipation.

PCDA1
+

: Power related to viscous dissipation of the sub-grid scales.
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P+ : Power related to viscous dissipation of the resolved scales.

PX: Power related to density diffusive term Dd.

P38BB: Dissipated power.

P4GC: Power related to external forces.

W3H=
4GC : Work of external forces related to fluid deformation only.

W4GC: Work of external forces.

`) : Turbulent dynamic viscosity.

`: Dynamic viscosity.

a: Kinematic viscosity.

mΩ�: Body frontiers.

mΩ�: Free surface.

d0: Fluid density at free-surface.

d: Fluid density.

f: Surface tension.

�: Rate of strain tensor, i.e. symmetric part of the velocity gradient.

�: Identity tensor.

�: Renormalization matrix.

�: Stress tensor.

�: Spin tensor, i.e. anti-symmetric part of the velocity gradient.

0<0G: Maximum acceleration of the tank.

20: Artificial speed of sound.

4: Specific internal energy.
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50: Oscillation frequency of the tank.

6: Gravitational acceleration.

;: Radius of the Kernel support.

<8: Mass of 8−th particle.

<;: Mass of the liquid phase.

?: Pressure field.

C: Time.

| |�| |: Frobenius norm of tensor �.

Re: Reynolds number.

We: Weber number.

ACKNOWLEDGEMENTS

The work was supported by the SLOWD project which received funding from the

European Union’s Horizon 2020 research and innovation programme under grant agreement

No 815044. This work was performed by using HPC resources of the Centrale Nantes

Supercomputing Centre on the cluster Liger.

The authors acknowledge Paolo Colagrossi, CEO of Punkt.ink company, for the post

processing and the rendering of 3D SPH data.

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding

author upon reasonable request.

DECLARATION OF INTERESTS

The authors report no conflict of interest.

37



REFERENCES

1R. Ibrahim, Liquid sloshing dynamics: theory and applications (Cambridge University

Press, 2005).

2O. Faltinsen and A. Timokha, Sloshing, Vol. 577 (Cambridge university press Cambridge,

2009).

3Y. Tamura, K. Fujii, T. Ohtsuki, T. Wakahara, and R. Kohsaka, Engineering structures

17, 609 (1995).

4T. Novo, H. Varum, F. Teixeira-Dias, H. Rodrigues, M. Silva, A. Costa, and L. Guerreiro,

Bulletin of earthquake engineering 12, 1007 (2014).

5A. Kareem, T. Kijewski, and Y. Tamura, Wind and structures 2, 201 (1999).

6M. Yamamoto and T. Sone, Structural Control and Health Monitoring 21, 634 (2014).

7D. Bass, Marine Technology and SNAME News 35, 74 (1998).

8E. Graham and A. Rodriguez, Journal of Applied Mechanics 19, 381 (1952).

9H. Abramson, NASA Special Publication 106 (1966).

10M. Cooker, Wave Motion 20, 385 (1994).

11M. Cooker, Physics of Fluids 8, 283 (1996).

12M. Perlin, W. Choi, and Z. Tian, Annual review of fluid mechanics 45, 115 (2013).

13J. Frandsen, Journal of Fluids and Structures 20, 309 (2005).

14H. Ardakani and T. Bridges, European Journal of Applied Mathematics 21, 479 (2010).

15H. Ardakani, T. Bridges, and M. Turner, European Journal of Mechanics-B/Fluids 36,

25 (2012).

16Z. Demirbilek, Ocean Engineering 10, 347 (1983).

17Z. Demirbilek, Ocean Engineering 10, 359 (1983).

18Z. Demirbilek, Ocean Engineering 10, 375 (1983).

19D. Reed, J. Yu, H. Yeh, and S. Gardarsson, Journal of engineering mechanics 124, 405

(1998).

20A. Marsh, M. Prakash, S. Semercigil, and Ö. Turan, Journal of sound and vibration 330,
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