
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 20xx; 00:1–20
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe

Model driven generation of mobility traces for Distributed Virtual
Environments with TRACE

Emanuele Carlini2, Alessandro Lulli3, Laura Ricci1,2

1 Department of Computer Science, Largo B. Pontecorvo, University of Pisa, 2 ISTI, CNR, Via Moruzzi, Pisa,
3 DIBRIS - University of Genoa, Genova, Italy

SUMMARY

Avatars’ mobility is an essential element to design, validate and compare different distributed virtual
environment architectures. It has a direct impact on the management of such systems because it defines
the workload associated with the areas in the virtual world. Currently, a relevant part of this evaluation
is conducted by means of synthetic traces generated through mobility models. Despite that, in the last
decade, several models have been proposed in literature to describe avatars mobility. However, a standard
methodology that drives researchers in their evaluation does not yet exist. In order to alleviate this issue, we
present TRACE, an open source tool supporting the generation and analysis of traces by means of embedded
mobility models. TRACE’s ultimate aim is to facilitate the evaluation and comparison of virtual environments
and allow researchers to focus on developing their solution rather than spend time to code and test custom
mobility traces. TRACE provides a unified format to describe the traces. It enables scalable and efficient trace
generation and analysis for thousands of avatars with seven built-in models. Also, it defines APIs enabling
the integration of additional models, different configurations of the environment and several built-in metrics
to analyze the generated traces.
Copyright c© 20xx John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Mobility model, distributed virtual environment, open source, multiplayer games

1. INTRODUCTION

On-line gaming entertainment has received lots of popularity in the last decade from both industry
and research communities. This attention is justified by the economic growth of the sector, in which
Massively Multi-player Online Games (MMOGs) such as World of Warcraft [1] or Second Life [2],
represent a remarkable member. From a practical point of view, MMOGs are large-scale distributed
applications are a synchronous, persistent and interactive virtual environment that allows a huge
amount of users worldwide to share a real-time virtual environment. In these applications each
individual is in control of a virtual character called avatar. The avatar is free to move in a virtual
world, perform actions, activities relative to the game and meet other avatars.

One of the largest area of research in this context is to foster the transition of virtual
environments from client-server to distributed applications. Such approaches, broadly referred to as
Distributed Virtual Environments (DVEs) [30], aim at achieving scalability and cost-effectiveness,
by orchestrating the support of the virtual environment to exploit the computational and network
resources of the users of the DVE. Common approaches for the definition of the distributed support
are based on unstructured [19, 31] and structured [5, 21] peer-to-peer technologies, as well as more
centralized technologies like cloud computing [29].

∗Correspondence to: ISTI, CNR; Pisa

Copyright c© 20xx John Wiley & Sons, Ltd.
Prepared using cpeauth.cls [Version: 2010/05/13 v3.00]

2 CARLINI ET AL.

In such distributed approaches, a user resource (i.e. peer) concurrently works both as client for
a (usually single) avatar and as server for a part of the virtual world. This organization allows to
exploit the inherent scalability of P2P systems, but it raises a number of challenging issues. For
example, there is the need to find a proper way to partition the virtual environment among the
user resources, both in terms of number and size of partitions. Further, an infrastructure supporting
DVEs has to implement proper consistency preserving mechanisms in order to make sure that all
clients have a consistent view of the virtual world. This problem is exacerbated by the fact that all
communication largely takes place on the Internet, consequently suffering from unpredictable jitter
and delays, and hence making perfect consistency hard to achieve. In fact this problem is tackled by
tuning the tradeoff between consistency and interactivity [7, 12], whose values depend mostly on
the type of virtual world running on the DVE, including the movement of the avatars.

Another typical issue in DVE is the propagation of the relevant events generated by the participants
to the set of interested avatars, which is typically a subset of the whole set of participants. This issue,
commonly referred as Interest Management (IM) [18] poses well recognized scalability challenges,
due to the high number of participants and to the distributed nature of the DVE. Nevertheless IM is
mostly affected by the movements of the avatars, and by their interactions which, in turn, depend on
their position and surroundings. Moreover, the position of the avatars can affect the distribution of
the DVE. For example, in Voronoi-based DVE approaches, the management of the DVE is assigned
to the hosts of the avatars according to a tessellation of the virtual world, which depends on the
position of the avatars [19, 31]. When avatars move, the assignments change accordingly, triggering
a reconstruction in the distribution of the DVE.

As a matter of fact, the representation of avatar movements is an essential feature to properly
design, validate and compare different DVE architectures. Normally, two widespread ways are
exploited to represent avatars’ movements (often referred to as traces [27]): real traces taken
from an instance of a running virtual environment application, or synthetic traces generated from
mobility models, that try to simulate the behavior of the avatars. Real traces are usually a good
mean of validation, as they provide the actual behavior of avatars in virtual environments. However,
obtaining real traces can be difficult, as it often requires to have access to the data of a commercial
application. A few online repositories allow access to such data. For instance, The Game Trace
Archive†[16] to date makes available 14 different traces of popular virtual environment. However, it
can be difficult to collect a large and heterogeneous number of real traces and, especially, they may
be not suitable to validate the DVE on extreme and specific scenarios. On the other hand, synthetic
traces generation provides a simulation of avatars’ movements, and present many advantages with
respect to real traces [37]. First, they provide good means to test the scalability in terms of
avatars number, often going beyond the actual capacity of real world virtual environments; second,
synthetic traces are reproducible and easily embeddable in different applications and configurations,
providing a common ground toward comparison; third, they aim to realism, with a number of
mobility models released to capture the peculiar behavior of different kind of avatars and virtual
environments (see Section 2).

However, in the majority of cases, synthetic traces are generated with custom ad-hoc solutions,
which raise several drawbacks: (i) it is hard to compare different systems on the same scenario, as
exact details on how the traces are generated are usually not released; (ii) researchers spend time
to code and test traces and trace generators, rather than improving their solutions; (iii) there are no
clear reference mobility models that are targeted by the DVE community; (iv) it is time-consuming
to reuse traces because, usually, they are encoded using specific formats.

In order to overcome these drawbacks, we have developed TRACE, a Java software library for the
generation of avatar movement traces aimed to an easy integration and portability among different
systems and approaches. TRACE is a tool for the fast and easy embedding of already designed
mobility models in DVE architectures, that promises to follow the ”write once, run anywhere”
philosophy. Apart from mobility traces generation, TRACE can be used to support the creation of

†http://gta.st.ewi.tudelft.nl/

Copyright c© 20xx John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (20xx)
Prepared using cpeauth.cls DOI: 10.1002/cpe

MODEL DRIVEN GENERATION OF MOBILITY TRACES FOR DVES WITH TRACE 3

new mobility models from real traces due to its flexibility, however in this presented version of
TRACE we do not claim to tackle directly such challenge.

TRACE presents the following characteristics: (i) is able to generate mobility traces for a wide
variety of included DVE-based and human-based mobility models, and provides interfaces for the
definition of personalized mobility models; (ii) exports traces in a simple, unified and reusable
format, so to foster further uses and comparisons; (iii) is designed to be fully configurable, in order
to adapt to heterogeneous approaches and scenarios; (iv) comes with many additional tools (e.g.
trace analyzer and visualizer) to help creating the right trace and analyze its features. Initially, we
have used TRACE for internal research (such as in [12, 9]) but eventually we have made it available
for the whole DVE community‡.

1.1. Contribution

In this paper we present the main features and characteristics of TRACE, unraveling the relevant
under-the-hood that makes it easy and practical to use. We provide an overview of the API for
the definition of personalized mobility models, corroborated by two use cases: (i) BLUEBANANA,
a mobility model for Second Life [25], and (ii) SYMPATHY, an original mobility model for
Multiplayer Online Battle Arena (MOBA) based on attraction forces. We also provide an evaluation
of TRACE that covers generation performances and trace analysis.

This paper is an improved version of a previous paper from the same authors [10]. With respect
to that paper, we extended our work with the following new contributions:

• an improved version of TRACE, which includes trace analysis, the possibility to combine
multiple models in the same trace, and performance improvements;

• a comprehensive related work study on mobility models and mobility traces analysis for DVE;

• the implementation in TRACE of a new mobility model for MOBA called SYMPATHY.

The paper is structured as follows. Section 2 discusses the related work in the field of
mobility analysis and mobility models for DVEs. Section 3 describes TRACE from a design and
implementation viewpoint. Section 4 introduces SYMPATHY, a novel mobility model for DVEs.
Section 5 presents the evaluation of TRACE and the analysis and comparison of a number of mobility
traces. Finally, Section 6 concludes the paper.

2. RELATED WORK

When it comes the need for evaluating DVEs, the universal strategy is to check the DVE support
against the behavior of the avatars. Common ways to perform this operation are to exploit directly
the (network) load of a realistic DVE, or to derive the load for the DVE support using avatars
mobility traces. Suznjevic et al. [35] employ the former approach by proposing a network traffic
generator based on the action undertaken by the avatars in a large DVE. Simulating a realistic traffic
footprint from avatars’ behaviors, although useful to evaluate the network support, can skip relevant
issues related to other aspects of a DVE framework. Indeed, embedding mobility inside the DVE
test environment can help to evaluate and compare additional aspects of the support, such as state
consistency and distributed interest management. Generally, two approaches are followed when
exploiting mobility traces, i.e. real and synthetic traces. In case of real traces, the Game Trace
Archive [16] collects different real traces (14 to date) defining a common format so that these can
be easily used.

As outlined in the introduction, the motivation of using synthetic traces to complement real traces
for evaluating DVE have many advantages, such as reproducibility, testing particular scenarios and
comparing different solutions. Many approaches such as VON [19], Mopar [40], pSense [32] and

‡publicly available at: https://github.com/hpclab/trace

Copyright c© 20xx John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (20xx)
Prepared using cpeauth.cls DOI: 10.1002/cpe

4 CARLINI ET AL.

Gross et al. [15], have employed random based walker models or random walks between hotspots.
Those models are popular thanks to their simplicity: a random walk model only requires a few lines
of code and the community has generally accepted it as a model able to describe several simple
gaming scenarios.

Over the years, mobility models for virtual environment of increased complexity have been
defined thanks to the effort put in the task of analyzing mobility traces. Such analysis borrowed
tools from human mobility analysis and opened the road for the creation of more complex mobility
models. In [26] authors propose a statistical analysis of Second Life traces as well as a discussion on
the implication about the design of a DVE framework. The analysis is performed characterizing both
the mobility (Avatar speed, pause time etc..) and contact patterns (AOI sizes, etc..). We equipped
TRACE with a statistical analyzer for newly generated traces that provides such statistical features,
whose description is found in Section 3.3. In [27] and [28] authors provide an analysis of avatar
mobility for World of Warcraft. The analysis is focused on a particular area of the DVE where
avatars battle for the control of several objectives. The paper presents a modeling of the avatars’
behaviors in terms of hotspots, grouping and waypoints. In [20] authors advocate synthetic traces as
a necessary complement to real world traces for the evaluation of DVEs. They identify five features
characterizing avatar mobility, namely: distribution, pause time, distance, grouping and mobility
constraints. They compare several mobility models against such features. Instead, in [33], authors
characterize mobility models in DVE according to several features (including: flight lengths, pause
duration, area popularity, invisible boundary of human movements, personal area preferences) and
compare human traces with DVE traces. An interesting found is that personal preferences are more
pronounced in human traces.

Recently, mobility models try to capture many of the features described above. BlueBanana [25]
is inspired by the virtual world defined by Second Life. In this world, players gather around a set
of hotspots, which usually correspond to towns, or, in general, to points of interest of the virtual
world. Similar to the previous, a subset of the authors of this work defined a mobility model called
WOW [8]. WOW considers also hotspots where players are placed at the start of the game and spawn
after death. This model takes into account the team-oriented nature of the scenario, where moving
in group is encouraged by the game semantics. However, an avatar may decide to move alone by
itself, for instance to take the enemy by surprise. In [36] authors propose an enhancement of the
random way point mobility model to better fit the behavior of players in a first person shooting game
(i.e. Quake 2). Among the changes, they added different conditions for an avatar to be stationary, an
hotspot popularity and non-straight movement paths. In [34] authors develop a DVE mobility model
based on WOW and Second Life. Each avatar has a personalized path of movement among the set of
hotspots.

Also, using the Least Action Planning trip (LAPT) [24] the avatars select hotspots in close
proximity with higher probability. When an avatar visits an hotspot, it stays there for a time drawn
from a truncated-Pareto distribution and then moves to another hotspot. In RPGM [17], each player
belongs to a group and it moves by following the movements of its group, in order to model the
players habit to gather in teams. All the above models have been defined and used on specific
scenarios. However, we think it is important to unify how the models are generated and how they
are used.

Finally, Triebel et al. [37] study both the mobility of avatars and their interactions. They compare
the movement of avatars guided by mobility models versus movements generated by artificial
intelligence techniques. Although the latter provides better results, using simple mobility models
such as random way point and a random model based on hot spots, give close results, in particular
the one based on hot spots. Artificial intelligence movements take into account also the context of
the game, must be built specifically for each game and they base their movement on the mobility
models. For all these reasons, although specific solutions may get marginal improvements on the
validation, we think that the generality of the mobility models is an important way to validate games.

As demonstrated by the above works, many researchers provided practical analysis of mobility
traces. Unfortunately, often these analysis are limited to a specific evaluation of DVE and are not
shared and/or easily embeddable in other systems. Table I shows a list of selected popular and

Copyright c© 20xx John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (20xx)
Prepared using cpeauth.cls DOI: 10.1002/cpe

MODEL DRIVEN GENERATION OF MOBILITY TRACES FOR DVES WITH TRACE 5

Approach Year Mobility Strategy Public
Traces

VON [19] 2006 Avatars move randomly in the virtual world No
Donnybrook [5] 2008 Quake III simulated movements feed a

workload generator [6]
No

Badumna [23] 2010 Avatars move randomly in the virtual world No
Watchmen [39] 2013 Quake III real traces with proprietary trace-

based simulation environment
No

Kiwano [13] 2016 Movements inspired to BlueBanana [25] No
Table I. Mobility models and trace availability of popular and recent DVE approaches

recent works on DVEs and their approaches towards mobility. Such proposals can be classified
in two categories: (i) the embedding of traces in the system, (ii) the use of self made workload
generators feed with some traces. A common methodology based on the same mobility models is
clearly missing. Even recent approaches find more convenient to base their evaluation on custom
implementation, suggesting that there is no easy way to embed traces prepared by somebody else
in one’s own DVE. The ultimate aim of TRACE is to cope with such very issue by providing the
community a tool that goes in the direction of make as easier as possible to create, embed and share
mobility traces for DVE evaluation.

3. THE TRACE TOOL-KIT

TRACE is an open-source Java library to generate mobility traces in a two-dimensional space.
Although it has been originally conceived for the movements of avatars in a virtual environment, it
is flexible enough to be used in other contexts in which a number of entities move across a 2D area.
TRACE has been primarily designed with the idea of focusing on experimentation and evaluation
of distributed virtual environments, therefore most of the terminology used in this section refers to
such field. Avatars are the digital agents of the users in the virtual environment and are associated
with a position in the virtual world. They are the moving unit considered in TRACE. Other than
avatars, TRACE gives the possibility to specify static entities, namely passive objects and hotspots.
Passive objects are entities that have a state and can be interacted by avatars (e.g. doors), but unlike
avatars are not controlled by an human user. The hotspots are those areas of the virtual environment
corresponding to places of interest and where usually is present an higher density of passive and
active entities.

The main design characteristics of TRACE are the following:

Easy to use and extend. TRACE has been designed with the idea of being usable right off the
box. It comes with 7 mobility models already implemented (see Section 3.2 for more details), of
which 5 are specific for DVEs. Furthermore, TRACE provides an API to facilitate the creation of
personalized mobility models. All the models, including the additional ones, can be combined such
that each avatar may follows a different mobility model inside a single trace.

Reusable. TRACE provides a neat separation between the mobility models and the virtual area (i.e.
the map). This allows for a high degree of reusability, as the same models can be used in different
DVE scenarios. Also, TRACE unifies the output of the models to facilitate the adoption and testing
of different trace models.

Scalable and efficient. TRACE makes use of specific solutions to generate traces in a resources
friendly fashion. In order to speed up the computation, the generation of traces is done in parallel
when multi-core processors are available. Moreover it minimizes the memory footprint, by keeping
in memory only the current state of avatars. These aspect allow TRACE to scale to thousands of
avatars.

Copyright c© 20xx John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (20xx)
Prepared using cpeauth.cls DOI: 10.1002/cpe

6 CARLINI ET AL.

- Random Way Point
- Second Life
- Lapt
- RPGM
- Sympathy
- Combiner

Mobility Models

TRACE

iteration avatar, positionavatar, position

avatar, positionavatar, position

iteration avatar, positionavatar, position

avatar, positionavatar, position

In-Memory

time

of

 a
va

ta
rs

Avatar population

Y

X - World dimensions
- Hotspot placement
- Object placement

Map Description

iteration,avatar,position
0,1,34,54
0,2,43,55
0,3,44,11
……..

CSV Archive

Visualizer

Trace analysis

- AoI population
- Contact rate
- Contact duration
- Loneliness

Figure 1. TRACE overview: inputs and outputs

3.1. TRACE overview

Figure 1 shows a high level overview of TRACE, with a focus on its inputs and outputs. Table II
provides a list of the most relevant interfaces for the personalization of TRACE. All the inputs are
defined by means of a configuration file composed by a list of key-value tuples that contains all the
necessary information for the generation of the traces. Inputs can be grouped as map description
elements, mobility models and avatar population definitions.

The map description defines a rectangular area representing the virtual environment two-
dimensional space. It includes the position of hotspots and how to assign the position of the passive
objects. Note, both hotspots and passive objects can influence the movements of the avatars, but
they are not essential for the generation of the traces. By default, hotspots and passive objects
are uniformly randomly placed in the virtual world. Nevertheless, their placements is totally
configurable via the class AStaticPlacement, which can be extended to place static entities
according to a user-defined function.

The specification of the mobility model is the core part of the configuration. TRACE gives
the possibility to choose one of the available mobility models, create a new one, or any
combination of them. It is also possible to define personalized mobility models by implementing
the AMobilityModel interface. Additional details regarding mobility models are given in
Section 3.2. TRACE comes bundled with the following mobility models already implemented
and ready to be used (more mobility models are under development and will be added in the

Table II. Relevant interfaces and classes of TRACE.

AMobilityModel Abstract class to define mobility models. The core method is
move in which the movement of the generic avatar is defined
according to the iteration

AStaticPlacement Abstract class to define placement function for static entities,
such hotspots and passive objects. This class is called once
during the initialization of the virtual environment

IAvatarNumberFunction Interface to define the amount of avatars at any iteration. It is
called by the engine before the computation of each iteration to
adjust the avatar population

Copyright c© 20xx John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (20xx)
Prepared using cpeauth.cls DOI: 10.1002/cpe

MODEL DRIVEN GENERATION OF MOBILITY TRACES FOR DVES WITH TRACE 7

Name Movement of Avatar a at time t Hotspot Avatar DVE Original
RW a moves to a random direction with a constant speed.

RWP [3]
a moves toward a random point p in the map with
a constant speed. When a reaches p,
it starts moving to another random point p′.

LAPT [24] a moves toward a random hotpsot h. When a
reaches h, it starts moving to another hotspot h′. X X

BLUEBANANA [25]

a moves to a random point in the map. Points in
hotspots have a different probability to be reached.
a may be in three state: halt, moving, exploring.
a moves differently in the three states.

X X

RPGM [17]
a forms a group with other avatars having a leader l.
l choose a random point in the map. All the avatars,
in the group of l, moves to the same destination.

X X

SYMPATHY
In different moments a is attracted / repelled / stable
with respect to other avatars. Such attractions follow
the Coulomb laws, where a is an electrical charge.

X X X X

COMBINER
a may move according to one of the models
present in TRACE. The models and the subsets of the
avatars moving according to a model is configurable.

X

Table III. The mobility models built-in in TRACE with a brief description about how an avatar a moves
according to each model. Hotspot column identifies the models taking into consideration the hotspots, during
the movements. Avatar column identifies models considering other avatars when defining the movement of
a. DVE column identifies models originally conceived for DVEs, while original those presented in this work.

future): (i) Random Way Point (RWP) [3], (ii) Random Walk (RW), (iii) Least Action Planning
Trip (LAPT) [24], (iv) BLUEBANANA [25], (v) Reference Point Group Mobility (RPGM) [17],
(vi) SYMPATHY (see Section 4, (vii) COMBINER. Table III presents a brief description of the main
characteristics of the different models implemented in TRACE.

Avatar Population defines the amount of avatars in the virtual environment over time. The default
behavior is to have the same number of avatars for the entire trace. However, usually DVEs exhibit
a scaling up and down of the number of avatars due to the churn of the players. Due to this, it is
possible, by implementing the IAvatarNumberFunction interface, to control the number of
avatars present in the DVE at each iteration. Note, TRACE allows a fine grained control of the churn,
as it is possible to understand which avatars leave (or enter) the DVE. To make this possible, the
avatars’ identifiers are kept consistent across iterations.

When TRACE is launched it creates the mobility traces, iteration by iteration, completing each
avatar movement before dealing with the next iteration. The MapVirtualEnvironment object
stores in-memory all the information about movements of the avatar, hotspots and passive objects.
This class can be accessed in a read-only fashion to be used right away when the generation of the
traces is done contextually to the DVE evaluation. With the visualizer option activated, TRACE opens
a windows with the graphical representation of the avatars moving across the map. Although this
option may slow down the generation of the traces, it results very useful to tune the parameters of
a mobility model in order to obtain specific behavior from avatars. If the corresponding option is
active, a file containing all the information relative to the traces is saved on disk. Regardless of the
model used, TRACE builds a compressed archive consisting of the following files: (i) configuration,
which contains all the variables to replicate the scenario; (ii) avatars, which stores the movement
of the avatars; (iii) hotspots, which stores the position of the hotspots; (iv) objects, which stores
the position of the passive objects in the game; (v) bandwith, which provides statistics regarding the
number of passive objects in the Area Of Interest (AoI) of each avatar; (vi) aoiStatAVG, which stores
statistics regarding the AoI of avatars (see Section 3.3). In particular, the avatars file contains a
snapshot of the position of all the avatars in each time step in a CSV format containing the following
values: time step, unique avatar identifier, position of the avatar in the map as a couple (x, y). The
resulting file can be loaded at a later time to be used in different experimental evaluation.

Copyright c© 20xx John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (20xx)
Prepared using cpeauth.cls DOI: 10.1002/cpe

8 CARLINI ET AL.

Algorithm 1: AMobilityModel.move() implementation: BlueBanana
Input : map: a Map representing the virtual world

t: the current time
avatarList: the avatars position at time t− 1

Output: the position of the avatars at time t
1 List next = avatarList
2 forall Avatar a∈avatarList do
3 State nextState = markovChain.getNextState(a, markovChain.getState(a))
4 if nextState = E then
5 Point current = a.getPosition()
6 next(a) = current.explore()
7 else if nextState = T then
8 Point t = map.getRandomPoint()
9 Point current = a.getPosition()

10 next(a) = current.moveToward(t)
11 else
12 do nothing
13 end
14 end
15 return next

3.2. Integrating mobility models

The definition of a mobility model is one the core parts of TRACE, and can be done by extending
the AMobilityModel interface. A mobility model defines how a generic avatar moves within
the boundaries of the virtual environment, and this behavior is then replicated for all avatars in the
DVE. TRACE considers discrete time iterations, and at each iteration avatars move according to the
mobility model specified. In particular, during iteration t avatars move independently without the
knowledge of each other position at iteration t; however they can have a read-only access to the
positions of the avatars at iteration t− 1.

A common issue when generalizing the generation of traces is that any mobility model can
have its own configuration with specific parameter. TRACE resolves this issue by allowing a free
definition of the parameters inside the configuration file, leaving to the developer the responsibility
of matching the correct parameter within the implementation of the mobility model. For example,
the Blue Banana mobility model (whose implementation is described in detail in Section 3.2.1) is
heavily focused on hotspots and therefore define specific properties such as the probability for an
avatar of being inside the area of an hotspot.

In the remaining of this Section we provide an in-depth description of how it is possible to
implement a mobility model within TRACE. In particular, we report, in Section 3.2.1, how to
implement BLUEBANANA. Next, we describe two novel mobility models introduced for the first time
in this work, namely, SYMPATHY (Section 4) and COMBINER (Section 3.2.2). These are respectively
modeling Multiplayer Online Battle Arena games taking inspiration by the electrical attraction
between electrical charges according to the Coulomb law and the idea of combining multiple models
to provide different movements to different subsets of avatars.

3.2.1. Case Study: Blue Banana BLUEBANANA is a mobility model presented by Legtchenko et
al. [25], which simulates avatars movement in a commercial DVE, Second Life [2]. In their paper,
authors of BLUEBANANA provide details on the model characteristics and behaviours, but no actual
implementation. We have provided a preliminary implementation of this mobility model, as well as
a comparison with other mobility models in [8]. Here, we give a description of the model (taking
inspiration from [7]) and subsequently present the details of its implementation within TRACE.

In BLUEBANANA, avatars gather around a set of hotspots, which usually correspond to towns, or
in general to points of interest in the virtual environment of Second Life. Each hotspot is modelled
as a circular area characterized by a center and a radius. Traces generation goes through two phases:
initialization and running.

Copyright c© 20xx John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (20xx)
Prepared using cpeauth.cls DOI: 10.1002/cpe

MODEL DRIVEN GENERATION OF MOBILITY TRACES FOR DVES WITH TRACE 9

In the initialization phase, the area of the virtual environment is divided in hotspot areas and
outland areas. The percentage of the hotspot area is defined by phot and, consequently 1− phot
represents the outland area. The hotspots are placed randomly in the virtual environment. Their
radius is computed such that the total area covered by the hotspots is in accordance to phot. The
parameter pden defines the probability that an avatar would be initially placed in an hotspot, whereas
1− pden defines the probability for an avatar to be initially placed in outland. If the avatar is placed
in the outland, its position is chosen uniformly at random on the whole map. Otherwise, an hotspot
for the avatar is randomly selected. The position inside the hotspot is chosen by considering a Zipfian
distribution, so to ensure an higher density of avatars near the center of the hotspot.

The running phase moves the avatars across the virtual environment. The movements are driven
by a Markov chain, one for each avatar, whose states are the following:

• Halt(H): the avatar remains in place;

• Exploration(E): the avatar explores a specific area. If the avatar is moving inside an hotspot,
the new position is chosen according to a power law distribution. Otherwise, the new position
is chosen at random;

• Travelling(T): the avatar moves straight toward another point in the virtual environment. The
new point is chosen in accordance with pden.

Initially every avatar is in state H. At each step t, the model decides the new state according to
the probability of moving between states defined in the Markov chain. This mobility model exposes
a fair balance between the time spent by avatars in hotspots and outland.

To integrate such model in TRACE the following steps are required:

• configuration: it is required to load all the model specific configuration variables such as phot,
Hnum and pden;

• additional functionalities: since this model requires a Markov Chain to move the avatars
between different states, i.e. (H, E, T), we implemented an utility class to easily know, given
a state, which is the next state of the avatar;

• AMobilityModel: the core of the model is the implementation of the AMobilityModel interface.
Specifically, it is required to implement the move method where TRACE provides the position
of the avatars at time t− 1 as well as an object describing the virtual environment where is
possible to find the position and size of the hotspots and objects. The model must return the
position of the avatars at time t.

Algorithm 1 is an example of the move method’s definition for BLUEBANANA. For what concerns
the initialization phase, our implementation at time 0 follows the specification of the initialization
phase provided in the original paper. During the running phase, we generate a new position for each
avatar (Line 2) and the new state of the avatar according to its previous state (Line 3). Based on the
next state, we follow the specification of the model for the Travelling state (Line 7), Exploration
state (Line 4) and Halt state (Line 11). We collect all the new positions in a list and we return all the
new positions (Line 8).

Finally, to use the new implemented model, it is required to modify the configuration of TRACE,
giving a name to the new model, for instance ”BlueBanana”, and providing the package and class
name where it is implemented. Next, it is necessary to set, in the configuration, the property ”model
BlueBanana”, as well as all the configuration parameters required by the model. The execution will
use the selected model and generate the traces accordingly.

3.2.2. Combining mobility model togheter The last mobility model introduced is called Combiner.
The idea is that, commonly, avatars can move according to different behaviors, according to their
role in the DVE [36]. For example, let us consider a popular DVE like World of Warcraft, in which
coexist avatars that like to discover the virtual world, others willing to search other avatars for

Copyright c© 20xx John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (20xx)
Prepared using cpeauth.cls DOI: 10.1002/cpe

10 CARLINI ET AL.

combat and others just improving their skills. In such scenario the avatars move according to
different mobility models.

Combiner aims at modeling such scenario and permits to choose different mobility models from
the ones available in TRACE and the percentage of avatars moving according to each of the chosen
models. For instance, an example of configuration required by Combiner, is the following:

MODEL combiner
COMBINER MODELS randomwalk , l a p t , b l u e b a n a n a
COMBINER PROBABILITY 0 . 2 , 0 . 4 , 0 . 4

In this case, Combiner is configured setting the 20% of the avatars moving according to Random
Walk, the 40% with Lapt and the others (40%) with BLUEBANANA.

3.3. Trace statstics

TRACE provides tools to analyze traces in terms of the relationships of avatars among each other
by exploiting the concepts of AOIs and contact. Several of the measures taken by TRACE can be
found in researches related to ad-hoc networks, especially in terms of contacts among entities
[22]. In such context, contacts are important as they represent the moment when two entities
can communicate and exchange data. Rather differently, from a DVE perspective, contacts among
avatars are important, because two contacting avatars share the same spatial interest, and their
knowledge can be useful to each other. Therefore, the rate and the duration of contacts can impact
both on the design and the behavior of a DVE architecture. For example, in scenarios in which
avatars work as points of centralization for their AOI [11], the analysis of contacts and AOIs are
crucial measures. In TRACE, we gather four metrics about AOI and AOI contacts: population size,
loneliness, contacts rate and contacts duration.

We define Pa as the set of avatars in a’s AOI (excluding a) during an interval period T . AP is
defined as the average AOI population for all the avatar in the virtual environment. When |Pa| = 0
an avatar is said to be alone, with L being the set of alone avatars. In TRACE, we register an AOI
contact when an avatar enters in the AOI of another avatar. We represents with Ca the amount of
AOI contacts experienced by an avatar a during an interval period T . The average contact rate CRA
is the average number of new AOI contacts experienced by all avatars in the DVE during T , and it
is defined as following:

CRA =
1

N

N∑
n=1

Cn

T
(1)

Similarly, the average AOI contact duration CDA is the average of all the terminated contacts
of all avatars during T . A terminated contact is registered by TRACE when an avatar exits from the
AOI of another one. It is defined as following:

CDA =
1

N

N∑
n=1

∑
z∈Zn

z ×∆t

|Zn|
(2)

where Zn is the set of all terminated contacts of avatar n.
TRACE records the values for the above metrics during the generation of the traces. Such statistics,

are stored in the same archive with the mobility trace itself for later use and comparison. In Section
5.6 we compare such metrics resulting from different mobility models.

4. SYMPATHY: A NOVEL MOBILITY MODEL

Normally, mobility models consider how to perform avatar movements between the source and
destination points within the DVE, without considering how the presence of other avatars impact

Copyright c© 20xx John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (20xx)
Prepared using cpeauth.cls DOI: 10.1002/cpe

MODEL DRIVEN GENERATION OF MOBILITY TRACES FOR DVES WITH TRACE 11

on the movements. However, in many situation movements of avatars are driven by the presence of
other avatars, not only considering their position but also the social role they play in the DVE.

Here we briefly present SYMPATHY, a mobility model that, in addition to hotspots and positions
of avatars, also considers the relationship among avatars to simulate their environment. To this
end, SYMPATHY models the movements as the consequence of attraction (and repulsion) forces
among avatars, just like electric charges attract and repel in the real world. In order to define the
social role within the DVE, SYMPATHY targets a specific class of online games called Multiplayer
Online Battle Arena (MOBA), in which two factions battle to control an area of the DVE. In the
following, we provide a description of a general MOBA game and the mobility model to generate
traces accordingly.

4.0.1. Multiplayer Online Battle Arena Multiplayer Online Battle Arena (MOBA) is a genre of
online games in which players control a single character in one of two factions. The objective is to
destroy the opposing faction structures, usually following predetermined paths. Such genre recently
received a lot of popularity as e-sport, with many world championships organized periodically §.

A MOBA map is generally a squared area, in which avatars move mostly along predetermined
paths that go thorough faction structures, which, in turn, represent hotspots. Figure 2 shows the
map of two popular MOBA games Heroes of Newerth and League of Legends. Generally, in a
MOBA game, avatars start weak and acquire power and abilities over time, by completing various
objectives. This kind of advancements affects the strategy of the players with a consequence on the
relationship among players and their movement.

By the analysis of a number of Heroes of Newerth games, we have noticed that a game can be
divided in three main phases: the beginning, the skirmish and the final battle. These phases are
characterized on how the players of different faction related to each other:

• beginning: in this phase each player tries to acquire skills and power as fast as possible, usually
traveling alone or together with few components of its faction. In this phase the contact with
players of the opposite faction is avoided, and battle among players are fast.

• skirmish: in this phase avatars coordinates in small groups to defeat opponent’s structures at
the hotspots or battle against other group of players.

• final battle: in the last phase, the majority of the avatars of both the teams, aggregate in large
groups to achieve the final objective.

The behavior of the avatar changes during each phase, according to the relationship they have
with the other avatars and hotspots. In the following, we describe how these relationship, under the
form of attraction and repulsion, are the foundation of SYMPATHY.

4.0.2. The SYMPATHY model The core idea of SYMPATHY is to model the relationship among
avatars by making an (inverted) analogy between avatars and electrically charged particles. The
idea is to assign to a faction a positive charge, to the other faction a negative charge. In a neutral
condition, if two avatars have the same charge they attract themselves; if the charge is different
they repel themselves (note the analogy is inverted as with particle is exactly the opposite). Also,
the attraction (repulsion) works inversely proportional to the distance: a closer avatar would attract
more than a far one.

Given two electrical charge u and v, the electric vectorial force of u on v follows the equation
(according to the Coulomb’s law):

−→
F v,u = k

vu

r2
r̂ (3)

where k is the Coulomb’s constant, r2 is the distance between u and v and r̂ = r/|r| is the versor of
the positional vector. In order to consider the effect of all the avatars, we exploit the superposition

§https://en.wikipedia.org/wiki/2016_League_of_Legends_World_Championship

Copyright c© 20xx John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (20xx)
Prepared using cpeauth.cls DOI: 10.1002/cpe

12 CARLINI ET AL.

(a) Heroes Of Newerth. (b) League Of Legends.

Figure 2. Examples of MOBA games map, hotspots are represented as squares

principle, which state that for point charges the force acting on a sigle charge is the vector addition
of all the individual forces:

−→
F =

N∑
i=0

−→
F i (4)

where
−→
F i is the ith vector applied to the charge considered.

This model allows us to define a situation in which only the initial charge assignment affects
the movement of avatars. However, over time, the relationship between players can change. For
instance, a player can be attracted, instead than repelled, by a player of a different team for many
reasons (e.g. they are fighting). We extend the model (Equation 3) to capture such variable nature of
relationship among avatars over time. The improved model, which represents the force on v from u
at time t is the following:

−→
F u,v = δtu,v

QuQvαu,v

(r − rmin)2
r̂ (5)

The additional parameters are the following:

• the aggregation coefficient, which we define as 0 ≤ Qi ≤ C for the generic avatar i. It
represents the tendency of avatars to be in a group with others. In general, higher values of
Q represent a tendency to be and move in groups, whereas lower values represents a solitary
behavior In SYMPATHY we built proper values of Q by sampling players positions from a
number of Heroes of Newerth game sessions. We then created a graph of players for each
unit of time, and considered the distribution of the average clustering coefficient [38] of the
players. The value of a generic Q is then computed by sampling the distribution of clustering
coefficient and multiplied such value (which is between 0 and 1) by a constant C which
depends on the specific scenario considered (in our evaluation C = 10).

• the direction matrix, which we define as δ and represents the direction of the force vector
to apply. More in details, δtu,v defines the direction for avatars u and v expressed at time t. It
can have three values: to model attraction δtu,v = −1, such that u tends to move toward v; to
model repulsion δtu,v = 1, such that u tends to move opposite to the direction of v; to model
stability δtu,v = 0, such that the distance between u and v tends to be constant. This matrix
helps in modeling the three phases of the MOBA games described above. Note, that in general
the direction matrix can be asymmetric (i.e. δu,v! = δv,u) . This models the situations in which
an avatar a is chasing another avatar b (i.e. a is attracted by b and b has a repulsion effect to a).

Copyright c© 20xx John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (20xx)
Prepared using cpeauth.cls DOI: 10.1002/cpe

MODEL DRIVEN GENERATION OF MOBILITY TRACES FOR DVES WITH TRACE 13

Algorithm 2: AMobilityModel.moveThreadBased() Thread-Based Pseudo-code
Input : map: a Map representing the virtual world

t: the current time
avatarList: the avatars position at time t− 1
executor : ThreadBased executor

Output: the position of the avatars at time t
1 List next = avatarList
2 foreach Avatar a∈avatarList do
3 next(a) = executor.submit(AMobilityModel.move(t, map, a, avatarList))
4 end
5 foreach Avatar a∈avatarList do
6 waitCompletion a
7 end
8 return next

Also, the direction matrix can change during the simulation to model the situation in which
relationships between the entities change over time.

• the preference matrix that defines the personal preference among avatars, which we
define with αu,v. In general terms, the preference matrix models leader avatars of online
communities that are followed when moving in the area of the DVE. We construct the
preference matrix by the analysis of game sessions, and then we consider the average distance
di,j between every pairs of avatars to populate the α in such way:

αt
u,v =

0, if di,j > dmax

1, if di,j < dmin

1

di,j
, otherwise

(6)

In general, 0 represents no preference form u to v, while 1 represent a strong preference.

• the minimum radius of collision rmin. It prevents avatars to converge to the same point in the
DVE due to a strong attraction by an avatar. Basically, the idea is that when two avatars are
closer than rmin the attraction between them becomes repulsion.

In conclusion, each avatar u moves according to all the contributions of Equation 5 and the
different phases of the MOBA game described above can be modeled tuning the parameters involved
in the equation.

5. IMPLEMENTATION AND EXPERIMENTAL RESULTS

This section first gives a brief overview of the overall structure of TRACE then presents a set of
experimental results.

5.1. TRACE: structure of the tool

The assumption that each avatar moves independently, at time t, with respect to the other ones,
can be exploited to define a concurrent architecture of TRACE. This assumption perfectly fits with
the majority of the mobility models, in particular for all the models not requiring the positions of
the other avatars, i.e. the ones without the check-mark in the column Avatar of Table III. For these
models the support generates a thread for each avatar, which concurrently executes the movements
of the avatar, at time t. For the models requiring the positions of the other avatars, i.e. RPGM and
SYMPATHY, TRACE provides a read-only data structure containing the positions of the avatars at
time t− 1 (the avatarList in input of the function). With this solution, TRACE exploits concurrency
fo the generation of the traces for all the models of Table III.

Copyright c© 20xx John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (20xx)
Prepared using cpeauth.cls DOI: 10.1002/cpe

14 CARLINI ET AL.

 0

 2

 4

 6

 8

 10

 12

 100 200 400 800 1600

A
ve

ra
ge

 N
um

be
r

of
 A

va
ta

rs
 in

 A
O

I

Number of Avatars

RandomWayPoint
RandomWalk
BlueBanana

Lapt
Rpgm

Sympathy

(a) Average number of avatars in AOI

 0.1

 1

 10

 100

 5 10 20 40 80

A
ve

ra
ge

 N
um

be
r

of
 A

va
ta

rs
 in

 A
O

I

Number of Hotspot

Lapt 400 Avatar
Lapt 800 Avatar

BlueBanana 400 Avatar
BlueBanana 800 Avatar

(b) Average number of avatars in AOI with
different number of hotspots

Figure 3. Evaluation of Optimizations

Algorithm 2 presents a high-level description of the function implementing the avatars’ movement
in TRACE. Note that the algorithm exploits a ThreadBased executor, which executes the submitted
tasks. For each avatar, a task is created (Line 2), and the function move, which implements the
mobility logic of the model, is called. For instance, this logic may be that of BlueBanana, which has
been presented in Algorithm 2. Finally, the function waits for the completion of all the movements
(Line 5) and the new positions of all the avatars is returned.

The level of parallelism can be tuned through a configuration variable. TRACE creates an executor
service which handles all the threads submitted according to the configured concurrency level.

5.2. Experimental Results

We implemented TRACE in Java and we make the code publicly available ¶. For all the experiments,
we considered a virtual environment composed by a squared region with side having 1500 points.
Each avatar has a circular AoI, whose radius is 15 points. Each hotspot has a circular shape, whose
radius is 100 points. The simulations ran on a machine equipped with Java 7, 128 Gb of RAM, an
AMD Opteron(TM) Processor 6276 with 32 cores @1.4 Ghz. In the following, we present results
showing some properties of the models implemented in TRACE. In particular, the avatars’ crowding
in the virtual world (Section 5.3) and the estimated bandwidth consumption to transmit objects of the
virtual world (Section 5.4). We conclude our experiments with an evaluation of the computational
time to generate a mobility model and the scalability of TRACE (Section 5.5).

5.3. Evaluating the crowding generated

With the terms crowding we refer to the evaluation of the number of avatars present in each avatar’s
AoI. This metric assesses how much communication is required to keep updated the vision of the
avatars with respect to the other players in the game.

Figure 3a shows the average number of avatars in the AoI of each avatar for all the models
produced by TRACE. On the X axis is represented the number of avatars present in the virtual world,
on the Y axis the average number of avatars in a AOI. We generate for each model a trace having a
number of avatars in the range [100, 1600]. It is interesting to note that with RPGM we obtain similar
results in all the configurations. This result is expected because we configure RPGM in order to keep
the number of groups equals to 1/20 of the number of avatars. The two models based on random
movements are the ones having the less number of avatars in the AoI. Instead, LAPT is the model
having the larger increase of crowding as the number of avatars grows, because all the avatars move

¶https://github.com/hpclab/trace

Copyright c© 20xx John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (20xx)
Prepared using cpeauth.cls DOI: 10.1002/cpe

MODEL DRIVEN GENERATION OF MOBILITY TRACES FOR DVES WITH TRACE 15

 0

 100000

 200000

 300000

 400000

 500000

 600000

 125 1000 2000 4000

B
an

dw
ith

Number of Objects

RandomWayPoint
RandomWalk
BlueBanana

Lapt
Rpgm

Sympathy

(a) Object placement: uniformly at random

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 125 1000 2000 4000

B
an

dw
ith

Number of Objects

RandomWayPoint
RandomWalk
BlueBanana

Lapt
Rpgm

Sympathy

(b) Object placement: higher probability in
hotspots

Figure 4. Evaluation of Bandwidth consumption

only between hotspots. With BLUEBANANA this effect is mitigated because a percentage of the
avatars is free to move outside the hotspots. Interestingly, SYMPATHY is one of the models having
higher values. This model let the avatars to arrange in group, due to this such result is somehow
expected.

For what concerns LAPT and BLUEBANANA, the models that take in consideration the hotspots,
Figure 3b shows the impact of the number of hotspots using the same metric of the previous figure.
Note the log scale on the Y axis. When the number of hotspots is kept low, LAPT is, in both the
configurations, the model having a larger crowding factor. However, when the number of hotspots
increases, the two models behave similarly.

5.4. Evaluating the bandwidth to transmit objects

In this set of experiments, we evaluate the ability of TRACE to model the avatars and objects
placement. In particular, when an object enters the AoI of an avatar, a transmission of the object
to the avatar is required, resulting in a bandwidth consumption. We measure the total number of
objects transmitted when increasing the total number of objects in the virtual world. We test the
two methodologies to distribute the objects, respectively the uniformly at random in Figure 4a, and
higher probability in the hotspots in Figure 4b. For the uniformly at random placement, all the
models behave similarly and have a linear increase of the bandwidth with respect to the number of
objects. SYMPATHY is the model requiring more bandwidth in all the configurations. Avatars form
groups and explore the area all together, this may result in high bandwidth consumption with respect
to models like LAPT that moves always on pre-determined paths.

When the objects are more present in the hotspots area, Figure 4b, the two models, LAPT and
BLUEBANANA, as expected, require more bandwidth, because the avatars are more present in the
hotspots area. Also, according to SYMPATHY the avatars sometimes are visting hotspots to simulate
combat times. Due to this, although in less measure with respect the two previously descrbed model,
also SYMPATHY have high bandwidth requirements.

5.5. Evaluating the computational time and scalability

Finally, we test the computational time required by TRACE to generate the traces. Figure 5a depicts
the computational time when requesting a different number of avatars moving in the virtual world.
As expected, the time increases when increasing the number of avatars but it is acceptable also with
a large number of avatars, as well as 51 200 avatars. All the mobility models behaves similarly. Due
to this, we perform the scalability of TRACE only with the RW model (we confirm that with other
models the shape of the curve is identical). We are able to test our tool with a scenario having a
number of cores in the range [1, 32]. We obtain a good scalability of TRACE. For instance, with 8

Copyright c© 20xx John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (20xx)
Prepared using cpeauth.cls DOI: 10.1002/cpe

16 CARLINI ET AL.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 100 200 400 800 1600 3200 6400 12800 25600 51200

T
im

e
(s

)

Number of Avatars

RandomWayPoint
RandomWalk
BlueBanana

Lapt
Rpgm

(a) Computational time with different number of
avatars

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 4 8 12 16 20 24 28 32

T
im

e
(s

)

Number of Cores

RandomWalk

6.67x
12.21x 16.73x 20.73x

3.64x

6.67x

1.6x

(b) The scalability of TRACE

Figure 5. Evaluation of computational time

cores we obtain a speed-up of 6.67 to a maximum of 8 and with 12 cores a speed-up of 12.21 to a
maximum of 16.

5.6. Traces Comparison

The trace analysis capabilities of TRACE are useful when it comes to compare different mobility
models on a common ground. In this section we compare BLUEBANANA, LAPT, RPGM, SYMPATHY
in a common scenario, consisting of 100 avatars moving in a 300x300 virtual world with 4 hotspots
randomly placed. To perform the comparison, we used the metrics described in Section 3.3, and the
results are depicted in Figure 6. Each trace has its own specific behavior coming from the mobility
model considered, and it is detailed in the following.

BLUEBANANA. The contact rate and AoI population of BLUEBANANA starts at high values and
then converge to low values toward the end of the simulation. Rather, the contact duration and the
number of lone avatars behave differently, starting at low values and converging to high values,
20 and 40 respectively. This suggests that avatars start very clustered before expand to the whole
map. Toward convergence we can notice a relatively reduced mobility of the avatars, with small
very tight groups (possibly composed by just a single avatar) having few contacts with avatars from
other groups.

LAPT. It converges to medium values for contact rate (1 new avatar seen per unit of time) and
contact duration (around 6). It also keeps a generally large AoI population which is very variable
between 15 and 20 avatars during the whole simulation. Such data suggests a large group of
uncoordinated avatars that have crowded AoI, in which other avatars exit and enters at a high rate.
Also, the number of lone avatars is very small, suggesting that avatars have a tendency to visit the
same locations over and over with few variance.

RPGM. RPGM converges to very low contact rate values (<< 1) and keeps a low stable population
count (around 4) for the whole duration of the simulation. It has however high contact duration
values, suggesting the presence of coordinated small-sized groups that move in a compact way
around the map and do not meet each other frequently.

SYMPATHY. The reults of this model are very peculiar, and come directly from the definition of the
mobility model. At the start, in the beginning phase, it shows many small groups (or lone avatars)
having few interaction between each others. Then, during the skirmish phase, avatars starts to group
together, as showed by the increasing AoI population, contact rate and contact duration, and the
corresponding drop of lone avatars. In the third phase, final battle, there are large groups of avatars

Copyright c© 20xx John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (20xx)
Prepared using cpeauth.cls DOI: 10.1002/cpe

MODEL DRIVEN GENERATION OF MOBILITY TRACES FOR DVES WITH TRACE 17

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 20 40 60 80 100

av
g

co
nt

ac
t r

at
e

time

bb
lapt

rpgm
sym

(a) Average contact rate

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100

av
g

du
ra

tio
n

tim
e

time

bb
lapt

rpgm
sym

(b) Average contact duration

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100

av
g

po
pu

la
tio

n

time

bb
lapt

rpgm
sym

(c) Average population count

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100

av
g

lo
ne

lin
es

s

time

bb
lapt

rpgm
sym

(d) Average number of lone avatars

Figure 6. Evaluation of different traces

with coordinated movements, as it can be seen from the large population count and the drop of lone
avatars to basically zero.

5.7. An Application of TRACE

In this section we show how TRACE can be effectively used in an application for the evaluation
of the interest management in DVE. The interest management is the requirement that each client
machines has its view of the interested area of the virtual environment up-to-date.

We consider an application that measures how two community discovery mechanism improve the
area coverage [9]. Here, we show the applicability of TRACE in such scenario, for additional details
on such application please refer to the original paper.

The application compares the impact of two popular community discovery algorithm Group [4]
and Affinity Propagation [14] on the interest management. As a baseline, it is considered a basic
version that just employs a random peer sampling.

To measure this impact it is used a metric called area coverage. An area coverage of 1 means that
the considered avatar has its complete AoI up-to-date. The metric is averaged on all the avatars in
the DVE.

Figure 7a and 7b show the result with respectively the BLUEBANANA and RWP mobility models.
The results of the two models are different, and highlight interesting insight on the impact of
communities on the interest management. When considering BLUEBANANA, all the versions behave
similarly. When considering the RWP instead Affinity Propagation achieves the best results.

Such results highlight how TRACE can be an effective tool to easily provide mobility traces to
evaluate an application. In such scenario the developers of the application can inject freely different
mobility traces and study the differences when avatars move in the virtual world.

Copyright c© 20xx John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (20xx)
Prepared using cpeauth.cls DOI: 10.1002/cpe

18 CARLINI ET AL.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100 200 300 400 500 600 700 800 900 1000

a
v
e

ra
g

e
 a

re
a

 c
o

v
e

ra
g

e

time

AP
CYCLON
GROUP

(a) Average Area Coverage with BLUEBANANA

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100 200 300 400 500 600 700 800 900 1000

a
v
e

ra
g

e
 a

re
a

 c
o

v
e

ra
g

e

time

AP
GROUP

CYCLON

(b) Average Area Coverage with RWP

Figure 7. An application of TRACE: Evaluation of Interest Management in DVE

6. CONCLUSION

This paper provides a comprehensive description of the design and features of TRACE, an open
source tool for the generation of mobility traces. TRACE is aimed at researchers and developers that
look for a simple way to integrate mobility traces into their DVE solutions. The code of TRACE is
publicly available for testing purpose at https://github.com/hpclab/trace.

The main aim of TRACE is to allow researchers focusing on the development of their solution
rather than spend time to code and test custom mobility models and traces from scratch. To this end,
the development of TRACE has followed (and will follow) the core design principles: efficiency,
reusability and ease of use. In terms of efficiency, we exploit multi-core architectures to scale up
to thousands of avatars, while keeping the memory footprint as minimal as possible. Regarding
reusability, TRACE can manage both trace generation and analysis, as well as working as an helping
tool to conduct trace analysis, which is useful to compare mobility traces and evaluate their impact
on a DVE architecture. Finally, TRACE offers the possibility to implement a mobility model (also
by combining multiple models) and create personalized mobility traces with few lines of code by
extending the exposed API.

We think these principles are of paramount importance in order to exploit various traces when
evaluating solutions targeting DVE, and to ease how such traces are collected, generated, and
exploited. In conclusion, we believe TRACE to be an effective tool to facilitate the evaluation of
DVEs architectures and to easily implement mobility models.

ACKNOWLEDGEMENT

The authors would like to thank Iacopo Peri for his thoughtful and consistent work on SYMPATHY.

REFERENCES

1. Blizzard entertainment, world of warcraft website. https://worldofwarcraft.com. Accessed: 09 Apr
2017.

2. Second life official website. http://secondlife.com/. Accessed: 09 Apr 2017.
3. F. Bai and A. Helmy. A survey of mobility models. Wireless Adhoc Networks. University of Southern California,

USA, 206, 2004.
4. R. Baraglia, P. Dazzi, M. Mordacchini, L. Ricci, and L. Alessi. Group: A gossip based building community

protocol. In Smart Spaces and Next Generation Wired/Wireless Networking, pages 496–507. Springer, 2011.
5. A. Bharambe, J. R. Douceur, J. R. Lorch, T. Moscibroda, J. Pang, S. Seshan, and X. Zhuang. Donnybrook: enabling

large-scale, high-speed, peer-to-peer games. ACM SIGCOMM Computer Communication Review, 38(4):389–400,
2008.

6. A. R. Bharambe, J. Pang, and S. Seshan. Colyseus: A distributed architecture for online multiplayer games. In
NSDI, volume 6, pages 12–12, 2006.

Copyright c© 20xx John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (20xx)
Prepared using cpeauth.cls DOI: 10.1002/cpe

MODEL DRIVEN GENERATION OF MOBILITY TRACES FOR DVES WITH TRACE 19

7. E. Carlini. Combining Peer-to-Peer and Cloud Computing for Large Scale Online Games. PhD thesis, IMT Lucca,
December 2012. arXiv preprint arXiv:1510.08940.

8. E. Carlini, M. Coppola, and L. Ricci. Evaluating compass routing based aoi-cast by mogs mobility models. In
Proceedings of the 4th International ICST Conference on Simulation Tools and Techniques, pages 328–335. ICST
(Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), 2011.

9. E. Carlini, P. Dazzi, M. Mordacchini, A. Lulli, and L. Ricci. Community discovery for interest management in
dves: A case study. In European Conference on Parallel Processing, pages 273–285. Springer, 2015.

10. E. Carlini, A. Lulli, and L. Ricci. Trace: Generating traces from mobility models for distributed virtual
environments. In European Conference on Parallel Processing, pages 272–283. Springer, Cham, 2016.

11. E. Carlini, L. Ricci, and M. Coppola. Reducing server load in mmog via p2p gossip. In Proceedings of the 11th
Annual Workshop on Network and Systems Support for Games, page 11. IEEE Press, 2012.

12. E. Carlini, L. Ricci, and M. Coppola. Flexible load distribution for hybrid distributed virtual environments. Future
Generation Computer Systems, 29(6):1561–1572, 2013.

13. R. Diaconu and J. Keller. Kiwano: scaling virtual worlds. In Winter Simulation Conference (WSC), 2016, pages
1836–1847. IEEE, 2016.

14. B. J. Frey and D. Dueck. Clustering by passing messages between data points. science, 315(5814):972–976, 2007.
15. C. Gross, M. Lehn, C. Münker, A. Buchmann, and R. Steinmetz. Towards a comparative performance evaluation

of overlays for networked virtual environments. In Peer-to-Peer Computing (P2P), 2011 IEEE International
Conference on, pages 34–43. IEEE, 2011.

16. Y. Guo and A. Iosup. The game trace archive. In Proceedings of the 11th Annual Workshop on Network and
Systems Support for Games, page 4. IEEE Press, 2012.

17. X. Hong, M. Gerla, G. Pei, and C.-C. Chiang. A group mobility model for ad hoc wireless networks. In Proc. of
the 2nd ACM international workshop on Modeling, analysis and simulation of wireless and mobile systems, pages
53–60. ACM, 1999.

18. S.-Y. Hu. Spatial publish subscribe. In Proc. of IEEE Virtual Reality (IEEE VR) workshop, Massively Multiuser
Virtual Environment (MMVE09), 2009.

19. S.-Y. Hu, H.-F. Chen, and T.-H. Chen. Von: a scalable peer-to-peer network for virtual environments. Network,
IEEE, 20(4):22–31, 2006.

20. L. Itzel, F. Heger, G. Schiele, and C. Becker. The quest for meaningful mobility in massively multi-user virtual
environments. In Network and Systems Support for Games (NetGames), 2011 10th Annual Workshop on, pages
1–2. IEEE, 2011.

21. H. Kavalionak, E. Carlini, L. Ricci, A. Montresor, and M. Coppola. Integrating peer-to-peer and cloud computing
for massively multiuser online games. Peer-to-Peer Networking and Applications, 8(2):301–319, 2015.

22. A. Khelil, P. J. Marron, and K. Rothermel. Contact-based mobility metrics for delay-tolerant ad hoc networking. In
13th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems, pages 435–444. IEEE, 2005.

23. S. Kulkarni, S. Douglas, and D. Churchill. Badumna: A decentralised network engine for virtual environments.
Computer Networks, 54(12):1953–1967, 2010.

24. K. Lee, S. Hong, S. J. Kim, I. Rhee, and S. Chong. Slaw: A new mobility model for human walks. In INFOCOM
2009, IEEE, pages 855–863. IEEE, 2009.

25. S. Legtchenko, S. Monnet, and G. Thomas. Blue banana: resilience to avatar mobility in distributed mmogs. In
Dependable Systems and Networks (DSN), 2010 IEEE/IFIP International Conference on, pages 171–180. IEEE,
2010.

26. H. Liang, R. N. De Silva, W. T. Ooi, and M. Motani. Avatar mobility in user-created networked virtual worlds:
measurements, analysis, and implications. Multimedia Tools and Applications, 45(1-3):163–190, 2009.

27. J. L. Miller and J. Crowcroft. Avatar movement in world of warcraft battlegrounds. In Proceedings of the 8th
annual workshop on Network and systems support for games, page 1. IEEE Press, 2009.

28. J. L. Miller and J. Crowcroft. Group movement in world of warcraft battlegrounds. International Journal of
Advanced Media and Communication, 4(4):387–404, 2010.

29. V. Nae, R. Prodan, and T. Fahringer. Cost-efficient hosting and load balancing of massively multiplayer online
games. In Grid Computing (GRID), 2010 11th IEEE/ACM International Conference on, pages 9–16. IEEE, 2010.

30. L. Ricci and E. Carlini. Distributed virtual environments: From client server to cloud and p2p architectures. In
High Performance Computing and Simulation (HPCS), 2012 International Conference on, pages 8–17. IEEE, 2012.

31. L. Ricci, E. Carlini, L. Genovali, and M. Coppola. Aoi-cast by compass routing in delaunay based dve overlays. In
High Performance Computing and Simulation (HPCS), 2011 International Conference on, pages 135–142. IEEE,
2011.

32. A. Schmieg, M. Stieler, S. Jeckel, P. Kabus, B. Kemme, and A. Buchmann. psense-maintaining a dynamic localized
peer-to-peer structure for position based multicast in games. In Peer-to-Peer Computing, 2008. P2P’08. Eighth
International Conference on, pages 247–256. IEEE, 2008.

33. S. Shen, N. Brouwers, A. Iosup, and D. Epema. Characterization of human mobility in networked virtual
environments. In Proceedings of Network and Operating System Support on Digital Audio and Video Workshop,
page 13. ACM, 2014.

34. S. Shen and A. Iosup. Modeling avatar mobility of networked virtual environments. In Proceedings of International
Workshop on Massively Multiuser Virtual Environments, pages 1–6. ACM, 2014.

35. M. Suznjevic, I. Stupar, and M. Matijasevic. A model and software architecture for mmorpg traffic generation
based on player behavior. Multimedia systems, 19(3):231–253, 2013.

36. S. A. Tan, W. Lau, and A. Loh. Networked game mobility model for first-person-shooter games. In Proceedings
of 4th ACM SIGCOMM workshop on Network and system support for games, pages 1–9. ACM, 2005.

37. T. Triebel, M. Lehn, R. Rehner, B. Guthier, S. Kopf, and W. Effelsberg. Generation of synthetic workloads for
multiplayer online gaming benchmarks. In Proceedings of the 11th Annual Workshop on Network and Systems
Support for Games, page 5. IEEE Press, 2012.

Copyright c© 20xx John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (20xx)
Prepared using cpeauth.cls DOI: 10.1002/cpe

20 CARLINI ET AL.

38. D. J. Watts and S. H. Strogatz. Collective dynamics of small-worldnetworks. nature, 393(6684):440–442, 1998.
39. A. Yahyavi, K. Huguenin, J. Gascon-Samson, J. Kienzle, and B. Kemme. Watchmen: Scalable cheat-resistant

support for distributed multi-player online games. In Distributed Computing Systems (ICDCS), 2013 IEEE 33rd
International Conference on, pages 134–144. IEEE, 2013.

40. A. P. Yu and S. T. Vuong. Mopar: a mobile peer-to-peer overlay architecture for interest management of massively
multiplayer online games. In Proceedings of the international workshop on Network and operating systems support
for digital audio and video, pages 99–104. ACM, 2005.

Copyright c© 20xx John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (20xx)
Prepared using cpeauth.cls DOI: 10.1002/cpe

