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S U M M A R Y
We propose a statistical methodology to detect and quantify different seismicity phases on
the basis of variations in certain characteristic features of seismic phenomenon, taking as
examples two of the most studied aspects of seismicity: the occurrence rate and interevent
time. Our objective is to provide an overall, compact picture of the activity, given a sufficiently
long sequence of events, by identifying the flow of patterns that are singly described by well-
known physical models in limited time intervals.

We assume that the sequence of events recorded in a seismically active region represents
the set of an unknown number of consecutive phases, and that in each phase, the observations
are the realization of a different version of the same stochastic process, in our case the Poisson
or the Dirichlet process. The quantities to be estimated are the number of phases, the instants
in which the system passes from one phase to another and the model parameters. We have
formulated this problem in the framework of a multiple change-point problem. The inference
is made possible by exploiting recently developed computer-intensive methods based on the
stochastic simulation of Markov chains.

The data analysed are from the region of Kresna in southwestern Bulgaria. This area was
hit by two strong earthquakes in the last century, one of M S = 7.8 magnitude in 1904, and
another of M S = 6.7 magnitude in 1931.

Key words: Probability distributions; Seismic cycle; Earthquake dynamics; Statistical
seismology.

1 I N T RO D U C T I O N

Despite many technological advances, we still have only a filtered

image of the earthquake process. In fact, some key features cannot

be directly observed; we can only record the effects, such as the

frequency of events as well as their size and length. Analysis of the

temporal distribution of seismicity is one of the most promising ap-

proaches in efforts to understand the underlying physical process.

Here we cite just a few examples of studies in this direction. Evison &

Rhoades (1998, 1999) propose, on the basis of quantitative empirical

evidence, a qualitative physical process for the long-term seismoge-

nesis of major earthquakes in subduction zones such as Japan, New

Zealand and Greece. This process is constituted by three separate

stages: swarms, main shocks and aftershocks, which are related by

predictability. In other tectonic regimes, swarms are more appropri-

ately replaced by more protracted seismicity anomalies. In Evison &

Rhoades (2001), the causal relations among precursory seismicity,

main shocks and aftershocks are explained by a three-stage faulting

model comprised of crack formation, fracture and healing.

Zhuang (2000) has studied the earthquake sequence that occurred

off Cape Palliser, New Zealand, in the period of 1978–1996; a pre-

liminary exploratory analysis of the spatial-temporal distribution of

the data leads to subdivision of the entire time interval into four pe-

riods: P 1, early background seismicity; P 2, a relatively quiescent

period; P 3, main shocks and P 4, the aftershock sequence. To ex-

amine the apparent changes in the seismicity thus identified, some

statistical models (the simple Omori law, the double Omori law with

equal and different decay rates, the ETAS model, and their combi-

nations) have been fitted to the global data set, or to its subsets,

corresponding to the P · periods. The performance of these models

is measured by the residual analysis for point processes or Akaike’s

model selection criterion. Both the results of these procedures and

the estimated values of the model parameters agree with the pro-

posed partition of the sequence and suggest the hypothesis of four

seismicity phases: interseismic, pre-seismic, coseismic and post-

seismic. The four P · subperiods initially identified correspond to

these four phases in a seismic cycle.

A large number of studies in the literature combine the epidemic-

type models and residual analysis to detect anomalies in seismic ac-

tivity for the purpose of short-term earthquake prediction. Matsu’ura

(1986) and Ogata (1989, 2001) find relative quiescences in af-

tershock sequences before major aftershocks, while Ogata et al.
(1995, 1996) explore a statistical discrimination of foreshocks from

earthquakes of other cluster types such as swarms or main shock–

aftershocks sequences. Ogata (1992), analysing several data sets

from a variety of local and global seismic regions, distinguishes

three stages: ordinary seismicity; relative quiescence and recovery.

Wyss & Wiemer (2000) have examined spatial-temporal vari-

ations in the occurrence rate using the earthquake catalogue for

southern California for the period 1981.0–1999.7, which includes
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the Landers M 7.3 and Hector Mine M 7.1 earthquakes. They ob-

serve that the areas hit by these strong shocks had been in a state

of precursory quiescence for a few years before earthquake occur-

rence, suggesting that a highly unusual decrease of seismicity rate

without a nearby main shock, can be a precursor to a main shock

and may indicate that the affected volume is primed for rupture

(p. 1336, Wyss & Wiemer 2000). The same authors also point out

that the redistribution of stress due to the Landers earthquake acti-

vated volumes in a temporary stress shadow and, conversely, turned

off seismically active volumes, approximately displaying a pattern

predicted by the Coulomb model. Goltz (2001) exploits a method

based on eigenstructure (principal components) analysis to sepa-

rate the seismicity rate patterns into a background component and

components of change.

In their review, Zöller et al. (2007) seek an understanding of

the underlying mechanisms of the seismicity patterns observed by

adjusting numerical fault models to simulate the seismicity of real

fault regions. They focus in particular on the detection of phenomena

prior to larger earthquakes, which can be interpreted in terms of the

advance towards a critical point in which an earthquake is seen as a

phase transition.

We consider the observational data of the seismicity of a region

as a realization of an underlying unknown (hidden) sequence of

shifts among a finite number of possible states of the system states

that can be characterized by variations in some features. Once the

number and nature of these states have been identified together with

their timing in a specific period, we must find a dynamic model that

describes the fluctuation of the patterns. We can then predict which

state is going to become active in the near future and, conditioned

on this state, forecast the next earthquake. This perspective can be

formulated in the framework of hidden Markov models—a class of

models consisting of observations from different unknown states.

The distribution of a future observation depends on the state of

the system at that time, and the system moves from state to state

according to the transition matrix of a Markov process.

This paper addresses the first part of this research project, aimed at

identification and interpretation of phases based on variation of some

features of seismic phenomenon. We consider the seismicity of a

region as registered in the catalogue and propose a general statistical

procedure that can answer these questions: does the examination of a

significant feature indicate changes present in the seismicity pattern?

If so, how many phases can be identified, and when did such changes

occur? We formulate the issue in the general framework of a multiple

change-point problem and solve the inferential aspects by resorting

to advanced stochastic simulation methods, such as Markov chain

Monte Carlo methods and the reversible jump method in particular

(both methods are outlined in Appendix A). The procedure has

been applied to the earthquake catalogue from the Kresna region

of Bulgaria.

The paper is organised as follows. In Section 2, the tectonic struc-

ture of the region and the data used are described. In Section 3, we

propose two indicators for the seismic pattern of a region: the occur-

rence rate and the distribution of interevent time. We model the vari-

ations of the former with a mixture of Poisson processes and those

of the latter with a mixture of Dirichlet processes. We then express

these models as a change-point problem, where every change-point

marks the beginning of a different seismic pattern. The approach

based on the distribution of interevent times includes the case of

conditionally independent and identically distributed exponential

distributions, corresponding to the approach based on the constant

occurrence rate. In Section 4, we report the results obtained for each

of the two indicators, and associate stages of a seismic cycle with

the phases identified by the estimated change-points. In Section 5,

we apply some tools of the free software package ZMAP to estimate

seismicity rate changes to compare the potential of our methodology

with that of a standard one.

2 DATA A N A LY S I S

The choice of the data set for analysis is guided by the characteristics

of the seismic, tectonic and geological processes. The Balkan region

is characterized by destructive tectonic processes associated primar-

ily with the vertical movement of tectonic blocks. Over the centuries,

it has experienced strong earthquakes, although these are well doc-

umented only since 1900. In the last century, some of Europe’s

strongest events occurred in this area, in Pehcevo-Kresna (1904,

M S = 7.8) and Valandovo-Dojran (1931, M S = 6.7). The earth-

quakes anticipated in these zones will be catastrophic for the

entire Balkan region, including southwestern Bulgaria, Greece,

Macedonia and the former Yugoslavia, in part because of the struc-

tural weakness of the prevailing traditional urban and rural archi-

tecture (Milutinovic 1998).

On the basis of these considerations, we examine the area located

between latitudes 40.8◦N–42.4◦N and longitudes 22.0◦E–24.4◦E. It

includes the Pehcevo–Kresna and Valandovo–Dojran seismogenic

zones, which share seismotectonic properties (Simeonova et al.
2006; Tranos et al. 2006), and is comprised of southwestern Bulgaria

together with the bordering regions of Greece and the Republic of

Macedonia. The structure of this region is the result of differential

vertical motion in extensional environments, characterized mainly

by the Struma and Vardar lineaments tending NNW–SSE, and by

transversal fault zones striking SW–NE (van Eck & Stoyanov 1996;

Dineva et al. 1998). The most active seismic area is the Brezani

fault zone (Krupnik fault) crossing the Struma lineament; in 1904,

it suffered the strongest earthquakes recorded in this region. On the

morning of 1904 April 4, a shock of magnitude M S = 7.1 shook the

Kresna region at 10:02 (GMT), followed 23 min later by another,

stronger shock of magnitude M S = 7.8 (Dineva et al. 1998). The

size of these events is controversial (Shanov et al. 1999; Ambraseys

2001):a recent re-examination of the original seismograph records

and bulletin data has re-determined their parameters; in particular,

the magnitude estimates, M W = 6.8 and M S = 7.2, respectively, are

both lower than those provided previously, whereas the occurrence

times, T 0 = 10:02 and T 0 = 10:26, remain basically unchanged

(Dineva et al. 2002). Since these magnitudes all exceed the thresh-

old we indicate below, this is not a critical point for us. Moreover,

Tsapanos et al. (2002) have estimated the seismic potential of the

Kresna source as mmax7.89 ± 0.21.

Few catalogues of historical earthquakes exist for the region under

investigation; the data used in this study are taken from the recent

catalogue by Dineva et al. (1999) dating from 1952 to 1995 and

comprising 472 events of magnitudes ranging from 3.0 to 7.8, only

seven of which occurred before 1800. Observing the curve of the

cumulative number of events, one can note a change in slope and

estimate the time of greatest change, by eye, as occurring around

1866–1895. To get a more precise answer, we have dealt with the

completeness problem for different magnitude thresholds within

the framework of the change-point problem (Rotondi & Garavaglia

2002, summarized in Appendix B). The longest reliable part of the

catalogue is formed by n = 130 earthquakes of magnitude M S ≥
4.5 that have occurred after 1890. They are listed in Table 1.

Besides the pair of strong earthquakes in 1904, the catalogue

includes two other large shocks that hit the Valandovo area (SW of
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Table 1. Index, date, epicentre and size of earthquakes of M S ≥ 4.5 that occurred after 1890 in the Kresna region.

N Year Month Day Lat Long M S N Year Month Day Lat Long M S N Year Month Day Lat Long M S

1 1890 5 10 42.20 24.30 4.5 45 1904 8 1 42.00 23.20 5.0 89 1929 8 10 41.45 22.30 4.5

2 1890 6 7 42.40 23.70 4.6 46 1904 8 25 42.20 23.20 4.5 90 1931 3 7 41.35 22.35 6.0

3 1893 8 15 42.20 23.30 5.4 47 1904 10 29 41.90 23.20 5.0 91 1931 3 7 41.30 22.50 4.9

4 1894 11 25 42.20 23.00 4.9 48 1904 12 2 42.30 23.60 4.5 92 1931 3 8 41.30 22.50 6.7

5 1894 11 25 42.20 23.00 4.9 49 1904 12 11 42.00 23.40 4.5 93 1931 3 8 41.30 22.50 4.6

6 1894 11 26 42.20 23.20 5.3 50 1905 2 2 42.20 23.00 4.7 94 1931 7 23 42.00 23.40 4.9

7 1894 12 8 42.20 23.20 4.9 51 1905 7 9 42.00 24.20 5.1 95 1931 8 18 40.80 23.50 5.2

8 1894 12 19 42.40 23.30 5.2 52 1905 9 5 42.10 23.30 4.8 96 1932 4 23 41.30 22.70 5.0

9 1895 1 7 42.10 23.05 4.6 53 1905 10 8 41.80 23.10 6.4 97 1932 9 29 40.83 23.46 6.4

10 1895 1 7 42.10 23.30 5.1 54 1905 10 23 41.40 24.00 5.8 98 1932 11 1 41.70 23.60 4.5

11 1896 10 19 42.20 23.60 5.0 55 1905 11 18 41.00 23.00 5.6 99 1933 1 2 41.70 24.20 4.6

12 1899 9 21 42.30 23.60 4.5 56 1906 1 3 42.00 23.20 4.9 100 1933 5 8 41.50 24.20 4.9

13 1902 7 5 40.80 23.10 6.6 57 1906 4 23 41.80 23.20 4.5 101 1936 9 12 41.80 23.50 5.0

14 1903 11 25 42.10 23.20 5.5 58 1906 6 23 42.10 23.40 4.6 102 1937 9 8 41.60 24.10 4.8

15 1903 11 30 42.10 23.20 4.9 59 1906 10 8 41.80 23.10 6.4 103 1939 2 17 42.10 23.40 5.1

16 1903 12 1 42.10 23.40 4.6 60 1907 1 5 42.10 23.35 4.5 104 1944 3 14 41.70 23.90 5.1

17 1904 4 4 41.78 22.98 7.1 61 1907 8 17 41.30 22.50 4.9 105 1944 3 18 41.80 23.80 4.7

18 1904 4 4 41.80 23.10 5.1 62 1908 6 14 42.00 23.00 4.5 106 1952 6 27 40.80 23.50 4.7

19 1904 4 4 41.80 23.20 4.7 63 1909 3 10 42.00 23.00 4.6 107 1952 12 2 41.60 23.80 4.6

20 1904 4 4 42.10 23.40 5.2 64 1909 3 10 41.80 24.30 4.8 108 1952 12 17 41.80 23.50 4.5

21 1904 4 4 41.80 23.20 5.1 65 1909 4 1 42.00 24.00 4.5 109 1953 1 30 41.90 23.10 4.5

22 1904 4 4 41.80 23.10 7.8 66 1910 2 23 41.80 23.50 5.2 110 1953 9 4 41.90 23.10 4.7

23 1904 4 4 42.10 23.40 5.4 67 1910 3 22 41.20 22.00 5.0 111 1955 7 9 40.90 22.10 5.1

24 1904 4 4 42.10 23.30 4.8 68 1910 4 6 42.10 23.20 4.5 112 1955 7 10 40.90 22.10 4.5

25 1904 4 4 42.10 23.40 5.3 69 1911 3 6 41.00 22.00 4.5 113 1962 10 8 41.90 24.30 4.5

26 1904 4 4 42.20 23.10 4.5 70 1911 3 11 41.60 22.40 5.0 114 1962 10 8 42.00 24.20 4.9

27 1904 4 4 41.80 23.10 4.7 71 1911 3 11 42.00 23.00 5.5 115 1964 7 4 41.90 23.40 4.8

28 1904 4 4 42.10 23.40 4.8 72 1911 3 16 41.00 22.00 4.5 116 1965 3 19 41.40 22.90 4.5

29 1904 4 4 42.00 23.00 5.5 73 1912 11 7 41.90 24.00 4.8 117 1972 5 8 41.60 23.60 4.9

30 1904 4 4 42.00 23.20 4.5 74 1914 3 3 41.70 23.00 4.7 118 1972 7 8 41.60 23.60 4.7

31 1904 4 4 41.80 23.10 4.7 75 1914 3 22 41.70 23.00 4.7 119 1972 12 13 41.50 24.00 4.6

32 1904 4 4 42.20 24.40 4.5 76 1916 2 23 41.90 22.80 4.5 120 1974 6 21 41.28 22.70 4.7

33 1904 4 7 41.80 23.20 5.0 77 1916 4 10 41.70 22.00 4.8 121 1977 11 3 42.10 24.10 5.4

34 1904 4 9 42.10 23.40 4.5 78 1916 11 18 41.30 22.50 4.5 122 1978 6 21 40.81 23.06 5.0

35 1904 4 10 42.00 23.50 5.2 79 1917 4 4 42.00 23.00 5.0 123 1978 7 4 40.82 23.19 4.8

36 1904 4 13 42.40 22.80 5.5 80 1920 12 6 41.45 22.40 4.8 124 1978 12 31 41.99 23.22 4.6

37 1904 4 19 42.00 23.10 5.9 81 1921 5 4 42.00 22.80 5.0 125 1983 8 26 41.01 22.39 4.5

38 1904 4 21 42.10 23.20 4.5 82 1921 9 12 41.70 22.80 4.7 126 1985 9 28 41.50 22.31 4.9

39 1904 4 25 42.00 23.00 5.5 83 1925 1 7 42.00 22.40 4.7 127 1985 11 9 41.19 24.05 5.1

40 1904 5 6 42.30 23.60 4.8 84 1926 9 3 41.75 24.40 4.9 128 1985 11 9 41.23 24.02 5.4

41 1904 5 10 41.80 23.20 4.6 85 1927 7 23 41.70 22.70 4.9 129 1985 11 21 40.85 22.94 5.1

42 1904 5 12 41.80 23.20 5.1 86 1928 4 18 42.30 24.20 4.6 130 1990 12 21 40.94 22.42 5.9

43 1904 6 21 42.10 23.40 5.3 87 1928 4 27 42.40 24.40 4.9

44 1904 7 24 42.20 23.00 4.7 88 1929 7 3 41.50 22.00 4.5

the Krupnik earthquake) on 1931 March 7 and 8 with magnitudes

of 6.0 and 6.7, respectively.

Fig. 1 shows the different components of the data set, with mag-

nitudes and occurrence times in the top graph and the locations of

the epicentres in the bottom graph. The low quality of event location

in the catalogue makes many epicentres appear to coincide.

First of all, we perform an exploratory analysis of the data on the

basis of an agglomerative hierarchical clustering procedure for par-

titioning the n objects (earthquakes) into all possible values k of the

clusters (Kaufman & Rousseeuw 1990). The information is drawn

from four attributes: magnitude, latitude, longitude and occurrence

time. In this way, we arrange the measurements in a 4 × n matrix.

The algorithm starts with each object in a separate cluster and, in the

first step, joins the least dissimilar pair of objects. In each of the fol-

lowing steps, the dissimilarity between pairs of clusters is evaluated,

and the least dissimilar pair is merged; the algorithm proceeds until

all the objects are in a single group. The hierarchy provided by the

algorithm can be represented by a clustering tree. According to the

‘complete linkage’ method, the dissimilarity between two clusters,

R and Q, is defined as the ‘greatest’ dissimilarity between an object

i of R and an object j of Q, d(R, Q) = maxi∈R, j∈Qd(i , j), and, in

our case, d is the Manhattan distance d(i, j) = ∑4
k=1 |xi,k − x j,k |.

Between-cluster dissimilarity can be also defined in other ways, but

we have preferred the more cautious complete linkage method where

relatively similar objects will often remain in different clusters for a

long time, and only strongly similar objects are placed in the same

cluster.

In the initial clustering, we exploit all information (magnitude,

latitude, longitude and occurrence time). Fig. 2 reproduces the part

of the tree generated by the algorithm, where the clusters are well

separated. The two nodes of the final branches of the tree are iden-

tified, respectively, by the dates of the oldest and the most recent

earthquake belonging to the group. The same analysis is then re-

peated using only the temporal information (Fig. 3). The structure
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Figure 1. Occurrence times, magnitude (top) and locations (bottom) of M S ≥ 4.5 earthquakes in the Kresna region. Circle size indicates magnitude.
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1952 1965 1972 1990

Figure 2. Clustering tree produced by agglomerative hierarchical clustering applied to the entire data set. The dates at the final nodes identify the first and the

last earthquake in the cluster.
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Time clustering
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Figure 3. Clustering tree produced by agglomerative hierarchical clustering applied to the occurrence times. The dates at the final nodes identify the first and

the last earthquake in the cluster.

of the two trees is the same; only the nodes of the cluster including

the strongest earthquake change so that the cluster is smaller when

all the data are analysed than when only the temporal information is

considered. This may be due to the addition of temporal and spatial

clustering effects immediately after a strong event, but it does not,

at any rate, substantially affect the initial conclusions we can draw

regarding the evolution of the phenomenon. Once the region and the

magnitude threshold are appropriately chosen, the time appears to

be the most expressive variable with regard to the objective of the

present work. Consequently, we focus our efforts on examination

of the temporal data, neglecting the spatial information and using

the size of the events to choose the region and set the magnitude

threshold.

3 M U LT I P L E C H A N G E - P O I N T

P R O B L E M

Let us assume that it is possible to draw information on meaningful

facets of the seismic pattern in a region from a seismic catalogue.

Changes in these features signal changes in seismic activity. If we

were able to identify some cyclic trend in the sequence of these

changes, their identification could have considerable value in fore-

casting future events. Assuming that the occurrence rate and the time

between subsequent events are among the most significant aspects

of the seismic phenomenon, and given the sequence of earthquakes

recorded in a region with sizes larger than a set threshold, our aim

is to identify the number, location, and size of variations of the

above-mentioned features. Sections 3.1 and 3.2 present the theoret-

ical modelling of this problem for the occurrence rate and for the

interevent time respectively.

3.1 Changes in the occurrence rate: A mixture

of Poisson processes

Let t = (t 1, . . . , tn) be the occurrence times of the n earthquakes

recorded in the time interval T = [T1, T2) in the region under study,

and let
⋃k

j=0[s j , s j+1) be a partition of the interval T with s 0 =
T 1, s k+1 = T 2 and T 1 < s 1 < s 2 < · · · < sk < T 2. We assume

that the observed times are realizations of a Poisson process with

different rates hj in the (k + 1) disjoint subintervals [sj, s j+1), j =
0, . . . , k, which is a mixture of Poisson processes characterized by

the intensity step function

λ(t) =
k∑

j=0

h j δ[s j ,s j+1)(t) (1)

where δ (a,b)(t) is equal to 1 if and only if t ∈ (a, b). This means that

the seismic activity has changed in the interval T ; the number k,

the positions s = {sj}k
j=1 of the changes and the different rates h =

{hj}k
j=0 must be estimated. The log-likelihood has the form:

logL(t | h, s, k) =
k∑

j=0

[
n∑

i=1

δ[s j ,s j+1)(ti ) log h j

]

−
k∑

j=0

h j (s j+1 − s j ). (2)

In the Bayesian framework, to complete the definition of the model,

we must assign a priori distributions to the parameters, as an expres-

sion of our beliefs regarding the physical process. Little is known

about k, apart from the fact that, at the scale in which we are study-

ing the phenomenon, a seismicity phase is at least a few years long.

Hence, it is possible to assign an upper bound k max to the num-

ber of changes and to assume k is uniformly distributed on {0,

k max}. Having k, one has the model Mk with parameters s = (s 1,

s 2, . . . , sk) and h = (h0, h1, . . . , hk); the locations of the change-

points are drawn independently from the uniform distribution on T ,

and then ordered. As for the rates h0, h1, . . . , hk , we can obtain

information on their global features, on the variability range of their

average value, for instance, from examination of the seismic activ-

ity of tectonically similar regions. We assume, therefore, that they

follow the Gamma(a0, b) distribution and, to take into account that

uncertainty, we add a further stage to the model by assuming that b
follows the InvGamma(c0, d 0) distribution. For a more detailed pre-

sentation and an application of this model to some Italian regions,

see Rotondi (1999).

To estimate the parameters, we have to compute the posterior joint

distribution p (k, θk | t), with θk = (h, s, b), and its marginals. This,

however, requires the computational burden of evaluating multidi-

mensional integrals. A feasible alternative solution is offered by a

class of iterative methods, the so-called Markov chain Monte Carlo

(MCMC) methods, based on the simulation of a Markov chain of

which p (k, θk | t) is the equilibrium distribution. The generation

of such a chain presents two problems. First, generating different

k means jumping, inside the same procedure, between models Mk

of different dimensions. The reversible jump Markov chain sampler

proposed by Green (1995) enables us to solve this. Then, having

set k, that is, having assigned the model Mk , the parameter vec-

tor θk can be estimated through Gibbs sampling, one of the best

known MCMC algorithms. The reader is referred to Green (1995)

for details on the basic reversible jump methodology and to Rotondi

(2002) for a more efficient version of that method in the context of

the multiple change-point problem.

3.2 Changes in the probability distribution of interevent

time: a mixture of Dirichlet processes

Let us denote by (t 1, t 2, . . . , t n+1) the vector of the occurrence times,

and focus on the sequence of interevent times (y1, . . . , yn), where

yi = t i+1 − ti, i = 1, . . . , n, which we suppose to be stochastically
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independent. Hence, the interevent times follow a renewal process,

and we assume that the probability distribution of these variables

changes when the seismicity phase changes. In particular, we denote

by rj the index of the first interevent time yr j of the jth phase, with

j = 1, . . . , k, implying that tr j is the date of the last event of the ( j −
1)th phase, and tr j +1 is that of the first of the jth phase. Summarizing,

we denote by r = (r 1, . . . , rk) the locations of the k change-points,

where rj ∈ {2, . . . , n}, whereas the interevent times yr j , . . . , yr j+1−1

follow the same probability distribution Fj, j = 0, . . . , k, with

r 0 = 1 and r k+1 = n + 1. Formally, this is expressed by the joint

distribution

Pr (Y1 ≤ y1, . . . , Yn ≤ yn | r, k) =
k∏

j=0

r j+1−1∏
i=r j

Fj (yi ). (3)

Many parametric distributions have been proposed in the literature

to model the time between consecutive earthquakes (Utsu 1984;

Wang & Kuo 1998), but the problem has not been altogether solved;

therefore, it is clear that any probability distribution we were to

choose for the interevent times would leave out some aspects of

the phenomenon. Consequently, we have decided to consider Fj, for

each j = 0, . . . , k, as a random distribution that follows a Dirichlet

process with parameter MG (· ; θ j ), where M is a constant, and G
is a distribution function over (0, ∞) with unknown parameter θ j .

A Dirichlet process over (0, ∞) is a multivariate distribution whose

domain is a set of probability distributions F on (0, ∞) (Ferguson

1973); that is, it is a powerful tool for assigning the probability to the

unit vectors [F(B 1), . . . , F(Bm)], given any measurable partition

{B1, . . . , Bm} of the support (0, ∞) of F. The density function of a

Dirichlet distribution is

f (x1, . . . , xm) = �(ν1 + . . . + νm)

�(ν1) . . . �(νm)
xν1−1

1 . . . xνm−1
m ,

where xi ≥ 0,
∑m

i=1 xi = 1 and the parameters ν i , i = 1, . . . , m, are

positive; in our case, xi = Fj(Bi) and ν i = MG(Bi; θ j ), i = 1, . . . ,

m, with G(Bi; θ j ) being the probability assigned by the distribution

G(· ;θ j ) to the set Bi.

As the distribution G(·) is the a priori expectation of F, we have

set it equal to a generalized gamma distribution with density func-

tion:

g(y; η, ξ, ρ) = η ξρ yρη−1eξ yη

�(ρ)
, (4)

where θ j = (η j , ξ j , ρ j ), j = 0, . . . , k. This distribution was chosen

because it includes the most used distributions for the recurrence

time:exponential (η = 1, ρ = 1), gamma (η = 1), Weibull (ρ =
1), and asympotically lognormal (as ρ → ∞). The literature tells

us that MLE numerical methods often fail to converge unless the

sample size is very large; MCMC methods for Bayesian estimation,

on the contrary, do not seem to suffer from this problem.

A fundamental property of the Dirichlet process is that the con-

ditional distribution of, let us say, Fj, given the sample y, is still a

Dirichlet process with parameters that are easily updated:

(Fj | θ j , r j , r j+1, y) ∼ D

⎧⎨⎩MG(· ; θ j ) +
r j+1−1∑

i=r j

δyi (·)
⎫⎬⎭ , (5)

where δ y(·) is the measure that concentrates mass 1 at point y
(Ferguson 1973).

We now complete the model by assigning the prior distributions

of the remaining parameters. Given k, the vector r is chosen at ran-

dom in the set of all the possible combinations of k elements taken

into {2, . . . , n}; as in the previous case, k is uniformly distributed on

{0, k max} with k max = n − 1, and the parameters of the generalized

gamma distribution are independently distributed:η j ∼ Gamma(g,

τ ), ξ j ∼ Gamma(a, β) and ρ j ∼ Exp(b), ∀ j = 0, . . . , k, with

ω = (β, τ ) as random variables. At the last level of the hierarchical

model, we have β ∼ Gamma(c, d) and τ ∼ Gamma(h, f ). The

letters g, a, b, c, d, h and f denote fixed parameters of the priors,

called hyperparameters. Considering the parameters θ,ω as random

variables, each distribution F is distributed as a mixture of Dirichlet

processes. The model is described in greater detail in Pievatolo &

Rotondi (2000), where a method is proposed to assign the hyperpa-

rameters of the priors on the parameters of the generalized gamma

distribution.

A basic theorem of Antoniak (1974) characterizes the distribution

of a sample from a mixture of Dirichlet processes, enabling us to

express the likelihood of sample y as

L(k, r,θ; y) =
k∏

j=0

Mr j+1−r j

M [r j+1−r j ]

r j+1−1∏
i=r j

g(yi ; η j , ξ j , ρ j ), (6)

where M [m] = M (M + 1) . . . (M + m − 1).

Summarizing, the posterior joint distribution is given by:

π (k, r ,θ,ω) ∝ L(k, r ,θ; y) π (k) π (r | k) π (θ | k,ω) π (ω) (7)

with π (ω) = π (β) π (τ ). Like the mixture of Poisson processes,

the MCMC algorithm for sampling from this posterior joint distri-

bution is the combination of the reversible jump MCMC method

and Gibbs sampling (see Appendix A). For a full explanation of its

implementation, see Pievatolo & Rotondi (2000).

4 R E S U LT S A N D I N T E R P R E TAT I O N

4.1 Results for variations in rate

The algorithm implementing the MCMC method for estimation was

run for ν = 400 000 iterations, obtaining the sequence of sampled

vectors (s(1), h(1), β (1), k(1)), (s(2), h(2), β (2), k(2)), . . . , (s(ν), h(ν),

β (ν), k(ν)). One of the conditions used to ensure convergence of the

chain to the equilibrium distribution requires that its initial vector

x(0) = (s(0), h(0), β (0), k(0)) be drawn from that distribution, or as in

our case, from the posterior joint distribution π (x | t). Of course,

this is not easily done, but the problem is usually dealt with by

discarding the first b iterations, generally 10 per cent of ν (burn-in
period), so that the next term in the chain can be assumed to have

a distribution close to π (x | t). From the whole chain, we obtain

the pointwise estimate of the conditional intensity function of the

generalized Poisson process described in Section 3.1, or in other

words, the posterior mean rate of occurrence:

λ̃(t) = 1/ν

ν∑
l=1

kmax∑
j=0

h(l)
j δ

[s
(l)
j ,s

(l)
j+1)

(t). (8)

This rate is shown in Fig. 4, together with the 5 and 95 per cent

sampled quantiles at any time t; alternately higher and lower levels

of seismic activity are clearly recognizable in the curve.

Using the sequence of values {k(l)}ν
l=b+1, we estimate the proba-

bility function π (k | t). The result is quite sharp, with 59 per cent of

the probability concentrated on the values k = 4, 5: precisely π (k =
4 | t) = 0.333 and π (k = 5 | t) = 0.257. Hence, the posterior mode

is k̂ = 4, while the posterior mean is k̃ = 4.79. According to

these results, M 4 and M 5 are the models that best describe the phe-

nomenon. This means that the seismic activity could present four

or five change-points and, consequently, five or six different phases.

We examine both possibilities, estimating the posterior density func-

tions π(sj | k), j = 1, . . . , k, of the positions of the change-points and
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Figure 4. Ergodic average of the conditional intensity function (solid line), sampled 5 and 95 per cent quantiles (dotted lines) and cumulative counting process

(dashed line). The solid squares denote the estimated positions of the change-points s 1, . . . , s 5 on the cumulative curve.
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Figure 5. Posterior estimates of the density functions π (sj | k), j = 1, . . . , k, of the positions of the change-points conditional on k = 5; the arrows indicate

the value at the mode of each density function, that is at the estimated position of a change-point.

the posterior density functions π (hj | k), j = 0, . . . , k, of the rates

in the different phases, given both k = 4 and k = 5. The posterior

densities of the location of the change-points when k = 5 are shown

in Fig. 5, and in Fig. 6 when k = 4. Their piecewise exponential

shape suggests that it is generally appropriate to adopt the posterior

mode as an estimator of s 1, . . . , sk , since the posterior mean may

be located at a point of very low probability.

In Figs 5 and 6, the arrows indicate the value of the mode of every

density, that is, of the estimated position of each change-point. The

posterior densities of the rates of segments of the step function (1)

are shown in Fig. 7 for k = 5 and in Fig. 8 for k = 4.

The strong multimodality of the posterior densities π (h1 | k = 5)

and π (h4 | k = 5) matches that of the densities π (s 1 | k = 5) and

π (s 4 | k = 5); this issue, which arises when the variables are highly
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Figure 8. Posterior estimates of the density functions π (hj | k), j = 0, . . . , k, of the rates conditional on k = 4 change-points.

Table 2. Estimates of the rates and of the locations of the change-points for

the models M 4 and M 5 in the analysis of variations in the occurrence rate.

k = 5 h̃0 h̃1 h̃2 h̃3 h̃4 h̃5

1.26 37.67 6.46 2.04 2.32 0.59

ŝ1 ŝ2 ŝ3 ŝ4 ŝ5

1903.5 1905. 1911.5 1931. 1933.5

k = 4 h̃0 h̃1 h̃2 h̃3 h̃4

1.23 38.16 4.63 1.66 0.54

ŝ1 ŝ2 ŝ3 ŝ4

1903.5 1905. 1906.5 1933.5

correlated, requires careful use of the MCMC output in computing

expectations. Table 2 reports the estimates of the posterior means

h̃ j , j = 0, . . . , k, and of the modes ŝ j , j = 1, . . . , k, for k =
4 and k = 5. As we have adopted a step equal to 0.5 yr for the

pointwise estimate of the densities π (s ·) and π (h ·), the positions of

the change-points are approximated with an error of less than half

a year.

Comparing the results for M 5 and M 4, we see that the first two and

the last change-points coincide, and the rates of the first two and the

last phases are also very similar. In both models, the second phase

(1903.5–1905) covers the pair of strong earthquakes in 1904; this

interval shows an exceptional peak of occurrences, which one would

expect to be followed by a period of frequent secondary shocks. In

fact, in the period from 1904 to 1906, in addition to the two shocks

of magnitude 7.1 and 7.8, there was one of M S = 5.9 on 1904 April

19, and two of M S = 6.4 on 1905 October 8 and on 1906 October

8. According to the formula—max (100, 10 0.5 M−1) in days—for

the time span after a main shock of magnitude M given in Ogata

et al. (1996), the combination of the triggering effect due to these

large events should be felt longer than 1907.2. This agrees more

closely with the position of the third change-point, 1911.5, in M 5.

The two remaining change-points of this model, 1931 and 1933.5,

bound the fifth phase, which is characterized by a higher rate than

the adjacent phases, including, as it does, two strong earthquakes

in 1931, the shock of magnitude M S = 6.4 of 1932 September

29, and the events triggered by these. Moreover, observing Fig. 4,

we see that the estimated rates for model M 5 change consistently

with the jumps of the estimated conditional intensity function of

the generalized Poisson process. In light of these considerations, we

conclude that the model M 5 better describes the seismic pattern of

the Kresna region.

In this study, we have assigned the following values to the hy-

perparameters: a0 = 2; c0 = 3 and, d 0 = 0.5. For the criterion of

choice, see Rotondi (2002).

4.2 Results for variations in the interevent time

distribution

The MCMC algorithm provides samples from the posterior distribu-

tion of (k, r 1, . . . , rk , θ0, . . . , θk | t), which we can use to estimate the

probability that a given interevent time, let us say for example, the

ith yi is the first of a new phase, by taking the observed relative fre-

quency of the event {rj = i , ∀ j} in the simulated sequence. Assum-

ing a fixed k, we calculate this frequency by
∑k

j=1 I (r j = i) to obtain

the estimate of the probability π (i | k, t) that one of the k changes

occurred at ti. Marginalizing this distribution with respect to k, that

is, varying k, we estimate π (i |t) through
∑kmax

k=1

∑k
j=1 I (r j = i).

As in the rate-variation approach, we may first consider π (k | t),
whose mode is k̂ = 8 with π (k = 8 | t) = 0.130, and then exam-

ine π (i | t, k = 8) as i varies in {2, . . . , n} (Fig. 9), in search of

candidate positions for change-points. The eight highest values of

π (i | t, k = 8) correspond to i = 10, 14, 17, 32, 63, 72, 90 and 93;

the first interevent time of each phase, yi = t i+1-ti, starts, therefore,

with the earthquake that occurred at the date: t 10 = 1895/01/07,

t 14 = 1903/11/25, t 17 = 1904/04/04, t 32 = 1904/04/04,
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Figure 9. Cumulative number of earthquakes. Bars show the posterior probabilities that a change has occurred at ti, i = 2, . . . , n, for number of change-points

k = 8.

t 63 = 1909/03/10, t 72 = 1911/03/16, t 90 = 1931/03/07 and

t 93 = 1931/03/08. We note that less than 4 hr separate the shock

of M S = 7.1 at t17 from that at t32, and the quakes in 1931 March

were little over a day apart.

In this study, we have assigned to the parameters of the prior

distributions the following values: a0 = 3, b0 = 1, c0 = 18, d 0 =
11, g0 = 1.25, h0 = 11, f 0 = 8 and M = 260; for the criterion of

choice, we refer to Pievatolo & Rotondi (2000).

We observe the following regarding these initial results.

(1) Intervals between change-points are sometimes so short that

they cannot be plausibly held to possess the physical significance of

seismicity phases as defined in the introduction. This happens, as we

shall also see, in correspondence to the peak of activity immediately

after a strong earthquake. In fact, the times between consecutive

aftershocks could be better modelled as self-exciting rather than as

renewal processes because, in general, they are very short at the

beginning of the sequence and lengthen as the time after the main

shock increases. However, we hold that even so, the same stochastic

process can appropriately describe all the phases when, as in our

case, the objective is a compact summary of the seismic activity.

Therefore, although we maintain the subdivision produced by the

algorithm, we do not interpret these time intervals as seismicity

phases.

(2) It is possible that the positions of the k change-points with the

highest marginal posterior probability π (i | t) are never generated in

the same iteration by the simulation algorithm. This can be checked

by memorizing the vector of indices rj, j = 1, . . . , k, which identifies

the positions of the change-points in each iteration. Given k, the total

number of these vectors is ( n−1

k ), the number of combinations of

n − 1 elements of class k, which, for n = 130 and k = 8, is of the

order of 1012. Since the number of possible cases is so large, the

frequencies of observed vectors of indices will probably be small

and will not differ significantly from one another. Consequently, a

clear-cut choice of the best positions for the change-points cannot

be made on the basis of these frequencies.

An alternative strategy is to examine the plot in Fig. 10, indicat-

ing, at each ti, the probability π (i | t) that it is a change-point, and

estimating as positions of the change-points the ti’s associated with

the values π (i | t) exceeding a given threshold. We must choose be-

tween two opposite random events: ti is either a change-point, or

it is not. The Bayes factor can be a criterion for deciding which of

these two alternatives is more supported by the data. It is given by

the ratio of the posterior probabilities of the two options divided by

the ratio of their prior probabilities:

B F = π̂ (i | t)

1 − π̂ (i | t)
/

n

n − 2
.

Jeffreys (1961) has proposed a scale to assess the significance of the

Bayes factor according to which BF > 0.316 indicates slight evi-

dence against the first alternative, ti location of a change-point. As

this inequality corresponds to π̂ (i | t) > 0.243, we adopt this value

as the threshold and obtain the following dates: t 10 = 1895/01/07,

t 14 = 1903/11/25, t 17 = 1904/04/04, t 32 = 1904/04/04, t 63

= 1909/03/10, t 72 = 1911/03/16, t 90 = 1931/03/07, t 93 =
1931/03/08 and t 100 = 1933/05/08, corresponding to the verti-

cal lines in Fig. 10 that top the other ones.

We have k = 9 ti, which identify ten intervals. By roughly estimat-

ing the stress release as a function of magnitude S ∝ 10 0.75 MS (Vere-

Jones 1978), and the seismicity rate of each interval [tr j , tr j+1
), j =

0, . . . , 9, we observe the following about the seismicity in these

intervals.

[t17, t32) and [t90, t93): They cover about 1 d and are characterized

by an extremely high stress release, four to five orders higher than

that in the other intervals; they are, therefore, ‘peaks of activity’,

globally related to the two strongest crises in the sequence, which,

for their length, are not considered phases.

[t10, t14) and [t14, t17): They precede the shock of M S = 7.8 and

are characterized by a general increase in activity: in the former

interval, the average stress release per event increases whereas, in

the latter, the seismicity rate and the stress release rate increase. In

brief, we could say that there are more events in the latter interval,
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Figure 10. Cumulative number of earthquakes. Bars show the posterior probabilities that a change has occurred at ti, i = 2, . . . , n, not conditional on the

number k of change-points.

but they are stronger in the former. We consider these intervals

components of a single ‘foreshock phase’ with different features.

[t32, t63) and [t63, t72): They follow the shock of M S = 7.8 in 1904

and, contrary to the above-mentioned intervals, are characterized by

a growing decrease in the activity, which agrees with the lengthen-

ing of the interevent times that characterize self-exciting processes,

more suitable to fit the aftershock activity. Therefore, we associate

these two intervals with the monotonic trend of the same ‘aftershock

phase’.

[t93, t100): It follows the earthquake of M S = 6.7 in 1931. In

agreement with the Ogata et al. formula (1996) for the time span

after a main shock, the combination of the triggering effect due to

the quakes of 1931/03/07 (M S = 6.0), 1931/03/08 (M S = 6.7) and

1932/09/29 (M S = 6.4) is felt up to the first months of 1933. We

consider this interval another ‘aftershock phase’.

[t1, t10), [t72, t90), [t100, t130): Moving t 1 back to 1874/05/05, the

date of the last event of the incomplete part of the catalogue, we

find very similar values, the lowest in the sequence, for the stress

release rates and the seismicity rates in these three intervals; hence,

we consider them ‘background phases’.

The final subdivision into seismicity phases could then be as

follows: t 10 = 1895/01/07, t 14 = 1903/11/25, t 17 = 1904/04/04

(t 32 = 1904/04/04), t 63 = 1909/03/10, t 72 = 1911/03/16, t 90 =
1931/03/07 (t 93 = 1931/03/08) and t 100 = 1933/05/08. The times

in parentheses are considered the beginning of the next phases.

These results do not contradict those given in Section 4.1. On the

contrary, they provide a clearer and more detailed description of the

activity. For instance, the increase in seismicity preceding the very

strong 1904 earthquake is signalled first by the increase in the stress

release and then, by the increase in the number of events, whereas

the aftershock sequence, from 1904 to 1911, is divided into two

segments with a decreasing rate.

Having fixed the number and the position of the change-points,

we estimate pointwise the distribution functions of the interevent

time in each of the eight phases we have identified. By exploiting

the simulated Markov chains for the parameters θ i = (η i , ξ i , ρ i ), we

evaluate the a posteriori expected value of Fi through the following

relationship deduced from (5):

E {Fi (·) | θi, ri , ri+1, y} = M G(·; θi) + ∑ri+1−1

j=ri
δy j (·)

M + ri+1 − ri
, (9)

where G is the generalized gamma cumulative distribution and

δ y(t) = 1 when t = y. Fig. 11 shows these estimates (solid line)

with the box plots of the cumulative probability at a suitable grid

of points as measures of the estimate uncertainty. The dashed lines

represent the plug-in estimates of the generalized gamma distribu-

tion obtained by substituting for the parameters η, ξ and ρ, their

posterior means given by the ergodic mean of the corresponding

Markov chains. In the same way, Fig. 12 shows the plug-in esti-

mates of the generalized gamma density functions (solid line) and

of the corresponding hazard functions (dashed line) in the eight

phases illustrated in this section.

The curves in Fig. 12 are further results of our analysis. We remind

the reader that we are interested in their trend on a finite timescale

of the same order as the corresponding phase. For instance, Phase 2

lasts only 4 months whereas the curves for density and hazard cover

10 yr. From this prospective, we may observe that: Phase 1, 8 yr

long, has a clearly increasing hazard and unimodal density function

that differs from all the others. Phase 5, 20 yr long, shows almost

constant hazard as expected in a Poisson model and the increasing

hazard function of Phase 2 (2 yr long) differs in behaviour from

that expected in typical aftershock periods such as those indicated

in Phases 3 and 4.

5 C O M PA R I S O N W I T H T H E Z A M P

S O F T WA R E PA C K A G E

We have also tried to solve the issues arising here by using one of

the available software packages. Tens of publications that made use

of the ZMAP package (http://www.seismo.ifg.ethz/staff/stefan) to

identify and evaluate spatial and temporal variations in seismicity

led us to choose that software. ZMAP (Wiemer 2001) is a set of
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Figure 11. MCMC estimates of the cumulative distribution functions in the eight detected regimes: box plots; averaged conditional expected values of DP

(solid line) and plug-in estimates of the generalized gamma distribution with the posterior means of η, ξ and ρ (dashed line).

tools, driven by a graphical user interface, that are designed to help

seismologists analyse catalogue data. It was first published in 1994

and has continued to grow over the past years, up to the most recent

version, ZMAP v. 6. Rate changes are analysed using the function

termed AS(t) (Habermann 1988); it is the z-value

z = M1 − M2((
S2

1/N1 + S2
2/N2

))1/2
, (10)

resulting from comparison of the mean rates M 1 and M 2 during

the two periods (t 0, t) and (t , tf ), where t moves from the extremes

(t 0 + t w) and (tf − t w), S1 and S2 are the standard deviations of

those rates, N 1 and N 2 are the number of samples in the two periods,

and t w is the window length. The z statistic (10) is approximately

normally N(0,1) distributed (i.e. z = 1.96 is 95 per cent signifi-

cant, and z = 2.57 is 99 per cent significant). The maximum of

the function AS(t) is usually employed to detect a possible anoma-

lous period of quiescence before a strong earthquake, indicated by

a high z-value, which denotes rate decrease. As we are interested

in both rate increases and decreases, we have iteratively analysed

the data set storing, at each sweep, the time ta corresponding to the
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Figure 12. Plug-in estimates of the generalized gamma density functions (solid line) and of the corresponding hazard functions (dashed line) in the eight

phases illustrated in Section 4.2.

maximum absolute z-value. At the first step, we set ta → t(1) and we

obtained the binary partition (t 0, t (1)) and (t (1), tf ) of the interval (t 0,

tf ); in the subsequent step we evaluated the function AS(t) in the two

subintervals and we memorized the two absolute maxima t (2) and

t (3) obtaining 22 subintervals. We repeated this procedure as long as

significant rate changes were found (i.e. |z| ≥ 1.96). The results of

this analysis are reported in Table 3; the parameters used are 1 yr

for the window length and ten days for the bin length. Further trials

performed with 0.5–1.5 yr and 15–28 d, respectively, produced sim-

ilar results. To quantify each change, we chose the option ‘compare

two rates’ from the Ztools menu in the cumulative number window

of ZMAP and compared the b-values during the period before and

after each change-point, in light of the probability estimated ac-

cording to Utsu (1992) that the two samples come from the same

indistinguishable population of magnitudes. This hypothesis is re-

jected with over 0.95 significance (that is there is also a change in

the magnitude distribution) at t = 1894.88, 1903.89 and 1933.34;

the remaining change-points fail the test. Only by adding the point

1927.54, with z-value −1.76, in the interval (1911.20, 1933.34), do

both the change-points, 1911.20 and 1927.54, present a change in

magnitude.

We have also applied another procedure to define the times of

greatest change. First, we evaluated the AS(t) function in the entire

interval and stored the times corresponding to both the maximum

and minimum z-value independently of the significance of z (in

fact, all the minima are negative and larger than −1.96), and then we
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Table 3. Significant rate changes provided by ZMAP software:for each it-

eration of the binary partition of the interval (1890, 1995) we report the time

of the rate change and the corresponding z-value (in brackets).

Iteration t (min AS) t (max AS)

1 1985.89 (3.81)

2 1933.34 (3.76)

3 1894.88 (−2.79)

4 1911.20 (2.31)

5 1903.89 (−2.42)

6 1907.02 (2.19)

Table 4. Rate changes corresponding to the minimum and maximum z-value

(in brackets) provided by ZMAP software applied in telescopic intervals.

Step t (min AS) t (max AS)

1 1894.88 (−1.39) 1985.89 (3.81)

2 1903.89 (−0.65) 1933.34 (3.27)

3 1931.16 (−0.87) 1911.22 (2.81)

repeated this step in the interval having those times as extremes until

the AS(t) function showed no significant rate change. The results

are found in Table 4. In the second step, we neglected the global

minimum 1984.82 [AS(1984.82) = −0.76], almost the same as the

previously-found value for 1985.89. As for the b-values, the change-

points t = 1894.88, 1903.89, 1911.22, 1931.16 and 1933.34 reject,

with high significance, the hypothesis that the two sets of observed

magnitudes come from the same population, indicating a change in

the magnitude distribution.

In summary, the two procedures jointly identify the follow-

ing dates as change-points: 1894.88, 1903.89, 1907.02, 1911.20,

1931.16 and 1933.34. Consequently, there is substantial agreement

between the analysis performed by ZMAP and that based on vari-

ations in the distribution of interevent time. There are, however,

some important differences: (a) ZMAP sets the foreshock phase

a year ahead and fails to identify the interval (1903–1904) with

a rate higher than that in (1895–1903); (b) it also does not de-

tect the peaks of activity in 1904 and 1931 and (c) ZMAP marks

the aftershock interval following the 1904 earthquake as end-

ing even sooner than the date given by the Ogata et al. formula

(1996).

6 C O N C L U S I O N

Using statistical procedures, we have answered the questions asked

in Section 1: Are there changes in the seismic activity? How many?

When? We have produced an objective decomposition of the ob-

served seismicity into phases on the basis of variations in these

characteristic features: occurrence rate and probability distribution

of interevent time. Other physical features, such as the distribution

of the size of the events, could be similarly analysed. An inher-

ent limitation of the proposed method is that interevent times are

conditionally independent and identically distributed within every

phase, while this is not always true, particularly during aftershock

sequences. The disadvantage of this simplified modelling is mainly

that more phases than those really existing may be estimated in

aftershock intervals, since the progressive change in the expected

length of interevent times, corresponding, for instance, to a power-

law decay rate, is fitted through a sequence of different interevent

time distributions. However, knowing this, a user should be able to

ascribe to these artificially created phases the same physical signif-

icance and obtain a consistent sequence of patterns.

The analysis of rate variations provides preliminary results that

are clarified by the use of interevent time distributions. Moreover,

the estimates of the probability distributions, the densities, and the

hazard functions (Figs 11 and 12) provide a physical interpretation

of the different phases, which add information useful for assessing

time-dependent seismic hazard. Furthermore, the box plots in Fig. 11

allow us to quantify the uncertainty of the estimates, as is done in

Figs 5–8 for the variations in rate.

The two procedures applied using ZMAP software almost com-

pletely confirm our results regarding the detection of the change-

points if we take into account points of lower significance level,

such as 1931.16 in Table 4. Moreover, the ZMAP software is not

equipped to deal with questions regarding the interevent time prob-

ability distribution. We also note that the two-sample test performed

by ZMAP is based on the assumptions, not always found in real sit-

uations, that the two compared populations are normally distributed

with known variances, or that the size of the samples is sufficiently

large.

In conclusion, the estimates of the rates (Table 2, Fig. 4), in-

terevent time distributions, densities and hazard functions (Figs 11

and 12) produce a global and objective description of the phases

identified, as follows.

(i) (1890–1895)—The seismic activity is low, the rate is about

0.5; we classify this phase as the final part of a ‘background’ activity

period.

(ii) (1895–1903), (1903–1904)—At first, only the stress release

rate rises, but then the occurrence rate rises as well; an activation

period starts with a ‘foreshock’ of M S = 6.6 in 1902 July.

(iii) (1904–1909), (1909–1911)—The ‘aftershock’ sequence

continues with a series of secondary shocks, of M S = 6.4 in 1905

October, and again, 1 yr later, of M S = 6.4. The global occurrence

rate remains high, but the activity decreases progressively during

this phase.

(iv) (1911–1931)—Although a large amount of accumulated

stress was released in the previous phase, the rate is at an inter-

mediate level; no event, however, exceeds a magnitude of 5.

(v) (1931–1933)—After the two main shocks of M S = 6–6.7 in

1931 March and a secondary shock of M S = 6.4 in 1932 September,

this seismic crisis reproduces that of 1904–1911 on a reduced time-

size scale.

(vi) (1933–1995)—The occurrence rate has returned to the low

rate registered at the beginning of the period under examination.

The time period we have considered presents two seismic cycles

which, even if of different strengths, are characterized by similar pat-

terns: background activity (i, iv and vi), foreshocks (ii), main earth-

quakes (iii), and aftershocks sequence (iii and v), corresponding to

the stages indicated by Zhuang (2000): interseismic, pre-seismic,

coseismic and post-seismic. The pre-seismic phase may be absent,

not clearly identifiable, or confused with the interseismic one. This

may mean that the evolution in time is determined by hidden random

factors, which constitute a higher level in the hierarchical structure

of the stochastic process modelling the earthquake process.

Our future research will attempt to give a probabilistic structure

for the assignment of the system to a specific state and to combine

this with the probability that an event occurs when the system is in

that state.
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A P P E N D I X A : M C M C M E T H O D S

We give only the main points of the MCMC methodology. Suppose

that one wishes to sample from a distribution π (dx) for x ∈ X , in

general the posterior distribution p(x | y) in Bayesian framework,

and also suppose that it cannot be done directly. If it is possible to

construct a Markov chain of state space X with equilibrium distri-

bution π (dx), then, under suitable regularity conditions, asymptotic

results allow us to estimate features of π (dx). In particular, if X (1),

X (2), . . . , X (t), . . . is a realization from such a chain, it can be proven

that

X (t) →d
t→∞ X ≈ π (x) ,

1

t

t∑
i=1

f (X (i)) →t→∞ Eπ { f (X )} a.s..

(A1)

The first result emphasizes that the chain must be run for a suffi-

ciently long time for the sampled values X (t) to be considered drawn

from π . The second result shows that, in this way, it is possible to

compute any property of π (dx) that can be represented in terms

of expectation under π , hence the existing moments and even the

probabilities of specified events when f is an indicator function.

Constructing a Markov chain means assigning a transition kernel P
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so that P(x → x′) is the probability associated with the move from

the current state x to the new one x ′. P must be chosen so as to guar-

antee the convergence of the chain to π , taking into account various

issues: the speed of exploration of the support of π , the degree of

correlation between the X (i) values and the accuracy of approxima-

tion by the empirical average (A1). The choice of P characterizes

the MCMC algorithm; in Gibbs sampling, the kernel is given by the

product of the full conditional distributions, whereas in Metropolis–

Hastings type algorithms, the potential new state or ‘proposal’ x ′ is

generated from an essentially arbitrary proposal distribution q (x ,

dx ′), and x ′ is then accepted with the probability

α(x, x ′) = min

{
1,

π (dx ′)q(x ′, dx)

π (dx)q(x, dx ′)

}
, (A2)

or else x is retained as the next state.

If, as in the case of the multiple change-point problem, the model

adopted belongs to the class of variable dimension models, the

MCMC algorithm must generate a chain that moves into a finite

or denumerable collection of parameter subspaces of different di-

mensionality. This can be done through a more advanced algorithm;

the reversible jump algorithm (Green 1995), referring to the formu-

lation given for the mixture of Poisson processes in Section 3.1, can

be described as follows. Assuming that the Markov chain is at the

state (model) Mk , different types of moves m can be made in which,

respectively, (1) the parameters of the model Mk are updated; (2)

a further change-point is added or (3) one of the present change-

points is removed. At each transition, one of these moves is chosen

according to a suitable probability distribution. In the first type of

move, the dimension of the parameter vector (s, h, β, k) is fixed;

hence an ordinary MCMC method can be applied. In particular, we

have used the Gibbs sampling as, once we have chosen the priors

for β and hj in conjugate families of distributions, it is easy enough

to sample from the conditional distributions. Instead, other types

of moves change the dimension of the parameter vector, and this

gives rise to the issue of the existence of a common dominating

symmetric measure, with respect to which the probabilities in the

ratio in eq. (A2) have densities. This problem can be overcome by

applying the reversible jump MCMC method as follows. Supposing

that move m takes x = (s, h, β, k) to x ′ = (s′, h′, β ′, k + 1) in a

higher-dimensional space, a continuous random vector u is drawn

from a distribution with density q(u) with respect to the Lebesgue

measure and the new state is given by an invertible deterministic

function x ′ (x , u). Then, the acceptance probability (A2) becomes

α(x, x ′) = min

{
1,

p(x ′ | y)

p(x | y)
× pm(x ′)

pm(x)q(u)
×

∣∣∣∣ ∂x ′

∂(x, u)

∣∣∣∣} ,

or, informally α(x , x ′) = min {1, (posterior ratio) × (proposal
ratio) × (Jacobian)}, where pm(·) is the probability of move m,

and the last term is a Jacobian ensuing from the change of variable.

Obviously, the dimension of x ′ must be equal to the sum of the

dimensions of x and u.

A P P E N D I X B : S TAT I S T I C A L

C O M P L E T E N E S S O F A S E I S M I C

C ATA L O G U E

The statistical method adopted is based on the assumption that the

sequence of occurrence times y1, y2, . . . , yn in the interval [T 1,

T 2 ] is a realization of a Poisson process with intensity function

λ(t) = h1 I[T1,s)(t) + h2 I[s,T2)(t); that is, the occurrence rate has

the constant value h1 up to time s, after which it takes the value

of h2. We assume the change-point s indicates the date from the

time at which the catalogue can be considered complete over a fixed

magnitude threshold. The likelihood function has the form:

p(y | h1, h2, s) = h
∑n

i=1 δ[T1 ,s)(yi )

1 e−h1 (s−T1)

h
∑n

i=1 δ[s,T2)(yi )

2 e−h2 (T2−s).

In the Bayesian approach, both the seismicity rates h1, h2 and the

change-point s are random variables, to which we assign probability

distributions exploiting our a priori knowledge of the phenomenon.

The inference is based on stochastic simulation methods—Markov

chain Monte Carlo methods (MCMC)—through which we generate

a sample of dependent values for the parameters to be estimated,

(s ( j), h( j)
1 , h( j)

2 )m
j=1. Estimates of the distribution of s, h1 and h2

and of their summaries can be obtained from this sample. Thus, for

example, the estimate of the probability density f (s) is given by:

f̃ (s) =
m∑

j=1

f (s | h( j)
1 , h( j)

2 , y)/m

where f (s | ·) denotes the conditional density of s, and the estimates

of the mean and of the variance of s are given, respectively, by

s̃ =
m∑

j=1

s( j)/m, σ̃ 2
s =

m∑
j=1

(s( j) − s̃)2/m.

The same holds for h1 and h2. We can also obtain an estimate of

λ̂(t):

λ̂(t) = 1

m

m∑
j=1

{
h( j)

1 I[T1,s( j))(t) + h( j)
2 I[s( j),T2)(t)

}
,

which represents the posterior mean rate of the Poisson process.
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