Information and Software Technology 164 (2023) 107326

Contents lists available at ScienceDirect

INFORMATION
AND
SOFTWARE
TECHNOLOGY

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Check for

Model-based security testing in IoT systems: A Rapid Review o

Francesca Lonetti *, Antonia Bertolino, Felicita Di Giandomenico

Istituto di Scienza e Tecnologie dell’Informazione, CNR, via G. Moruzzi, 1, 56124 Pisa, Italy

ARTICLE INFO ABSTRACT

Keywords:

Internet of Things
Model-based testing
Security testing

Context: Security testing is a challenging and effort-demanding task in IoT scenarios. The heterogeneous
devices expose different vulnerabilities that can influence the methods and cost of security testing. Model-
based security testing techniques support the systematic generation of test cases for the assessment of security
requirements by leveraging the specifications of the IoT system model and of the attack templates.
Objective: This paper aims to review the adoption of model-based security testing in the context of IoT, and
then provides the first systematic and up-to-date comprehensive classification and analysis of research studies
in this topic.

Method: We conducted a systematic literature review analyzing 803 publications and finally selecting 17
primary studies, which satisfied our inclusion criteria and were classified according to a set of relevant analysis
dimensions.

Results: We report the state-of-the-art about the used formalisms, the test techniques, the objectives, the target
applications and domains; we also identify the targeted security attacks, and discuss the challenges, gaps and
future research directions.

Conclusion: Our review represents the first attempt to systematically analyze and classify existing studies on
model-based security testing for IoT. According to the results, model-based security testing has been applied in
core IoT domains. Models complexity and the need of modeling evolving scenarios that include heterogeneous
open software and hardware components remain the most important shortcomings. Our study shows that
model-based security testing of IoT applications is a promising research direction. The principal future research
directions deal with: extending the existing modeling formalisms in order to capture all peculiarities and
constraints of complex and large scale IoT networks; the definition of context-aware and dynamic evolution
modeling approaches of 10T entities; and the combination of model-based testing techniques with other security
test strategies such as penetration testing or learning techniques for model inference.

1. Introduction services [2]. Vulnerabilities of IoT systems can also descend from

unsecure default settings, unsecure update mechanisms or outdated

The Internet of Things (IoT) is experiencing exponential growth,
with developments and applications across many sectors such as home
automation, retail, manufacturing, energy, transport, health, smart
cities and public infrastructures. This scenario becomes increasingly
attractive for attackers at any level: devices, communication channels,
software and applications become potential attack surface areas, as they
all could expose threats and vulnerabilities [1].

The heterogeneity of devices participating in the IoT implies differ-
ent technologies and levels of complexity, due not only to their specific
tasks, but also to differences in manufacturing, software, firmware,
versions, interfaces or transmission speeds. Every device could be vul-
nerable in many parts, including its hardware, firmware, physical
and web interface, as well as the adopted network protocols and

* Corresponding author.

components. Moreover, traditional authentication and authorization
methods, mainly based on pre-shared cryptographic keys, are not ap-
plicable to IoT devices, since key management for resource-constrained
components is hardly feasible [3].

For all the above reasons, extensive security testing of IoT systems,
as well as the evaluation of their conformance to the security require-
ments, become crucial to prevent errors and security vulnerabilities,
and to guarantee their trustworthiness. Currently, the most popular
security testing techniques adopted in IoT deal with: (i) penetration
testing, in which vulnerabilities are identified by simulating real-world
attacks [4], and (ii) fuzz testing, aiming at stressing the system under
test with non-valid data inputs or messages [5].

E-mail addresses: francesca.lonetti@isti.cnr.it (F. Lonetti), antonia.bertolino@isti.cnr.it (A. Bertolino), felicita.digiandomenico@isti.cnr.it

(F. Di Giandomenico).

https://doi.org/10.1016/j.infsof.2023.107326

Received 19 December 2022; Received in revised form 3 August 2023; Accepted 30 August 2023

Available online 3 September 2023

0950-5849/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
mailto:francesca.lonetti@isti.cnr.it
mailto:antonia.bertolino@isti.cnr.it
mailto:felicita.digiandomenico@isti.cnr.it
https://doi.org/10.1016/j.infsof.2023.107326
https://doi.org/10.1016/j.infsof.2023.107326
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2023.107326&domain=pdf
http://creativecommons.org/licenses/by/4.0/

F. Lonetti et al.

A relevant approach to assess complex and distributed systems is
Model-based Testing (MBT) [6], which derives test cases automatically
from a (set of) model(s) of the System under Test (SUT) and/or of
its environment. MBT has been attracting great interest in research
for the last two decades at least, and some recent studies observed
several concrete benefits deriving from its adoption in practice. For
example, Garousi et al. [7] report that in a controlled experiment with
a software testing company, MBT helped improve test case design in
comparison to the previously used model-free test scripts, and also
increased the fault-detection effectiveness, along with other “intangible
but important benefits”. Other practical benefits reported by Peleska
et al. [8] include the automated traceability of requirements, smooth re-
generation of test procedures in regression testing, intuitive and more
efficient analysis of test results.

In view of the above benefits in adopting MBT, even for the devel-
opment and testing of IoT systems we assist to a growing interest in
model-based approaches, e.g., [9-11]. MBT approaches allow to tackle
the heterogeneity of the IoT devices and network protocols. In fact,
they rely on unified concepts at model level and leverage state-of-the-
art Model-driven Engineering (MDE) technologies to target low-level
technical aspects of devices, programming languages or protocols that
are source of heterogeneity [12]. Therefore, MBT lends itself as a suit-
able and effective testing approach for IoT systems, especially since it
can support the assessment of different architectural decisions [13], and
facilitates integration testing by allowing for component mocking [9].
In a recent work, Ahmad et al. [14] provide a comprehensive overview
of the benefits and the challenges of adopting MBT for IoT systems,
and illustrate MBT specificities for several testing concerns through
demonstrations with real case studies in the context of FIWARE EU IoT
enabled platforms.

Within the broad scope of MBT, Model-based Security Testing
(MBST) more specifically addresses the security requirements of the
SUT, such as authentication, authorization, confidentiality and integrity
of exchanged data [15]. MBST clearly yields the same benefits above
discussed with regard to MBT. However, when it is applied for security
testing, the models have to be enriched with the security goals that the
SUT will have to abide by, as exemplified by Peroli et al. [16], but with
the key observed advantage of the reusability of such security-enriched
models. In another study [17], Mahmood et al. report that their MBST
approach could facilitate the systematic identification of threats and
contributed to save time and manual effort thanks to the automated
generation of test-cases.

Traditionally, security has not always been considered a priority
by IoT system engineers during the design phase, but in recent years
awareness is growing that security concerns of IoT systems must be ad-
dressed since the early design stages [10,18,19], and correspondingly,
some studies addressing MBST in IoT have appeared. However, to the
best of our knowledge, no effort has been spent so far on the systematic
review and classification of studies on MBST for IoT systems. From a
comparison of our paper with related work (see Table 1), this is the first
comprehensive classification of research results about MBST in IoT.

Felderer et al. [15] conducted an extensive review of more than
one hundred papers published until 2016 on MBST. Even though in
this study a large number of articles about model-based security testing
is reviewed, there is no reference to IoT applications. Several works
address the broad topic of security testing, without focusing on IoT,
e.g., Refs. [20,27]. Other works overview general testing tools and
techniques for IoT, but without specifically addressing MBT [21] or
security issues [25]. Other proposals informally review MBT methods
as well as security techniques for IoT, e.g., references [14,26,28],
but they do not follow a systematic study of the literature. Finally,
the authors of [24] present a systematic mapping study on the use
of model-based approaches to assess non-functional aspects of IoT
systems, including also security. However, this work only provides a
list of papers addressing security but does not present an analysis and
classification of model-based solutions for security testing in IoT.

Information and Software Technology 164 (2023) 107326

The aim of this paper is to fill this gap by providing a systematic
and up-to-date classification and analysis of existing works on MBST in
IoT contexts. We decided to follow the Rapid Review research method.
The main reason was that the latter usually allows authors to deliver
evidence in a shorter time-frame and with lower effort than the best
known Systematic Literature Review method [32]. This reduction of
time and effort, which is achieved through some simplification of the
process, can be important given the timeliness of the covered topic.
However, it is important to notice that we applied all efforts to maintain
a rigorous and repeatable protocol [33] and to deliver a comprehensive
and informative study.

We analyzed 803 publications retrieved from an automated search
on Scopus, which is a comprehensive meta-database covering confer-
ence proceedings and journal publications from major publishers [34],
and a snowballing cycle over Google Scholar. From this set of papers,
only 17 primary studies passed the systematic selection and have been
classified according to a set of relevant analysis dimensions. Although
we did not find a high number of primary studies in absolute terms,
they all appeared in a short time range (last 5 years), thus indicating
that MBST is currently gaining a growing attention in the context
of IoT systems. For this reason, our effort to collect and categorize
into one systematic review the found studies can be useful both to
inspire ([35], p. 2) “areas for further investigation”, and to “appropriately
position new research activities” on this topic. With such motivations, we
discuss among others the pursued test objectives, the formalisms and
techniques used, the attacks targeted, as well as the open challenges
and research gaps.

According to the main outcomes of our study, MBST appears indeed
a promising research direction. It has been already applied in core
application domains of IoT systems, and allowed to identify several
types of attacks. The growing adoption of MBST is also facilitated
by the increasing usage of standard IoT technologies that provide
useful support for model design. With this work, which is the first one
reviewing and classifying the existing literature on MBST for IoT in a
systematic way, we aim at driving further research on this topic and
fostering its application on larger case studies.

The remainder of the article is structured as follows: Section 2 de-
scribes the background concepts of this study, while Section 3 presents
the related work; Section 4 exposes the Rapid Review research method-
ology, and Section 5 shows the results; then Section 6 discusses the most
interesting challenges and research directions emerged from this study;
Section 7 presents threats to validity, and finally Section 8 concludes
the paper with a summary of the key findings.

2. Background

The main topics addressed in this Rapid Review span over two
major research directions that are: model-based security testing and IoT
security testing.

2.1. Model-based security testing

MBT leverages explicit models that specify the relevant information
of the SUT and/or its environment [6]. The main goal of MBT is the
derivation of test cases from the model in an automatic way according
to a set of test selection criteria. Specifically, in the MBT process three
main steps can be identified:

+ building a model (test model) of the SUT and/or its environment
from given requirements, existing specifications or the SUT;

+ defining a set of test selection criteria to reduce the number of
derived test cases;

+ generating (typically in automatic way) a set of test cases from the
model applying test selection criteria. It is important to remark
that the tests so generated are implementation-independent and
must be then translated into more concrete tests to allow for their
(automated) execution on the SUT.

F. Lonetti et al.

Information and Software Technology 164 (2023) 107326

Table 1
Comparison with related works.
Paper Year Aim of review Review Focus on MBT Focus on MBST Focus on
approach security analysis IoT testing
testing and
classification
[15] 2016 Taxonomy and classification Systematic v v v -
of MBST approaches search
[20] 2017 Security testing approaches Informal - v - -
[14] 2018 MBT approaches for conformance, Informal v - v
security and robustness in IoT
[21] 2018 Testing tools and Informal - v - v
techniques for IoT
[22] 2018 Comparison of testing tools for Systematic - - - v
IoT search
[23] 2019 Mapping study on Systematic - v - v
testing of IoT search
[24] 2020 Mapping study on model-based Systematic v v - v
quality assessment in IoT search +
manual
search
[25] 2020 Mapping study on integration and Systematic - - - v
interoperability testing in IoT search +
snowballing
[26] 2021 Automotive cybersecurity Informal v v - v
testbed and test methods
[27] 2021 Security testing techniques Systematic - v - -
search
[28] 2022 Testing methods and Informal v v - v
testbeds in IoT
[29] 2023 Research communities on Systematic v v - v
vulnerability search
assessments and ethical hacking
[30] 2023 Bibliometric analysis on Systematic v - - -
model-based search
system engineering of IoT
[31] 2023 MBT and MBST approaches Systematic v v 4 -
in automotive domain search
This review 2023 Review and classification Systematic v v v v
of MBST approaches in IoT search +
snowballing

In the context of security, model-based security testing consists
of model-based testing of security requirements [15]. It represents
an attractive research area enabling automation and enhancement of
security test procedures in industrial environments. Several model-
based frameworks for testing security properties have been developed
using different formalisms such as Unified Modeling Language (UML)
based diagrams, timed automata, or Colored Petri Nets (CPNs), among
others.

UML represents a family of design notations largely adopted to
model software architectures [36]. In MBST, UML class diagrams [37]
are used to model the different entities of the IoT scenario, such as
for instance the smart objects, the server nodes or the exchanged
messages among nodes. To express constraints on UML models, the
Object Constraint Language (OCL) [38] is used. OCL expressions allow
to navigate the model elements and define operations on these elements
leveraging the first-order predicate logic. In the context of MBST, OCL
is used to specify operations of the [oT system related to devices and
protocols as well as the test purposes. Test cases are generated usually
by adopting structural coverage criteria or search-based techniques
applied to OCL constraints. An example on how to generate test data
leveraging class diagram models and OCL constraints is presented,
e.g., in [39]. Specifically, the authors represent the model of the SUT
by a class diagram that defines attributes and functions. From this class
diagram, an object diagram is instantiated that is then used as input
data for the operation parameters during test generation. In addition,
the dynamic behavior of the tested functions is described by pre and
post conditions expressed in OCL code. The latter specifies the functions
behavior listing all possible cases. Using the object diagram and the
OCL constraints, test cases can be derived automatically (for instance
in [39] the Certifylt tool is adopted).

Moreover, UML security profiles have been defined that extend UML
specification with security related information. For instance, labels
including security information (in UMLsec [40]) or role-based access
control policies (in SecureUML [41]) or stereotypes indicating the
attack surface (in the security profile presented in [42]) are added to
the UML specification. In the context of IoT systems, the authors of [43]
leverage the security profile presented in [42] to generate penetration
tests for automotive systems.

In the last two decades, timed automata and their extensions (price
timed automata, extended timed automata) have been used to model
and verify security properties (for instance, analyses of role-based
access control (RBAC) models or correctness checking of security proto-
cols) [44]. Timed automata are represented as directed and connected
graphs extended with clocks (real-valued variables) and invariants
(i.e. constraints on clocks) and are adopted to formally verify timed
events and their order in concurrent timed systems [44]. The timed
automata formalism is supported by a large number of model checking
tools and techniques, of which the most popular is UPPAAL [45].
Recently, timed automata have been used as a target formalism to
model and verify attack trees [46] in security contexts. Attack trees,
inspired by fault trees, are a tree-based formalism representing the
attacker’s behavior. In the context of IoT testing, Krichen et al. [47]
show how attack trees can be translated in a network of price timed
automata that is then used for extracting test cases, leveraging the
UPPAAL tool.

An alternative graphical notation for modeling security properties
deals with CPNs that are an extension of Petri Nets with a high
level programming language to express and validate timed constrains
in large systems [48]. CPNs have been used for instance to model
trusted authentication architectures for IoT applications and verify

F. Lonetti et al.

by model-checking that these architectures satisfy a set of security
properties [49].

Other formalisms less frequently adopted for modeling security
requirements are: (i) Data Flow Diagrams (DFDs), representing the
system as well as the external entities, processes, data flows, and data
stores interacting with it [50], complemented with threat templates
that define several attributes describing the characteristics of the threat
to the system [51]; (ii) more specific graph types, such as topology
graphs [52] or semi-formal graphs [53]; finally (iii) Business Process
Model and Notation (BPMN) [54] allowing to specify security scenarios
and to generate test cases for covering the events of end-to-end security
processes [14].

MBST has been applied for assessing the functionalities of autho-
rization mechanisms, specifically access and usage control systems,
where the model is usually derived from the policy that is used for
configuring the authorization mechanism [55]. MBST has been also
applied in specific critical domains, such as automotive for validating
the over-the-air software update systems [17]. Furthermore, MBST has
been integrated with other security testing approaches such as fuzzing
or penetration testing, where functional models are complemented with
the specification of threats and potential vulnerabilities. Specific tech-
niques for deriving the test model from previous artifacts of security
engineering have been also proposed [56].

2.2. IoT security testing

Recent findings [57] show that cyber-attacks are growing, espe-
cially towards infrastructure-less networks, such as IoT. Shah and Sen-
gupta [58] compiled a comprehensive classification of the broad variety
of potential attacks threatening modern IoT devices, including wear-
able devices, smart-home devices and machine-to-machine devices.
The huge number of interconnected devices can be exploited by the
cybercriminals to perform attacks that may involve the security of
large pervasive information systems or even human life. A widely
referred example of these attacks is the Mirai attack in 2016 [59], in
which the attacker was able to identify a large number of IoT devices
and use them to cause a Denial of Service (DoS) attack on Domain
Name System servers, hindering the access to most popular web sites.
As just one example among many potential safety—critical attacks, in
February 2021 the media reported the timely discovery of the attempt
to poison the water supplied by a water-treatment plant in Oldsmar
(Florida) [60]. The intruder was able to take control of the plant by
operating from remote on the IoT device that controlled the level of
sodium hydroxide (i.e., caustic soda), trying to increase it to degrees
that human tissues cannot tolerate, before being fortunately spotted by
a monitoring operator.

Many taxonomies exist aiming to classify [oT attacks according to
different dimensions such as the adopted wireless communication tech-
nologies [61], the different layers of the IoT technology [58,62] or the
vulnerability object (i.e. devices, network, software or data) [63,64].
This last classification represents a common approach to present IoT
attacks and considers four broad categories: physical attacks, network
attacks, software attacks and data attacks [63,64].

In physical attacks, the attacker is able to physically interact with
the user or node of the IoT system by, for instance: (i) replacing the
node or part of its hardware (hardware tampering attack); (ii) injecting
a malicious node between the network nodes or injecting malicious
code into a node (injection attack) in order to have access and control
all the data flowing in the network; (iii) keeping the node awake for
long time by feeding wrong input and causing power consumption and
then node shutdown (sleep denial attack); (iv) sending fake signals to
interrupt the ongoing radio transmissions of the IoT node or jamming
the signals in the wireless network denying the communication be-
tween the IoT nodes (jamming attack); (v) physically manipulating the
IoT user in order to obtain confidential information (social engineering
attack).

Information and Software Technology 164 (2023) 107326

Network attacks target the IoT system network and consist, for
instance, in: (i) spoofing RFID (Radio Frequency Identification) signal
to get the RFID tag identifier information imprinted on the RFID tag,
then using this identifier to transmit attacker’s data and obtain full
access to the systems (spoofing attack); (ii) reading, modifying or even
deleting data on the RFID nodes leveraging the lack of authentication
mechanisms in RFID systems (RFID unauthorized access); (iii) eaves-
dropping and controlling the communication between two IoT nodes
in order to access restricted data (eavesdropping attack); (iv) flooding
messages or connection requests into the IoT network which result into
slow down or crash of the network resource (DoS attack).

Software attacks leverage software security vulnerabilities of the IoT
system. Examples of such kind of attacks are virus, worms, or mobile
malware such as Trojan horse; through the usage of these malicious
software an attacker may, e.g., leak or tamper vital information, or
cause performance degradation or denial of service. A major vulnerabil-
ity derives from the IoT lower processing power compared to general IT
equipment such as servers or PCs, which prevents the usage of widely
deployed operating systems, such as Windows or Linux. The result is
that general IT cybersecurity tools do not work on IoT devices, exposing
them to numerous cyber attacks; in particular, malware attacks are
showing an increasing trend, as presented in a recent report by Sonic
Wall.! Vulnerabilities in web applications and related software for
IoT devices further increase the attack surface. Web applications can,
for example, be exploited to steal user credentials or push malicious
(firmware) updates.

Finally, data attacks refer to malicious actions aiming to compro-
mise the security or privacy of data stored or exchanged in the IoT
network. Examples of such attacks deal with: (i) data inconsistency,
in which the attacker aims to compromise the data integrity; (ii)
unauthorized access, in which unauthorized users can gain access to
sensitive data violating access control mechanisms; (iii) data leakage, in
which malicious users can access and disclose sensitive or confidential
data.

ENISA? provides recommendations and guidelines for the identifica-
tion and mitigation of threats that might impact the IoT supply chain,
proposing cybersecurity testing as a main activity to detect misconfig-
urations or errors of IoT devices. The main goal of [oT security testing
is to detect any potential vulnerability of the IoT system under test
that could be exploited by an attacker or malicious user. By identifying
potential vulnerabilities, and putting in place more robust security
mechanisms, the ultimate goal is to improve the overall security and
the users’ trust in the system itself.

IoT security testing represents a broad term encompassing a plethora
of testing methodologies and tools targeting the different security
requirements of the IoT system and the different components of the
IoT scenario. Testing the security of IoT systems aims to guarantee
authentication and authorization of devices and people during data
access, the integrity of the transmitted data thorough the usage of
encryption techniques and their availability. Mobile security testing is
applied in the IoT context if devices communicate through mobile net-
works, while cloud security testing is performed if the exchanged data
are in the cloud. Also firmware and hardware vulnerability detection
represents a common form of IoT security testing [65]. Fuzz testing
and penetration testing are the most popular test methods to detect
vulnerabilities in [0oT. The former aims to run the SUT with a large
amount of malformed input data, in order to monitor the status of the
program and detect abnormal situations. Fuzzing techniques are usually
applied to detect memory-corruption flaws or other vulnerabilities
in IoT device firmware [66] or are combined with static analysis

1 https://www.sonicwall.com/resources/white-papers/2022-sonicwall-
cyber-threat-report/

2 https://www.enisa.europa.eu/publications/guidelines-for-securing-the-
internet-of-things

https://www.sonicwall.com/resources/white-papers/2022-sonicwall-cyber-threat-report/
https://www.sonicwall.com/resources/white-papers/2022-sonicwall-cyber-threat-report/
https://www.enisa.europa.eu/publications/guidelines-for-securing-the-internet-of-things
https://www.enisa.europa.eu/publications/guidelines-for-securing-the-internet-of-things

F. Lonetti et al.

techniques to detect and verify authentication flaws in IoT embedded
systems [67]. Penetration testing represents an attempt to breach the
security of the system in order to report the flaws that can cause
vulnerabilities. The work in [68] provides an overview of different
types and issues of penetration testing in IoT.

In recent years, MBST is gaining more attention for assessing the
security of IoT protection mechanisms in several application domains.
The goal of this paper is to review and classify MBST approaches as
detailed in Section 5.

3. Related work

Testing of IoT systems is the subject of several research studies in
the last years, proposing a variety of IoT testing methods and infras-
tructures. Although several surveys exist, no previous work provides an
up-to-date systematic review and classification of model-based security
testing for IoT systems.

The authors of [21] overview the different types of testing that
can be applied in the IoT context such as usability, scalability and
security, and provide a survey of existing testing tools and technologies
in the field. This work overviews informally existing methods and tools
for testing, without applying a systematic approach, nor providing a
classification of existing solutions. The work in [23] makes a systematic
classification of types of testing applied in the context of IoT, includ-
ing security testing; however, it does not provide explicit references
to model-based testing approaches. The already mentioned paper by
Ahmad et al. [14] provides a comprehensive overview of how MBT can
address several IoT testing challenges, including conformance testing,
robustness testing, and security testing. However, the study focuses
on the specificities of applying MBT approaches in the IoT domain,
and does not aim at providing a systematic review of the literature on
MBST, as we do here.

A recent survey [28] summarizes the latest testing techniques ad-
dressing different IoT domains and testing objectives. This survey in-
cludes model-based testing as one of the prominent testing techniques
for IoT and classifies a set of existing model-based testing approaches
for IoT according to the adopted test model and the addressed research
area, including healthcare, smart home, smart cities among others. This
broad survey also analyzes some frameworks and testbeds for security
of IoT devices; however, it does not refer to specific solutions for
model-based security testing.

A systematic literature review that analyzes the research on vulner-
ability assessments and ethical hacking based on keywords of articles
published between 1975 and 2022 is presented in [29]. It identifies
security testing and internet of things as two of the important research
communities in this field. Moreover, model-based testing is considered
one of the two dominant subcommunities of security testing. However,
this study analyzes each research community in terms of the most
cited articles, the most cited authors, the top publication forums, and
the most cited affiliation countries without performing a classification
of the papers according to their content. Similarly, the work in [30]
presents a bibliometric literature analysis of model-based system engi-
neering of IoT, considering the use of MDE as one of the key emerging
themes and future research areas in the design and development of IoT
systems while the work in [22] provides a brief comparison of available
testing tools in the IoT domain.

The authors of [24] present an extensive mapping study on the use
of model-based approaches to assess quality aspects of IoT systems. This
study reviews those papers, published from 2009 to 2019, that pre-
sented the explicit adoption of models to validate quality aspects of IoT
applications, including performance, reliability and security. Therefore,
the work is a broader review, aiming to show how testing in general
and more specifically model-based testing approaches are used to assess
quality aspects of IoT systems. Instead, our work specifically focuses on
security aspects of IoT systems and provides a classification of existing
solutions on model-based security testing. The authors of [15] provide

Information and Software Technology 164 (2023) 107326

a taxonomy and specific classification criteria for MBST approaches,
used to systematically classify existing model-based security testing
approaches in different domains until 2016. However, this work does
not contain any explicit reference to IoT systems. Similarly, a very
recent survey covers MBT and MBST approaches in the automotive
domain without any reference to IoT systems [31].

Recent surveys cover specific topics within the broad field of IoT
testing. For instance, the authors of [26] make a survey of seven
security testbeds and four methods for cybersecurity testing tailored to
the automotive domain, including MBT among them. The work in [25]
provides a systematic mapping study of testing methods, with the only
scope to address integration and interoperability of [oT devices.

Finally, other studies address the more general topic of security
testing. For instance, the authors of [27] provide a general taxonomy
of security testing techniques whereas Anwer et al. [20] propose a
mapping of security testing techniques with the attack types they
cover, without addressing model-based testing. However, these general
surveys do not focus on security needs of IoT systems or specific
vulnerabilities of the IoT system under test.

To facilitate comparison, related works are summarized in Table 1.
The table shows: in the first column the reference to the work; in the
second column the publication year; in the third column the aim of
the review (some reviews cover broad topics such as security testing or
IoT testing, other surveys focus on specific testing techniques such as
MBT or MBST); in the fourth column the adopted research method (in
particular, whether the selection of presented studies is done ad hoc
or adopting a systematic procedure); the fifth column indicates if the
work addresses MBT; the sixth column indicates if the work addresses
security testing; the seventh column indicates if the work provides an
analysis and classification of MBST; finally the last column indicates if
the work focuses on IoT testing. Notwithstanding the growing interest
on model-based testing and security aspects of IoT applications in the
last years, the analysis of the literature (summarized in Table 1) shows
the lack of a survey and systematic classification of MBST solutions for
IoT applications. The goal of this paper (as shown in the last row of
Table 1) is to fill this gap by providing an up-to-date comprehensive
classification of research studies in MBST for IoT. This paper also aims
to discuss challenges and gaps about MBST for IoT, paving the way to
further research in the field.

4. Research method — RAPID REVIEW

In this section, we present the Rapid Review research process we
have adopted to guide our work. A Rapid Review is a method of
knowledge synthesis that aims to give evidence on a problem with a
lower cost than a Systematic Literature Review [32]. The Rapid Review
has been designed to review new or emerging research topics or provide
updates of previous reviews. It follows a systematic protocol, however
some steps of a full systematic process are simplified or omitted to give
more timely results [33]. For instance, Rapid Review limits the search
results by considering only a search source or a reduced publication
date, does not conduct quality assessment, or presents results with
no formal synthesis [69]. Rapid Review can speed up the knowledge
transfer process to practitioners [70] and represents a complementary
approach that does not aim to substitute Full Systematic Review [33].
Nevertheless, it has been showed that Rapid Review complemented
by a rigorous snowballing process, can reach as good results as Full
Systematic Reviews [71]. We detail our review process in Section 4.1.

4.1. Review process

In conducting our review, we followed the well-known guidelines
by Kitchenham and co-authors [35] for performing systematic literature
reviews in Software Engineering and the Rapid Review protocol of [69].
Our research goal is to characterize the model-based software testing
techniques and technologies that address security in the context of

F. Lonetti et al.

Define

Research Questions Adtemated Search

Identify
Search String

Apply
Inclusion/Exclusion
Criteria on title,
abstact, keywords

Apply
Inclusion/Exclusion

| Criteria on full text

Snowballing

Selection Process

Information and Software Technology 164 (2023) 107326

Data Collection

Data Analysis

Fig. 1. Review process.

IoT. More precisely, we are interested to understand whether (and
how) model-based testing is applied for security purposes into the IoT
domain, what are the adopted formalisms, techniques, the addressed
attacks and application domains as well as the testing purposes. To
accomplish our research goal, we first formulated a set of research
questions that our study aims to answer, which are presented in Sec-
tion 4.1.1. These research questions identify the most important aspects
of MBST in IoT, including challenges, gaps and future research di-
rections. According to these research questions we defined the search
terms and then the search string presented in Table 2. We executed
this search string on the electronic database, and applied the selection
process described in Section 4.1.2. Then we collected the data as
explained in Section 4.1.3 and identified the set of relevant primary
studies that we analyzed to answer the research questions. We present
the results of our analysis in Section 5 and Section 6. Fig. 1 better
details our review process.

4.1.1. Research questions
To reach our research goal, we formulated the following Research
Questions (RQs):

1. RQ1: What are the formalisms mostly used for model specifica-
tion in MBST for IoT?

2. RQ2: What are the main testing objectives of the proposed MBST
approaches in IoT?

3. RQ3: What are the techniques mainly used for test cases gener-
ation/execution for MBST in IoT?

4. RQ4: What are the most targeted applications/domains of MBST
in IoT?

5. RQ5: What are the most targeted attacks of MBST in IoT?

6. RQ6: What are the challenges, gaps and future research direc-
tions related to MBST in IoT?

4.1.2. Selection process

According to [69], to reduce the search time for primary studies
in performing our Rapid Review, we selected papers by querying the
Scopus® repository, which includes results from most relevant software
engineering digital libraries. The search on Scopus has been executed
in two rounds: in the former we selected English papers until November
2021; in the latter additional English papers were selected until April
2022. In particular, in each round of our search (see Fig. 2), we applied
in Scopus the search string of Table 2 to title, abstract and keywords.

3 https://www.scopus.com

In each round, our papers selection process included three main steps.
During the first step, each of the authors read title, abstract and key-
words of a subset of papers and applied inclusion and exclusion criteria
described in Table 3. The subset of papers assigned to each author
was randomly selected and the load of papers assigned to each author
was balanced. Moreover, to assure consistency during the process, this
step was conducted in several iterations with plenary meetings among
all the authors at each iteration to review the assignment and resolve
possible doubts. In this step, we wanted to exclude papers not targeting
the Rapid Review topics, i.e., papers not addressing model-based testing
solutions for guaranteeing security in IoT domains. Also works not
including primary studies (such as survey papers or monographs, theses
or books) and not peer-reviewed papers were excluded.

In the second step, starting from the set of papers obtained in the
previous step, we read the full text of a subset of papers and applied
the inclusion and exclusion criteria of Table 3. Every paper was read
by two authors. Precisely, the first author read the whole set of papers
(which provided consistency along the process), whereas the second
and third author read half of the papers randomly chosen. Moreover,
several meetings among all three authors have been carried out to
discuss possible doubts during the paper selection. In this second step,
we wanted to exclude, after reading the full paper, studies not clearly
addressing model-based security testing solutions in IoT domain. Note
that, according to inclusion/exclusion criteria of Table 3, we did not
consider in our Rapid Review: (i) publications presenting classical fuzzy
or penetration testing approaches without adopting explicit models;
(ii) static analysis solutions or model-checking solutions which only
consider the model verification. According to [15], we consider as
model-based testing approaches only proposals where at least abstract
test cases are derived. Following the guidelines of Rapid Review [69],
quality assessment procedures of primary studies have not been ap-
plied. We included journal, conference, book chapter and workshop
papers retrieved from Scopus and Google Scholar databases. This also
ensures a more complete and inclusive view of the model-based security
testing for IoT, particularly important in the case of emergent research
directions. Nevertheless, as a guarantee for quality, in our selection
process we only accepted peer-reviewed papers.

Finally, in the third step, to complement the results of the auto-
mated search and verify that all the relevant primary studies have
been included, a backward and forward snowballing procedure [72]
was performed by each of the authors on a balanced and randomly
chosen subset of papers found in the second step. Specifically, for
each of these papers, we analyzed for backward snowballing its list of

https://www.scopus.com

F. Lonetti et al.

Information and Software Technology 164 (2023) 107326

Automated Inclusion & Exclusion Inclusion & Exclusion Snowballing Inclusion & Exclusion Snowballing
query criteria to Title, criteria V. on Google scriteria on Google
on Scopus /' Abstract and /to Full Text Scholar / to Full Text / Scholar
l /. Keywords / l
/ |
— // \L /
8 / 667 / / 84 / / / / 0 /
o~
g an
= e
g |
>
(=}
=
*\
&
Automated Inclusion & Exclusion Inclusion & Exclusion Snowballing
query criteria to Title, criteria on Google
on Scopus /;ﬂAbstract and /"to Full Text 7Scholar
N / Keywords v
o / /
~ //
= J / | // ! \:
N [[o]
[
*this number does not include duplicates and those already identified in November 2021

Fig. 2. Selection process and numerical outcomes.

Table 2
Search string.

({model} < OR > {modeling } < OR > {model-based})

< AND > {security} < AND > ({testing} < OR > {test})
< AND > ({IoT} < OR > {Internet of Things})

references, and for forward snowballing its citations in Google Scholar.*
We examined the text of these papers applying the inclusion/exclusion
criteria of Table 3, according to the guidelines for snowballing in sys-
tematic literature reviews presented in [72]. As depicted in Fig. 2, the
snowballing procedure ended after two iterations in the first round and
one iteration in the second round respectively, until no new paper was
found. As detailed in Section 4.1.3, the low number of primary studies
included after the snowballing process (only 3 papers) confirmed the
completeness of the results of the automated search (with publication
date from the beginning to April 2022).

4.1.3. Data collection

The result of our initial search executing the query of Table 2 in
November 2021 on Scopus database, was 667 primary studies (see
Fig. 2). After applying the inclusion and exclusion criteria presented
in Table 3 to title, keywords and abstract, we excluded from the initial
set of papers: proceedings titles and tables of contents (114 sources),
books (1 paper), surveys (3 papers), and papers not addressing testing
strategies or algorithms or test frameworks (465), thus obtaining a set
of 84 papers. After reading the full text of these 84 papers we excluded:
1 paper that was in Spanish (only title and abstract were in English),
and other 70 papers that did not address MBST solutions for IoT sys-
tems. Then, we obtained a set of 13 primary studies; after performing
the first iteration of backward and forward snowballing over Google
Scholar on this set of papers, other 20 papers were identified, of which
3 passed the selection process® and were added, eventually obtaining a
set of 16 primary studies. No relevant paper was found in the second
iteration of snowballing on this set of 3 papers. In April 2022, we re-
executed the same query of Table 2 on Scopus in order to update the

4 http://scholar.google.com

5 Note that, among these 3 papers, the study by Ahmad et al. [14] includes
both a broader overview of MBT and a section proposing a specific MBST
approach, then it has been both cited as a related work and included among
the primary studies.

w

N

(=Y

2017 2018 2019 2020 2021 2022

Fig. 3. Distribution of primary studies by year.

list of sources obtaining a set of 116 new sources. We applied the same
selection process described in Section 4.1.2 to this set of additional
sources. In this second round, we selected 15 papers after applying the
inclusion and exclusion criteria presented in Table 3 to title, keywords
and abstract. From this set, after reading the full text only one primary
study was selected. This relevant primary study has been added to
previously selected primary studies, obtaining a final set of 17 primary
studies. In this case, no further papers were identified after performing
backward and forward snowballing. The selected primary studies are
listed in Table 5 under the column labeled Ref#.

5. Data analysis

Model-based security testing in IoT represents a recent research
topic. All the selected primary studies have been published in the last
five years (as showed in Fig. 3). Various types of venues have been
considered over the years (see Table 4). We observed that in total there
are 8 conference articles, 6 journal articles, 2 book chapters and 1
workshop paper considered in this study.

In this section, we analyze the results of our Rapid Review and
answer the research questions presented in Section 4.

As depicted in Table 5, we classify the selected primary studies
(column labeled Ref#) according to some relevant dimensions that are:
(i) the formalism used for specifying the input model for test cases
generation (column labeled formalism); (ii) the test objective (column

http://scholar.google.com

F. Lonetti et al.

Table 3
Inclusion and exclusion criteria.

Information and Software Technology 164 (2023) 107326

Inclusion criteria

Studies on techniques/algorithms/strategies leveraging models for testing security in IoT
Studies on model-based security testing aspects, architectures, frameworks that are relevant in IoT

Studies on explicit models for guaranteeing security in IoT

Exclusion criteria

Studies from fields different from software testing in IoT

Studies from fields different from security in IoT

Studies not explicitly presenting model-based testing approaches for security in IoT

Studies on classical security testing approaches (like fuzzy or penetration) without explicit models in IoT
Studies on static analysis or consistency checking or verification of the test model in IoT

Not primary studies (surveys, editorials, panels, theses, white papers, books, etc.) or not peer-reviewed studies

Table 4
Year and venue of selected primary studies.
Ref# Year Venue Journal/conference name
[14] 2018 Journal Advances in Computers
[73] 2020 Conference International Conference on Evaluationof Novel Approaches to Software Engineering
[74] 2021 Journal Computers, Materials & Continua
[47] 2019 Conference International Conference on Evaluation of Novel Approaches to Software Engineering
[43] 2018 Conference Euromicro Conference on Digital System Design
[75] 2019 Journal IEEE Access
[49] 2021 Journal IEEE Internet of Things Journal
[76] 2017 Conference Global Internet of Things Summit
[771] 2019 Conference Central European Cybersecurity Conference
[78] 2017 Book chapter Cognitive HyperconnectedDigital Transformation:Internet of Things Intelligence Evolution
[79] 2021 Conference International Conference on Software Testing, Verification and Validation
[80] 2019 Conference International Conference onInformation Security Applications
[81] 2017 Conference International Conference on Smart Cities,Infrastructure, Technologies and Applications
[82] 2020 Book chapter Smart Infrastructure and Applications
[52] 2021 Workshop IEEE European Symposium on Securityand Privacy Workshops
[37] 2019 Journal Computer Standards & Interfaces
[53] 2022 Journal Computers & Electrical Engineering

labeled test objective), representing the goals of model-based testing,
including security testing, compliance verification of the system with
the functional model and other non-functional properties, such as load
or performance; (iii) the adoption of attack/threat models for test cases
derivation (column labeled attack/threat model); (iv) the test technique
proposed for test cases generation (column labeled test technique); (v)
artifacts or tools involved in the test generation (column labeled test
generation); (vi) artifacts or tools involved in the test execution (column
labeled test execution); (vii) the target IoT application that is the object
of testing (column labeled target application) and finally (viii) the spe-
cific domain of the IoT application (column labeled application domain).
Moreover, in Table 6 we show the most targeted security attacks by
the selected primary studies. Each of the authors initially classified a
balanced set of papers randomly selected, then the final classification
has been discussed among all the authors.

In the following, we answer to the first five research questions (RQ1,
RQ2, RQ3, RQ4, RQ5), whereas we refer to Section 6 for a discussion
of challenges, gaps and future research directions related to MBST in
IoT, for answering RQ6.

RQ1- What are the formalisms mostly used for model specification in MBST
for IoT? In model-based security testing, several formalisms are used
to define the model of the SUT. The most used modeling language
to define the IoT system is UML. In 7 out of the 17 primary studies
UML class diagrams are used to describe the abstract IoT objects of the
system and their dependencies [14,37,43,75,76,78,80]. In the 85% of
the cases, the UML notation is complemented by the Object Constraint
Language (OCL) [38] in order to express the operations and expected
dynamic behavior of the system under test [14,37,75,76,78,80]. For
each operation (for instance of an IoT protocol), a set of parameters,
preconditions and postconditions is specified [75,76,80]. In only one
primary study [43], UML security profile is adopted that include
stereotypes to specify vulnerable points in the IoT system or parts
of it that are protected against violations. These stereotypes define

for instance the used encryption and handshaking protocols or the
properties that are protected with authentication and authorization
mechanisms [43]. Timed automata and their extensions are the second
commonly used formalism (used in 5 out of 17 primary studies) to
define the IoT system and the security aspects of interest [47,73,74,
81,82]. Timed automata represent a finite automata model that may
be defined as finite graphs extended with clocks and simple constraints
over states, clocks or deadlines.

Distributed IoT systems can be also modeled by using hierarchical
colored Petri Nets [49] that allow to model concurrency, synchro-
nization, communication, and resource sharing, or by using Business
Process Model and Notation (BPMN) models that allow to specify
end-to-end security scenarios [14]. Other formalisms adopted in only
one primary study are: topology graph [52]; data flow graph [77];
and semi-formal graph based formalism such as Multi Cloud Appli-
cation Composition Model (MACM) [53] to define all relevant system
components and data exchange among them. Finally, the authors of
[79] use behavioral models expressed by finite state machines (Mealy
machines) derived by automata learning for test cases generation.

To complement the IoT system specification, attack trees are used
in 4 out the 17 primary studies [47,52,73,74]. They allow to represent
graphically the strategy of a given attacker or malicious party to violate
the security mechanisms of the IoT system. These attack trees can be
transformed into a network of price timed automata [47,74] that are
an extension of timed automata in which costs are assigned to states
and edges. These price timed automata define the basic attack steps
the attacker needs to perform in order to achieve the goal and provide
the input for the tests generation. In 2 out of the 17 primary studies,
threat templates [53,77] are adopted for specifying security flaws or
a list of malicious behaviors of the attacker. In [53], the threat model is
automatically derived from the specification of the IoT system, modeled
using the MACM formalism. The threat templates or attack vectors
representing an abstraction of the threats or attacks of the system are

F. Lonetti et al. Information and Software Technology 164 (2023) 107326

Table 5
Primary studies classification.
Ref# Formalism Test Attack/threat Test Test Test Target Application
objective model technique generation execution application domain
[14] -UML class -security - -coverage of -TTCN-3 -C/C++ tests -encryption/ -
diagrams -conformance the model test cases executed decryption
-OCL -robustness -fuzzing using by TITAN in algorithms
-BPMN CertifylIt the FIT -oneM2M
IoT Lab based secure
communication
protocols
[73] -timed -functional -attack tree -ad hoc -abstract - -blockchain -automotive
automata -load strategy test cases based
-security secure
communication
[74] -price timed -security -attack tree -application -test - -web-based -healthcare
automata of scenarios monitoring
UPPAAL of operating
strategy room
[47] -price timed -security -attack tree -application -TTCN-3 -tests run -secure traffic -smart cities
automata of test cases on cloud control
UPPAAL
strategy
[43] -UML class -security -UML profile -penetration -abstract -Python -CAN bus -automotive
diagrams -performance testing models scripts messages
exchange
[75] -UML class -security - OCL -test cases -Junit tests -EDHOC -
diagrams -risk analysis structural using protocol
-OCL -MUD model coverage Certifylt implementation
extension
[49] -hierarchical -security - -MBT/CPN -XML tests - -authentication -
colored -conformance tool -authorization
Petri nets -encryption
[76] -UML class -security - -OCL -TTCN-3 -tests -authorization -
diagrams -conformance structural test cases executed -oneM2M-based
-OCL coverage using by TITAN post certification
-test purpose Certifylt in IoT monitoring
selection Testbed
[77] -data flow -security -threat -ad hoc -XML tests yes -MQTT -
diagrams -risk analysis templates strategy protocol
implementation
[78] -UML class -security - OCL -TTCN-3 -C++ tests -security -
diagrams -conformance structural test cases executed certification
-OCL -robustness coverage by TITAN process
-test purpose
selection
-fuzzing
[79] -Mealy -security - -fuzzing yes yes -MQTT -
machines -conformance protocol
implementation
[80] -UML class -security - -OCL -test cases -Junit tests -EDHOC -
diagrams structural using protocol
-OCL coverage Certifylt implementation
[81] -extended -security - -application -TTCN-3 -tests run on -attack -smart cities
timed of test cases TT4RT protection
automata UPPAAL platform mechanism
strategy
[82] -extended -security - -application -TTCN-3 -tests run on -attack -smart cities
timed of test cases cloud protection
automata UPPAAL mechanism
strategy
[52] -topology -security -attack tree -attack tree -attack yes -vulnerabilities -automotive
graph coverage vectors detection
[37] -UML class -security - -OCL -TTCN-3 -tests -C-0AP-DTLS -
diagrams -risk analysis structural test cases executed certification
-OCL coverage using by TITAN in
Certifylt the FIT
IoT Lab
[53] -MACM -security -automatically -penetration -testing plan yes -OEM -smart home
graph derived threat testing monitoring
model model system

F. Lonetti et al.

Information and Software Technology 164 (2023) 107326

Table 6
Primary studies vs attacks.
Ref# Denial of Dictionary Injection Brute force Eavesdropping Tampering Data leakage Key logger Social
service (DoS) engineering
[14] v
[73] v v 4 v
[74] v v v v
[47] v v v v
[43] v v
[75] v v
[49] v v
[76] v
[771 v
[78] v v
[79] v
[80] v v
[81]
[82] v
[52]
[37] v v
[53] v v v v v

mapped on the entities of the graph and used to automatically derive
security test cases representing attack scenarios.

RQ2: What are the main testing objectives of the proposed MBST approaches
in IoT? The main objective of MBST is to evaluate the security as-
pects of frameworks, infrastructures and solutions developed in the
IoT context [14,37,47,52,53,74,80-82]. In the 100% of the reviewed
studies, the overall main goal is to identify weak points in the IoT
system from the early design, by referring to the specified models of the
security mechanisms. More precisely, the addressed security properties
can deal with authentication or authorization (in 2 primary studies)
or encryption mechanisms (in 2 primary studies) aiming to protect
sensitive data in fog/cloud-based IoT applications. In 2 primary studies,
the testing phase addresses also generic IoT protection applications
against the most important attacks such as distributed DoS attacks or
eavesdropping [43,49]. The authors of [73] propose a testing strategy
for specific block-chain based secure vehicles communication and IoT
decentralized security framework.

Other MBST approaches address specific objectives related to the
security of the adopted IoT solutions. For instance, the authors of [75]
adopt a model-based testing approach to enhance the Manufacturer
Usage Description (MUD) profile, a standard aiming to specify IoT
device behavior, through access control lists. So, the results of model-
based testing are leveraged to derive augmented MUD profiles, which
consider additional security aspects. In 2 primary studies [14,78], MBT
is combined with fuzzing for assessing the robustness of the IoT
system. Another objective of MBST is the security risks analysis and
enforcement of security certification frameworks and processes for
specific categories of IoT products based on common standards (in 2
primary studies) [37,77]. The ability of certifying the security level of
a smart [oT device is a key aspect for its adoption and deployment
in the large scale IoT environment. To this purpose, MBST is used
to generate tests for the smart object according to a set of selected
vulnerabilities. The test report obtained after the testing process is
used to provide a refined vulnerability risk mark. During the certi-
fication process, this risk mark is adopted to derive a cybersecurity
label included in the generated certificate. The authors of [76] adopt
model-based testing for post-certification monitoring of IoT systems,
based on security policies management and enforcement. Specifically,
when IoT devices that do not conform to a target specification level
are deployed, test cases derived using MBST approaches are executed
for assessing their security functional behavior. In case of failure of a
subset of the test cases, test results are used as inputs to specify and
enforce policies for correcting vulnerable system behavior, as well as
for runtime monitoring of the policies deployed in the IoT environment.

Besides security aspects, the 30% of model-based testing strategies
allow to check the conformance of the implemented functionalities

10

against a formal specification [14,49,78,79] or IoT standard [76]. In
particular, the authors of [52,79] adopt model-based testing to test the
IoT system for conformance against a learned model, i.e. the goal is
to execute concrete inputs to check if the observed behavior from the
SUT conforms to the model. In [79], the conformance is checked by
fuzz testing that is able to detect security vulnerabilities or unexpected
behavior of the IoT system through exhaustive testing with invalid and
unexpected inputs. Finally, 2 primary studies [43,73] address also load
and performance requirements of the adopted IoT solutions whereas
in only one primary study the correct functional implementation of
security mechanisms is evaluated.

RQ3: What are the techniques mainly used for test cases generation/exe-
cution for MBST in IoT? More than 40% of the primary studies adopt
coverage criteria to guide the model exploration during the deriva-
tion of test cases. These coverage criteria are related to the adopted
modeling formalism. In 5 out of the 17 primary studies, structural
coverage of the OCL code, specifying the SUT model and containing
the operations of devices and protocols of the IoT system, is adopted.
Functional test cases are derived using the exploration of the symbolic
states of the model and covering the expected behaviors (test targets)
expressed by OCL post-conditions [14,37,75,78,80]. Specifically, test
cases are sequences of operations of the model from an initial state
to a state in which the test target is verified. In 2 studies [47,74]
attack tree models are used to derive abstract test cases. Coverage
of the attack tree model is adopted in [52] for (semi-)automated
generation of test cases. These test cases are specified as attack vectors
for specific targets covering a path of the model. A cost is associated
to each attack vector according to the addressed vulnerability. Test
cases are executed, starting from those with lower costs. However,
as showed in this review, test selection criteria based on behavioral
coverage of the model, which represent the standard approach to
generate functional tests in model-based testing, are not enough to deal
with security testing objectives. Then, additional test cases (security
functional test cases) are generated aiming to deal with specific test
purposes capturing the security testing objectives [76,78]. These test
purposes are formally or informally defined and represent operations or
states or behaviors. They are transformed into complete test cases able
to trigger unexpected behaviors of the system, or discover vulnerability
trying to bypass existing security mechanisms [37].

In the context of IoT security, almost 30% of validation techniques
combine formal verification and model-based testing. Specifically, test
generation techniques are based on model checking. The main idea is
that, after exploring all the states space of the model and verifying
the specific security properties, abstract test cases are generated from
this state space. These test cases support the correct implementation
of the IoT system and are used to verify the conformance of the

F. Lonetti et al.

implementation with the IoT formal specification. In 4 of the primary
studies [47,74,81,82] the test generation problem is represented as
a reachability problem that can be solved with an extension of the
well-known model checking tool UPPAAL [45]. The authors of [49]
instead adopt the Model-based testing/Colored Petri Net (MBT/CPN)
tool [83] for deriving abstract test cases from the verified and validated
specification of the IoT system. Using this model checking tool, the
model’s state space is explored and input and output events are con-
sidered to guide the generation of test cases. These test cases represent
different scenarios related to security issues.

In 2 of the analyzed studies, behavioral modeling is combined with
penetration testing [43,53] in order to discover security issues. Specif-
ically, in [43], penetration testing is applied to virtual prototypes
(executable models) instead of to physical prototypes. These virtual
prototypes simulate hardware and software components of IoT devices,
and the interconnections among devices. Tests are generated by attack
surface models specified by UML stereotypes that complement the
behavioral model represented by UML class diagram, and then executed
on the virtual prototype. The adoption of virtual prototypes allows to
identify vulnerabilities and to verify the applicability of security mech-
anisms at early stages of the development process. In [53], a testing
plan in terms of a list of attacks is generated by leveraging a public
catalogue of common attack patterns. This list of attacks is mapped on
the nodes of the MACM model and on the threats identified for the IoT
system under test, and it can thus be referred by a penetration tester
to systematically conduct the system security testing. In 3 studies, fuzz
testing is combined with model-based testing to assess the robustness
of the IoT system or to reveal possible faulty behaviors of the IoT
system [14,78,79]. Specifically, in [79], the behavioral model of the
system is automatically inferred by automata learning of a reference
implementation and adopted to derive the test cases. These test cases
are then concretized into invalid inputs or message sequences to the
SUT by using fuzzing techniques in order to reveal weaknesses of the
system.

Finally, 2 works [73,77] adopt ad hoc test strategies for test cases
generation. For instance, the authors of [77] adopt a threat-model
driven test cases generation, for creating test cases as sequences of
commands derived from a threat model. Security tests are obtained
by adding specific commands, representing the attack patterns derived
from publicly available vulnerabilities repositories and included in the
threat model, to the commands sequences. In the proposal of [73] an-
other different test strategy is used to generate test cases. In particular,
test cases are considered as trees whose nodes are collections of states
of the model of the SUT. Tests are generated as extensions of the test
tree by defining successors to leaf nodes, following the testing strategies
presented in [84].

In all the analyzed testing strategies, a set of test cases is generated.
The most used tool for tests generation is Certifylt [85] (adopted
in 5 out of the 17 primary studies). The generated test cases are
abstract test cases. The most used format (adopted in 40% of the
analyzed studies) for defining these test cases is a standardized test
scripting language called Testing and Test Control Notation version
3 (TTCN-3) [86]. In 2 primary studies, abstract test cases are defined
into XML format [49,77]. These abstract test cases are then translated
into executable tests specifying low-level implementation details. These
executable test cases are represented in different languages such as
JUnit tests (in 2 studies) [75,80] or C/C++ tests (in 2 studies) [14,78]
or Python scripts (in 1 study) [43]. Concerning the test execution,
the most adopted MBT tool is TITAN [87] (in 4 primary studies). To
support the automated test execution, test adapters are used, containing
all the functions defined in the model [37,76], which must be im-
plemented in order to execute the test suite on the real IoT devices.
The generated tests can be executed also on a cloud-oriented test
architecture [47,82], or specific large scale testbeds [76] including
the FIT IoT Lab [14,37], or the TT4RT platform [81].

11

Information and Software Technology 164 (2023) 107326

RQ4: What are the most targeted applications/domains of MBST in IoT?
The analysis of the collected data provides preliminaries evidences
that the targeted application domains span over core applications
domains of IoT systems [88], i.e. transportation, smart cities, smart
homes, and health care. The most targeted application domains of the
proposed testing solutions are: automotive (in 3 primary studies) and
smart cities (in 3 primary studies). The papers addressing the auto-
motive domain [43,52,73] provide frameworks or solutions to assure
secure transmission in Vehicle-to-Vehicle and Vehicle-to-Infrastructure
communications, also based on blockchain technology [73]. Other ap-
plications in automotive domain deal with secure messages exchange
on the CAN bus and vulnerabilities detection [43,52]. Concerning the
smart cities domain [47,81,82], the testing object is represented by:
(i) applications able to guarantee security of traffic control systems;
(ii) security mechanisms for standard application and network layer
protocols; (iii) protection approaches against the main security threats
in the IoT.

The remaining papers address healthcare (1 primary study) [74] or
smart home (1 primary study) [53] sectors. In both cases, the analyzed
solutions mainly perform security assessment of IoT based monitoring
systems. These monitoring systems aim to control either web-based
management of available resources in the operating rooms [74], or
home automation infrastructures such as the open source Open Energy
Monitor (OEM) system [53].

However, more than 50% of the selected primary studies do not deal
with any specific application domain. They present security evaluation
strategies of applications or communication protocols or trusted exe-
cution environments without targeting any specific domain [14,37,49,
75-80]. For instance, the authors of [75,80], apply model-based testing
strategies to analyze security properties of different implementations
of the Elliptic Curve Diffie-Hellman over COSE (EDHOC) protocol
for the authenticated key exchange in IoT devices. The works in [14,
49] evaluate authentication, authorization and encryption/decryption
mechanisms of trusted execution environments as well as protocols
for secure communication based on oneM2M standard, while the au-
thors of [77,79] apply testing strategies to find inconsistencies in
the Message Queuing Telemetry Transport (MQTT) implementa-
tions. Finally, other approaches present general testing solutions for
certification of IoT protocols such as Constrained Application Pro-
tocol (CoAP) and Datagram Transport Layer Security (DTLS) [37],
or IoT devices certification according to defined standards such as
oneM2M [76].

RQ5: What are the most targeted attacks of MBST in IoT? Table 6
presents the attacks targeted by at least one of the analyzed primary
studies. As can be seen, the most targeted type of attacks (in almost the
50% of the primary studies) is Denial of Service (DoS), occurring when
the attacker sends too many messages to the main server/host making
it unavailable to real users [37,43,53,75-78,82]. Specifically, the work
in [43] models the behavior of an attacker and the attack surface
of a DoS attack. The adopted model also allows for specifying the
performance and timing behavior of the system, enabling the analysis
of DoS attacks. In [43], such model-based approach has been applied
to an automotive system for the injection of malicious CAN messages
in the network. Other approaches aim to mitigate the risk of future DoS
attacks with a post certification monitoring solution [76].

As in other distributed systems, also in IoT environments, cracking
the password of protected files is another common goal of an attacker.
In 3 of the analyzed solutions, password cracking is modeled by using
attack trees [47,73,74] in which the root of the attack tree models the
main goal of the attacker, whereas the leaves correspond to the basic
attacks. Typical basic attacks that an intermediate node can exploit to
store some data packets and decipher them are: (i) dictionary attack
(in 4 out of 17 primary studies), if the key used to cipher data is a
dictionary word [43,47,73,74]; (ii) brute force attack (in 4 out of 17
primary studies), where a large number of possible key permutations

F. Lonetti et al.

are checked [73,74], (iii) key logger attack (in 3 out of 17 primary
studies) [53,73], able to monitor and record each information typed
on the computer; or finally (iv) social engineering (in 3 out of 17
primary studies), dealing with psychological manipulation of people in
disclosing confidential information.

Other approaches [37,75,78,80] define test patterns and test scenar-
ios able to: (i) evaluate the fulfillment of specific security properties
as confidentiality or availability of the IoT system; (ii) estimate the
risk that the system incurs in several attacks, in particular DoS attacks,
injection of malicious messages, or dictionary attacks.

Other types of attack addressed by model-based testing approaches
are: (i) eavesdropping attacks where an attacker intercepts the data
in transit or gains privileged access to them (in 5 out of 17 pa-
pers) [14,49,75]; (ii) tampering attacks resulting in unauthorized data
or system modification (in 2 out of 17 papers) [49,53]; (iii) data
leakage in which the adversary can access and disclose local data in
an unauthorized way (in 2 out of 17 papers) [53,79].

In [75] MBST is also used to extend the MUD profile in order to
detect and mitigate potential security attacks on the devices, including
DoS or eavesdropping attacks.

More general approaches [53,77] for security assessment of an IoT
system allow to define a list of attack patterns mapped on the nodes of
the IoT system model. These approaches leverage the CAPEC (Common
Attack Pattern Enumeration and Classification)® catalogue of common
attack patterns [53], maintained by MITRE, or other publicly avail-
able catalogs like the Common Vulnerabilities and Exposures (CVE)”
[52,77]. These attack patterns contain information to implement an
attack, like the preconditions, the needed resources as well as the
attack execution flow, and allow testers to evaluate the feasibility
of specific attacks [53] including DoS, eavesdropping, data leakage,
message injection, among the others.

Only 4 out of the 17 primary studies target at least 4 different
types of attacks whereas the remaining primary studies target 2 or
lesser types of attacks. Moreover, 3 primary studies [43,75,80] show
the effectiveness of the proposed solutions for assessing some specific
attacks in the context of a case study.

The types of attacks targeted in the analyzed primary studies cover
around 40% of the typical attacks of IoT systems described in Section
2.2. With respect to the attacks taxonomy analyzed in Section 2.2
and presented in [63], software attacks (such as virus, worms or
malware) and some types of network attacks (such as replay attack,
wormhole attack, routing information attack, sinkhole attack, RFID
spoofing, sybil attack, traffic analysis attack) are not considered in the
analyzed primary studies.

6. Challenges, gaps and future research directions related to MBST
in IoT

In this section, we answer RQ6: What are the challenges, gaps and
future research directions related to MBST in IoT? Specifically, this section
provides challenges and future research directions as emerged by our
analysis of the primary studies in MBST. Additional research issues and
gaps we identified are also presented.

Our Rapid Review confirms that MBST represents a suitable and
effective approach for testing IoT systems. Recent IoT systems are
using more and more standardized approaches for communication and
security.

More than 40% of the analyzed papers in this review target stan-
dard technologies. Specifically, standard communication protocols such
as MQTT [77,79] or CoAP [37] are addressed. Model-based testing

® MITRE. Common Attack Pattern Enumerations and Classifications.
Available from: https://capec.mitre.org.

7 MITRE. Common Vulnerabilities and Exposures. Available from: http:
//cve.mitre.org.

12

Information and Software Technology 164 (2023) 107326

solutions are applied to the EDHOC key establishment protocol for
constrained IoT devices, which is being standardized by the Internet
Engineering Task Force (IETF) [75,80]. Moreover, IoT systems and
their security functionalities are more and more modeled according
to the specifications proposed by oneM2M standard addressing se-
curity solutions and interoperability for Machine-to-Machine and IoT
technologies [37,76]. This growing adoption of standard technolo-
gies [75,76,79] in the IoT context allows to leverage the potential of
MBST of designing a generic model of the SUT based on the standards,
from which to derive then security test cases that can be executed over
different system implementations.

One major advantage of MBST is the ability to model general
security concepts of the IoT system and then, leveraging MDE tech-
nologies, systematically generate automated tests able to cover the
security test objectives of specific devices or network protocols [78].
However, another important challenge of MBST raised in almost 30%
of the analyzed papers is full automation, due to the increasingly large
and heterogeneous nature of devices and network technologies of IoT
systems [37,75,77,78,80].

A key challenge of MBST is represented by the complexity of the
model definition [52,79]. [oT devices and protocols have a lot of
peculiarities and security constraints. In 4 out the 17 primary studies, is
evidenced the necessity to extend existing modeling formalisms [81,
82] to capture the heterogeneous elements of IoT systems and provide
security test models or threat models covering all interesting security
aspects of the system under test and its environment [49,77]. From
the results collected in this review, more than 40% of primary studies
integrate different models to specify different aspects of the IoT system
behavior. For instance, data flow diagrams are used to model all
relevant system components of an SUT and their interactions, while
threat models are used to abstract the threats to the system that are
mapped on the data flow diagrams for test cases generation [77]. UML
class diagrams [43,75,76,78] are leveraged to define the IoT system
behavior while UML security profiles [43] model vulnerable points
in the IoT system or parts of the system that are protected against
violations. Moreover, specific security issues are modeled using attack
trees [47,52,73,74] or threat templates [77].

The model definition can be a very expensive and effort consum-
ing task for complex and large scale IoT systems. To overcome this
problem, in 2 of the analyzed primary studies, automata learning
techniques [52,79] can be adopted to infer a behavioral model of
the tested system. This behavioral model can be for instance inferred
by a reference implementation of the system and used for test cases
derivation [79]. Although learning-based approaches are becoming
widely used in a variety of contexts, there is also increasing debate on
resilience related aspects when employed in critical sectors, e.g. with
reference to the degree of explainability they can achieve [89], or about
security issues they can be exposed to [90]. Therefore, we believe there
is opportunity to explore other directions. Among them, an interesting
solution to investigate in the future to address the complexity of the
model definition could be the modularization of the test model. The
main goal will be to understand how this technique, well-known for the
specification and modeling of large scale systems, could be leveraged
in MBST for designing and testing the security requirements of IoT
systems. However, an additional challenge to tackle in this context will
be that notoriously security is a non compositional property. A gap
we identified in the analysis of the primary studies is that existing IoT
modeling solutions do not explicitly target the dynamicity and evolu-
tion of real IoT systems during the SUT model definition. Therefore,
in our vision, a future research issue in MBST will be to investigate
context-awareness and dynamic evolution modeling approaches of
IoT entities, as well as effective strategies leveraging these enhanced
models to drive automated generation of security tests.

In the analyzed primary studies, a new level of complexity in
security testing of IoT is represented by the scalability and hetero-
geneity of IoT devices as well as by the IoT data features. As claimed

https://capec.mitre.org
http://cve.mitre.org
http://cve.mitre.org

F. Lonetti et al.

in the analyzed studies, the large amount of heterogeneous devices,
the heterogeneous communication protocols and network conditions
(overburdened Wi-Fi channels, unreliable network hardware, and slow
or inconsistent Internet connections) [14,78], the different sensitivity
levels of data [73], the heterogeneous technologies and data format
[76] introduce a lot of IoT scenarios that need to be tested to assess
the security of IoT devices and applications as well as the secure com-
munication without loss of data [14]. The extensions of the security
models in order to include time information represent a possible solu-
tion to allow the verification of scalability and performance properties
[49]. Moreover, MBST is more flexible to be adapted to heterogeneous
and dynamic environments than conventional testing characterized by
manual processes or script-based test automation [77]. The automated
generation of test cases and the reusability of the security models that
can be enriched with the scalability constraints that the SUT will have
to abide by, are two key potential advantages of MBTS to address the
impact of scalability and heterogeneity of devices in the testing of the
IoT-based systems.

The analysis of the selected primary studies evidenced a multi-
technology convergence [37,43,53,79] in the security assessment
of IoT systems. In more than 30% of the analyzed studies, MBT is
combined with other security test strategies such as penetration test-
ing [43,53,74], fuzz testing [79] or learning techniques for model
inference [79], in order to discover security issues and to manage the
testing requirements during the IoT device’s lifecycle. In our vision,
the adoption of multiple strategies such as fuzzing, penetration, model
learning, represents a research direction that needs to be strengthened
in the future for security assessment of IoT systems, to overcome the
limitations of individual testing techniques and address the complexity
and peculiarities of the IoT scenario at hand.

We think that the analyzed papers in this Rapid Review also miss
to address another important challenge of the security validation of
the IoT systems that is related to the growing adoption of open
source technologies. Open-source and open-specification designs are
frequently used in IoT technology and pose additional challenges in
terms of security and vulnerability detection [91]. Current risk assess-
ment and validation processes, including model-based security testing
technologies, need to take into account a much wider landscape of
threats of IoT systems related also to the adoption of open hardware.
The need in MBST is to consider complex modeling scenarios including
an heterogeneity of open software and open hardware components. For
designing IoT systems using open hardware, the open source commu-
nity adopts for instance the RISC-V Instruction Set Architecture (ISA)
formalization. Exploiting existing open-source formal ISA semantics
could be a first research direction in order to address a wide range of
security testing objectives, while also taking into consideration various
architecture features (e.g. speculation mechanisms, caching). The ob-
tained model represents itself an open artifact to be used for IoT system
designing and testing.

The attacks addressed by the analyzed primary studies are around
40% of the attacks defined in the taxonomy presented in [63]. This par-
tial coverage of the common attack types represents another research
gap worthy of further investigation in model-based security testing.
Specifically, according to the taxonomy presented in [63], the network
and software attacks seem to be the lesser considered attacks by the
analyzed studies. This could be due to the widespread adoption of other
popular test techniques such as penetration testing that makes possible
to detect flaws in the system by executing different types of attacks
against the network and software systems. However, penetration testing
is not a systematic approach and can be applied after the system
development. The idea of future research would be to leverage the
advantages of MBT to complement the application of other testing
solutions (such as penetration testing) in order to address security
problems also during the early stages of IoT system development.

Finally, 3 of the analyzed studies revealed the need to apply the
proposed MBST solutions to concrete and real size case studies or
larger testbeds with a higher heterogeneity of IoT devices to better
substantiate the efficiency and scalability of such solutions [76,81,82].

13

Information and Software Technology 164 (2023) 107326
7. Threats to validity of our study

In this section, we present the threats to validity of this Rapid
Review. We distinguish the internal, construct and external threats to
validity. Regarding the internal validity, the expertise of the authors
may have influenced the selection and classification of the primary
studies. To reduce this risk, each paper has been randomly assigned
to an author for selection and initial classification; moreover each of
the selected primary studies has been read by at least two authors.
Several meeting have been carried out during the selection process to
discuss possible doubts. Finally, the initial classification of all primary
studies has been discussed and finalized among all the authors. The
adopted classification might not include all the dimensions character-
izing the model-based security testing research in the IoT domain. To
mitigate this risk, we defined our classification following a bottom-up
approach, leveraging the data of the primary studies for defining the
main dimensions of our classification.

With respect to the construct validity, i.e., the coherence of the
adopted measures to the intended properties, the following potential
threats are identified: (i) search string construction. A different set of
primary studies may have been derived with a different search string.
This threat characterizes all systematic surveys. To mitigate it, we
adopted a very general and comprehensive search string; (ii) digital
library. We selected the Scopus digital library. We might have missed
some relevant papers not available in Scopus. The risk is mitigated since
Scopus includes papers belonging to many of the most relevant software
engineering digital libraries. Moreover, we followed the guidelines for
Rapid Review proposed in [69] and complemented the automated
search with backward and forward snowballing over Google Scholar to
identify the primary studies; (iii) inclusion and exclusion criteria. There
is the possibility that different inclusion/exclusion criteria might have
provided different results. Moreover, considering for all the papers their
entire content might have produced more accurate results. To mitigate
this issue, in our research method we applied the guidelines for sys-
tematic reviews in software engineering [35]; (iv) quality of reviewed
studies. As we did not conduct a quality assessment phase according
to Rapid Review guidelines [69], our study could also cover primary
studies that do not fully comply with quality criteria usually applied
in literature selection in Systematic Literature Reviews. However, we
excluded studies that had not undergone a peer-review process, which
should anyhow guarantee the scientific quality of the selected papers.

Finally, external validity concerns potential issues related to the
generalization of the results. This is an intrinsic threat of all the review
studies, including this one. To the best of our knowledge, this study
represents the first systematic review on model-based security testing
in IoT domain. Moreover, the threat is mitigated since we considered all
papers published until April 2022, thus well representative of current
trends.

8. Discussion and conclusion

Devices heterogeneity and large scale objects and networks char-
acterize more and more IoT systems development making the security
assessment of the IoT platforms increasingly challenging. In this paper,
we proposed the first Rapid Review of literature concerning MBST for
IoT. Our systematic search on the Scopus digital library, complemented
by snowballing on Google Scholar, led us to select 17 primary studies
that have been classified along several dimensions. In the following we
present our key findings and hint at interesting directions for future
work.

8.1. Summary of key findings

We present below the key findings of our study that summarize the
answers to RQ1, RQ2, RQ3, RQ4 and RQ5 respectively:

F. Lonetti et al.

+ Although different formalisms have been used for modeling the
SUT (see Table 5), we could observe a slight preference for UML
class diagrams that have been adopted in 7 of the selected works.
In all of them but one UML has been complemented by the OCL
language for specifying the expected dynamic behavior. Variants
of timed automata are the second most prevalent formalism,
used in 5 of the studies. Finally, some authors adopted specialized
graph models.

When performing MBST of IoT, the test objectives are of course
closely related to security, but involving different aspects, such
as identifying potential vulnerabilities or vice versa certifying
the provided security levels against specified risks. In other
studies MBST was conducted for verifying the conformance of
the security mechanisms against a formal specification or for
evaluating their performance.

In MBST, the adopted test case generation techniques are
clearly related with the modeling formalism, as they are
driven by the aim of covering such a model. Hence, with most of
the studies adopting UML+OCL, test generation aims at coverage
of the OCL code, whereas for those using timed automata models,
the generation is based on model-checking techniques, and
most often using the UPPAAL tool. In few studies model-based
testing is enforced by applying it in combination with penetra-
tion testing or fuzz testing. Concerning instead test execution,
many different tools are adopted, with a slight prevalence of
TITAN.

MBST has been applied mostly to the domains of smart city and
automotive, although several studies do not explicitly specify a
targeted application domain.

Last but not least we analyzed which types of attacks are ad-
dressed, and found that 8 of the studies tackled Denial of Service.
However, as clearly shown in Table 6, an interesting finding was
that almost all of the studies could actually address more than one
type of attacks, thus testifying the flexibility and effectiveness of
MBST.

Overall we can conclude that MBST can support the validation
of IoT systems over a broad range of test objectives in emerging
application domains. According to the results of this study, MBST has
been applied to core IoT domains and has been proven adequate to
assess the security of the system against several well-known IoT attacks.

As a final wrap up, model-based security testing in IoT is a very re-
cent research topic, in fact all the analyzed papers have been published
in the last five years. The papers analyzed in this review are in most
cases exploratory studies. Therefore, the proposed MBST techniques
have not been studied extensively and relevant empirical comparisons
on real size IoT case studies are still missing in the literature.

8.2. Future research directions

In our study we also collected a set of open challenges that point to
promising research directions. We summarize the research directions
answering to RQ6 as follows:

+ Probably the very first challenge towards facilitating a smoother
adoption of MBST for IoT is that of extending the existing
formalisms for adequately modeling the peculiarities and con-
straints of such systems, and thus improving the degree of testing
automation with regard to the derivation of the test cases from
the enhanced system model.

Among the specific needs that a model should target, we iden-
tified as crucial ones the capability to capture dynamic evo-
lution and to manage context-awareness of IoT systems, as
well as ways to address complexity by supporting modular test
modeling.

Information and Software Technology 164 (2023) 107326

+ The field of MBST of IoT will certainly mature through the
introduction of standardized technologies and possibly also the
adoption of open source specifications.

« Finally, to facilitate research progress more complex and larger
case studies/test-beds should be available.

Triggered by current state of the art, as analyzed in this Rapid
Review, and based on the rich set of remaining open challenges, we
expect much more interesting and extensive research to appear in the
next years, showing the benefits of applying MBST to IoT complex
scenarios.

Moreover, the convergence of model-based security testing with
other security test strategies, such as penetration testing or fuzz testing,
seems a promising research direction to address the complexity and
peculiarities of the IoT scenarios.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability
Data will be made available on request.
Acknowledgments

This work was partially supported by project SERICS (PE00000014)
under the MUR National Recovery and Resilience Plan funded by the
European Union - NextGenerationEU.

References

[1] P. Anand, Y. Singh, A. Selwal, M. Alazab, S. Tanwar, N. Kumar, IoT vulnerability
assessment for sustainable computing: threats, current solutions, and open
challenges, IEEE Access 8 (2020) 168825-168853, http://dx.doi.org/10.1109/
ACCESS.2020.3022842.

[2] 1. Nadir, Z. Ahmad, H. Mahmood, G.A. Shah, F. Shahzad, M. Umair, H. Khan,
U. Gulzar, An auditing framework for vulnerability analysis of IoT system, in:
Proceedings of the IEEE European Symposium on Security and Privacy Work-
shops, EuroS&PW, IEEE, 2019, pp. 39-47, http://dx.doi.org/10.1109/EuroSPW.
2019.00011.

[3] Y. Atwady, M. Hammoudeh, A survey on authentication techniques for the
internet of things, in: Proceedings of the International Conference on Future
Networks and Distributed Systems, 2017, http://dx.doi.org/10.1145/3102304.
3102312.

[4] R. Johari, I. Kaur, R. Tripathi, K. Gupta, Penetration testing in IoT network, in:
Proceedings of 5th International Conference on Computing, Communication and
Security, ICCCS, IEEE, 2020, pp. 1-7, http://dx.doi.org/10.1109/ICCCS49678.
2020.9276853.

[5] S. Siboni, V. Sachidananda, Y. Meidan, M. Bohadana, Y. Mathov, S. Bhairav, A.
Shabtai, Y. Elovici, Security testbed for Internet-of-Things devices, IEEE Trans.
Reliab. 68 (1) (2019) 23-44, http://dx.doi.org/10.1109/TR.2018.2864536.

[6] M. Utting, A. Pretschner, B. Legeard, A taxonomy of model-based testing
approaches, Softw. Test. Verif. Reliab. 22 (5) (2012) 297-312, http://dx.doi.
org/10.1002/stvr.456.

[7] V. Garousi, A.B. Keles, Y. Balaman, Z.0. Giiler, A. Arcuri, Model-based testing in
practice: An experience report from the web applications domain, J. Syst. Softw.
180 (2021) 111032, http://dx.doi.org/10.1016/].jss.2021.111032.

[8] J. Peleska, J. Brauer, W.-1. Huang, Model-based testing for avionic systems proven
benefits and further challenges, in: Proceedings of International Symposium
on Leveraging Applications of Formal Methods, Springer, 2018, pp. 82-103,
http://dx.doi.org/10.1007/978-3-030-03427-6_11.

[9] B. Morin, N. Harrand, F. Fleurey, Model-based software engineering to tame
the IoT jungle, IEEE Softw. 34 (1) (2017) 30-36, http://dx.doi.org/10.1109/MS.
2017.11.

[10] J.E. Siegel, S. Kumar, S.E. Sarma, The future internet of things: Secure, efficient,
and model-based, IEEE Internet Things J. 5 (4) (2017) 2386-2398, http://dx.
doi.org/10.1109/JI0T.2017.2755620.

[11] J.C. Kirchhof, B. Rumpe, D. Schmalzing, A. Wortmann, MontiThings: Model-
driven development and deployment of reliable IoT applications, J. Syst. Softw.
183 (2022) 111087, http://dx.doi.org/10.1016/].jss.2021.111087.

http://dx.doi.org/10.1109/ACCESS.2020.3022842
http://dx.doi.org/10.1109/ACCESS.2020.3022842
http://dx.doi.org/10.1109/ACCESS.2020.3022842
http://dx.doi.org/10.1109/EuroSPW.2019.00011
http://dx.doi.org/10.1109/EuroSPW.2019.00011
http://dx.doi.org/10.1109/EuroSPW.2019.00011
http://dx.doi.org/10.1145/3102304.3102312
http://dx.doi.org/10.1145/3102304.3102312
http://dx.doi.org/10.1145/3102304.3102312
http://dx.doi.org/10.1109/ICCCS49678.2020.9276853
http://dx.doi.org/10.1109/ICCCS49678.2020.9276853
http://dx.doi.org/10.1109/ICCCS49678.2020.9276853
http://dx.doi.org/10.1109/TR.2018.2864536
http://dx.doi.org/10.1002/stvr.456
http://dx.doi.org/10.1002/stvr.456
http://dx.doi.org/10.1002/stvr.456
http://dx.doi.org/10.1016/j.jss.2021.111032
http://dx.doi.org/10.1007/978-3-030-03427-6_11
http://dx.doi.org/10.1109/MS.2017.11
http://dx.doi.org/10.1109/MS.2017.11
http://dx.doi.org/10.1109/MS.2017.11
http://dx.doi.org/10.1109/JIOT.2017.2755620
http://dx.doi.org/10.1109/JIOT.2017.2755620
http://dx.doi.org/10.1109/JIOT.2017.2755620
http://dx.doi.org/10.1016/j.jss.2021.111087

F. Lonetti et al.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

1. Berrouyne, M. Adda, J.-M. Mottu, M. Tisi, A model-driven methodology to
accelerate software engineering in the Internet of Things, IEEE Internet Things
J. (2022) http://dx.doi.org/10.1109/JI0T.2022.3170500.

G. Fortino, R. Gravina, W. Russo, C. Savaglio, Modeling and simulating Internet-
of-Things systems: A hybrid agent-oriented approach, Comput. Sci. Eng. 19 (5)
(2017) 68-76, http://dx.doi.org/10.1109/MCSE.2017.3421541.

A. Ahmad, F. Bouquet, E. Fourneret, B. Legeard, Model-based testing for internet
of things systems, in: Advances in Computers, Vol. 108, Elsevier, 2018, pp. 1-58,
http://dx.doi.org/10.1016/bs.adcom.2017.11.002.

M. Felderer, P. Zech, R. Breu, M. Biichler, A. Pretschner, Model-based security
testing: a taxonomy and systematic classification, Softw. Test. Verif. Reliab. 26
(2) (2016) 119-148, http://dx.doi.org/10.1002/stvr.1580.

M. Peroli, F. De Meo, L. Vigano, D. Guardini, MobSTer: A model-based security
testing framework for web applications, Softw. Test. Verif. Reliab. 28 (8) (2018)
€1685, http://dx.doi.org/10.1002/stvr.1685.

S. Mahmood, H.N. Nguyen, S.A. Shaikh, Systematic threat assessment and
security testing of automotive over-the-air (OTA) updates, Veh. Commun. 35
(2022) 100468, http://dx.doi.org/10.1016/j.vehcom.2022.100468.

D.A. Robles-Ramirez, P.J. Escamilla-Ambrosio, T. Tryfonas, IoTsec: UML ex-
tension for internet of things systems security modelling, in: Proceedings of
International Conference on Mechatronics, Electronics and Automotive Engi-
neering, ICMEAE, IEEE, 2017, pp. 151-156, http://dx.doi.org/10.1109/ICMEAE.
2017.20.

C. Bodei, P. Degano, G.-L. Ferrari, L. Galletta, Modelling and analysing IoT
systems, J. Parallel Distrib. Comput. 157 (2021) 233-242, http://dx.doi.org/10.
1016/j.jpdc.2021.07.004.

F. Anwer, M. Nazir, K. Mustafa, Security testing, in: J.M. H. Mohanty, A.
Balakrishnan (Eds.), Trends in Software Testing, Springer, 2017, pp. 35-66,
http://dx.doi.org/10.1007/978-981-10-1415-4_3.

G. Murad, A. Badarneh, A. Qusef, F. Almasalha, Software testing techniques
in IoT, in: Proceedings of 8th International Conference on Computer Science
and Information Technology, CSIT, IEEE, 2018, pp. 17-21, http://dx.doi.org/10.
1109/CSIT.2018.8486149.

J.P. Dias, F. Couto, A.C. Paiva, H.S. Ferreira, A brief overview of existing tools
for testing the internet-of-things, in: Proceedings of International Conference on
Software Testing, Verification and Validation Workshops, ICSTW, IEEE, 2018,
pp. 104-109, http://dx.doi.org/10.1109/ICSTW.2018.00035.

M. Cortés, R. Saraiva, M. Souza, P. Mello, P. Soares, Adoption of software testing
in internet of things: A systematic literature mapping, in: Proceedings of the IV
Brazilian Symposium on Systematic and Automated Software Testing, 2019, pp.
3-11, http://dx.doi.org/10.1145/3356317.3356326.

T. Kh, I. Hamarash, Model-Based Quality Assessment of Internet of Things Soft-
ware Applications: A Systematic Mapping Study, Int. J. Interact. Mob. Technol.
(iJIM) 14 (2020) 128-152, http://dx.doi.org/10.3991/ijim.v14i09.13431.

M. Bures, M. Klima, V. Rechtberger, X. Bellekens, C. Tachtatzis, R. Atkinson,
B.S. Ahmed, Interoperability and integration testing methods for IoT systems:
A systematic mapping study, in: Proceedings of International Conference on
Software Engineering and Formal Methods, Springer, 2020, pp. 93-112, http:
//dx.doi.org/10.1007/978-3-030-58768-0_6.

S. Mahmood, H.N. Nguyen, S.A. Shaikh, Automotive cybersecurity testing:
Survey of testbeds and methods, in: Digital Transformation, Cyber Security and
Resilience of Modern Societies, Springer, 2021, pp. 219-243, http://dx.doi.org/
10.1007/978-3-030-65722-2_14.

O.B. Taugqeer, S. Jan, A.O. Khadidos, A.O. Khadidos, F.Q. Khan, S. Khattak,
Analysis of security testing techniques, Intell. Autom. Soft Comput. 29 (1) (2021)
291-306, http://dx.doi.org/10.32604/iasc.2021.017260.

S. Zhu, S. Yang, X. Gou, Y. Xu, T. Zhang, Y. Wan, Survey of testing methods
and testbed development concerning Internet of Things, Wirel. Pers. Commun.
123 (1) (2022) 165-194, http://dx.doi.org/10.1007/s11277-021-09124-5.

F. Heiding, S. Katsikeas, R. Lagerstrom, Research communities in cyber security
vulnerability assessments: A comprehensive literature review, Comp. Sci. Rev.
48 (2023) 100551, http://dx.doi.org/10.1016/j.cosrev.2023.100551.

E. Ahmad, Model-based system engineering of the Internet of Things: A
bibliometric literature analysis, IEEE Access (2023) http://dx.doi.org/10.1109/
ACCESS.2023.3277429.

F. Sommer, R. Kriesten, F. Kargl, Survey of model-based security testing
approaches in the automotive domain, IEEE Access (2023) http://dx.doi.org/
10.1109/ACCESS.2023.3282176.

B. Cartaxo, G. Pinto, S. Soares, Rapid reviews in software engineering, in:
Contemporary Empirical Methods in Software Engineering, Springer, 2020, pp.
357-384, http://dx.doi.org/10.1007/978-3-030-32489-6_13.

C. Hamel, A. Michaud, M. Thuku, B. Skidmore, A. Stevens, B. Nussbaumer-Streit,
C. Garritty, Defining rapid reviews: a systematic scoping review and thematic
analysis of definitions and defining characteristics of rapid reviews, J. Clin.
Epidemiol. 129 (2021) 74-85, http://dx.doi.org/10.1016/j.jclinepi.2020.09.041.
M. Thelwall, P. Sud, Scopus 1900-2020: Growth in articles, abstracts, countries,
fields, and journals, Quant. Sci. Stud. 3 (1) (2022) 37-50, http://dx.doi.org/10.
1162/qss_a_00177.

B. Kitchenham, Procedures for Performing Systematic Reviews, Vol. 33, No.
2004, Keele University, Keele, UK, (ISSN: 1353-7776) 2004, pp. 1-26.

15

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

Information and Software Technology 164 (2023) 107326

N. Medvidovic, D.S. Rosenblum, D.F. Redmiles, J.E. Robbins, Modeling soft-
ware architectures in the unified modeling language, ACM Trans. Softw. Eng.
Methodol. 11 (1) (2002) 2-57, http://dx.doi.org/10.1145/504087.504088.

S.N. Matheu-Garcia, J.L. Hernandez-Ramos, A.F. Skarmeta, G. Baldini, Risk-based
automated assessment and testing for the cybersecurity certification and labelling
of IoT devices, Comput. Stand. Interfaces 62 (2019) 64-83, http://dx.doi.org/10.
1016/j.¢si.2018.08.003.

J. Cabot, M. Gogolla, Object constraint language (OCL): a definitive guide,
in: International School on Formal Methods for the Design of Computer,
Communication and Software Systems, Springer, 2012, pp. 58-90, http://dx.doi.
org/10.1007/978-3-642-30982-3_3.

A. Ahmad, F. Bouquet, E. Fourneret, F. Le Gall, B. Legeard, Model-based testing
as a service for IoT platforms, in: Proceedings of International Symposium
on Leveraging Applications of Formal Methods, Springer, 2016, pp. 727-742,
http://dx.doi.org/10.1007/978-3-319-47169-3_55.

J. Jiirjens, UMLsec: Extending UML for secure systems development, in: Proceed-
ings of International Conference on the Unified Modeling Language, Springer,
2002, pp. 412-425, http://dx.doi.org/10.1007/3-540-45800-X_32.

T. Lodderstedt, D. Basin, J. Doser, Secureuml: A UML-based modeling language
for model-driven security, in: Proceedings of International Conference on the
Unified Modeling Language, Springer, 2002, pp. 426-441, http://dx.doi.org/10.
1007/3-540-45800-X_33.

Y. Mahmoodi, S. Reiter, A. Viehl, O. Bringmann, W. Rosenstiel, Model-guided
security analysis of interconnected embedded systems, in: Proceedings of Inter-
national Conference on Model-Based Software and Systems Engineering, 2018,
pp. 602-609, http://dx.doi.org/10.5220/0006724606020609.

Y. Mahmoodi, S. Reiter, A. Viehl, O. Bringmann, W. Rosenstiel, Attack surface
modeling and assessment for penetration testing of IoT system designs, in:
Proceedings of 21st Euromicro Conference on Digital System Design, DSD, IEEE,
2018, pp. 177-181, http://dx.doi.org/10.1109/DSD.2018.00043.

J. Arcile, E. André, Timed automata as a formalism for expressing security: A
survey on theory and practice, ACM Comput. Surv. (2022) http://dx.doi.org/10.
1145/3534967.

K.G. Larsen, F. Lorber, B. Nielsen, 20 years of UPPAAL enabled industrial
model-based validation and beyond, in: Proceedings of International Symposium
on Leveraging Applications of Formal Methods, Springer, 2018, pp. 212-229,
http://dx.doi.org/10.1007/978-3-030-03427-6_18.

H.S. Lallie, K. Debattista, J. Bal, A review of attack graph and attack tree
visual syntax in cyber security, Comput. Sci. Rev. 35 (2020) 100219, http:
//dx.doi.org/10.1016/j.cosrev.2019.100219.

M. Krichen, R. Alroobaea, A new model-based framework for testing security
of IoT systems in smart cities using attack trees and price timed automata, in:
Proceedings of 14th International Conference on Evaluation of Novel Approaches
to Software Engineering, SCITEPRESS-Science and Technology Publications,
2019, pp. 570-577, http://dx.doi.org/10.5220/0007830605700577.

V. Gehlot, From Petri NETS to colored Petri NETS: A tutorial introduction to
nets based formalism for modeling and simulation, in: Proceedings of Winter
Simulation Conference, WSC, 2019, pp. 1519-1533, http://dx.doi.org/10.1109/
WSC40007.2019.9004691.

D.C.G. Valadares, A.A. de Carvalho César Sobrinho, A. Perkusich, K.C. Gorgonio,
Formal verification of a trusted execution environment-based architecture for
IoT applications, IEEE Internet Things J. 8 (23) (2021) 17199-17210, http:
//dx.doi.org/10.1109/J10T.2021.3077850.

U. Khedker, A. Sanyal, B. Sathe, Data Flow Analysis: Theory and Prac-
tice, CRC Press, Taylor & Francis Group, 2009, http://dx.doi.org/10.1201/
9780849332517.

R. Wirtz, M. Heisel, A systematic method to describe and identify security threats
based on functional requirements, in: Proceedings of International Conference
on Risks and Security of Internet and Systems, Springer, 2019, pp. 205-221,
http://dx.doi.org/10.1007/978-3-030-12143-3_17.

S. Marksteiner, P. Priller, A model-driven methodology for automotive cyber-
security test case generation, in: Proceedings of IEEE European Symposium on
Security and Privacy Workshops, EuroS&PW, IEEE, 2021, pp. 129-135, http:
//dx.doi.org/10.1109/EuroSPW54576.2021.00021.

M. Rak, G. Salzillo, D. Granata, ESSecA: An automated expert system for threat
modelling and penetration testing for IoT ecosystems, Comput. Electr. Eng. 99
(2022) 107721, http://dx.doi.org/10.1016/j.compeleceng.2022.107721.

T. Allweyer, BPMN 2.0: Introduction to the Standard for Business Process
Modeling, BoD-Books on Demand, ISBN: 978-3-8370-9331-5, 2016.

S. Daoudagh, F. Lonetti, E. Marchetti, XACMET: XACML testing & modeling: An
automated model-based testing solution for access control systems, Softw. Qual.
J. 28 (1) (2020) 249-282, http://dx.doi.org/10.1007/s11219-019-09470-5.

A. Lunkeit, I. Schieferdecker, Model-based security testing-deriving test models
from artefacts of security engineering, in: Proceedings of International Confer-
ence on Software Testing, Verification and Validation Workshops, ICSTW, IEEE,
2018, pp. 244-251, http://dx.doi.org/10.1109/ICSTW.2018.00056.

A. Miller, S. Maple, R. Powell, V. Danen, E. Papadopoulos, State of open
source security report, Technical Report, Snyk, London, Tel Aviv, Boston, 2020,
Retrieved on July 29th, 2023 from https://snyk.io/series/open-source-security/
report-2020/.

http://dx.doi.org/10.1109/JIOT.2022.3170500
http://dx.doi.org/10.1109/MCSE.2017.3421541
http://dx.doi.org/10.1016/bs.adcom.2017.11.002
http://dx.doi.org/10.1002/stvr.1580
http://dx.doi.org/10.1002/stvr.1685
http://dx.doi.org/10.1016/j.vehcom.2022.100468
http://dx.doi.org/10.1109/ICMEAE.2017.20
http://dx.doi.org/10.1109/ICMEAE.2017.20
http://dx.doi.org/10.1109/ICMEAE.2017.20
http://dx.doi.org/10.1016/j.jpdc.2021.07.004
http://dx.doi.org/10.1016/j.jpdc.2021.07.004
http://dx.doi.org/10.1016/j.jpdc.2021.07.004
http://dx.doi.org/10.1007/978-981-10-1415-4_3
http://dx.doi.org/10.1109/CSIT.2018.8486149
http://dx.doi.org/10.1109/CSIT.2018.8486149
http://dx.doi.org/10.1109/CSIT.2018.8486149
http://dx.doi.org/10.1109/ICSTW.2018.00035
http://dx.doi.org/10.1145/3356317.3356326
http://dx.doi.org/10.3991/ijim.v14i09.13431
http://dx.doi.org/10.1007/978-3-030-58768-0_6
http://dx.doi.org/10.1007/978-3-030-58768-0_6
http://dx.doi.org/10.1007/978-3-030-58768-0_6
http://dx.doi.org/10.1007/978-3-030-65722-2_14
http://dx.doi.org/10.1007/978-3-030-65722-2_14
http://dx.doi.org/10.1007/978-3-030-65722-2_14
http://dx.doi.org/10.32604/iasc.2021.017260
http://dx.doi.org/10.1007/s11277-021-09124-5
http://dx.doi.org/10.1016/j.cosrev.2023.100551
http://dx.doi.org/10.1109/ACCESS.2023.3277429
http://dx.doi.org/10.1109/ACCESS.2023.3277429
http://dx.doi.org/10.1109/ACCESS.2023.3277429
http://dx.doi.org/10.1109/ACCESS.2023.3282176
http://dx.doi.org/10.1109/ACCESS.2023.3282176
http://dx.doi.org/10.1109/ACCESS.2023.3282176
http://dx.doi.org/10.1007/978-3-030-32489-6_13
http://dx.doi.org/10.1016/j.jclinepi.2020.09.041
http://dx.doi.org/10.1162/qss_a_00177
http://dx.doi.org/10.1162/qss_a_00177
http://dx.doi.org/10.1162/qss_a_00177
http://refhub.elsevier.com/S0950-5849(23)00181-7/sb35
http://refhub.elsevier.com/S0950-5849(23)00181-7/sb35
http://refhub.elsevier.com/S0950-5849(23)00181-7/sb35
http://dx.doi.org/10.1145/504087.504088
http://dx.doi.org/10.1016/j.csi.2018.08.003
http://dx.doi.org/10.1016/j.csi.2018.08.003
http://dx.doi.org/10.1016/j.csi.2018.08.003
http://dx.doi.org/10.1007/978-3-642-30982-3_3
http://dx.doi.org/10.1007/978-3-642-30982-3_3
http://dx.doi.org/10.1007/978-3-642-30982-3_3
http://dx.doi.org/10.1007/978-3-319-47169-3_55
http://dx.doi.org/10.1007/3-540-45800-X_32
http://dx.doi.org/10.1007/3-540-45800-X_33
http://dx.doi.org/10.1007/3-540-45800-X_33
http://dx.doi.org/10.1007/3-540-45800-X_33
http://dx.doi.org/10.5220/0006724606020609
http://dx.doi.org/10.1109/DSD.2018.00043
http://dx.doi.org/10.1145/3534967
http://dx.doi.org/10.1145/3534967
http://dx.doi.org/10.1145/3534967
http://dx.doi.org/10.1007/978-3-030-03427-6_18
http://dx.doi.org/10.1016/j.cosrev.2019.100219
http://dx.doi.org/10.1016/j.cosrev.2019.100219
http://dx.doi.org/10.1016/j.cosrev.2019.100219
http://dx.doi.org/10.5220/0007830605700577
http://dx.doi.org/10.1109/WSC40007.2019.9004691
http://dx.doi.org/10.1109/WSC40007.2019.9004691
http://dx.doi.org/10.1109/WSC40007.2019.9004691
http://dx.doi.org/10.1109/JIOT.2021.3077850
http://dx.doi.org/10.1109/JIOT.2021.3077850
http://dx.doi.org/10.1109/JIOT.2021.3077850
http://dx.doi.org/10.1201/9780849332517
http://dx.doi.org/10.1201/9780849332517
http://dx.doi.org/10.1201/9780849332517
http://dx.doi.org/10.1007/978-3-030-12143-3_17
http://dx.doi.org/10.1109/EuroSPW54576.2021.00021
http://dx.doi.org/10.1109/EuroSPW54576.2021.00021
http://dx.doi.org/10.1109/EuroSPW54576.2021.00021
http://dx.doi.org/10.1016/j.compeleceng.2022.107721
http://refhub.elsevier.com/S0950-5849(23)00181-7/sb54
http://refhub.elsevier.com/S0950-5849(23)00181-7/sb54
http://refhub.elsevier.com/S0950-5849(23)00181-7/sb54
http://dx.doi.org/10.1007/s11219-019-09470-5
http://dx.doi.org/10.1109/ICSTW.2018.00056
https://snyk.io/series/open-source-security/report-2020/
https://snyk.io/series/open-source-security/report-2020/
https://snyk.io/series/open-source-security/report-2020/

F. Lonetti et al.

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

Y. Shah, S. Sengupta, A survey on classification of cyber-attacks on IoT and
IIoT devices, in: Proceedings of the 11th IEEE Annual Ubiquitous Computing,
Electronics & Mobile Communication Conference, UEMCON, IEEE, 2020, pp.
406-413, http://dx.doi.org/10.1109/UEMCON51285.2020.9298138.

N. Woolf, DDoS attack that disrupted internet was largest of its kind in history,
experts say, Guardian 26 (2016) Retrieved on July 29th, 2023 from https://
www.theguardian.com/technology/2016/0ct/26/ddos-attack-dyn-mirai-botnet.
A. Greenberg, A hacker tried to poison a Florida city’s water supply, officials
say, 2021, Wired magazine. Retrieved on July 29th, 2023 from https://www.
wired.com/story/oldsmar-florida-water-utility-hack.

K. Lounis, M. Zulkernine, Attacks and defenses in short-range wireless technolo-
gies for IoT, IEEE Access 8 (2020) 88892-88932, http://dx.doi.org/10.1109/
ACCESS.2020.2993553.

S. Khanam, I.B. Ahmedy, M.Y.I. Idris, M.H. Jaward, A.Q.B.M. Sabri, A survey
of security challenges, attacks taxonomy and advanced countermeasures in the
Internet of Things, IEEE Access 8 (2020) 219709-219743, http://dx.doi.org/10.
1109/ACCESS.2020.3037359.

J. Sengupta, S. Ruj, S.D. Bit, A comprehensive survey on attacks, security issues
and blockchain solutions for IoT and IIoT, J. Netw. Comput. Appl. 149 (2020)
102481, http://dx.doi.org/10.1016/j.jnca.2019.102481.

L. Xiao, X. Wan, X. Lu, Y. Zhang, D. Wu, IoT security techniques based
on machine learning: How do IoT devices use Al to enhance security? IEEE
Signal Process. Mag. 35 (5) (2018) 41-49, http://dx.doi.org/10.1109/MSP.2018.
2825478.

A.R. Chandan, V.D. Khairnar, Security testing methodology of IoT, in: Pro-
ceedings of International Conference on Inventive Research in Computing
Applications, ICIRCA, IEEE, 2018, pp. 1431-1435, http://dx.doi.org/10.1109/
ICIRCA.2018.8597192.

Z. Gui, H. Shu, F. Kang, X. Xiong, Firmcorn: Vulnerability-oriented fuzzing of IoT
firmware via optimized virtual execution, IEEE Access 8 (2020) 29826-29841,
http://dx.doi.org/10.1109/ACCESS.2020.2973043.

W. Xie, Y. Jiang, Y. Tang, N. Ding, Y. Gao, Vulnerability detection in IoT
firmware: A survey, in: Proceedings of 23rd International Conference on Parallel
and Distributed Systems, ICPADS, IEEE, 2017, pp. 769-772, http://dx.doi.org/
10.1109/ICPADS.2017.00104.

C.-K. Chen, Z.-K. Zhang, S.-H. Lee, S. Shieh, Penetration testing in the IoT age,
Computer 51 (4) (2018) 82-85, http://dx.doi.org/10.1109/MC.2018.2141033.
B. Cartaxo, G. Pinto, S. Soares, The role of rapid reviews in supporting
decision-making in software engineering practice, in: Proceedings of the 22nd
International Conference on Evaluation and Assessment in Software Engineering,
2018, pp. 24-34, http://dx.doi.org/10.1145/3210459.3210462.

B. Cartaxo, G. Pinto, B. Fonseca, M. Ribeiro, P. Pinheiro, M.T. Baldassarre, S.
Soares, Software engineering research community viewpoints on rapid reviews,
in: Proceedings of ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, ESEM, IEEE, 2019, pp. 1-12, http://dx.doi.org/
10.1109/ESEM.2019.8870144.

E. Reynen, R. Robson, J. Ivory, J. Hwee, S.E. Straus, A.C. Tricco, et al., A
retrospective comparison of systematic reviews with same-topic rapid reviews,
J. Clin. Epidemiol. 96 (2018) 23-34, http://dx.doi.org/10.1016/j.jclinepi.2017.
12.001.

C. Wohlin, Guidelines for snowballing in systematic literature studies and a
replication in software engineering, in: Proceedings of the 18th International
Conference on Evaluation and Assessment in Software Engineering, 2014, pp.
1-10, http://dx.doi.org/10.1145/2601248.2601268, Art. no. 38.

R. Jabbar, M. Krichen, M. Kharbeche, N. Fetais, K. Barkaoui, A formal model-
based testing framework for validating an IoT solution for blockchain-based
vehicles communication, in: Proceedings of 15th International Conference on
Evaluation of Novel Approaches to Software Engineering. SCITEPRESS-Science
and Technology Publications, 2020, pp. 595-602, http://dx.doi.org/10.5220/
0009594305950602.

M. Krichen, S. Mechti, R. Alroobaea, E. Said, P. Singh, O.I. Khalaf, M. Masud, A
formal testing model for operating room control system using internet of things,
Comput. Mater. Continua 66 (3) (2021) 2997-3011, http://dx.doi.org/10.32604/
cmc.2021.014090.

S.N. Matheu, J.L. Herndndez-Ramos, S. Pérez, A.F. Skarmeta, Extending MUD
profiles through an automated IoT security testing methodology, IEEE Access 7
(2019) 149444-149463, http://dx.doi.org/10.1109/ACCESS.2019.2947157.

16

[76]

[77]

[78]

[791]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

Information and Software Technology 164 (2023) 107326

R. Neisse, G. Baldini, G. Steri, A. Ahmad, E. Fourneret, B. Legeard, Improv-
ing internet of things device certification with policy-based management, in:
Proceedings of Global Internet of Things Summit, GIoTS, IEEE, 2017, pp. 1-6,
http://dx.doi.org/10.1109/GIOTS.2017.8016273.

S. Marksteiner, R. Ramler, H. Sochor, Integrating threat modeling and automated
test case generation into industrialized software security testing, in: Proceedings
of the Third Central European Cybersecurity Conference, 2019, pp. 1-3, http:
//dx.doi.org/10.1145/3360664.3362698.

A. Ahmad, G. Baldini, P. Cousin, S.N. Matheu, A. Skarmeta, E. Fourneret, B.
Legeard, Large scale IoT security testing, benchmarking and certification, in:
Cognitive Hyperconnected Digital Transformation: Internet of Things Intelligence
Evolution, ISBN: 9781003337584, 2017, pp. 189-220.

B.K. Aichernig, E. Muskardin, A. Pferscher, Learning-based fuzzing of IoT
message brokers, in: Proceedings of 14th Conference on Software Testing,
Verification and Validation, ICST, IEEE, 2021, pp. 47-58, http://dx.doi.org/10.
1109/1CST49551.2021.00017.

S.N. Matheu, S. Pérez, J.L.H. Ramos, A. Skarmeta, On the automation of
security testing for IoT constrained scenarios, in: Proceedings of International
Conference on Information Security Applications, Springer, 2019, pp. 286-298,
http://dx.doi.org/10.1007/978-3-030-39303-8_22.

M. Krichen, O. Cheikhrouhou, M. Lahami, R. Alroobaea, A.J. Mailej, Towards a
model-based testing framework for the security of internet of things for smart
city applications, in: Proceedings of International Conference on Smart Cities,
Infrastructure, Technologies and Applications, Springer, 2017, pp. 360-365,
http://dx.doi.org/10.1007/978-3-319-94180-6_34.

M. Krichen, M. Lahami, O. Cheikhrouhou, R. Alroobaea, A.J. Maalej, Security
testing of internet of things for smart city applications: A formal approach,
in: Smart Infrastructure and Applications, Springer, 2020, pp. 629-653, http:
//dx.doi.org/10.1007/978-3-030-13705-2_26.

R. Wang, L.M. Kristensen, H. Meling, V. Stolz, Automated test case generation
for the Paxos single-decree protocol using a Coloured Petri Net model, J. Log.
Algebraic Methods Program. 104 (2019) 254-273, http://dx.doi.org/10.1016/j.
jlamp.2019.02.004.

J. Tretmans, On the existence of practical testers, in: ModelEd, TestEd, TrustEd,
Springer, 2017, pp. 87-106, http://dx.doi.org/10.1007/978-3-319-68270-9_5.
B. Legeard, A. Bouzy, Smartesting certifylt: Model-based testing for enterprise
IT, in: Proceedings of IEEE Sixth International Conference on Software Testing,
Verification and Validation, ICST, IEEE, 2013, pp. 391-397, http://dx.doi.org/
10.1109/ICST.2013.55.

C. Willcock, T. Deif3, S. Tobies, S. Keil, F. Engler, S. Schulz, An introduction to
TTCN-3, John Wiley & Sons, 2011, http://dx.doi.org/10.1002,/9780470977903.
D. Marijan, M. Liaaen, A. Gotlieb, S. Sen, C. Ieva, Titan: Test suite optimization
for highly configurable software, in: Proceedings of the IEEE International
Conference on Software Testing, Verification and Validation, ICST, IEEE, 2017,
pp. 524-531, http://dx.doi.org/10.1109/ICST.2017.60.

R. Lohiya, A. Thakkar, Application domains, evaluation data sets, and research
challenges of IoT: A systematic review, IEEE Internet Things J. 8 (11) (2020)
8774-8798, http://dx.doi.org/10.1109/JI0T.2020.3048439.

C. Rudin, Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead, Nat. Mach. Intell. 1 (5) (2019)
206-215, http://dx.doi.org/10.1038/542256-019-0048-x.

N. Carlini, Poisoning the unlabeled dataset of Semi-Supervised learning,
in: Proceedings of 30th USENIX Security Symposium, USENIX Security 21,
USENIX Association, ISBN: 978-1-939133-24-3, 2021, pp. 1577-1592, Retrieved
on July 29th, 2023 from https://www.usenix.org/conference/usenixsecurity21/
presentation/carlini-poisoning.

M. Sabbagh, Y. Fei, D. Kaeli, Secure speculative execution via RISC-V open
hardware design, in: Proceedings of Fifth Workshop on Computer Architecture
Research with RISC-V, CARRV 2021, 2021, pp. 1-7, http://dx.doi.org/10.1145/
1122445.1122456.

http://dx.doi.org/10.1109/UEMCON51285.2020.9298138
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet
https://www.wired.com/story/oldsmar-florida-water-utility-hack
https://www.wired.com/story/oldsmar-florida-water-utility-hack
https://www.wired.com/story/oldsmar-florida-water-utility-hack
http://dx.doi.org/10.1109/ACCESS.2020.2993553
http://dx.doi.org/10.1109/ACCESS.2020.2993553
http://dx.doi.org/10.1109/ACCESS.2020.2993553
http://dx.doi.org/10.1109/ACCESS.2020.3037359
http://dx.doi.org/10.1109/ACCESS.2020.3037359
http://dx.doi.org/10.1109/ACCESS.2020.3037359
http://dx.doi.org/10.1016/j.jnca.2019.102481
http://dx.doi.org/10.1109/MSP.2018.2825478
http://dx.doi.org/10.1109/MSP.2018.2825478
http://dx.doi.org/10.1109/MSP.2018.2825478
http://dx.doi.org/10.1109/ICIRCA.2018.8597192
http://dx.doi.org/10.1109/ICIRCA.2018.8597192
http://dx.doi.org/10.1109/ICIRCA.2018.8597192
http://dx.doi.org/10.1109/ACCESS.2020.2973043
http://dx.doi.org/10.1109/ICPADS.2017.00104
http://dx.doi.org/10.1109/ICPADS.2017.00104
http://dx.doi.org/10.1109/ICPADS.2017.00104
http://dx.doi.org/10.1109/MC.2018.2141033
http://dx.doi.org/10.1145/3210459.3210462
http://dx.doi.org/10.1109/ESEM.2019.8870144
http://dx.doi.org/10.1109/ESEM.2019.8870144
http://dx.doi.org/10.1109/ESEM.2019.8870144
http://dx.doi.org/10.1016/j.jclinepi.2017.12.001
http://dx.doi.org/10.1016/j.jclinepi.2017.12.001
http://dx.doi.org/10.1016/j.jclinepi.2017.12.001
http://dx.doi.org/10.1145/2601248.2601268
http://dx.doi.org/10.5220/0009594305950602
http://dx.doi.org/10.5220/0009594305950602
http://dx.doi.org/10.5220/0009594305950602
http://dx.doi.org/10.32604/cmc.2021.014090
http://dx.doi.org/10.32604/cmc.2021.014090
http://dx.doi.org/10.32604/cmc.2021.014090
http://dx.doi.org/10.1109/ACCESS.2019.2947157
http://dx.doi.org/10.1109/GIOTS.2017.8016273
http://dx.doi.org/10.1145/3360664.3362698
http://dx.doi.org/10.1145/3360664.3362698
http://dx.doi.org/10.1145/3360664.3362698
http://refhub.elsevier.com/S0950-5849(23)00181-7/sb78
http://refhub.elsevier.com/S0950-5849(23)00181-7/sb78
http://refhub.elsevier.com/S0950-5849(23)00181-7/sb78
http://refhub.elsevier.com/S0950-5849(23)00181-7/sb78
http://refhub.elsevier.com/S0950-5849(23)00181-7/sb78
http://refhub.elsevier.com/S0950-5849(23)00181-7/sb78
http://refhub.elsevier.com/S0950-5849(23)00181-7/sb78
http://dx.doi.org/10.1109/ICST49551.2021.00017
http://dx.doi.org/10.1109/ICST49551.2021.00017
http://dx.doi.org/10.1109/ICST49551.2021.00017
http://dx.doi.org/10.1007/978-3-030-39303-8_22
http://dx.doi.org/10.1007/978-3-319-94180-6_34
http://dx.doi.org/10.1007/978-3-030-13705-2_26
http://dx.doi.org/10.1007/978-3-030-13705-2_26
http://dx.doi.org/10.1007/978-3-030-13705-2_26
http://dx.doi.org/10.1016/j.jlamp.2019.02.004
http://dx.doi.org/10.1016/j.jlamp.2019.02.004
http://dx.doi.org/10.1016/j.jlamp.2019.02.004
http://dx.doi.org/10.1007/978-3-319-68270-9_5
http://dx.doi.org/10.1109/ICST.2013.55
http://dx.doi.org/10.1109/ICST.2013.55
http://dx.doi.org/10.1109/ICST.2013.55
http://dx.doi.org/10.1002/9780470977903
http://dx.doi.org/10.1109/ICST.2017.60
http://dx.doi.org/10.1109/JIOT.2020.3048439
http://dx.doi.org/10.1038/s42256-019-0048-x
https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-poisoning
https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-poisoning
https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-poisoning
http://dx.doi.org/10.1145/1122445.1122456
http://dx.doi.org/10.1145/1122445.1122456
http://dx.doi.org/10.1145/1122445.1122456

	Model-based security testing in IoT systems: A Rapid Review
	Introduction
	Background
	Model-based Security Testing
	IoT Security Testing

	Related work
	Research Method — RAPID REVIEW
	Review Process
	Research Questions
	Selection Process
	Data Collection

	Data analysis
	Challenges, gaps and future research directions related to MBST in IoT
	Threats to validity of our study
	Discussion and Conclusion
	Summary of Key Findings
	Future Research directions

	Declaration of competing interest
	Data availability
	Acknowledgments
	References

