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distribution is associated with a higher surface area, and because the
leaching process is a surface reaction, it is likely that the higher mobi-
lisation of HEs from the GR-AW body is related to its particle-size
distribution.

Neither Sn nor Sb were mobilised in any of the test conditions, with
the exception of two samples that exhibited a very low Sb release, both
in water (fraction mobilised 0.002 for GPO-AW and 0.01 for NR-AW).
Despite the high refractoriness of the oxides, both ions are insoluble
over the entire pH range investigated, thus preventing the identification
of differences in immobilisation mechanisms [107,108].

3.4. Ceramisation and element stabilisation

To outline general trends in the effectiveness of element stabilisation
through the ceramisation process, this section also considers data
related to the benchmark bodies (which also contains some amount of
HEs, albeit at very low concentrations) and those containing BA (to
assess possible effects of Cl and S, which occur at relatively high
concentrations).

The mobilised fraction of HEs is plotted in Fig. 7 as a function of the
amount of amorphous phase (and thus of the increasing temperature) for
the unreacted body NR, the vitrified GR and the largely vitrified
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GPO-GSTO. Two distinct behaviours can be identified: a group of HEs
exhibiting a clear correlation between the fraction of the element
mobilised and the amount of amorphous phase and another group with a
less pronounced relationship. Co, Cr, Mo, Sr and V belong to the first
group, exhibiting an inverse correlation between the two variables and
similar ranges of fraction mobilised in basic and acidic solutions. The
data indicate a direct relationship with the NBO/T of the vitreous phase
in ceramic bodies: the lower the degree of polymerisation (higher NBO/
T), the higher the fraction mobilised (Fig. S8, supplementary materials).
This is consistent with the hypothesis that Sr** is more effectively
retained as a charge compensator in highly polymerised glassy phases
(and something similar may occur with C02+). In the case of Cr, Mo and
V, which are most likely present as oxyanions, it can be postulated that
such complexes would be more easily released from less polymerised
glasses. However, it should be noted that a correlation between leaching
and NBO/T is not universally recognised [109].

The second group is composed of Ba, Cu, Pb and Zn, which exhibit
the expected difference in the fraction of elements mobilised in basic
(low or none) and acidic (high) environments. There is no clear trend as
a function of the amorphous phase content. However, an inverse cor-
relation with NBO/T can be observed (Fig. S9, supplementary mate-
rials): the fraction mobilised is greater when the degree of
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polymerisation is higher. This phenomenon can be attributed to the
presence of Ba?* (and similarly Pb2") as GNM in porcelain stoneware. In
addition, the lack of K-feldspar neo-formation precludes Ba (or Pb) from
the most effective opportunity for incorporation into crystalline struc-
tures. The leaching behaviours of Zn and Cu appear to be somewhat
correlated with the glass network modifiers. The higher is the fraction
mobilised, the lower is the amount of GNM (Fig. S10, supplementary
materials). This suggests that the latter may contribute to the stabilisa-
tion of Cu*" and Zn?* in low oxygen coordination number in alumino-
silicate glasses [110]. Finally, Sb was not mobilised, except for two
samples with a very low release (fsp = 0.002 and 0.01 for GPO-AW and
NR-AW, respectively). This corroborates the findings of previous
studies, which reported fs, = 0.001% at 850 °C [17] up to 0.01% at a
temperature > 1300 °C [111].

A comparison of the ion concentrations in water with the different
types of waste indicated a systematically lower mobilised fraction from
the bodies containing BA, whose higher concentrations of Cl and S have
not induced a greater release of HEs than AW. However, the results of
the leaching tests in acetic acid solution showed a higher mobilised
fraction from the bodies containing BA, except for Ba and Sr. The dif-
ferences observed in the behaviours of BA and AW were likely influ-
enced by the presence of distinct HE-bearing phases, as previously
reported in the literature [103-105].

The efficiency of immobilisation in water is plotted as a function of
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the HEs concentration in ceramic batches in Fig. 8, where the results of
this study were compared with the literature data relative to non-
reactive, recrystallised and largely vitrified ceramic bodies. In general,
silicate ceramics exhibit a high efficiency of HEs immobilization in
water. This is particularly true for the elements Ba, Co, Cu, Pb, Sb, Sn
and Zn.

Barium is typically stabilised in highly vitrified matrices, although
there are instances of retention rates between 98% and 99% and only
one sample below this value (GSTO &eg,~95% at a low BaO concentra-
tion, 0.05 wt%). These efficiencies are only marginally inferior under
acidic conditions. This corroborates some previously documented cases
of relatively low immobilisation observed when BaO is > 0.1% in the
ceramic material [112]. These unsatisfactory cases may result from the
absence of the most effective mechanisms for barium stabilisation. These
mechanisms include the formation of feldspars during firing, which can
accommodate Ba®" in the crystalline structure [99], and the binding to
the tetrahedral glass framework as a charge compensator when alkali
and Ca are not sufficient to balance the available AI** [113].

Chromium is immobilised with high efficiency in largely vitrified
bodies (e¢r > 99.4%), confirming the results of the literature (Fig. 8).
Red stoneware exhibits slightly lower performance than porcelain
stoneware. Leaching in acid solution resulted in a slightly lower degree
of immobilisation than in water. A warning signal was given by the
scarcely reacted body (NR), regardless of the CroO3 content, which had
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poor immobilisation efficiency (ec; 82-88%). Thus, the amorphous
phase present in the samples fired at 820 °C had a substantially lower Cr
retention capacity than in aluminosilicate glasses formed in stoneware
fired above 1100 °C (GR samples).

Cobalt exhibits complete immobilisation under basic conditions,
regardless of the type of ceramic matrix. This is consistent with previ-
ously reported data indicating its high efficiency (ec,~99.7%) also for
non-vitrified ceramics fired at 950 °C [12]. However, the acetic acid
solution test indicated a slight loss of Co retention, the values of which
range from 88% to 97% in porcelain stoneware and approximately 80%
in red stoneware.

Copper is stabilised with high efficiency in vitrified bodies (ec, >
98%), as previously demonstrated in other studies (Fig. 8). The degree of
immobilisation is slightly more pronounced in red stoneware than in
porcelain stoneware, which is likely associated with the presence of
hosting phases (i.e. clinopyroxene and/or spinel). Low efficiency was
observed for the CuO concentrations below 0.01% in the ceramic matrix
and could be affected by the greatest experimental uncertainty. How-
ever, Cu is leached much more under acidic conditions, regardless of the
degree of vitrification.

Lead is completely immobilised in vitrified ceramic matrices
(epb~100%) at both low and high PbO concentrations, fully confirming
what has already been observed in the literature. Some Pb was released
from waste-free porcelain stoneware bodies under acidic conditions, i.e.
at extremely low PbO concentrations.

Molybdenum is a critical case where there is a low- to -very -low
immobilisation efficiency under both basic and acidic conditions.
Furthermore, the degree of Mo stabilisation decreases with the degree of
vitrification. Porcelain stoneware bodies with AW exhibit gy;,~88%,
whereas vitrified GR-AW gpo~52% and NR-AW exhibit ey,~1%. These
data confirm the state of the art picture (Fig. 8) and extend it to MoOg
concentrations at approximately 0.1%. The difficulties in Mo stabilisa-
tion may be attributed to the formation during firing (below the
detection limit of XRD) of alkaline and alkaline earth molybdates with
high solubility in water [6,114].

Strontium is efficiently immobilised in porcelain stoneware, partic-
ularly for SrO concentrations below 0.1% in the ceramic bodies. It ap-
pears that favourable for Sr retention are the formation of plagioclase
during firing and the ability to host Sr?* in glass as a charge compensator
for the AI3*-Si*" substitution among glass network formers. However,
the Sr retention was considerably lower for the body made of red clay
and when leaching was carried out under acidic conditions. These ob-
servations appeared to be somewhat at odds with the findings of pre-
vious studies, which indicated a high Sr immobilisation (eg; > 99.3%)
regardless of the pH and SrO concentrations [37,38,115].

Vanadium immobilization efficiency on the ceramic matrix exhibits a
clear differentiation. It is notably high for porcelain stoneware (ey >
99%) but considerably lower for red clay bodies, particularly those fired
at low temperatures. This pattern is observed across a range of pH values
in leaching solutions. This corroborates the findings of previous studies
on V leaching from ceramics, which have documented a high degree of
immobilisation under acidic conditions [38,116] but a comparatively
lower performance in water [117].

Zinc is retained in vitrified ceramic bodies with high efficiency (ez,
close to 100%), with the exception of a single case (ez,~98%) associated
with a very low concentration in the body (ZnO < 0.01%). However,
Zn?* can be released under acidic conditions. The main stabilisation
mechanism in vitrified bodies is probably the incorporation within the
glassy phase, where Zn?" ions are tetrahedrally bonded to oxygens with
short bond distances.

The hazard quotient (HQgg) is plotted in Fig. 9 for different HEs and
types of silicate ceramics. In most of the cases analysed, the calculated
values are relatively low, indicating that the concentrations of the
released HEs are within the limits set by regulatory authorities for inert
materials. This is particularly true for Cu, Zn and Pb, as well as Ba,
although with a slightly higher hazard quotient (0.18 on average). A
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different situation was observed for Sb, Cr and particularly Mo, which
show values exceeding the threshold set by the regulation, especially for
NR-AW. This picture is not dissimilar to that sketched in the literature,
indicating that Mo is the most challenging case [6].

4. Conclusion

This study aimed to evaluate the practicality of employing ceram-
isation for inertising HEs potentially originating from secondary raw
materials, which are increasingly used in the industrial ceramic sector.
To this end, an artificial waste (AW) and a real bottom ash (BA) con-
taining different HEs were incorporated into distinct types of silicate
ceramics: vitrified, highly vitrified and largely unreacted. Quantitative
mineralogical analyses of the fired ceramic bodies confirmed the for-
mation of crystalline/amorphous phases capable of hosting different
HEs, with the majority occurring in vitrified and largely vitrified bodies.
Contrarily, the unreacted one, fired at a low temperature (820 °C),
exhibited the prevalence of residual phases. The microstructural study
provided insights into the reactivity of the two waste materials during
the firing process. The AW effectively interacted with the ceramic
matrices, leading to the incorporation of HEs in the neoformation pha-
ses. Conversely, the interaction between the BA and the ceramic bodies
appeared to be relatively low. The persistence of unreacted or minimally
reacted BA particles was mainly attributed to the refractoriness of its
constituents. Furthermore, the strong chemical and mineralogical het-
erogeneities of this waste (where the same element can be present in
many different forms) made the interpretation of its behaviour chal-
lenging. For these reasons, the leaching data on BA-based ceramic
bodies reflect the nature of the waste rather than its interaction with the
ceramic matrices. Nevertheless, some general trends can be identified
from the obtained results.

— Vitrified ceramic bodies exhibited high immobilisation efficiency for
Ba, Co, Cr, Cu, Pb, Sb, Sn and Zn. This was also observed for Sr and V
but limited to highly vitrified bodies.

— Mo is the only HE considered here that exhibited poor retention in
ceramic matrices.

— A greater release of Co, Cu, Pb and Zn was observed in acidic envi-
ronments, as compared with a neutral or alkaline environment, in
the leaching tests conducted in water. This was mainly due to the
predominance of water-soluble forms at the pH values of the acetic
acid test.

— The degree of immobilisation of Co, Cr, Mo, Sr and V was enhanced
by increasing the degree of vitrification and the firing temperature of
the ceramic bodies. This appeared to be associated with the resulting
greater polymerisation of the vitreous phase for several reasons.
First, Sr2* can act as a charge compensator and thus contribute to the
insertion of AI** into the tetrahedral network, making it somewhat
more difficult to leach out. Second, it can be postulated that Cr, Mo
and V, which are presumed to exist in oxyanion form, are more
readily leached from samples fired at lower temperatures owing to
their apparent reduced binding to the glass network formers.

— In the case of Ba, Cu, Pb and Zn, it was observed that immobilisation
was less efficient (mostly in an acidic environment) as the degree of
polymerisation of the glassy phase increased. The reason for the
behaviour of Ba (probably also Cu and Pb) could be that it is not
bound to the tetrahedral network and is relegated among the glass
network modifiers. This is due to the fact that alkali and other
alkaline earth elements are more selectively involved as charge
compensators in aluminosilicate vitreous phases. Zinc may be more
loosely retained because although in tetrahedral coordination with
oxygen, it is not part of the glass network formers.

— The mobilised fraction of Ba, Cu, Pb and Zn in water (according to EN
12457-2:2002) was consistently well below the limit required for
inert waste. Cr, Sb and Mo exceeded the limit. The cases for Cr were
represented by the unreacted bodies fired at low temperature, which
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showed much lower immobilisation efficiency than the vitrified and
highly vitrified matrices (85.2% vs. 99.8%, respectively). This could
be related to the oxidation of Cr®" leading to the formation of
[Cr6+04]2’ complexes, which are easier to mobilise. For Sb,
although characterised by high immobilisation efficiency (~99%),
two samples exceeded the legal limits. As aforementioned, Mo was
the main element of concern. It has been suggested that these criti-
calities were likely to be associated with the formation of oxyanionic
complexes, including [Mo®T04]%7, [Mo® 04]°~ and [Sb®T0,]3".
These complexes are challenging to immobilise in silicate matrices.

This study yielded successful results in the immobilisation of HEs
through the ceramisation process, with the majority of these results
observed in vitrified (red stoneware) and highly vitrified (porcelain
stoneware) ceramic products. In particular, the immobilisation effi-
ciency of porcelain stoneware is higher than that of red stoneware,
whereas the differences observed between the porcelain stoneware
matrices appeared to reflect the variation in the amount and degree of
polymerisation of the vitreous phase. The potential impact of this study
includes a paradigm shift from the empirical approach commonly
employed in waste recycling to a new batch design strategy. Similar to
all academic research, this study provides the basic knowledge needed
before moving on to higher TRL. We believe that this work, and others
made in this perspective, will help address eco-design towards safer and
knowledge-based practices.

Environmental implication

The study of the ceramisation process is crucial for assessing the
immobilisation of HEs, particularly in the ceramic industry, which is
increasingly adopting recycling practices according to circular economy
principles. The work provides a quantitative analysis of the process,
evaluating the effectiveness of incorporating secondary raw materials
(containing hazardous constituents) into vitrified and highly vitrified
silicate ceramic bodies. Valuable insights are provided on how to miti-
gate environmental risks associated with the introduction of potentially
harmful elements. This comprehension is essential for improving waste
recycling in the ceramic industry and promoting sustainable practices in
accordance with the goals of circular economy.
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