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Biogeochemical- (BGC-) Argo aims to deploy and maintain a global array of

autonomous profiling floats to monitor ocean biogeochemistry. With over

250,000 profiles collected so far, the BGC-Argo network is rapidly expanding

toward the target of a sustained fleet of 1,000 floats. These floats prioritize the

measurement of six key properties: oxygen, nitrate, pH, chlorophyll-a, suspended

particles, and downwelling light. To assess the current biogeochemical state of the

ocean, its variability, and trends with confidence, it is crucial to quality control these

measurements. Accordingly, BGC-Argo maintains a quality control system using

manual inspection and parameter-specific algorithms for flagging and adjusting

data. In this study, we provide a census of the quantity and quality of measurements

from BGC-Argo based on their quality flagging system. The purpose of this census is

to assess the current status of the array in terms of data quality, how data quality has

changed over time, and to provide a better understanding of the quality-controlled

data to current and future users. Alongside increasing profile numbers and spatial

coverage, we report that for most parameters between 80 and 95% of the profiles

collected so far contain high-quality BGC data, with an exception for pH. The quality

of pH profiles has seen a large improvement in the last five years and is on track to

match the data quality of other BGC parameters. We highlight how BGC-Argo is

improving and discuss strategies to increase the quality and quantity of BGC profiles

available to users. This census shows that tracking percentages of high-quality data

through time is useful for monitoring float sensor technology and helpful for

ensuring the long-term success of BGC-Argo.

KEYWORDS
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1 Introduction

Biogeochemical- (BGC-) Argo is a component of OneArgo

(Owens et al., 2022), a planned major expansion of the Argo

program, which revolutionized the collection, management, and

free access of in situ oceanographic data on a global scale for the

operational, climate assessment, and research communities

(Claustre et al., 2020; Johnson et al., 2022). BGC-Argo supports a

network of autonomous floats with the goal of monitoring the

biogeochemistry of the global ocean (Roemmich et al., 2019). The

majority of these floats profile the upper 2 km of the ocean every 10

days. Six BGC properties have been chosen to help constrain the

ocean’s distribution of oxygen and carbon (Biogeochemical-Argo

Planning Group, 2016): oxygen (O2), nitrate (NO3
-), pH,

fluorescence from chlorophyll-a (Chla), particle optical

backscatter (bbp, a proxy for particulate organic carbon), and

downwelling light as photosynthetically available radiation (PAR)

and irradiance (Ed).

BGC-Argo aims to deploy 250 floats equipped to measure

these properties each year to sustain a global network of 1,000

operational floats and deliver science-quality profiles within ~24

hours of collection. This real-time oceanographic monitoring

system requires parameter-specific, quality control (QC)

procedures. A guide to BGC-Argo by Bittig et al. (2019)

describes, among other aspects, the data structure and QC

procedures. More detailed procedures are found in QC manuals

provided by BGC-Argo that are referenced throughout this

document (http://www.argodatamgt.org/Documentation; https://

biogeochemical-argo.org/data-management.php).

Briefly, profile data received from each BGC-Argo float cycle is

formatted into two types of files: a core file that includes

temperature and salinity measurements from the CTD

(Conductivity-Temperature-Depth) sensor, and a b-file that

includes measurements from all BGC sensors available. These two

files are combined into a synthetic-profile file, which aligns or

interpolates each measurement along a synthetic pressure axis. This

process accounts for any misalignment of the CTD and BGC

measurements during onboard processing, and thus greatly

enhances the usability of the data while maintaining the character

of the original sample design (Bittig et al., 2022). All synthetic-

profile files from each float are merged into a single “Sprof” file,

which contains the CTD and BGC data and associated quality

control information.

The BGC-Argo quality control procedures are structured under

two main levels (Argo Data Management Team, 2022). The first

level is real-time QC (RTQC) involving a set of automatic tests on

each profile, with the goal of screening grossly bad data from the

system (i.e., global range and spike tests). The second level is

referred to as delayed-mode QC (DMQC), which aims at

delivering high-quality data for research purposes, such as long-

term studies testing for climate-driven changes in ocean

biogeochemistry. DMQC involves a more detailed set of

procedures that are performed by an expert to account for shifts

in sensor calibration that can occur during storage and post-

deployment. For O2, NO3
-, and pH, these adjustments are an
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essential part of the QC process, as they provide significant

improvements to the accuracy of the raw data. Users are always

advised to use ‘<PARAM>_ADJUSTED’ data fields, such as

‘DOXY_ADJUSTED’ for adjusted O2 measurements, as described

in Johnson et al. (2023); Johnson et al. (2021); Bittig et al. (2019),

and Thierry et al. (2021). The DMQC procedures generally involve

re-calibrating the sensor to high-quality reference fields or

climatologies (Takeshita et al., 2013; Bittig and Körtzinger, 2015;

Johnson et al., 2015; Maurer et al., 2021). These new calibrations are

then propagated forward to provide higher-quality real-time data

(called real-time adjusted data).

The DMQC procedures for the bio-optical parameters are

currently still under development, although various methods have

been explored (Organelli et al., 2016; Organelli et al., 2017; Cornec

et al., 2021; Jutard et al., 2021; Begouen Demeaux and Boss, 2022;

O’Brien and Boss, 2022). However, all bio-optical parameters

receive some level of real-time QC at this stage (Schmechtig et al.,

2016; Schmechtig et al., 2018; Poteau et al., 2019; Schmechtig et al.,

2019). The Chla parameter also receives an adjustment in real time,

which includes a correction for non-photochemical quenching

(NPQ), dark values, and an improved calibration factor (Roesler

et al., 2017).

In this study, we report a census of select BGC measurements,

and their associated data quality based on the Argo QC flagging

system. We limit the main analysis to profiles of the O2, NO3
-, pH,

Chla, bbp, PAR, and Ed. When describing both adjusted and

unadjusted measurements, we simply refer to the variable name

(e.g., “Chla”); otherwise, we specify when adjusted or unadjusted

data is used (e.g., “adjusted O2”). For O2, NO3
-, pH, and Chla, we

refer to the adjusted data when reporting quality metrics, as the

unadjusted data is intentionally treated as bad for scientific analysis

(e.g., due to storage drift for the O2, NO3
-, and pH sensors, or NPQ

for Chla). Comparatively, for bbp, PAR, and Ed, data are generally

usable for scientific analysis without requiring further adjustments.

For this analysis, we also only consider floats that simultaneously

collect Ed at 380, 412, and 490 nm and PAR, which is the most

common configuration in the BGC-Argo array. For brevity, we refer

to simultaneous measurements of PAR and Ed as PAR/Ed.

This paper describes the current breakdown of BGC profile

quality in terms of data quality flags, what’s been collected so far,

annual trends in data quality, and how close BGC-Argo is to

reaching its targets. We compare data quality before 2017 with

that in the last six years to identify improvements in data quality.

The area density of quality BGC profiles is also assessed regionally

and in relation to the target density of a 1,000-float network. Finally,

we also discuss potential strategies for increasing the number of

high-quality profiles in the future.
2 Materials and methods

For each profile and BGC parameter used in this study, we

recorded the WMO number of the float, date and location, cycle

number, profile- and depth-level quality flags, and the presence of

sensor data using Sprof files downloaded from March 16−17, 2023
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(Argo, 2000). We also recorded information about each sensor’s

manufacturer and model from the metadata file associated with

each float (Argo Data Management Team, 2022). Data from 2023

was not included in this analysis. With the QC flags BGC-Argo

provides, we applied two simplified flagging systems we created

(described below). We only used ascending profiles (~96% of the

database) because QC flags and BGC data were not consistently

available from descending profiles. For the rare occasion where a

single float had multiple sensors measuring the same BGC property

(e.g., 24 floats had more than one O2 sensor), we used the sensor

designated as the primary parameter (see pg. 84 in Argo Data

Management Team, 2022).
2.1 Description of BGC-Argo quality
flag system

First, we provide a description of BGC-Argo’s QC flag system

which is based on the pre-existing flagging scheme used operationally

within the Argo data management system. The QC flag system sets

depth-level and profile-level quality flags for each BGC property

(Table 1; Argo Data Management Team, 2022). The depth-level flag

system in Argo denotes the QC flags as “<PARAM>_QC” or

“<PARAM_ADJUSTED>_QC” for unadjusted or adjusted

measurements, respectively. These QC flags will flag “good” data as

“1”, “probably good” data as “2”, “probably bad” data as “3”, and

“bad” data as “4” (Table 1). Data are labeled with a flag of “5” when

they are changed (e.g., the correction for NPQ of chlorophyll-a

fluorescence). If values are interpolated or extrapolated, a label of

“8” is used. If no QC is performed, a flag of “0” is used, while missing

data are flagged as “9”. Generally, data with flags “1”, “2”, “5”, and “8”
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are treated as high-quality data, while data with flags “3” or “4” are

treated as low-quality data.

Profile-level quality flags, denoted as “PROFILE_<PARAM>

_QC” in Argo, describe the percentage of high-quality data points

out of all the available data points in a profile (N). For the

calculation of N, the QC flags associated with the adjusted data

(from either adjusted RTQC or DMQC) are used. If there are no

adjusted data available, the QC flags associated with the unadjusted

data are used in the calculation instead (from unadjusted RTQC

processing). Depth-level data points with flags “0” or “9” are not

used in the determination of the profile-level flag. The calculation

for profile-level quality flags is as follows:

N =
n1 + n2 + n5 + n8

n1 + n2 + n3 + n4 + n5 + n8
� 100%

where n is the number of QC flags in the profile with the subscript

indicating the value of the depth-level QC flag. Then, N is

categorized as one of seven different flags: flag “A” means when

100% of the profile has high-quality data, flag “B” when 75 to 100%

of the profile has high-quality data, and so on in 25% increments to

flag “F” which means that 0% of the profile data are high quality

(Table 1). If no QC is performed or the only depth-level quality flags

are “0” and “9”, then no profile-level flag is given, and an empty

value is assigned.
2.2 Measurement-quality metrics

For this analysis, we created two simplified systems of flags

based on BGC-Argo’s quality flag scales described in the previous

section. Our first flag classification system is important for those
TABLE 1 Quality control system used by BGC-Argo (Argo Data Management Team, 2022).

Quality Control Level Flag Label Quality Control Meaning

Depth-level 0 No quality control is performed

1 Good data. All real-time or delayed-mode tests have been passed

2 Probably good data; this data can be used with caution

3 Probably bad data; data may require adjustment, or the adjusted data are still bad

4 Bad data that are unusable or likely cannot be adjusted

5 Value changed

8 Data estimated from extrapolation, interpolation, or another approach

9 Missing value

Profile-level A 100% of the profile’s data has depth-level flags of 1, 2, 5, or 8

B 75 to 100% of the profile’s data has depth-level flags of 1, 2, 5, or 8

C 50 to 75% of the profile’s data has depth-level flags of 1, 2, 5, or 8

D 25 to 50% of the profile’s data has depth-level flags of 1, 2, 5, or 8

E 0 to 25% of the profile’s data has depth-level flags of 1, 2, 5, or 8

F 0% of the profile’s data has depth-level flags of 1, 2, 5, or 8

“ “ No quality control is performed, or usable depth-level flags are present
Note that depth-level QC flags of “6” and “7” are not used.
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interested in scientific analysis as it focuses on the availability of

high-quality data profiles.

The second flag system we created describes the prevalence of

functioning sensors, as opposed to those that have malfunctioned

(e.g., the sensor stops reporting data or reports oceanographically

inconsistent values entirely). Data profiles from malfunctioning

sensors cannot be recovered for biogeochemical analysis and may

be meaningless. The purpose of the second flag classification system

is to identify causes of poor-quality data that result from an

unfixable sensor malfunction, and not from intermittent error or

other operational limitations. This flag scale is likely of interest to

those who are currently deploying floats and those who plan to.

Both flag scales provide a foundation for tracking BGC-Argo data

quality and sensor performance through repeated future analyses.

2.2.1 Profile quality flag system
The first system of flags defines high-quality profiles as profiles

where N is greater than or equal to 75% (so profile flags “A” and “B”

as defined in Table 1). Low-quality profiles were defined as profiles

where N is less than 75% (or having profile-level flags of “C”, “D”,

“E”, or “F”).

We needed to identify the cause of missing QC flags in a profile,

which can result from either the QC algorithm simply not being

applied, or from the sensor no longer reporting data due to

malfunction. To distinguish between the two possible causes, we

checked for the presence of BGC data in the profile. If BGC data

were missing, the profile was categorized as having an unresponsive

sensor. If BGC data was present, the profile was labelled as having

missing QC flags.

Based on these definitions, we calculated the percentage of high-

quality profiles (PHQ) by parameter, year, region, or for each float as:

PHQ =
SHQ

SHQ + SLQ + SNR
� 100% ;

where SHQ is the number of high-quality profiles, SLQ is the number

of low-quality profiles, and SNR is the number of profiles where the

sensor was no longer reporting data. We repeat a similar calculation

but for the percentage of low-quality profiles (PLQ) and profiles with

unresponsive sensors (PNR). Note that the number of profiles

without QC (SNOQC) is not included in the calculation.

2.2.2 Functioning-sensor flag system
The second QC flag scheme created for this analysis classifies

sensors as either functioning or malfunctioning. We use this scheme

to describe the prevalence of functioning/malfunctioning sensors

for each BGC parameter and sensor manufacturer/model.

We defined “malfunctioning sensors” as sensors that produced

profiles where all data points in the profile had a depth-level flag of “4”

or when the sensor reported no data in the profile. When data are

labeled with a depth-level flag of “4”, BGC data are outside the expected

range, contain spikes, have unexpected gradients, or the measurements

remain ‘stuck’ at the same value. Otherwise, if the sensor profile did not

follow these conditions, the sensor was labeled as functional.

For this calculation, QC flags were produced from the

combination of unadjusted or adjusted data for all BGC

parameters. Profiles without QC flags and deemed as SNOQC (as
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previously described) were ignored. We calculated the percentage of

functioning profiles as PFUNC as:

PFUNC =
SFUNC

SFAIL + SFUNC
� 100% ;

where SFUNC is the number of profiles with functioning sensors and

SFAIL is the number of profiles with malfunctioning sensors.

2.2.3 Float survival rate
The survival rate of floats and their sensors are an important

aspect of maintaining the BGC-Argo network. Depending on

various factors (e.g., power consumption, environmental

conditions, manufacturing quality), some floats will collect only a

few profiles before failing, while others will last several years. For

similar reasons, sensors may stop functioning before the float does.

The survival rates of floats (RFloat) can be quantified as the number

of floats operating at a pre-defined cycle number divided by the

number offloats originally deployed. As cycle numbers increase, the

portion of floats remaining declines until no floats are active.

Similarly, the portion of remaining floats that produce high-

quality profiles at a pre-defined cycle number represents a

combination of float and sensor performance and is termed the

high-quality survival rate or RHQ. The difference between RFloat and

RHQ is therefore representative of sensor performance alone. The

same concept can be applied to the float profiles we label as

‘functioning’ (termed the functioning survival rate or RFUNC).

We are interested in estimating RFloat, RHQ, and RFUNC at 36.5

cycles (equivalent to one year of profiling at a 10-d profiling

frequency). To determine RFloat, we first calculated the fraction of

floats remaining at cycle numbers between one and thirty and then

applied a linear regression to extrapolate the survival rate to 36.5

cycles. A similar calculation was performed for RHQ and RFUNC but

only floats with high-quality profiles and with functioning sensors

were counted, respectively. At a 10-d sampling interval, floats

deployed after March 7, 2022, would not have been deployed for

long enough to make 30 cycles, and are therefore not used in this

calculation. Note that for these survival rate estimates, we relied on

cycle numbers instead of profile numbers because 1) up- and down-

cast profiles (if both were taken) are given the same cycle number,

and 2) we only consider ascending profiles in this analysis.
2.3 Regional data density and coverage

The density and spatial coverage of BGC data are important for

determining where regional biogeochemistry may need to be better

constrained. We assessed these metrics in different marine regions

(Flanders Marine Institute, 2021) which include the North Atlantic,

South Atlantic, North Pacific, South Pacific, Indian Ocean,

Southern Ocean, Arctic Ocean, Baltic Sea, Black Sea, and

Mediterranean Sea. Floats in the Black, Mediterranean, and Baltic

seas were also reviewed both individually and as a single region we

call ‘seas around Europe’.

We determined the density of high-quality profiles (equal to

SHQ divided by surface area) from both the total number of profiles

available and on a yearly basis. The surface area of ocean was
frontiersin.org
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calculated for each marine region and from a global ocean grid

resolved to 5° longitude by 5° latitude. For all regions, except for the

seas around Europe, areas where the seabed was shallower than 200

m was excluded. We report the average number of high-quality

profiles from PAR/Ed profiles since this BGC data comes from the

same sensor and have similar numbers of high-quality profiles.

For the annual assessments, we compared the density of high-

quality profiles with a target profile density of a BGC-Argo network

of 1,000 active floats (assuming they are evenly-spaced). This

comparison was made by calculating 1) the region-wide density

as a percentage of target density, and 2) the percent area of grid cells

where high-quality profile density met the target density in each

region. A similar calculation was also made for the latter but by

including areas with profile densities above 0. The target density is

equal to ~1.1 profile per 10,000 km2 per year (i.e., ~1 profile per 100

km x 100 km square of ocean per year) and is based on a network of

1,000 floats (presumably profiling every 10 days) over ~335 million

km2 of ocean each year.
3 Results

3.1 Overall BGC-Argo profile quantity

As of December 2022, the database of Sprof files has

accumulated a total of 263,715 unique BGC profiles from 1,811

BGC-Argo floats (Table S1). The most frequently measured

property is O2 (251,855 raw profiles from 1,754 floats) while the

least frequently measured property is pH (39,483 raw profiles from

447 floats) after PAR/Ed (46,028 raw profiles from 273 floats). Since

2002, the total number of floats deployed has steadily increased,

alongside the total number offloats sustained in the array (Figure 1).

How close the float array is to the annual float or profile targets

is highly dependent on the BGC parameter because most floats do
Frontiers in Marine Science 05
not measure the full suite of BGC parameters. For example, the

number of radiometer-equipped floats deployed each year has not

surpassed 50, while the other five BGC parameters see a minimum

of 100 floats deployed per year as of 2022. These discrepancies result

from pilot programs that prioritized certain parameters.

Radiometry has largely been driven by European and Australian

projects, which focused on regions around Europe, the North

Atlantic, and the Indian sector of the Southern Ocean. Currently,

only 39 floats measure all 6 BGC parameters of interest (Figure 1).

As of 2022, PROVOR, one of the three main models offloats used in

the BGC-Argo fleet, is the only float type that can measure all six

variables, restricting the full set of parameters from being collected.

However, many operational float programs are currently putting

effort toward expanding sensor suite capabilities on various

platforms. For example, the Global Ocean Biogeochemistry (GO-

BGC) array plans to begin deploying six-parameter APEX floats in

the summer of 2023. A 6-parameter Navis float is currently in the

later stages of development as well.
3.2 Overall BGC-Argo profile quality

The majority of profiles for each BGC parameter have received

QC flags. Almost all O2 profiles have undergone QC (PNOQC =<1%).

The parameters missing the most QC flags are Chla (PNOQC = 12%)

and bbp (PNOQC = 15%). This lack of QC on some parameters will

decline as the program matures. The mode of QC received by each

property also varies greatly (Figure 2). At least three-quarters of O2,

NO3
-, pH, and Chla profiles have received adjusted or delayed-

mode processing. In comparison, >40% of bbp and PAR/Ed data

contain unadjusted real-time processing (also see Figure S1). Note

that the RTQC for PAR/Ed only involves a range test and that there

is no procedure for real-time adjustments; if adjustments are made

to the radiometry data, then only DMQC has been applied.
A B

FIGURE 1

The number of floats deployed (A) and the size of the float array (B) by year since 2002. The solid black line represents floats with at least one BGC
parameter, the dotted black line represents floats with all six BGC parameters (O2, NO3

-, pH, Chla, bbp, and PAR/Ed), and the remaining colored lines
represent floats with a specific BGC parameter. The BGC-Argo targets for annually deployed floats and the size of float array are shown in panels (A,
B), respectively, as the horizontal dashed lines.
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Due to their specialized QC procedures, which limit the quality

flag of “1” to data that has been adjusted, we report only the QC

metrics derived from adjusted data of O2, NO3
-, pH, and Chla for

the rest of this document, specifically referring to these variables as

‘adjusted’. Otherwise, the QC metrics for the other parameters (bbp
and PAR/Ed) include both adjusted and unadjusted data, unless

specifically stated.

Based on our first classification system, the number of high-

quality profiles has generally increased each year, except for profiles

of PAR/Ed (Figure 3). This lack of PAR/Ed profiles is due to no

sustained rise in the deployments of floats equipped with these

sensors (Figure 1). We find that the database-wide PHQ was the

highest for PAR/Ed (92%, on average) and the lowest for adjusted

pH (48%) (Table S2). Adjusted O2 and NO3
- profiles have a PHQ

equal to ~90% and 87%, respectively, while profiles of bbp and

adjusted Chla have PHQ equal to 87% and 85%, respectively. For the

~21,000 adjusted PAR/Ed profiles that have received DMQC, PHQ

increases to ~97% (or 96.7% for PAR; 97.3% for Ed[380], Ed[412],

and Ed[490]).

Low-quality data profiles were the least common with PAR/Ed
(PLQ = 2.5% for PAR; 1.8% for Ed[380]; 1.8% for Ed[412]; and 1.9%

for Ed[490]). Low-quality adjusted pH profiles are currently the

most common (PLQ = ~52%) among the BGC parameters. Other

BGC sensors tend to report low-quality profiles 7−15% of the time.

Profiles with no data (i.e., unresponsive sensors) are the most

common among PAR/Ed and bbp (PNR = ~6% for each), while

they are the least common among the adjusted O2, NO3
-, pH, and

Chla profiles (PNR< 1.5%; Table S2).
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Using our secondary classification system, profiles with

functioning sensors were the least common among pH profiles

(PFUNC = 60%; Table S2). This suggests that sensor malfunction is

the cause of most low-quality pH profiles, rather than correctable

calibration drift errors. Functioning sensors were present in a

higher portion of profiles for O2 (91%), NO3
- (91%), Chla (94%),

bbp (88%), and PAR/Ed (PFUNC= 93% for PAR, Ed[380], Ed[412],

and Ed[490]).
3.3 Annual trends in profile quality
and functionality

We first analyzed annual PHQ by the year a profile was collected

to summarize temporal trends in the BGC data quality available to

users (Figure 4). Secondly, we estimated the survival rates after one

year (RFloat, RHQ, and RFUNC) by year the float was deployed

(Figures 5, S2). The trends in RFloat, RHQ, and RFUNC by

deployment year are useful for characterizing similar batches of

floats/sensors (Figure 5; Table S3). With both data quality and

survival rates, we compared pre-2017 values with the period of 2017

to 2022 to determine changes in the past six years with respect to the

early stages of the program.

We find that annual PHQ in the past six years was >80% for

most BGC parameters, except for adjusted pH, which was between

40 and 60% and below pre-2017 levels (Figure 4). PAR/Ed profiles

have an annual PHQ that is always >85%, even though PHQ in the

past six years is below pre-2017 levels. For the remaining
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FIGURE 2

Percentage of profiles based on the type of quality-control mode, denoted in the PARAMETER_DATA_MODE field, for each BGC property: (A) O2,
(B) NO3

-, (C) pH, (D) Chla, (E) bbp, and (F) PAR/Ed. The associated label from Argo notation for each data mode is shown in brackets in the legend.
Note that some data with real-time unadjusted processing do not always have QC flags (also see Supplementary Note). Representations for specific
downwelling light channels are the same as (F) and are reported in Figure S1.
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parameters, the PHQ values between 2017 and 2022 are generally

close to or above pre-2017 levels.

Regarding survival rates, we find that the annual RFloat and RHQ

can appreciably vary from year-to-year (Figure 5). Generally, RFloat
is ~90% at 36.5 cycles, meaning that about 9-in-10 floats survive

their first year. RHQ tends to vary more and is more parameter

dependent. RHQ should always be equal to or less than RFloat because

it is not possible for the sensor to record data if the float fails (the

reverse is possible). The results show that RHQ is typically <10%

below RFloat. In some cases, RFloat is more than RHQ, which we

suspect results from sensors that temporarily become unresponsive

or report bad data, before reporting good data in a successive

profile, and the non-linear nature of float/sensor survival over time.

Furthermore, RFUNC follows the same patterns as RHQ (Figure S2).

This suggests that the cause of most low-quality profiles is not

intermittent error or other operational limitations but rather

sensor/cable damage, degradation, and/or bio-fouling.

RFloat for floats with pH sensors is similar to the RFloat of floats

measuring other parameters. However, RHQ derived from adjusted

pH profiles had a distinct drop in 2017 and 2018 that was not

associated with a decline in RFloat. This gap between RFloat and RHQ

for floats with pH sensors led to the accumulation of low-quality,

adjusted pH profiles seen one-to-two years later in 2018 and 2019.

Since then, the RHQ has improved, resulting in an increase in PHQ of

adjusted pH profiles in the following years (Figure 4). This recovery

in PHQ and RHQ, especially in 2022, puts pH on track to have similar

data quality as the other five BGC properties.
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A similar case may have occurred with bbp from floats deployed

in 2019. The RHQ of bbp was ~10% lower than the RFloat in 2019 and

2020 (Figure 5) and was followed by a decline in the PHQ of bbp
profiles in 2020 and 2021 (Figure 4). This difference suggests that bbp
sensors failed before the floats did, which led to a disproportionate

collection of low-quality profiles. However, a similar pattern in RHQ

was observed in adjusted Chla (Figure 5), without a similar decline in

PHQ in 2020 or 2021 (Figure 5). The decline in annual PHQ of bbp
appears to have been corrected since 2022.

RFloat is generally close to the RHQ for most parameters in most

years. The similarity between the two rates explains why there is

little variability in the PHQ of adjusted O2 profiles in the last six

years. For the same reason, PHQ for PAR/Ed profiles remains

generally consistent from 2017 to 2022, despite both RFloat and

RHQ declining to ~70% in 2019/2020.
3.4 Regional profile quality

The density of accumulated BGC profiles is important to

construct global climatologies (e.g., Sauzède et al., 2016; Cossarini

et al., 2021). The number of float profiles, including those of high

quality, are available in most marine regions (Figure 6) but at

greatly varying densities (Table S4). The density of high-quality

profiles varies among parameters as pilot programs prioritized

certain types of sensors early on (e.g., radiometry in the North

Atlantic and the Mediterranean Sea).
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FIGURE 3

Profiles with QC collected each year for each BGC property: (A) adjusted O2, (B) adjusted NO3
-, (C) adjusted pH, (D) adjusted Chla, (E) bbp, and (F)

PAR/Ed. Both unadjusted and adjusted data profiles are shown in (E, F). Profiles are colored by their quality-control flags. The BGC-Argo target for
the number of profiles collected each year is shown in each panel as a horizontal dashed line. PAR and Ed are collected by the same sensor and
undergo similar quality control, so, for simplicity, the average number of profiles per quality type are shown in (F) instead; the exact number of high/
low-quality profiles between PAR and Ed profiles vary slightly (Table S2).
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Generally, the marine regions that have accumulated the

highest density of high-quality profiles are the seas around

Europe (Mediterranean Sea, Black Sea, and Baltic Sea), the Arctic

Ocean, and the Southern Ocean (Figure 6; Table S4), although these

densities are highly parameter dependent. In the Arctic Ocean,

sampling also has not occurred evenly throughout the region. There

is a lack of floats between the Chukchi Sea and Fram Strait, leaving a

large portion of the Arctic Ocean under-sampled.

The Southern Ocean has accumulated high profile densities for

each BGC property due in large part to the success of the Southern

Ocean Carbon and Climate Observations andModelling (SOCCOM)

project (Maurer et al., 2021; Sarmiento et al., 2023). However, floats

deployed as part of SOCCOM do not include radiometers, explaining

the low level of PAR/Ed data in this region. Additionally, pH data

coverage is also lower than the other parameters in this region, due to

sensor quality issues highlighted in the previous section.

For the major basins (Pacific, Atlantic, and Indian Oceans), the

densities of high-quality profiles are generally lower than polar

regions and the seas around Europe (Table S4). Additionally, the

high-quality, adjusted O2 profiles are generally high compared to

other BGC parameters collected in the same major basins.

With an annual global target density of ~1.1 profiles per 10,000

km2 per year, the density of high-quality profiles is assessed on an

annual basis to help evaluate the success of BGC-Argo (Figures 7, 8;
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Figures S3, S4). The annual, regional density of high-quality

profiles, expressed as a percentage of the target density, highly

varies between parameters and regions, although there is a general

interannual trend of increasing profile densities. The percent area of

each region with sufficient sampling also highly varies between

parameters and regions. While there are significant year-to-year

fluctuations, the general long-term trend is that profile densities and

percent area coverage have been increasing since 2012.

BGC profiles in the seas around Europe far surpassed annual

region-wide target densities at >100% in recent years (Figure 7) and

meet target profile densities in ~70% of the area (Figures 8, S4),

except for profiles of adjusted pH and adjusted NO3
-. For the

parameters present, profile densities surpassed annual targets in the

Mediterranean, Black, and Baltic seas individually (Figure S5).

Considering that the marginal seas around Europe are more

variable than much of the open ocean, a higher sampling effort

may be needed to better constrain uncertainties. The Arctic Ocean

has met target densities for most parameters in the last two years as

well, however, this sampling is largely concentrated in an area that

consists of 30% or less of the region. The high, region-wide densities

(in both the Arctic Ocean and the seas around Europe) are partly

driven by floats profiling more frequently than every 10 days, which

leads to more observations than what is expected from an annual

target based on 10-d sampling intervals.
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FIGURE 4

Percentage of high-quality profiles (PHQ) for each year collected: (A) adjusted O2, (B) adjusted NO3
-, (C) adjusted pH, (D) adjusted Chla, (E) bbp, and

(F) PAR/Ed. The solid lines represent the annual PHQ from 2017 to 2022. The number of profiles available each year is reported as the orange bar plot
in each subplot, where the total number of profiles is indicated on the top of each bar. The dashed lines in each subplot represent PHQ before 2017.
The number of unique profiles collected before 2017 for ~127k for adjusted O2; ~17k for NO3

-; ~3.3k for pH; ~32k for Chla; ~32k for bbp; and ~19k
for PAR/Ed. DMQC for bbp and PAR/Ed has been developed but is not yet fully implemented; a mix of adjusted and unadjusted data are shown for
bbp and PAR/Ed here.
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The Atlantic, Indian, and Pacific oceans generally have reached

10 to 30% of target densities, region-wide, for most parameters. In

the same regions, about 5 to 30% of the area has hit target densities.

The ocean surface area in these regions with any amount of BGC

data is much higher, generally reaching 30 to 60% of a region’s area

(Figure S4). For O2, profile density and percent area coverage tend

to be higher than other parameters. O2 profile densities are between

50 to 70% of the target in the North Atlantic, North Pacific, and

South Atlantic oceans in recent years, while the percent area

coverage is <30%.

As is the case for all regions, region-wide profile densities are

closer to the target density than when evaluating target density in

terms of surface area covered. This discrepancy means that the

sampling effort is concentrated over a small portion of a region’s

area. Future float deployments could target these under-sampled

regions, although, depending on scientific interest, concentrating

sampling effort in certain areas may be needed for constraining

highly variable regions (e.g., the Labrador Sea).
4 Discussion

The success of BGC-Argo is dependent on collecting and

providing high-quality BGC observations of the ocean. The data
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quality summary provided herein was based on the pre-existing

flagging scheme that is used operationally within the Argo data

management system. It offers a quick synopsis of the current extent

of high-quality BGC-Argo data directly available to users for

scientific applications.

It is important to note that the various methods used in the quality

control of different BGC parameters, as well as the capability to adopt

and implement new methods uniformly across Argo Data Assembly

Centers (DACs), are still maturing. For example, there remain floats

within the data system for which QC flags are missing (Figure 2). This

lack of QC is due, in part, to limited resources in addressing

management requirements for legacy floats, as one example.

Additionally, for a portion of floats, the <PARAM>_ADJUSTED

field is not filled. While it is advised to use the adjusted data when

available, a lack of adjusted data does not necessarily mean the sensor is

bad, and the data may receive an adjustment in the future. For bbp and

PAR/Ed, analysis can be performed without further adjustments, unlike

O2, NO3
-, and pH data profiles, which require adjustments for proper

scientific analysis. Similarly, the adjusted Chla data includes improved

estimates of Chla. The unadjusted Chla profiles should not be used for

the analysis of Chla. However, the unadjusted data can still yield other

valuable scientific information about the strength of NPQ and the

photo-physiology of phytoplankton (e.g., Schallenberg et al., 2022;

Ryan-Keogh et al., 2023).
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FIGURE 5

Survival rates of floats (RFloat) and high-quality profiles (RHQ) by deployment year. Each of the six key BGC variables: (A) adjusted O2, (B) adjusted
NO3

-, (C) adjusted pH, (D) adjusted Chla, (E) bbp, and (F) PAR/Ed. The solid line represents RFloat (grey) and RHQ (black) by year from 2017 to 2022.
The horizontal dashed line in each subplot represents RFloat (grey) and RHQ (black) before 2017. The number of floats with quality-controlled data
(and adjusted data when relevant) deployed each year are reported as the bar plot at bottom of each subplot and on the top of each bar. The
number of floats deployed before 2017 are 817 for O2; 144 for NO3

-; 60 for pH; 249 for Chla; 238 for bbp; and 128 for PAR/Ed. Note that only floats
deployed for more than 300 days before January 1, 2023, were used to standardize float lifetimes for the survival rate calculation (see Methods).
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The most efficient way to bolster the number of high-quality

profiles available is to process existing profiles that have not

received QC flags, so such floats should not be overlooked. As we

reported in the results, QC flags are missing for 4−15% of BGC

profiles, excluding O2, which has QC flags assigned to almost all

profiles. Processing these remaining profiles should increase the

number of profiles labeled as high-quality, yet not significantly

alter PHQ.

Furthermore, efforts should be made to ensure all floats get

processed (and reprocessed) with the most up-to-date QC

procedures across DACs as protocols continue to be refined. This

will result in improved consistency across the dataset into the future

and strengthen its overall value for use in global analyses.
4.1 Parameter-specific improvements

In addition to refining quality flags through time and initiating

data adjustments, there are further parameter-specific procedures

that should be adopted by the data management team to further

improve the absolute accuracy of BGC parameters. While high-
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quality profiles already represent more than 90% of adjusted O2

profiles collected thus far, O2 optode sensors suffer from slow

response times, which are not routinely corrected within the data

system. Slow sensor response times lead to a lag in true O2

concentrations and can create errors on the order of ~10 mmol

kg-1 (Bittig et al., 2014; Gordon et al., 2020). Fortunately, various

methods exist for calculating the in situ response time of O2

optodes, given the existence of certain ancillary data and/or

sampling conditions (Bittig et al., 2014; Gordon et al., 2020).

Such response time corrections will help reduce uncertainties

around the oxycline, although, it would not likely affect the

assigned QC flags.

In situations where salinity sensor data are labeled with a flag of

“4” (unrecoverable), O2 data are given a label of “3” because salinity

compensation to the O2 measurements cannot be performed. In

these cases, utilizing salinity profiles from a high-quality derived

product may help recover more O2 profiles. This procedure has

been explored by the Argo community and will likely be

implemented in the near future.

The pH sensors tended to fail far more than the other BGC

sensors (Figures 4, 5; Table S2). Since a significant portion of the
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FIGURE 6

Density of high-quality profiles collected from 2002 to 2022 per 5°-by-5° grid cell for (A) adjusted O2, (B) adjusted NO3
-, (C) adjusted pH, (D)

adjusted Chla, (E) bbp, and (F) PAR/Ed. The black lines delineate the marine regions defined by Flanders Marine Institute (2021). Areas shallower than
200 m were removed, except for the Mediterranean, Black, and Baltic seas. Note that the target density for a full BGC-Argo network is ~1.1 profiles
per 10,000 km² each year. The accumulated density of high-quality profiles in each marine region is described in Table S4.
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processed pH data was given a QC flag of “4” or characterized as

“malfunctioned”, improvements to the PHQ appear more limited by

the technology. Accordingly, the community has continued to

refine and improve the design of the pH sensor, leading to a

steady increase in reliability over the past five years. Future,

repeated analysis of the pH QC time series presented here should

be performed to ensure that the upward trending pattern in PHQ

continues. It is important to note that even with relatively high

failure rates, BGC-floats now collect substantially more pH profiles

than shipboard measurements, playing a critical role in

understanding the ocean carbon cycle.

Float fluorometers currently rely on a lab-based calibration of

fluorescence-to-Chla. The conversion of fluorescence to in situ Chla

concentration depends on both the composition of the

phytoplankton community and their physiological status (Cullen,

1982). Ideally, the relationship between fluorescence and Chla is

determined using water samples collected at the deployment site.

However, this approach is not the most cost-effective, and any

relationships determined at the time of deployment will likely not

be the same once seasons change or the float drifts into an

ecologically distinct region. Currently, each fluorometer is

calibrated in a laboratory setting, using a reference fluorometer

that was initially calibrated to a single culture of Thalassiosira

weissflogii. This calibration has introduced a bias in the

determination of Chla in situ. Roesler et al. (2017) quantified this

bias with WET Labs ECO sensors and Chla concentrations

determined by high pressure liquid chromatography (HPLC).

Using their analysis, BGC-Argo adjusts Chla data by dividing

unadjusted Chla by two to reduce this global bias. While this

adjustment does not account for regional or seasonal changes

in the fluorescence-Chla relationship nor greatly affects how
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QC flags are applied, it is a step forward for gaining more

accurate estimates.

An important effort is made by the Argo Data Management

Team to calibrate and qualify fluorescence data measured from

BGC-Argo floats in order to deliver Chla with the best possible

accuracy. It has been shown that using radiometric data associated

with fluorescence measurements is an effective way to improve the

fluorescence calibration (Xing et al., 2011; Xing et al., 2018).

However, not all BGC-Argo floats are equipped with radiometers,

making it impossible to calibrate the entire fleet homogeneously.

Recently, new methods based on machine learning have made it

possible to derive radiometric profiles, from merged satellite ocean

color observations and hydrological data, for any BGC-Argo float,

whether equipped with a radiometer or not. These synthetic

radiometric profiles can thus be assigned to the fluorescence

profiles to consistently calibrate the whole BGC-Argo fleet. This

method is a promising alternative to other possible approaches that

obtain seasonal/regional adjustments tuned to space-based

estimates at the surface (Boss et al., 2008; Lavigne et al., 2015), or

to HPLC Chla data.

Since the global adjustment factor is also only applicable for

WET Labs (now Seabird) ECO sensors, other sensors may have to

be calibrated to Chla following a different procedure and may

behave differently when compared to WET Labs sensors.

Subsequently, new sensors will most likely require different

adjustment factors. One way to assess sensor/model-dependent

adjustment factors could be to deploy some floats with multiple

models of fluorometers to cross-calibrate between sensors. To catch

the possibly wide range of variability in these adjustments, float

deployment should be undertaken in various open ocean areas

covering a wide range of biogeochemical and trophic conditions
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FIGURE 7

Density of high-quality profiles as a percentage of the targeted high-quality profiles per year with each BGC parameter in the (A) North Atlantic, (B)
South Atlantic, (C) North Pacific, (D) South Pacific, (E) Indian Ocean, (F) Southern Ocean, (G) Arctic Ocean, and (H) seas around Europe. For regions in
(A–G), areas shallower than 200 m were removed. The average number of high-quality profiles for co-located PAR and Ed profiles was used. In each
region, sampling efforts are not evenly distributed (see Figure 8) nor may floats sample at 10-d intervals. Note the change in y-axis limits in (G, H).
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(e.g., from oligotrophic subtropical gyres to high latitude

environments with strong seasonal changes in biomass). This

cross-calibration could then be used to convert all Chla

measurements to a common unit, assuming that differences

between the same models of fluorometers are negligible. Similarly,

a standard calibration procedure could be developed for BGC-Argo

floats to ensure all Chla derived from fluorescence measurements

from various models are intercomparable (e.g., with diffuse

attenuation coefficient estimates from irradiance profiles).

Regardless of which technique is applied, great care will need to

be taken to ensure the interoperability of the resulting Chla

concentration data so that the researchers can leverage the full

database at once.

Measurements of bbp from floats currently have a limited QC

procedure that includes processing for range filters, data spikes, and

bad offsets. Additional real-time QC procedures proposed by

Dall’Olmo et al. (2023) will be integrated into BGC-Argo data

processing soon and will likely change the proportion of QC flags in

the system. Briefly, this new procedure identifies issues such as

noisy bbp data, profiles with a large fraction of missing data, and

profiles with negative bbp. Potential sensor malfunction or

biofouling is also identified by setting a threshold for high deep

values of bbp, where bbp is expected to be very low (but not equal to

zero). Dall’Olmo et al. (2023) also describe a procedure that

identifies biased measurements of bbp resulting from particles that

have accumulated on the float while the float is parked at depth

between casts. For those interested in data spikes (e.g., Briggs et al.,

2011) or high bbp at depth, both of which could result from real

oceanographic phenomena, users will likely want to apply custom

QC procedures. Once implemented, these added real-time QC

procedures will reduce the number of falsely identified high-

quality profiles available, but also erroneously identify good data
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as bad. Efforts should be made in developing a DMQC procedure to

improve data quality flagging.

We found that high-quality PAR/Ed profiles represent ~90% of

the entire database (Table S2). The data from radiometers are

generally good without much QC. (Radiometry RTQC currently

involves a global range test, and all radiometry data are given a QC

flag of “2” unless the test is failed.) Previously tested improvements

to the float radiometry processing include a dark offset correction,

temperature correction, spike removal, and sensor drift detection

(Organelli et al., 2016; Organelli et al., 2017; Jutard et al., 2021;

O’Brien and Boss, 2022). About half of the database has DMQC

processing correcting for temperature and dark values (Jutard et al.,

2021) but has not yet been implemented on all floats. Future float

deployments should prioritize collecting nighttime profiles of PAR/

Ed, at least once a year by each float, for these temperature and dark

offset corrections (Jutard et al., 2021). In a similar sense, collecting

these nighttime profiles could also prove beneficial for assessing

NPQ corrections. To reduce space-time biases in such an

assessment without changing the standard profiling interval,

average daily cycles could be extracted (Johnson and Bif, 2021;

Stoer and Fennel, 2023).

Unstable sea states, clouds, and wave focusing can also

momentarily alter light conditions which can lead to large

fluctuations in the downwelling light profile. While there is

nothing inherently wrong with the sensor during such events (as

it represents natural light variability), stable light conditions are

needed to better characterize the optical properties of the water

column (e.g., estimation of the light diffuse attenuation coefficient).

Procedures to identify these effects have been successfully applied to

floats before (Organelli et al., 2016; Organelli et al., 2017) and could

be further developed to create a reference dataset for use in the

ocean optics community.
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FIGURE 8

Percent area coverage where high-quality profile density is above target density for each BGC parameter in the (A) North Atlantic, (B) South Atlantic,
(C) North Pacific, (D) South Pacific, (E) Indian Ocean, (F) Southern Ocean, (G) Arctic Ocean, and (H) seas around Europe. For regions in (A–G), areas
shallower than 200 m were removed. The average density of high-quality profiles for co-located PAR and Ed profiles was used in density calculations.
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4.2 Pre-deployment strategies

A few pre-deployment strategies can also be taken to help

improve BGC data quality in the future. For one, testing the float

from a dock could help identify issues with sensors, communications,

and mechanics before deployment in the open ocean. Ideally, dock

testing would prevent the deployment of floats that would otherwise

quickly fail in the field. This strategy has proven to be very effective

for the SOCCOM and GO-BGC projects. Secondly, while not always

logistically feasible, reducing the time between when the float is

manufactured and deployed may improve float survival and

functionality by limiting exposure to possible damage. Finally,

larger batteries can also be purchased for some float models to

increase the float’s lifetime, allowing the float to collect more high-

quality profiles (assuming all sensors continue to function).
5 Conclusion

BGC-Argo is a rapidly expanding global ocean observation

network that offers an independent, cost-effective approach to

studying ocean biogeochemistry. The success of BGC-Argo

depends on ensuring that scientific-quality data can be retrieved

and delivered to the user in near real-time. Delivering scientific-

quality data requires rigorous QC. Alongside the increasing profile

numbers and spatial coverage, we report that for most of the key

BGC parameters, high-quality profiles make up at least 80% of all

profiles collected thus far, with the exception of pH. We find that

pH profiles have drastically improved in quality in the past five

years and are on track to have a similar data quality as the other

BGC parameters. We suggest several ways in which the BGC-Argo

data system is improving, which should lead to both an increase in

the number of high-quality profiles available to users, as well as

improvements to the absolute accuracy of key parameters in the

future. These strategies involve ensuring that data from all new and

old floats contain flags with the most up-to-date QC procedures,

advancing parameter-specific corrections, and testing the float

before deployment. This census provides the foundation

necessary to monitor measurement quality and quantity in the

future as BGC-Argo advances.
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