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Abstract

In recent times, with the exception of sporadic cases, the trend in computer vision is

to achieve minor improvements compared to considerable increases in complexity.

To reverse this trend, we propose a novel method to boost image classification per-

formances without increasing complexity. To this end, we revisited ensembling, a

powerful approach, often not used properly due to its more complex nature and the

training time, so as to make it feasible through a specific design choice. First, we

trained two EfficientNet-b0 end-to-end models (known to be the architecture with

the best overall accuracy/complexity trade-off for image classification) on disjoint

subsets of data (i.e., bagging). Then, we made an efficient adaptive ensemble by per-

forming fine-tuning of a trainable combination layer. In this way, we were able to out-

perform the state-of-the-art by an average of 0.5% on the accuracy, with restrained

complexity both in terms of the number of parameters (by 5–60 times), and the

FLoating point Operations Per Second FLOPS by 10–100 times on several major

benchmark datasets.
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1 | INTRODUCTION

Computer vision is one of the fields that most benefit from deep learning, continuously improving the state-of-the-art (SOTA) using convolutional

neural networks (CNNs) and visual transformers. In nearly all computer vision scenarios, complexity grows exponentially, even for minimal

improvements, both in terms of the number of parameters and in FLoating point Operations Per Second (FLOPS). Table 1 briefly shows the evolu-

tion of the SOTA on the ImageNet classification task. It can be observed that the trend of improvements achieved only through high complexity

growth was temporarily slowed down by the introduction of EfficientNet architecture (and in particular with EfficientNet-b0 attaining the best

accuracy/complexity trade-off; Tan & Le, 2019). This also applies to other image classification datasets (e.g., CIFAR) and to computer vision tasks

based on CNNs (e.g., object detection and segmentation).

Among the various machine learning approaches, ensembling is a technique that combines several models, called weak learners, in order to

produce a model with better performance than any of the weak learners alone (Opitz & Maclin, 1999). Usually, the combination is accomplished

by aggregating the output of the weak learners, generally this is made by voting (resp. averaging) for classification (resp. regression). Other

aspects, such as ensemble size (i.e., number of weak learners) and ensemble techniques (e.g., bagging, boosting, stacking), are crucial for obtaining

a satisfactory result. Since it requires the training of several models, ensembles makes the overall validation much more expensive, and model

complexity grows at least linearly compared to the ensemble size. Moreover, ensembling is a time-consuming process, and this is the main reason
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preventing a more extended use in practice, especially in computer vision. On the contrary, this work shows that our technique exploits this pow-

erful tool with limited resources (e.g., compared to the model complexity, validation time and training time).

This work shows how applying a well-defined ensembling strategy, using an efficient basic model as the core, can improve the state-of-the-

art in computer vision tasks, preserving a competitive performance/complexity trade-off. In Section 3 we describe our design strategy in detail

(e.g., model, ensembling strategy, validation), focusing on the introduction of the main novel aspects. Experimental results and data description

are shown in Section 4, while an exhaustive discussion is provided in the last section.

2 | RELATED WORK

In recent years, the demand for intelligent systems based on image processing has also grown on the push of emerging business markets. In this

context, the capacity to deal with large-scale collections of images has not only to face significant technological challenges but must be shown to

be cost-effective and, ultimately, sustainable. Indeed, the carbon impact of artificial intelligence (AI) is a concern that has been well recognized

(Dhar, 2020), favouring the adoption of green AI paradigms (Schwartz et al., 2020). In particular, in order to reduce the carbon footprint of AI and

make it cost-effective in new markets, it is possible to follow several pathways, including decentralized approaches based on federated learning

(therefore not requiring energy-consuming data transfer) (Bonawitz et al., 2019) or devising ad hoc low-consumption hardware specific for

modern deep learning algorithms (Sze et al., 2017). Other methods deal with the AI model itself, proposing its simplification or optimization; well-

known techniques, mainly suited for inference, include parameter quantization and pruning, compressed convolutional filters and matrix factoriza-

tion, network architecture search, and knowledge distillation (Goel et al., 2020). In this paper, instead, we propose a method for achieving greener

models both in training and inference by resorting to ensembling.

Ensembling consists in a machine learning approach in which a set of weak learners (or basic models) is turned into a strong learner

(or ensemble model) (Opitz & Maclin, 1999; Sagi & Rokach, 2018). The set of weak learners might consist of homogenous models (i.e., they are all

from the same family or architecture) or might be heterogeneous, that is, the basic models belong to different machine learning paradigms. The

basic example is to put together multiple models trained for solving the same classification or regression task and then combine them in some

fashion, for example, by performing majority voting in the case of classification or averaging in the case of regression. The scope of performing

ensembling is generally related to the desire to reduce the bias or variance that affects a machine learning task (Dong et al., 2020). As it is well

known, a low-complexity model might have a significant error in attaining adequate performance on a dataset, even during training. This is com-

monly due to the low representation capabilities of simple models that can only capture some of the complex patterns in the training datasets.

Such error during training is referred to as the bias of the model. By converse, very complex models have many degrees of freedom to completely

stick to the training dataset and convey excellent performance during training. However, they apprehend not only the relevant features of the

problem but also learn unimportant features of the training dataset. This results in relatively inadequate performance during test and validation:

the model needs to be more balanced to the training dataset and reach good general results, having scarce generalization capabilities. Such an

issue is usually indicated as a high variance of the model. The three primary techniques for conducting ensembling are bagging, boosting, and stac-

king. In general, bagging decreases the variance among the weak classifiers, while boosting-based ensembles reduce bias and variance. Stacking is

generally employed as a bias-reducing procedure. In more detail, the bagging technique involves partitioning the training datasets into distinct

subsets based on specific criteria, such as equalizing class distributions within each subset. Subsequently, a weak classifier is trained using each

subset of the training set. Ideally, these classifiers possess low bias on the training set but may exhibit high variance. The outputs of these individ-

ual classifiers are then combined through weighted voting or a weighted average using a specially designed layer. This fusion of weak classifiers

TABLE 1 Evolution of the state-of-the-art on the ImageNet classification task: as can be seen, complexity in models having accuracy >80%
(both in the number of parameters and FLOPs) grows exponentially despite the slightest improvement. The same trend can be noticed in other
computer vision tasks. N.B. only some architectures providing relevant improvements are shown.

Model Year Accuracy Parameters FLOPs

AlexNet (Krizhevsky et al., 2012) 2012 63.3% ≈60M ≈0.7G

InceptionV3 (Szegedy et al., 2016) 2015 78.8% ≈24M ≈6G

ResNeXt-101 64�4 (Xie et al., 2017) 2016 80.9% ≈84M ≈16G

EfficientNet-b0 (Tan & Le, 2019) 2019 77.1% ≈5.3M ≈0.4G

EfficientNet-b7 (Tan & Le, 2019) 2019 84.3% ≈67M ≈37G

Swin-L (Liu et al., 2021) 2021 87.3% ≈197M ≈103G

NFNet-F4+ (Brock et al., 2021) 2021 89.2% ≈527M ≈215G

ViT-G/14 (Zhai et al., 2021) 2021 90.45% ≈1843M ≈965G

CoAtNet-7 (Dai et al., 2021) 2021 90.88% ≈2440M ≈2586G
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forms the strong classifier, which tends to have reduced variance. It is worth noting that the weak classifiers can be trained independently and in

parallel. In boosting instead, weak classifiers are very simple and low complexity but are trained cleverly, for example, using cascading. Ultimately,

stacking commonly involves the consideration of diverse weak learners with varying characteristics. The training process takes place concurrently,

and a final amalgamation is achieved by training a meta-model that generates predictions based on the collective inputs from the various weak

models. In general, all of these approaches have been used in conjunction with deep learning models. The review (Ganaie et al., 2021) presents

some recent literature on the subject systematically. In this paper, we propose using bagging in an original way that allows us to obtain superior

results with respect to the state of the art while decreasing the computational burden.

3 | EFFICIENT ADAPTIVE ENSEMBLING

3.1 | Efficiency

At the foundations of the efficiency of the proposed method lies the basic core model adopted in this work: EfficientNet (Tan & Le, 2019). As the

name suggests, EfficientNet improves the classification quality with lower complexity compared to models having similar classification perfor-

mances. This is possible since EfficientNet performs optimized network scaling, given a predefined complexity. As shown in Figure 1, in the CNN

literature, there are three main types of scaling: depth scaling, width scaling and input scaling. Depth scaling consists in increasing the number of

layers in the CNN; it is the most popular scaling method in the literature and allows detecting features at multiple levels of abstraction. Width

scaling consists in increasing the number of convolutional kernels and parameters or channels, giving the model the capability to represent differ-

ent features at the same level. Input scaling is represented by the increase in size/resolution of the input images, which allows for capturing addi-

tional details.

Each of these scaling's can be manually set or via a grid search. However, they increase the model complexity, usually exponentially, with tons

of new parameters to tune and, after a certain level, scaling appears not to improve performances. The scaling method introduced in (Tan &

Le, 2019) is named compound scaling. It suggests that the strategic execution of all scaling together provides better results because it is argued

that they are dependent. Intuitively, they introduce the compound coefficient ϕ representing the total amount of resources available to the model

and find the optimal scaling combination given such a constraint, following the rules in Equation 1. In this way, the total complexity of the network

is approximately proportional to 2ϕ (see the original paper for more details).

depth: d¼ αϕ width:w¼ βϕ resolution: r¼ γϕ

such that α �β2 � γ2 ≈2 and α≥ 1, β ≥1, γ ≥1
ð1Þ

3.2 | Adaptivity

The adaptivity is given by the fact that the proposed ensembling is data-driven and not fixed as usual. The typical way of combining weak learners

is to perform voting/averaging as shown in Figure 2 (predicting the output from all weak learners and then picking the most frequent output/

F IGURE 1 Example of scaling types, from left to right: a baseline network example, conventional scaling methods that only increase one
network dimension (width, depth, resolution) and, at the end, the EfficientNet compound scaling method that uniformly scales all three
dimensions with a fixed ratio. Image taken from the original paper (Tan & Le, 2019).
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average of them), respectively for classification/regression. However, in this case, the ensemble is only a static aggregator. In this work, we opted

for performing an adaptive combination. However, instead of combining the outputs (Figure 3) of the weak learners, we combine the features that

the CNNs extract from the input (see Figure 4 where the case N¼2 is reported). More formally, let Featweaki be the feature vector provided by

feature extractor of the i-th weak learner and

Featconcat ¼Featweak1⊕Featweak2⊕…⊕FeatweakN�1
⊕FeatweakN ð2Þ

be the vector contained by their concatenation. Then, the final fully connected final layer acts on the combined feature vector Featcomb

defined as:

Featcomb ¼W �Featconcatþb ð3Þ

In this way, we further reduce the complexity of the ensemble without reducing its power and expressiveness. Indeed, the combination layer

is of the same type as the output layer of the weak learners (i.e., Linear + LogSoftmax), and keeping both would introduce redundancy. This can

be seen as a fully-differentiable version of Gradient Boosting (Friedman, 2000). However, in this way, there is no reason to perform the tree deci-

sion traversal, and the ensemble is performed at the features level.

4 | EXPERIMENTAL RESULTS

In this section, the results obtained on several major benchmark datasets on image classification are described. Before showing the results, the

main aspects of the experimental setup are detailed. The experiments have been implemented using the PyTorch (Paszke et al., 2019) open-

source machine learning framework.

F IGURE 2 Ensemble by voting: the final output is obtained by picking the mode (i.e., most frequent class value) among the output produced
by the weak learners. In this way, the weak learners are independent and voting is effective with a high number of heterogeneous weak learners.

F IGURE 3 Ensemble by output combination: an additional combination layer is fed with the outputs of the weak learners and combines
them. In this way, the weak learners are no longer independent and the combination layer can be trained to better adapt to data.

4 ANTONIO ET AL.
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4.1 | Datasets

The proposed solution has been tested on several datasets in order to evaluate its capability of being effective over disparate domains (e.g., type

of images, number of classes, balancing, quality) as shown in Table 2. A brief description of each dataset follows.

4.1.1 | CIFAR-10 and CIFAR-100 (Krizhevsky et al., n.d.)

The CIFAR-10 dataset consists of 60,000 32 � 32 colour images in 10 classes, with 6000 images per class. There are 50,000 training images and

10,000 test images. CIFAR-100 dataset is just like the CIFAR-10, except it has 100 classes containing 600 images each. There are 500 training images

and 100 testing images per class. The 100 classes in the CIFAR-100 are grouped into 20 superclasses. Each image comes with a ‘fine’ label (the class to

which it belongs) and a ‘coarse’ label (the superclass to which it belongs). In the experiments, the fine-grained version with 100 classes has been used.

4.1.2 | Stanford cars (Krause et al., 2013)

The Stanford cars dataset contains 16,185 360 � 240 colour images of 196 classes of cars at the level of Make, Model, Year (e.g., Tesla, Model S,

2012). The data is split into 8144 training images and 8041 testing images, where each class has been divided roughly in a 50–50 split. Since now,

this dataset is referred as ‘Cars’.

F IGURE 4 Our adaptive ensemble method: is an optimized version of the method shown in Figure 3 because we avoid redundancy and
reduce complexity by deleting the output module (dark grey-filled) of weak learners and feeding the combination layer with the features. Light

grey-filled modules denote modules whose parameters are frozen during training. The diagram depicts the case N¼2, which is used in most of
the experiments in this paper, but the method can be applied with an arbitrary value for N.

TABLE 2 Details about the datasets used in the experiments.

Dataset Domain Input size Classes Balanced Provided splits

CIFAR-10 Mixed (RGB) 32 � 32 10 Yes Train-Test

CIFAR-100 Mixed (RGB) 32 � 32 100 Yes Train-Test

Cars Cars (RGB) 360 � 240 196 Yes Train-Test

Food-101 Food (RGB) 512 larger side 101 No Train-Test

Flower102 Flowers (RGB) Various 102 Yes Train-Valid-Test

CINIC-10 Mixed (RGB) 32 � 32 10 Yes Train-Valid-Test

Pets Dogs & Cats (RGB) Various 37 Yes Train-Valid-Test

ANTONIO ET AL. 5
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4.1.3 | Food-101 (Bossard et al., 2014)

The Food-101 dataset consists of 101 food categories with 750 training and 250 test manually-reviewed images per category, making a total of

101,000 images. On purpose, the training images contain some amount of noise that comes mainly in the form of intense colours and sometimes

wrong labels. All images were rescaled to have a maximum side length of 512 pixels.

4.1.4 | Oxford 102 flower (Nilsback & Zisserman, 2008)

The Oxford 102 flower is an image classification dataset consisting of 102 flower categories, most of them being plants commonly occurring in

the United Kingdom. Each class consists of between 40 and 258 images. The images have large scale, pose and light variations. In addition, there

are categories that have significant variations within the category and several very similar ones. Since now, this dataset is referred as ‘Flower102’.

4.1.5 | CINIC-10 (Darlow et al., 2018)

CINIC-10 is a dataset for image classification consisting of 270,000 32 � 32 colour images. It was compiled as a ‘bridge’ between CIFAR-10 and

ImageNet, taking 60,000 images from the former and 210,000 downsampled images from the latter. It is split into three equal subsets—train, vali-

dation, and test—each containing 90,000 images.

4.1.6 | Oxford-IIIT pet (Parkhi et al., 2012)

The Oxford-IIIT pet dataset has 37 categories with roughly 200 images for each class representing dogs or cats (25 classes for dogs and 12 for cats).

Different versions of the dataset can be used for image classification, object detection, or image segmentation. In particular, for the experimentation,

the fine-grained version of the image classification task has been used (i.e., predict the particular breed of the animal in the image instead of just

determining if it is a dog or a cat). The images have wide variations in scale, pose and lighting. Since now, this dataset is referred as ‘Pets’.

4.2 | Input preprocessing

The models are not fed directly with the images provided by the datasets, but images are preprocessed to improve the performances. In particular,

the only two preprocessing steps done are resize (size chosen after preliminary tests) and standardization (in order to have all data of the same

dataset described under the same distribution with pixel values centred around the mean and unit deviation) which improves stability and conver-

gence of the training. Preprocessing details for each dataset are shown in Table 3. Even if augmentation has been performed in the works

reported as SOTA, no augmentation is performed in this work to test the performances of the ‘pure’ method.

4.3 | Transfer learning

Transfer learning (Weiss et al., 2016) is the technique of taking knowledge gained while solving one problem, and applying it to a different but

related problem. Like most cases for image classification, the stored knowledge is brought by pre-trained models from the ImageNet (Deng

TABLE 3 Input sizes and standardization values, for each channel, used for data preprocessing.

Dataset Input size Means (R, G, B) Stds (R, G, B)

CIFAR-10 256 � 256 (0.491, 0.482, 0.447) (0.246, 0.243, 0.261)

CIFAR-100 256 � 256 (0.507, 0.486, 0.441) (0.267, 0.256, 0.276)

Cars 500 � 500 (0.468, 0.457, 0.450) (0.295, 0.294, 0.302)

Food-101 500 � 500 (0.550, 0.445, 0.344) (0.271, 0.275, 0.279)

Flower102 500 � 500 (0.433, 0.375, 0.285) (0.296, 0.245, 0.269)

CINIC-10 256 � 256 (0.478, 0.472, 0.430) (0.242, 0.238, 0.258)

Pets 500 � 500 (0.481, 0.448, 0.394) (0.269, 0.264, 0.272)
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et al., 2009) task, since it has more than 14 million images belonging to 1000 generic classes. Transfer learning has been used for weak learners

training only.

4.4 | Validation phases

Validation is divided into 2 main phases: end-to-end weak learner overfitting training and ensemble combination layer fine-tuning. In the first

phase the transfer learning starts from the ImageNet pre-trained model and sets a new output module (to fit the output size). The models are

trained to reach overfit in order to get high specialization on the subset they are referred to. In the second phase, as shown in Figure 4 the weak

learners are frozen removing their output modules, so in this phase only the combination layer is trained.

Both phases are performed using the AdaBelief (Zhuang et al., 2020) optimizer which guarantees both fast convergence and generalization.

AdaBelief parameters used are the following ones: learning rate 5�10�4, betas (0.9, 0.999), eps 10�16, using weight decoupling without rectify.

4.5 | Avoid overfitting

In order to prevent overfitting (i.e., avoid the model being too specialized to data from the training set with poor performances on unknown data),

we use early stopping (i.e., stop training after no improvements on the validation set after a certain number of epochs, called patience) during

ensemble fine-tuning only.

4.6 | Data splitting

Every dataset is provided with the ‘official’ train-test split that is used for the ensemble fine-tuning. On the other hand, for the end-to-end over-

fitting training of the weak learners, we perform the following data split:

1. Set the size N of the final ensemble model (i.e., the number of weak learners to be used in the ensembl ing): in particular for the experiments

N¼2 in order to have the minimum ensemble size;

2. Randomly split the training set into N equally sized and disjoint (i.e., each data belongs exactly only to 1 subset) subsets with stratification

(i.e., preserving the class ratios within the subset). During the test only an exception w as made for the Pets dataset, in which the 2 disjoint sub-

sets were made only by cats and dogs, respectively;

3. For each subset, instantiate a weak learner and train it only on that subset (called bagging), with overfitting. In this way every weak learner will

be highly specialized only on that portion of data; this could sound self-defeating but (Sollich & Krogh, 1995) has shown that it leads to a quali-

tative ensemble, especially in the case of this work in which ensembling is adaptive. The choice to reach overfitting will reduce the overall vali-

dation time: on the basis of preliminary tests, we noticed that EfficientNet-b0 and AdaBelief optimizer with overfitting training are powerful

and will always converge to the same minimum point (very likely to be the global one, due to the fact that accuracy is 100% almost always)

independently on the initialization. In this way, just 2 train runs (only one initialization for each weak learner) are sufficient for every dataset.

4.7 | Loss and metrics

4.7.1 | Training loss

Due to the multiclass nature of all dataset tasks, the cross-entropy loss (which exponentially penalizes differences between predicted and true

values, expressed as the probability of class belonging) is used. For this reason, the model output has a specified size depending on the dataset

(i.e., the number of classes) and each element output i½ � represents the probability that the input sample belongs to class i.

4.7.2 | Validation and test metrics

For the validation set evaluation, we decided to use the Weighted F1-score because this takes into account both correct and wrong predictions

(true/false positive/negative) and weighting allows to manage any imbalance of the classes (more representative classes have a greater contribu-

tion). On the other hand, to make comparisons with previous works on the test set, we used the same metric, which is Accuracy (i.e., correct pre-

diction/total set) in all cases.

ANTONIO ET AL. 7
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4.8 | Hyperparameters

Some hyperparameters have already been fixed and provided in the previous sections (i.e., preprocessing size and standardization, optimizer

parameters and ensemble size).To further reduce the total validation time other hyperparameters have been fixed: early stopping patience was

set to 10 epochs, batch size to 55 (200 in the case of fine-tuning) and 200 (700 in the case of the fine-tuning) for the 500 � 500 and 256 � 256

images, respectively.

Here follows the hyperparameters configuration file for training a weak model, the same format is used for the ensemble, with the only differ-

ence that the ensemble_module_list parameter is not empty but contains the local addresses of the two best weak models:

project: projects/cifar10 # it varies depending on the dataset

seed: 9999 # it changes for a l l the runs

# means and standard deviations used for normalization varies depending on the dataset

means: [0.4918687788500817, 0.4826539051649305, 0.44717727749693625]

stds: [0.24697121432552785, 0.24338893940435022, 0.2615925905215076]

early _ s topping _patience: 10

num_epochs: 100 # the maximum number of epoch (never reached)

image_ size: 256 # size of the images depending on the dataset

batch_ size: 200

optim: AdaBelief # the optimizer used

lr: 5e-4 # optimizer parameter

eps: 1e-16 # optimizer parameter

validation _metric: F1 # F1-score is used as validation metric

from_pretrained: True # EfficientNet -b0 pretrained model from ImageNet is used

modeltype: efficientnet -b0

train _ ratio: 0.8

valid _ ratio: None # automatically obtained

test _ ratio: None # automatically obtained

ensemble_module_list: # in case of the ensemble it contains the local addresses of the weak models

As written before, there is no hyperparameters tuning, they are all prefixed except for the seeds.

For the ensemble fine-tuning, 5 different random seeds are used. In this way, for each dataset, 2 end-to-end weak training (1 for each subset)

and 5 fine-tuning ensemble training are performed.

5 | RESULTS AND DISCUSSION

In this section, the results of the experiments are shown and discussed. Table 4 shows that our work improves the SOTA in all major benchmark

datasets and as expected the highest improvements (>0.5%) are obtained on the tasks which are not saturated (i.e., accuracy <99%). These results

gain more evidence when complexity is considered too: indeed Table 5 shows that our work (except in the case of CINIC-10) has 5–60 times less

total number of parameters and needs 10–100 times fewer FLOPs respect to the SOTA. Moreover, in terms of trainable parameters, since it per-

forms the fine-tuning of a combination layer, our final solution has only about 100 K parameters to train.

In order to stress our method, we also provide a different combination of weak classifiers: specifically, we show the results of an ensemble of

five weak models. For demonstration purposes we report the results obtained only for the CIFAR-100 and CIFAR-10 datasets. In the case

of CIFAR-100, while the ensemble using 2 weak models obtained an accuracy of 96.808%, the new one obtained an accuracy of 84.930%. This

result was expected, since each weak model had to be trained on a third of the images of the previous case according to the data splitting proce-

dure described in Section 4.6 in order to avoid the use of the same images. In the case of CIFAR-10, while the ensemble using 2 weak models

obtained an accuracy of 99.612%, the new one obtained an accuracy of 96.640%.

Again both for CIFAR-10 and for CIFAR-100, we also run 6 EfficientNet-b0 weak models and then 6 classical ensembles by majority voting in

order to further compare the classical method with ours: one ensemble collects the best two weak models and another the best five ones. For

CIFAR-10, the best weak model reaches 97.37% of accuracy, the best ensemble of 2 weak models reaches 97.54% and the ensemble of 5 weak

models 97.66% (our method reaches 99.61%). For CIFAR-100 the best weak model reaches 85.55% of accuracy, the ensemble of 2 weak models

reaches 86.64% and the best ensemble of 5 weak models 87.56% (our method reaches 96.81%). Moreover, we also run our ensemble method on

these classical weak models to show that, as we described in Section 3, our solution improves the results both for the novelties applied to the

8 ANTONIO ET AL.
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weak models and for those applied to the ensemble. With CIFAR-10 the best adaptive ensemble reaches 97.49% (against our full method that

reaches 99.61%) and with CIFAR-100 the best adaptive ensemble reaches 86.79% (against our full method that reaches 96.81%).

Last but not least, below we present an analysis of computation time for a single task; let:

1. Tend the time for a single end-to-end weak learner training;

2. Tfine the time for a single fine-tuning ensemble model training;

3. Tfwd the time for a single forward step;

4. Tback the time for a single backward step, when subscripted it indicates the number of parameters involved;

5. Tupd the time for a single optimization update step, when subscripted it indicates the number of parameters involved.

Then, for a single task, the total time needed is:

T¼A �TendþB �Tfine ð4Þ

where in our case A¼2 since end-to-end training is performed once on each of the two disjoint subsets and B¼5 because we performed fine-

tuning ensemble training with five random initializations.

However, it is possible to perform in parallel each of the end-to-end training processes, halving the batch size and about taking half of the

time; the same goes for the fine-tuning training running all in parallel, in this way the total time is:

T¼ TendþTfine ð5Þ

and considering that a single training is made of forward + backward + update steps to all training data for several epochs:

Tend / TfwdþTbackþTupd ð6Þ

TABLE 4 Classification test accuracy comparison between SOTA and our work on datasets used during experiments.

Dataset SOTA accuracy Our accuracy Improvement

CIFAR-10 (Dosovitskiy et al., 2021) 99.500% 99.612% 0.112%

CIFAR-100 (Foret et al., 2021) 96.080% 96.808% 0.728%

Cars (Ridnik et al., 2021) 96.320% 96.868% 0.548%

Food-101 (Foret et al., 2021) 96.180% 96.879% 0.699%

Flower102 (Wu et al., 2021) 99.720% 99.847% 0.127%

CINIC-10 (Lu et al., 2021) 94.300% 95.064% 0.764%

Pets (Foret et al., 2021) 97.100% 98.220% 1.120%

TABLE 5 Complexity, both number of parameters and FLOPs, comparison between SOTA and our work on datasets used during
experiments.

Dataset SOTA parameters Our parameters SOTA FLOPs Our FLOPs

CIFAR-10 (Dosovitskiy et al., 2021) ≈632M ≈11M (100K) ≈916Ga ≈0.9G

CIFAR-100 (Foret et al., 2021) ≈480M ≈11M (100K) ≈299Gb ≈0.9G

Cars (Ridnik et al., 2021) ≈54.7M ≈11M (100K) ≈10G ≈0.9G

Food-101 (Foret et al., 2021) ≈480M ≈11M (100K) ≈299Gb ≈0.9G

Flower102 (Wu et al., 2021) ≈277M ≈11M (100K) ≈60G ≈0.9G

CINIC-10 (Lu et al., 2021) ≈8.1M ≈11M (100K) ≈1G ≈0.9G

Pets (Foret et al., 2021) ≈480M ≈11M (100K) ≈299Gb ≈0.9G

aEstimation based on a similar architecture with a similar number of parameters.
bEstimation based on the same architecture but scaling FLOPs w.r.t. the number of parameters ratio.

ANTONIO ET AL. 9
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Tfine /N �TfwdþTback100k þTupd100k/�Tfwd ð7Þ

that is the time for a single fine-tuning ensemble model training is proportional (depending on the actual number of epochs) to the number of the

weak learners N multiplied for the time needed for a single forward step, plus the time for a single backward step using 100,000 parameters, plus

the time for a single optimization update step using 100,000 parameters that is approximately proportional to the time for a single forward step.

Indeed, the approximation in the Equation 7 is justified by the fact that backward and update steps involve only a small fraction of the parameters;

moreover, the two weak learners perform forward steps in parallel since they are independent (otherwise we should have K¼2). Putting together

Equations 6 and 7, the total time is:

T/�2 �TfwdþTbackþTupd ð8Þ

that is, the total time is proportional to 2 multiplied the time for a single forward step plus the time for a single backward step plus the time for a

single optimization update step.

What said before, in terms of FLOPs is (considering only one input, just add the linear scaling factor for the training on the whole dataset):

Ffwd ¼ Fback ¼0:39 GFLOPs ð9Þ

Fupd ≈20 �P≈0:1 GFLOPs ð10Þ

the Equation 9 refers to FLOPs of EfficientNet-b0 architectures and the Equation 10 refers to FLOPs of AdaBelief update step where P¼5 M is

the number parameters involved in the end-to-end training. Putting all together:

F≈2 �FfwdþFbackþFupd ≈
≈2 �0:39þ0:39þ0:1≈

≈1:3 GFLOPs

ð11Þ

this means that the whole pipeline on a single image requires about 1.3 GFLOPs, and considering the Table 5, the SOTA for CINIC-10 in (Lu

et al., 2021) that has the least number of parameters (8.1 M) requires 1 GFLOPs for one single forward on an image, showing that our solution is

the fastest and the speedup is much more noticeable (10–100 times) over the even more complex SOTA models.

6 | CONCLUSION AND FUTURE WORKS

In this work, we presented a method to reverse the trend in image classification of having minor improvements with a huge complexity increase.

In particular, we showed a revisited ensembling to outperform the SOTA with restrained complexity, both in terms of the number of parameters

and FLOPs. Specifically, we proved how it is possible to perform bagging on two disjoint subsets of data using two EfficientNet-b0 weak learners

and training them to overfit on the assigned/scheduled subset.

In this work we pushed the ensemble size to the lower bound using only 2 weak learners: this adaptive ensemble strategy would still be the

most efficient using up to 5 weak learners (taking into account that, when using the overfitting strategy, each weak learner has too fragmented

and limited knowledge), and then it could be further improved by defining different bagging strategies (e.g., train weak learners on subsets split by

class dimensionality, clustering or different colour space mapping of inputs).

Then, the ensemble is performed by fine-tuning a trainable combination layer. The efficiency of the method is given by different reasons: effi-

ciency of EfficientNet-b0 models, fine-tuning for ensemble and the high parallelization capability of the solution, the reduced number of FLOPs

combined with the tiny validation space (7 total runs: 2 end-to-end + 5 fine-tuning).

These results pave to investigate this kind of strategy in many fields: Object Detection (performing the ensemble at feature extraction back-

bone level) and Segmentation (performing the ensemble on the encoding in typical encoder-decoder architectures).
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(2019). Towards federated learning at scale: System design. Proceedings of Machine Learning and Systems, 1, 374–388.
Bossard, L., Guillaumin, M., & Van Gool, L. (2014). Food-101 – Mining discriminative components with random forests.

Brock, A., De, S., Smith, S. L., & Simonyan, K. (2021). High-performance large-scale image recognition without normalization. CoRR; abs/2102.06171.

Dai, Z., Liu, H., Le, Q. V., & Tan, M. (2021). CoAtNet: Marrying convolution and attention for all data sizes. CoRR; abs/2106.04803.

Darlow, L. N., Crowley, E. J., Antoniou, A., & Storkey, A. J. (2018). CINIC-10 is not ImageNet or CIFAR-10. ArXiv; abs/1810.03505.

Deng, J., Dong, W., Socher, R., Li, L., Li, K., & Fei-Fei, L. (2009). ImageNet: A large-scale hierarchical image database: 248–255.
Dhar, P. (2020). The carbon impact of artificial intelligence. Nature Machine Intelligence, 2(8), 423–425.
Dong, X., Yu, Z., Cao, W., Shi, Y., & Ma, Q. (2020). A survey on ensemble learning. Frontiers of Computer Science, 14(2), 241–258.
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., & Uszkoreit, J.

(2021). An image is worth 16�16 words: Transformers for image recognition at scale.

Foret, P., Kleiner, A., Mobahi, H., & Neyshabur, B. (2021). Sharpness-aware minimization for efficiently improving generalization.

Friedman, J. H. (2000). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29, 1189–1232.
Ganaie, M. A., Hu, M., Malik, A. K., Tanveer, M., & Suganthan, P. N. (2021). Ensemble deep learning: A review. arXiv preprint arXiv:2104.02395.

Goel, A., Tung, C., Lu, Y. H., & Thiruvathukal, G. K. (2020). A survey of methods for low-power deep learning and computer vision. IEEE: 1–6.
Krause, J., Stark, M., Deng, J., & Fei-Fei, L. (2013). 3D object representations for fine-grained categorization.

Krizhevsky, A., Nair, V., & Hinton, G. CIFAR-10 (Canadian Institute for Advanced Research).

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60, 84–90.
Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., & Guo, B. (2021). Swin transformer: Hierarchical vision transformer using shifted windows. CoRR;

abs/2103.14030.

Lu, Z., Sreekumar, G., Goodman, E., Banzhaf, W., Deb, K., & Boddeti, V. N. (2021). Neural architecture transfer. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 43(9), 2971–2989. https://doi.org/10.1109/tpami.2021.3052758

Nilsback, M. E., & Zisserman, A. (2008). Automated flower classification over a large number of classes.

Opitz, D. W., & Maclin, R. (1999). Popular ensemble methods: An empirical study. Journal of Artificial Intelligence Research, 11, 169–198. https://doi.org/10.
1613/jair.614

Parkhi, O. M., Vedaldi, A., Zisserman, A., & Jawahar, C. V. (2012). Cats and dogs.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., & Desmaison, A. (2019). PyTorch: An impera-

tive style, high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, D. F. Alché-Buc, E. Fox, & R. Garnett (Eds.), Advances in

neural information processing systems (Vol. 32, pp. 8024–8035). Curran Associates, Inc.

Ridnik, T., Ben-Baruch, E., Noy, A., & Zelnik-Manor, L. (2021). ImageNet-21K pretraining for the masses.

Sagi, O., & Rokach, L. (2018). Ensemble learning: A survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8, e1249. https://doi.org/

10.1002/widm.1249

Schwartz, R., Dodge, J., Smith, N. A., & Etzioni, O. (2020). Green ai. Communications of the ACM, 63(12), 54–63.
Sollich, P., & Krogh, A. (1995). Learning with ensembles: How over-fitting can be useful. In NIPS'95 (pp. 190–196). MIT Press.

Sze, V., Chen, Y. H., Emer, J., Suleiman, A., & Zhang, Z. (2017). Hardware for machine learning: Challenges and opportunities. IEEE: 1–8.
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision: 2818–2826.
Tan, M., & Le, Q. (2019). EfficientNet: Rethinking model scaling for convolutional neural networks. In K. Chaudhuri & R. Salakhutdinov (Eds.), Proceedings of

the 36th international conference on machine learning. 97 of proceedings of machine learning research (pp. 6105–6114). PMLR.

Weiss, K., Khoshgoftaar, T., & Wang, D. (2016). A survey of transfer learning. Journal of Big Data, 3, 1–40. https://doi.org/10.1186/s40537-016-0043-6
Wu, H., Xiao, B., Codella, N., Liu, M., Dai, X., Yuan, L., & Zhang, L. (2021). CvT: Introducing convolutions to vision transformers.

Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. (2017). Aggregated residual transformations for deep neural networks: 5987–5995.
Zhai, X., Kolesnikov, A., Houlsby, N., & Beyer, L. (2021). Scaling vision transformers. ArXiv; abs/2106.04560.

Zhuang, J., Tang, T., Ding, Y., Tatikonda, S. C., Dvornek, N., Papademetris, X., & Duncan, J. (2020). AdaBelief optimizer: Adapting stepsizes by the belief in

observed gradients. Conference on Neural Information Processing Systems, 33, 18795–18806.

AUTHOR BIOGRAPHIES

Antonio Bruno. He received the Master degree in Computer Science from the University of Pisa. He received a research grant from the Signal

and Images Lab (SI-Lab) of the Institute of Information Science and Technologies (ISTI) for collaborating on the Barilla AGROSAT Plus project.

His main research interests include deep learning for structured domain (e.g., sequences, trees, images).

ANTONIO ET AL. 11

 14680394, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/exsy.13424 by C

ochraneItalia, W
iley O

nline L
ibrary on [29/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://paperswithcode.com/datasets
https://orcid.org/0000-0002-9152-8112
https://orcid.org/0000-0002-9152-8112
https://orcid.org/0000-0002-5175-5126
https://orcid.org/0000-0002-5175-5126
https://orcid.org/0000-0001-7419-5099
https://orcid.org/0000-0001-7419-5099
https://doi.org/10.1109/tpami.2021.3052758
https://doi.org/10.1613/jair.614
https://doi.org/10.1613/jair.614
https://doi.org/10.1002/widm.1249
https://doi.org/10.1002/widm.1249
https://doi.org/10.1186/s40537-016-0043-6


Davide Moroni. He received the MSc degree (Hons.) in mathematics from the University of Pisa, in 2001, the Diploma from the Scuola

Normale Superiore of Pisa, in 2002, and the PhD degree in mathematics from the University of Rome La Sapienza, in 2006. He is a researcher

with the Institute of Information Science and Technologies (ISTI), National Research Council, Italy, Pisa. He is currently the head of the Signals

and Images Lab, ISTI. He is the chair of the MUSCLE working group of the European Consortium for Informatics and Mathematics. Since

2018, he serves as the chair of the Technical Committee 16 on Algebraic and Discrete Mathematical Techniques in Pattern Recognition and

Image Analysis of the International Association for Pattern Recognition (IAPR). He is an associate editor of IET Image Processing. His main

research interests include geometric modelling, computational topology, image processing, computer vision, and medical imaging. At the

moment, he is leading the ISTI-CNR team in the National Project PON MIUR S4E, working on maritime safety and security, and in the regional

Project IRIDE addressing AR technologies and computer vision of Industry 4.0.

Massimo Martinelli. He is member of the Signals & Images research laboratory at the Institute of Information Science and Technologies (ISTI),

National Research Council (CNR), Italy, Pisa, since 1987. Head of the ‘Artificial Intelligence Technologies and Frameworks Area’ at SI-Lab
since 2017. He was member of the W3C Multimedia Semantics Incubator Group (2006–2007). He is currently leading the CNR-ISTI team in

the projects TiAssisto (Tuscany Region), Barilla Agrosat Plus (industrial), Cloud Pathology (industrial), and of the Scientific Agreements with

the UO Otolaryngology, audiology and phoniatrics (UNIPI), and with the Italian Mountain Medicine Society. Member of the Doseteam4you

group of the Department of Diagnostics and Interventional Radiology of the University Hospital of Pisa. Topic Editor of ‘Machine Learning

and Biomedical Sensors’ of the Sensors Journal, His main scientific interests include Computer Vision, Deep Learning, Decision Support Sys-

tems, Web technologies.

How to cite this article: Antonio, B., Moroni, D., & Martinelli, M. (2023). Efficient adaptive ensembling for image classification. Expert

Systems, 1–12. https://doi.org/10.1111/exsy.13424

12 ANTONIO ET AL.

 14680394, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/exsy.13424 by C

ochraneItalia, W
iley O

nline L
ibrary on [29/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1111/exsy.13424

	Efficient adaptive ensembling for image classification
	1  INTRODUCTION
	2  RELATED WORK
	3  EFFICIENT ADAPTIVE ENSEMBLING
	3.1  Efficiency
	3.2  Adaptivity

	4  EXPERIMENTAL RESULTS
	4.1  Datasets
	4.1.1  CIFAR-10 and CIFAR-100 (Krizhevsky et al.,n.d.)
	4.1.2  Stanford cars (Krause et al.,2013)
	4.1.3  Food-101 (Bossard et al.,2014)
	4.1.4  Oxford 102 flower (Nilsback 2008)
	4.1.5  CINIC-10 (Darlow et al.,2018)
	4.1.6  Oxford-IIIT pet (Parkhi et al.,2012)

	4.2  Input preprocessing
	4.3  Transfer learning
	4.4  Validation phases
	4.5  Avoid overfitting
	4.6  Data splitting
	4.7  Loss and metrics
	4.7.1  Training loss
	4.7.2  Validation and test metrics

	4.8  Hyperparameters

	5  RESULTS AND DISCUSSION
	6  CONCLUSION AND FUTURE WORKS
	AUTHOR CONTRIBUTIONS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	REFERENCES


