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Abstract—Social interactions represent an important factor in 

the human society and it presents different issues depending on the 

user category involved. In this paper, we present technological 

issues of using commercial mobile devices of the users to detect 

social interactions. Then, we propose a solution based on Bluetooth 

wearable Tags, minimally invasive and low-cost. This solution is 

based on the analysis of the RSSI emitted by BLE beacon messages 

and received by the user personal platform. We collected such 

information by exploiting commercial smartphones during a 

calibration campaign. To this purpose, we recruited volunteer 

students from the high school who mimic a number of interactions 

with class-mates. We compare the results of our algorithm with 

respect a diary of the interactions, giving us an overall accuracy of 

81% and F-Score measure of 84%. 

Keywords—Bluetooth low energy; Proximity detection; Social 

interactions 

I.  INTRODUCTION 

Human interactions are governed by the explicit willingness of 

establishing meaningful social relationships. A tie between two 

subjects is defined as a combination of the amount of time, the 

emotional intensity, the intimacy, and the reciprocal services 

that characterize the tie itself [1]. More clearly, each tie is a link 

between subjects, and its strength depends on several factors 

[2], such as the frequency of their interaction, the intimacy 

level, and the affinity of the subjects involved. 

The automatic detection of social interactions is an emerging 

research field, which helps revealing complex dynamics of the 

society with high resolution. Specifically, understanding the 

way people interact can improve the work organization [4, 9], 

the monitoring of the social dynamics of specific users’ 

categories (i.e., teenagers or elderly), and help understanding 

the spread of transmissible infectious diseases [5 - 8]. 

This work investigates the possibility of detecting social 

interactions among students of a high school by using their 

personal mobile devices and unobtrusive sensing technologies 

through BLE technology. To this aim, we propose a novel 

algorithm called SocializeME Detector (SME-D), designed to 

analyze BLE beacons and to detect social ties on a temporal 

scale. In addition, we present a preliminary calibration 

campaign of the algorithm based on real experiments conducted 

with students of I.T.I.S. E. Fermi high-school located in Lucca, 

Italy. We built a dataset of interactions obtained by reproducing 

accurate tests combined with a diary of the ground-truth of such 

interactions.  

Our contribution differs from previous studies on this field for 

several aspects. Firstly, we investigate the possibility of using 

commercial smartphones to advertise and to collect BLE 

beacons demonstrating that, currently, such approach is not 

feasible due to the heterogeneous implementation of BLE 

firmware in different versions of mobile OS (both Android and 

iOS). We present the main issues encountered on this study to 

provide additional feedbacks to mobile devices producers.  

Most of the solutions presented in the literature are based on 

customized sensing units [4-8], or they provide a limited test set 

on commercial devices [3]. Differently, we rely on commercial 

devices, leading us to consider several drawbacks. For example, 

we experienced a remarkable and variable loss rate of the 

expected beacons; the heterogeneity of Bluetooth chipset, 

causes significant differences in the quality of the received 

signals; variations related to the wearing position of the 

smartphones (e.g., in front or back pocket, in a hand, or on a 

desk) impact on the detection accuracy. The combination of 

such factors makes our calibration campaign a representative 

case-study of the hidden complexities behind the detection of 

human interactions. Then, we compare the performance of 

SME-D against a fine-grained ground-truth, collected by 

keeping track of the start and end time of each meeting we 

reproduced. Therefore, we are able to assess the performance of 

SME-D by measuring precision, recall, accuracy and F-score 

metrics on a granular time scale. 

Experimental results show different performance of the 

considered tests. Specifically, the results we obtained on 

specific tests show accuracy values ranging from 72% to 87% 

and F-score values ranging from 75% to 89%. By combining all 

the tests, the overall results report an accuracy of about 80% 

and F-score of 84%. The presented results demonstrate the 

effectiveness of SME-D algorithm as well as the quality of the 

dataset collected for calibration purposes. Section II reports 

innovative works in the field of human social interaction, while 

Section III describes the SME framework. Section IV describes 

the SME-D algorithm, and Section V and VI describe the data 

collection campaign and the results obtained. 



II. RELATED WORK 

The SocioPattern research project is a proximity sensing system 

based on RFID active tags  [5 - 8]. The research group, along 

the years, collected many useful datasets reproducing dynamics 

of the interactions in different settings. All the datasets are 

obtained with the architecture presented in [1-5], which consists 

of wearable RFID sensors emitting a signal with a predefined 

power level, in order to locate humans in the range of 1 to 1.5 

meters. RFID sensors are tuned to detect only face-to-face 

meetings. The interactions happening far from the recording 

stations are not recorded. SocioPattern have been used to 

monitor the evolution of the interactions of students at a high 

school. They recruited about 300 students during two 

campaigns in order to investigate and compare patterns of 

encounters and their temporal features. A similar work is 

presented in [8], in which the authors present an in-depth study 

of dynamics of the interaction in primary school. Differently 

from our approach, the environment is provisioned with a 

number of recording units that, generally, are installed on the 

ceiling. 

A different approach is followed by the MIT Human Dynamics 

Laboratory Works leaded by prof. Pentland. Authors of [4] 

present the design of a smart badge able to capture what authors 

define as honest signals. Namely, those signals emitted by 

humans as an explicit willingness to interact. The smart badge 

can detect proximity and voice activity (talkativeness) in 

different contexts. Combining such signals, the authors are able 

to accurately detect meetings and to study the efficacy of the 

interactions in working environments. The solution proposed is 

highly efficient, however, it relies on ad-hoc sensing units. 

The authors of the Copenhagen Networks Study [10-11] 

analyze the interactions of people by using a Funf-based 

logging application [12]. The application captures multiple 

signals, including WiFi scans, locations and Bluetooth scans. In 

this study, all the people were provisioned with a specific 

device model (Samsung Galaxy Nexus in 2012 and LG Nexus 

4 in 2013) in order to reduce incompatibility issues but, at the 

same time, limiting the possibility to extend the sensing 

campaign. Under this respect, it is worth to notice that our 

approach relies on commercial and heterogeneous devices. 

Recently, another work has been presented including the use of 

commercial mobile devices, specifically Android Wear and 

Tizen smartwatches, to detect proximity interactions [3]. The 

authors present results related to the use of BLE advertising and 

scan operations implemented on a customized device 

(developed by the authors) and on two commercial 

smartwatches. The work presents interesting results in a 

working environment involving 35 people. However, the 

authors did not investigate the technological issues related to 

the heterogeneity of available commercial devices that 

represents a real limitation to a large scale deployment of this 

type of systems in real environments. 

                                                           
1 http://www.global-tag.com 

III. THE SOCIALIZEME FRAMEWORK 

The first version of SocializeMe included a mobile application 

developed for Android and iOS smartphones. The app was 

designed to be completely transparent to the user, being able to 

run in background by maintaining BLE scan and advertise 

operations active, in order to collect information about the 

devices in proximity. Unfortunately, we encountered several 

limitations to the app implementation in the two development 

environments. On the one hand, iOS does not allow 

scan/advertise operations from an app in background. Since 

SocializeME would like to be used in a minimal invasive way 

for the final user, we cannot require an exclusive use of the 

personal mobile device during the monitoring operations.  On 

the other hand, we discovered that not all Android devices 

(considering Android 5.0 and Bluetooth 4.0 as minimal 

versions) support BLE advertising even if supporting the BLE 

peripheral mode. Through the experimental campaign with the 

students, we have been able to test more than 15 different 

devices and 42% of them did not support the application 

requirements. In Table I, we present a summary of the tested 

commercial devices. 

In order to support a large-scale testbed in the school 

environment, we decided to move to an alternative solution. We 

decided to use commercial BLE Tags produced by Global Tag1, 

 

Fig. 1 BLE Tags used for our experiments. 

TABLE I. SUMMERY OF THE TESTED DEVICES 

Device model Android 

version 

Bluetooth  

version 

BLE 

Advertising 

Samsung Galaxy S7 Edge 6 and 7 4.2 ✓ 

Samsung Galaxy S6 Edge 7 4.1 ✓ 

Samsung Galaxy S7 7 4.2 ✓ 

Sony e5823 7 4.0 ✓ 

Xiaomi mi5 7 4.2 ✓ 

Xiaomi mi4i 5.0.2 4.1 ✓ 

Asus Zenfone 2  5.0.0 4.0 ✓ 

Motorola Nexus 6 7.0 4.1 ✓ 

LG Nexus 5X 7.1 4.2 ✓ 

Honor 8 7/7.1 4.1 ✓ 

OnePlus 7.1.2 4 ✗ 
Huawei P8 Lite 5 4 ✗ 

Huawei P9 Lite 6.0.0 4.1 ✗ 

Samsung Galaxy S5 5.1.1 4 ✗ 

Sony Xperia M2  5.1.1 4.0 ✗ 



as shown in Figure 1, since they are low cost devices, easy-to-

configure and fully compliant with Bluetooth v4 protocol stack. 

Tags support both the Eddystone and iBeacon beaconing 

protocol. The advertisement rate and the transmit power can be 

tuned, ranging from 1 Hz to 10 Hz and from -23 dBm to 4 dBm, 

respectively. We maintained SocializeME app as collector of 

beacon signals. In addition, the students can observe the list of 

detected neighbors and the execution time through a simple 

GUI. The app locally stores the collected information and sends 

it to a remote server in presence of Internet connectivity.   

IV. THE SME-D ALGORITHM 

SocializeME app collects, for each user, a time series of the 

BLE beacon received from tags in proximity. The design of our 

algorithm has been inspired by the analysis of the BLE signals 

received in terms of Received Signal Strength Indicator (RSSI). 

Figure 2 reports a meaningful example, during which two 

volunteers (A and B) had 5 face-to-face meetings lasting for 4 

minutes, and interleaved by a 2 minutes’ pause. During the 

meeting, the volunteers lay at a distance ranging from 1 to 1.5 

meters. The lower part of Figure 2 shows the raw data from both 

devices, A  is shown in blue color, while B in orange color and 

the ground truth of the interactions, namely the time intervals 

during which A and B were effective in touch (reported as a red 

stair-line in Figure 2). 

A first observation concerns the asymmetry of the two devices. 

Specifically, we observe that the distribution of the RSSI 

estimated by A differs from the distribution of B. The upper part 

of Figure 2 shows a box-plot for each device and for each time 

interval identifying an interaction. Each box shows the median, 

the 25th and 75th percentile as well as the minimum and 

maximum RSSI observed. We can note that, even if the two 

volunteers stayed in the same position during the face-to-face 

meeting, their distributions differ. In this example, beacons 

received by B are generally estimated with a higher RSSI than 

that of beacons received by A. We repeated the same 

experiments by using two identical mobile devices and we still 

noticed a difference in the RSSI distribution. 

We measure the Coefficient of Variation CV=σ/|μ| of the RSSI 

distributions (both of A and B). It indicates the stability of the 

distribution. Values of CV < 1 mean that the distribution has a 

low variance while with CV > 1 the distribution has a high 

variance. For what concerns the example reported in Figure 2, 

we experience values of CV < 1 ranging from 0.079 to 0.092 

and from 0.104 to 0.119 for beacons received by A and B and 

vice-versa. We observe similar results also for all the 

experiments executed. More precisely, we measure that most of 

the meetings are stable, with values of CV always below 0.2. 

Finally, we assess the beacon loss rate for both devices and, 

similarly to CV, we experience different values for the two 

devices. In this specific case, A and B report a 49% and 37% 

loss rate, respectively. This example is a representative case for 

most of the tests we analyzed during the calibration campaign 

(see Section V), highlighting the impact of RSSI analysis on the 

detection of social interactions. However, additional factors 

affect the overall quality and quantity of the beacons received. 

For example, the body orientation of the volunteers, the 

presence of other people in the nearby, electromagnetic 

interferences as well as the presence of physical obstacles in the 

environment.  

 

Fig. 2 Example of raw data and statyistical distribution of RSSI from a dyad. 

 

 

Fig. 3 The SME-D algorithm. 



Therefore, we consider two main parameters in the definition 

of SME-D algorithm: (i) the percentage of received beacons, 

and (ii) the minimum RSSI value to consider the received 

message as a valid indicator of physical proximity. 

The goal of SME-D is to accurately estimate the start and the 

end time of all the interactions between all the possible dyads 

in a group of people (i.e., each pair of devices in proximity). 

SME-D processes the raw data collected from all the devices, 

and it reports a time series of their interactions. 

For each dyad, SME-D analyzes the interactions in both 

directions: A→B, by analyzing beacons received by A, and 

B→A. Specifically, we consider a sliding time-window of 

duration Δup, during which we evaluate the following opening 

condition: 

• to receive at least p% of the expected beacons;  

• the RSSI of the received beacons is greater or equal the 

threshold value τrssi. 

We consider that a meeting occurs in that time window if at 

least one of the two directions verifies the opening condition.  

Once the meeting is detected, it holds until the closing condition 

is detected: the  time interval between the last received beacon 

with RSSI ≥ τrssi, is grater or equal to Δdown. 

Figure 3 shows a graphical representation of the SME-D 

algorithm for the dyad A and B. In this example, the direction 

B→A verifies the opening condition and SME-D detects a 

meeting between A and B. On the contrary, after time t3, the 

RSSI of the beacons received in both directions are below the 

threshold τrssi for at least a Δdown of time. Therefore, the closing 

condition verifies and SME-D no longer detects a meeting 

between A and B. 

V. THE DATA COLLECTION CAMPAIGN 

This research is conducted in the framework of SocializeME 

project, aimed at studying social dynamics among students of a 

high school. Social inclusion and interactions might represent 

an important issue in adolescent age, and the high school is the 

reference institution where students spend most of their time 

and where they establish both positive and negative 

relationships. In addition, teachers and the school headmaster 

can receive important feedback from the analysis of students’ 

social interactions, by improving the lessons organization or 

monitoring some school areas used during breaks or out of the 

lessons. A large-scale data collection campaign is scheduled to 

start on January 2018 for roughly 4 months. However, in order 

to calibrate the SME-D algorithm and to test the proposed 

solution, we conducted some preliminary experiments with a 

limited set of students. 

The calibration campaign consists of several round of tests 

during which we recruit volunteer students from different 

classes. All the volunteer’s parents signed a written informed 

consent agreeing on the possibility of analyzing data collected 

for statistical purposes in an anonymized form. We deliver to 

the students a test plan in which we describe the tests to be done 

as well as the report to be filled in for the ground truth. The test 

plan is organized in three phases: 

• Installation: the students install, check and test the 

SocializeME app on their mobile devices. The goal is to 

report bugs, anomalies or incompatibility issues with their 

personal smartphone. 

• Tests: the students execute each run by strictly following 

the test plan instructions. 

• Report: the students fill the ground-truth diary reporting the 

time intervals during which they effectively are engaged in 

a social interaction. 

We included three kinds of tests in the test plan, according to 

common ways of using and wearing a smartphone: 

• Test 1: standing face-to-face with smartphones placed in 

the front pocket; 

• Test 2: sitting with smartphones placed in the front pocket; 

• Test 3: standing face-to-face with smartphones placed in 

the back pocket. 

Each of the test has been repeated for 5 runs. Each of the runs 

spans for 6 minutes, of which 2 minutes of non-interaction and 

4 minute of interaction.  

After each test, students fill in the ground-truth diary, in which 

they report: start time of the interaction, end time of the 

interaction and, if any, remarks about the test. At the end of the 

calibration campaign, we collected 300 interaction tests from 

20 different dyads. 

VI. EXPERIMENTAL RESULTS AND SME-D CALIBRATION  

Before reporting the experimental results, we describe the 

evaluation metrics we used in the data analysis. Then, we 

present the performance of each type of test described in 

Section V (test 1, 2 and 3), and the aggregated performance 

results. Specifically, we highlight how SME-D parameters p 

and τrssi affect the accuracy of the detection, and the distribution 

of the beacon loss. We configure the BLE Tags with the 

emission power set to -6 dbm and a 5 Hz advertisement rate. 

Tags emit iBeacon messages containing only the ID of the 

student. This configuration has been selected from a previous 

experimental campaign used to estimate the battery life of BLE 

Tags, which resulted to be more than one month with this 

setting. 

A. Evalution Metrics 

In order to assess the performance of SME-D, we compare the 

result of our algorithm with the ground truth. Specifically, we 

measure the following quantities: true positive (TP), true 

negative (TN), false positive (FP) and false negative (FN). 

These quantities assess the number of right/wrong answers of 

the algorithm with respect to the number of observations in the 

ground truth (i.e., the existence or not of an interaction for a 

specific dyad). Then, given the confusion matrix, we consider 

the following metrics: 

�������� =
�� + �


TP + TN + FP + FN
 

 

which assesses the proportion of correct answers of SME-D 

with respect to the total amount of observations. We also 

consider the F-score, which combines both precision 

P=TP/(TP+FP) and recall R=TP/(TP+FN), as follows: 

� − ����� = 2 ∗
� ∗ �

� + �
 



When F-score = 1, SME-D obtains perfect precision (P = 1) and 

perfect recall (R=1).  Finally, we analyze the distribution of the 

packet loss rate, expressed as the ratio between the expected 

number of beacons and the received beacons. 

B. Experimental Results 

We start our analysis by considering the two SME-D 

parameters, namely p and τrssi. They establish the number of 

valid beacons to be considered for the opening and closing 

conditions. For each test, we measure accuracy and F-score 

while varying both p and τrssi. Figure 4 reports the overall 

results. Here we present results obtained with p equal to 3%, 

7%, 11% and 19%, and τrssi in the range -90 dbm, - 70 dbm. We 

experience that values of p and τrssi outside those ranges do not 

affect positively the overall metrics. 

The first observation is that the accuracy of test 1 and 2 have a 

similar trend. The accuracy increases as τrssi increases to reach 

the maximum value around a specific value, which varies from 

-82 dbm for test 1, to -84 dbm for test 2. After such threshold, 

the accuracy decreases. The increases of τrssi (from lower values 

to higher values) as a double effect on the positive answers of 

the algorithm (TP and FP). Both TP and FP increases with τrssi. 

This depends on the fact that beacons received with a low power 

(i.e., emitted by devices not in proximity) still contribute to 

verify the opening condition. Differently, the variation of the 

percentage p has the effect of increasing the number of required 

beacons to be considered for the opening condition. The higher 

p, the higher number of beacons is expected. As a result, 

increasing values of p reduce the number of both FP and TP. 

Results for test 3 differ from test 1 and 2. During test 3, the 

dyads stay face-to-face with their smartphones placed in the 

back pocket. In this case, the body attenuation is generally 

stronger than that of test 1 and 2. As a result, the overall metrics 

are highly affected. Specifically, we do not observe any 

significant local maximum that can indicate a possible 

optimization point. Differently, both accuracy and F-Score 

decrease as τrssi increases.  

We also study the beacon loss rate for test 3. As observed in 

Section III, devices record a number of beacons far lower than 

the expected one. For each tests, we report in Figure 5 the 

distribution of the beacon loss rate. Results are obtained by 

considering the beacon loss rate of all the 20 dyads during all 

the 300 meetings. For what concerns test 1 and 2  the median 

ranges from 55% and 50% respectively while, as expected, for 

test 3 it is 62% (the worst case). 

Since we cannot assume a priori the way the students use and 

wear their smartphones, we combine the results of all the tests, 

providing an overall performance assessment of SME-D. 

Figure 6 shows both accuracy and F-score. The result trends is 

generally similar to test 1 and 2. Both accuracy and F-score 

 

Fig. 4 Accuracy and F-score for each of the tests. 

TABLE II.   CONFUSION MATRIX FOR EACH OF THE TESTS. 

 Test 1 Test 2 Test 3 

 True conditions Acc. 

[%] 

F-score 

[%] 

True conditions Acc. 

[%] 

F-score 

[%] 

True conditions Acc. 

[%] 

F-score 

[%]  Int. No-Int. Int. No-Int. Int. No-Int. 

SME-D: 

Interaction 
788 132 

85.32 88.54 

741 89 

87.19 89.28 

605 124 

72.21 75.67 
SME-D: 

No-Interaction 
72 398 89 471 265 406 

 



increase to a maximum value after which they decrease. The 

optimal tuning is obtained for the following values: 

�̂ = 3%, τ� = −84	!"# 

which provide an overall accuracy of 81.56% and F-Score of 

84.7%. With this configuration, we report on Table II the 

confusion matrix for each test, in terms of TP, TN, FP, FN, 

accuracy and F-score. Values confirm what observed in Figure 

4, where the accuracy is greater than 85% and F-Score greater 

than 88% for test 1 and test 2, while test 3 is highly affected by 

errors, with an accuracy of 72.21% and F-Score of 75.67%. 

Finally, we report on Table III the cumulative confusion matrix 

obtained by combining each matrix of Table II. We observe an 

overall accuracy of 81.56% and F-Score of 84.7%. 

VII. COCLUSIONS 

Interactions among people represent complex events to be 

detected and studied. This work, proposes an unobtrusive 

approach to capture such events by exploiting commercial 

mobile devices. We first describe the SocializeME framework 

designed to collect BLE beacons emitted by mobile devices. 

We report our experience concerning the possibility of using 

commercial smartphones both to advertise and to record 

beacons in an unobtrusive way. Then, we exploit BLE 

commercial tags and we analyze BLE beacons to infer 

proximity among subjects and, in turn, to infer an interaction 

among them. To this purpose, we also present the SME-D 

algorithm designed to detect social interactions among people 

with high temporal resolution. In order to validate SME-D, we 

organized a calibration campaign with students from the high-

school with the goal of reproducing face-to-face meetings. We 

reproduced the meetings by following different patterns, so that 

to obtain a realistic case-study. Our experimental results report 

an accuracy and F-Score metric of about 80% and 84% 

respectively, even with a remarkable beacon loss rate. The 

results obtained provide us a solid framework for an in-depth 

analysis of the dynamics of the human interactions. To this end, 

we scheduled an extensive data collection campaign of about 4 

month starting from January 2018 and involving about 80 

students from the high-school. 
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Fig. 6 Accuracy and F-score for all the tests. 

TABLE III. CUMULATIVE CONFUSION MATRIX. 

 True conditions Accuracy 

[%] 

F-score 

[%]  Interaction No Interaction 

SME-D: 

Interaction 
2134 345 

81.56 84.7 
SME-D: 

No-Interaction 
426 1275 

 

 

Fig. 5 Distribution of the beacon loss rate across the tests 


