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Abstract. We perform a numerical study of the fluctuations of the rescaled hydrodynamic trans-
verse velocity field during the cooling state of a homogeneous granular gas. We are interested in the
role of Molecular Chaos for the amplitude of the hydrodynamic noise and its relaxation in time. For
this purpose we compare the results of Molecular Dynamics (MD, deterministic dynamics) with
those from Direct Simulation Monte Carlo (DSMC, random process), where Molecular Chaos can
be directly controlled. It is seen that the large time decay of the fluctuation’s autocorrelation is
always dictated by the viscosity coefficient predicted by granular hydrodynamics, independently
of the numerical scheme (MD or DSMC). On the other side, the noise amplitude in Molecular Dy-
namics, which is known to violate the equilibrium Fluctuation-Dissipation relation, is not always
accurately reproduced in a DSMC scheme. The agreement between the two models improves if
the probability of recollision (controlling Molecular Chaos) is reduced by increasing the number
of virtual particles per cells in the DSMC. This result suggests that DSMC is not necessarily more
efficient than MD, if the real number of particles is small (∼ 103 ± 104) and if one is interested
in accurately reproduce fluctuations. An open question remains about the small-times behavior of
the autocorrelation function in the DSMC, which in MD and in kinetic theory predictions is not a
straight exponential.
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1. Introduction
A relevant question for the general problem of non-equilibrium statistical mechanics is: may two
non-equilibrium statistical processes be considered to be in the same “class of universality”? This
question is usually more complicate than the analogous problem at equilibrium, because less sym-
metries are available, the most important being the invariance under time-reversal. Models of gran-
ular gases [30, 29] lend themselves to be analyzed under this aspect: they are usually far from equi-
librium and exhibit peculiar properties, such as: breakdown of energy equipartition [16, 25, 28],
spontaneous symmetry breaking (vortices and clustering) [35, 18], “Maxwell demon” effects [15],
“ratcheting” effects [12], and lot more. At the same time granular experiments usually concern
small samples, or the order of 103 ± 104 grains, and therefore extensive observables are affected
by large (easily detectable) fluctuations [18]. Finding “universal” properties in the statistical de-
scription of those fluctuations is, therefore, of great interest. Recently a kinetic theory has been
proposed for the fluctuations of “slow” (hydrodynamics) fields in a uniform, dilute and unforced
granular gas made of inelastic hard disks or spheres [5]. The system - initialized in a generically
thermal state - cools down; during the cooling the fields can be properly rescaled to fit a steady de-
scription. The theory predicts a form, for the fluctuations of the fields, which is different from the
classical Landau theory for fluctuating hydrodynamics [21], which is based on Onsager reciprocal
relations or equivalently the Kubo Fluctuation-Dissipation relation (FDR) [20, 26]. The fluctua-
tions obey, instead, a generalized Langevin equation where the noise has a variance which does not
satisfy the FDR [14, 3], and, in addition, is slightly colored. Note that the failure of FDR has also
been observed in driven granular gases, but only at large packing fractions [32, 36, 34], while it is
usually satisfied in the dilute case [31, 1, 33]. The theory in [5] makes use of the projection oper-
ator formalism and descends from a series of hypothesis, mainly the validity of Molecular Chaos
and the Liouville equation for free particles undergoing hard core binary instantaneous collisions.
It well reproduces the results of Molecular Dynamics simulations. A different model, often used
to describe a homogeneous and dilute granular gas, is the one known as non-homogeneous Direct
Simulation Monte Carlo for inelastic hard disks (or spheres) [2]: even if this is usually considered
a numerical scheme good to reproduce hard disks MD in the dilute limit, from the point of view
of fluctuations it is clearly a different model. Indeed, in an MD simulation the noise is simply
generated by the dynamics (with different initial conditions), while the DSMC introduces an ex-
ternal source of noise to randomize collisions. Observables relying on the one-particle distribution
function (which satisfies the same evolution equation, i.e. the inelastic Boltzmann equation) are ex-
pected to take the same values in MD and DSMC. Anyway fluctuations of hydrodynamic fields are
related to two-particles distribution functions: at this level of the BBGKY hierarchy, the relation
between DSMC and MD is still to be assessed. For this reason we have performed a detailed study
of hydrodynamics noise comparing DSMC and MD. Our study has been in part published in [11]:
here we add results concerning the role of the number of cells (mc) and of the virtual particles per
cell (Ñc), which change the accuracy of the DSMC model in reproducing the Molecular Chaos.
It appears that reducing the probability of recollision by tuning these parameters is sufficient to
improve the agreement between DSMC and MD. Previously, DSMC has been used to measure
hydrodynamic fluctuations in the elastic case [17, 24]. More recently, the DSMC approach has
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also been applied to fluctuations of the global energy fluctuations (a homogeneous, not spatially
dependent quantity) in inelastic systems [37, 10], obtaining a good agreement with the amplitude
of fluctuations measured in MD simulations and explained in terms of projection operators applied
to the deterministic dynamics [9]. A similar conclusion was available for that study: stochastic
“Monte Carlo” treatment of collisions is sufficient to reproduce MD noise properties. A successive
study [13] also showed how certain quantities (cumulants of fluctuations in the stationary state)
may be obtained without resorting to projection techniques. The novelty of the present case is in
the local nature of the observable: fluctuations are caused by evolution of the spatial coordinates
and not only of the velocity degrees of freedom. The organization of the paper is the following:
we first describe the model in Section 2., explaining the stationary HCS representation and the two
numerical schemes in use; then, in Section 3., we discuss the role of spatial resolution and how
it affects Molecular Chaos; then the hydrodynamic noise is discussed in in Section 4. and finally
conclusions are drawn.

2. The homogeneous cooling and its stationary representation
We treat, by Direct Simulation Monte-Carlo (DSMC) and Event Driven Molecular Dynamics (MD)
the evolution of a dilute system of N smooth inelastic hard disks of mass m = 1 and diameter σ.
The instantaneous inelastic collisions between the disks i and j change the particles velocities
following the relations

v′i = vi − 1 + α

2
(σ̂ · vij)σ̂

v′j = vj +
1 + α

2
(σ̂ · vij)σ̂ (2.1)

where v′ corresponds to post-collisional velocity, α is the coefficient of restitution and vij = vi−vj

is the relative velocity. The term σ̂ is the unit vector joining the particles at contact, in the MD,
and a random unit vector (see details below) in the DSMC. The size of the system is L × L and
the boundary conditions are periodic. The main hypothesis used here is that the system, starting in
a uniform equilibrium state with granular temperature Tg(0) = T0, evolves to the Homogeneous
Cooling State (HCS), which is characterized by a single time-scale measured by the temperature
Tg(t): any other quantity depends on time only through Tg(t). Apparently, as observed in many
previous studies [8], in a homogeneous setting, Molecular Chaos is sufficient to guarantee this
hypothesis. The HCS is unstable against spatial fluctuations: this instability appears at scales larger
than a critical length Lc which depends on α and on the mean free path, therefore it can be avoided
by taking the linear size of the system L < Lc [19]. It is possible to analyze the effects of spatial
fluctuations by deriving mesoscopic equations through a linearization around the HCS [35]. The
resulting equations are generally coupled, but in the Fourier representation the transverse velocity
field results decoupled from the other modes. We are interested, in particular, in the fluctuations of
its largest mode, i.e. of the smallest wave-number |km| = 2π/L. We choose the wave vector km
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parallel to the axis x̂ and the quantity above results to be

U⊥(t) =
N∑

j=1

vy,j(t) exp
(
i
2πxj(t)

L

)
(2.2)

where vy,j(t) is the component of the velocity of the particle j in the direction ŷ and xj(t) is
its coordinate along the x̂ axis. According to the Landau-Lifshitz Equilibrium Fluctuating Hy-
drodynamics (EFH), based on Einstein fluctuation formula, one can make the hypothesis that the
fluctuations of U⊥(t) obey a linear Langevin equation:

∂tU⊥(t) = −ν(t)k2
mU⊥(t) +

√
v2

th(t)Nc ν(t)k2
mξ(t) (2.3)

where ν(t) is the kinematic viscosity which, in the HCS, is proportional to
√

Tg (see [4] for def-
initions), vth(t) ≡

√
2Tg/m and c is expected to be 1 [21, 35, 3]. The last term in the Eq. (2.3)

describes an internal noise due to the effect of the rapid (microscopic) degrees of freedom of the
system which have been projected out of the description. This complex noise is assumed, in EFH,
to be white, Gaussian and with correlations given by

〈ξ(t)ξ∗(t′)〉 = δ(t− t′) (2.4)
〈ξ(t)ξ(t′)〉 = 0 (2.5)

with ξ∗(t) the complex conjugate of ξ(t). In granular systems, deviations from the white noise
assumption are expected [5], but in the dilute case they are in general quite small (this is different
in stationary dense systems, e.g. [32, 36, 34]). The most evident consequence of inelasticity is,
instead, the variation of the dimensionless coefficient c in Eq. (2.3), which is equal to 1 only at
equilibrium (α = 1); its departure from c = 1 represents the fact that the fluctuations of U⊥(t) do
not satisfy the FDR and that the EFH fails. Since the system is cooling, the typical velocity of the
particles becomes smaller and smaller, leading to increasing rounding errors and other numerical
problems. These problems can be avoided with the use of a procedure which, in the HCS, maps
the dynamics to a steady state by means of a time-rescaling [8, 23]. In the HCS, the granular
temperature obeys the following equation:

∂tTg(t) + ζH(t) Tg(t) = 0 (2.6)

where ζH is the cooling rate that results proportional to
√

Tg(t).
The stationary representation of the HCS [8] consists in introducing a new time scale τ defined by

ω0τ = ln
t

t0
(2.7)

with ω0 ant t0 arbitrary constants, implying the definition of rescaled velocities ṽ(τ) = v(t)ω0t. It
is easy to see [8] that observing the system on this new time scale is equivalent to apply a positive
continuous drag to all particles ∂τ ṽ(τ) = ω0ṽ(τ). This naturally leads to define also the rescaled
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analogous of U⊥(t): W⊥(τ) = U⊥(t)ω0t.
We tune ω0 in order to have Tg(τ →∞) = T0 (so that the length of transients is reduced), a result
which is obtained by taking ω0 = ζH(0)/2. In the steady state, we simplify the notation using
vth = vth(0). With these choices, the Langevin equation (2.3) is mapped onto a new equation

∂τW⊥(τ) = −W⊥(τ)

τ0

+

√
Nv3

th

cν̃k̃2
m

λ0

ξ(τ), (2.8)

where τ−1
0 = vth

λ0
ν̃k̃2

m − ω0, λ0 = L2/(Nσ) ≡ 1/(nσ) is proportional to the mean free path
and ν̃ = ν(t)/[λ0vth(t)] and k̃m = kmλ0 are dimensionless rescaled viscosity and wave number,
respectively. If τ0 > 0, which is equivalent to the condition of stability of shear modes in the HCS,
the above equation leads to a dimensionless autocorrelation function given by

C⊥(τ) ≡ 〈W⊥(0)W ∗
⊥(τ)〉

v2
th

=
cN

2

(
1 + ω0τ0

)
e−τ/τ0 (2.9)

with τ0 the characteristic time of decay.
Based on Eq. (2.9), we can obtain the dimensionless kinematic viscosity ν̃ and the “FDR violation”
coefficient c from a measure of C⊥(τ), fitting its main parameters C⊥(0) and τ0:

ν̃ =
λ0

vthk̃2
m

( 1

τ0

+ ω0

)
(2.10)

c =
2C⊥(0)

N
(
τ0ω0 + 1

) , (2.11)

i.e. ν̃ and c are obtained measuring the amplitude C⊥(0) and the decay time τ0. In order to
apply the correct thermostat ˙̃v = ω0ṽ, and to obtain the kinematic viscosity ν̃ from Eq.(2.9), it is
necessary to know the value of ω0 = ζH(0)/2. This is computed, in the homogeneous case, giving
the theoretical expressions [8]

ζH(0) =
vth(0)

λ0

(1− α2)

√
π

2

[
1 +

3

16
a2(α)

]
(2.12)

where the coefficient a2(α) is

a2(α) =
16(1− α)(1− 2α2)

57− 25α + 30α2 − 30α3
. (2.13)

We have verified that the prediction in Eq. (2.12) is good also for the inhomogeneous DSMC and
for MD.

2.1. Simulation schemes
The system described above is naturally simulated by means of an event-driven molecular dy-
namics algorithm (MD) where randomness is limited to the initial conditions (extracted from the
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canonical ensemble at temperature Tg(0)) and the evolution is deterministic: collisions occur at
contact and rule (2.1) is instantaneously applied. A different scheme, the DSMC, involves an ap-
proximation of the above dynamics, where external noise is introduced when computing the effect
of collisions. The algorithm involves the simulation of Ñ = fN fictive particles with f > 1. This
is a trick often used in DSMC: for molecular gases - where N ∼ 1020 - it is customary to use f ¿ 1
in order to have a manageable number of fictive particles. In granular gases, where the number of
real particles is small, one uses f > 1 in order to have enough particles in a cell to guarantee
Molecular Chaos. This is our case. For the sake of completeness, here we sketch the basic steps
of the algorithm. As initial condition we have chosen a uniformly random spatial configuration
of the particles and a Gaussian distribution of their velocities, as in MD. After initialization, the
dynamics consists of a cycle with the following two steps:

• Streaming step (evolution of positions and velocities ignoring possible collisions)

• Collision step

The streaming step consists in computing, for every particle i, the time-discretized version (with a
fixed ∆t, small enough) of the evolution equations

ṙi = ṽi (2.14)
˙̃vi = ω0ṽi (2.15)

For the purpose of the collision step, the system is partitioned in mc equal non-overlapping cells
of size lc (an optimal value lc ∼ 15σ has been individuated, as discussed below). The average
number of fictive particles in the cell i is then Ñc = Ñ/mc. In each cell k the local average
collision frequency - per particle - ωk = σnk

√
4πTk/m is calculated, based on the real density

nk = Ñk/(fl2c) - where Ñk is the number of fictive particles in the cell - and on an estimate
of the local temperature Tk (i.e. the variance of the particle velocity distribution in the cell).
Then a number of collisions Ñkωk∆t is performed: this is obtained choosing, at random, pairs of
particles i and j, and unit vector (uniformly distributed angle) σ̂, accepting them with a probability
proportional to (vi − vj) · σ̂. The accepted pair is updated with equations (2.1). It should be
noticed the deep difference in the fine collision mechanism between MD and DSMC: in the latter
one draws randomly the unit vector σ̂ and the real coordinates of the particles are ignored. Particles
not at contact may always collide, if in the same cell. Most importantly, if the number of fictive
particles Ñc in the cell is small (i.e. of order 1), it is possible to observe fake recollisions, i.e.
particles which after a collision immediately re-collide. This is a spurious effect which certainly is
not present in MD. The algorithm described here is the classical DSMC algorithm as proposed by
Bird [2] (variant exist which include fluctuations of the number of collisions with the introduction
of an internal clock for each cell). Incidentally we notice that, in this particular case, the number
f , when integer and larger than 1, can be thought as a number of “copies” of the system. In fact,
if ∆t is small enough to guarantee that Nkωk∆t ¿ Nk for any cell k (which is always true in
our simulations), then one can always virtually separate the Ñk fictive particles of the cell into f
groups of - averagely - Nk particles, such that collisions occur only between particles of the same
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group. Given that colliding pairs are chosen at random among the Ñk particles, at each step this
virtual separation into f groups is done in a new way, which is equivalent to say that - at each step
- some of the particles move from one group to the other, remaining of course in the same cell.
This is just an alternative representation of the algorithm, which underlines the strong randomizing
mechanism - intrinsic of DSMC and not present in MD. Note that the last discussion does not
imply that we have followed a different implementation of the DSMC algorithm: our recipe is
exactly the one described above (streaming step and collision step).

3. Spatial resolution and molecular chaos
The basic definition of Molecular Chaos enters in the derivation of the Boltzmann equation. In the
dilute limit one expects that the joint probability P2(v1,v2) of finding two colliding particles with
velocities v1 and v2 factorizes into the product of two single particles probability P1(v1)P1(v2). It
is quite difficult to obtain a direct check of this assumption [22]. A better procedure is to verify the
consequences of it in terms of simpler observables (this of course is a necessary but not sufficient
check of Molecular Chaos). The DSMC algorithm, is a good tool to numerically solve Boltzmann
equations, thanks to the stochastic computation of collisions: pairs of particles and their orientation
vector σ̂ are chosen randomly, with probabilities dictated by the Boltzmann collision integral.
In homogeneous configurations, a pair of particles is chosen among all particles of the system,
disregarding spatial coordinates: the large number of particles guarantees Molecular Chaos. Here,
to avoid shear mode instabilities, we keep the total size of the system under the critical size Lc,
expecting to observe a homogeneous regime. Nevertheless, the quantity under scrutiny, U⊥(t),
requires that collisions are treated with a good spatial resolution, i.e. colliding particles must be
close to each other to give the correct contribution to the variation of U⊥(t). For this reason, a
inhomogeneous DSMC algorithm is necessary. The system is partitioned in mc non-overlapping
cells of size lc. The resolution for the measure of U⊥(t) is improved increasing mc; at the same
time, when mc increases, the average number of particles in each cell Nc = N/mc decreases,
threatening the Molecular Chaos assumption. In principle the perfect resolution would be achieved
with lc ∼ σ, but this would result in a number of particles per cell Nc ∼ nσ2 which, for diluteness,
is required to be much smaller than 1. We will see in the following (see Fig. 2) that taking lc ∼ 15σ
is sufficient to restore a good resolution for measuring U⊥(t). Such a choice, however, at the chosen
packing fraction nσ2 = 10−2 gives Nc ∼ 2.5, which is so low that the Molecular Chaos could be
invalidated. A first check is to study the sensitivity of the rescaling procedure (2.7) (tested in [8] in
the homogeneous DSMC simulations and in [7]) to the parameter mc (or equivalently Nc). Having
this aim, we have characterized the entire system analyzing its granular temperature Tg as function
of the rescaled time τ for different choices of the cell number mc at α and N fixed (see Fig. 1),
comparing it with MD results. The time-rescaling is applied with a choice of ω0 such that, in
the steady state it is expected Tg = T0. From the simulation data it results that a steady state is
always reached, i.e. the granular temperature is constant in all cases. A homogeneous DSMC (i.e.
mc = 1) gives an agreement with the expected value which is better, of a few percentages, with
respect to MD. When mc is increased, however, the DSMC gives very bad results. This is due to the
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small value of Nc, which results in strong finite size effects, for instance fake re-collisions which
invalidate the Molecular Chaos hypothesis. The way of solving this problem is to simulate a larger

0 20 40 60 80 100
τv

th(0)/λ0

0.80

0.85

0.90

0.95

1.00

Tg___
T0

f = 10 mc=15×15
f = 50 mc=15×15
f = 100 mc=15×15
f = 10 mc=20×20
f = 1 mc=1×1
f = 1 mc=20×20
MD

Figure 1: The rescaled granular temperature Tg as function of the rescaled time, in DSMC simula-
tions with different f factors and cell numbers mc, compared with MD simulations, in the case of
N = 1000, α = 0.8 and nσ2 = 0.01.

number of particles Ñ = fN with f > 1, keeping the collision statistics per particle as that of a
N -particles system (see previous section for a precise description). This is equivalent to simulate
f copies of the original N -particles system and let particles of different copies swap at each time
step. The effect of f > 1 is immediately seen in Fig. 1: the steady state granular temperature
perfectly agrees with that measured in MD, as soon as f ∼ 10, even if mc = 225. Much larger
values of f appear to slightly improve the value of Tg. On the other side a too much large value
of f can be very expensive in terms of cpu-time. A crucial quantity, here, is the number of virtual
particles per cell Ñc = fNc = fN/mc. If mc is increased (for instance in Fig. 1 it is changed from
225 to 400), f should be increased. Apparently it is sufficient to have Ñc ∼ 25 to have a good
agreement, for Tg, between DSMC and MD. As discussed above, the necessity of a large number
of cells comes from the sensitivity of U⊥(t) to the spatial localization of collisions. This is shown
in Fig. 2, where the decay of C⊥(τ) is displayed: the homogeneous DSMC (mc = 1) shows an
exponential decay with a τ0 completely different from the one observed in the MD simulations.
This behavior is insensitive to changes of f from 1 to 10. In order to obtain the correct decay, it is
necessary to use the inhomogeneous DSMC approach with mc À 1. A partition of mc = 20× 20
for N = 1000, in fact, reveals an exponential decay very close to the MD results: also in this case,
a change of f from 10 to 100 is unimportant. When N is increased at fixed density (and mean free
path), the size of cells must be kept constant, which implies mc ∝ N . If f is also kept constant,
Ñc is automatically preserved and we expect to have a good comparison with MD simulations in
terms of Molecular Chaos, as well as decay of C⊥(τ). This situation is fairly verified in Fig. 3,
where the decay of C⊥(τ) is shown to be always close to the MD results. This approach is valid
in general and, with proper values of f and mc, we can compare, for different values of α and
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th(0)/λ0
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C⊥ (τ)____
C⊥ (0)

f = 10 mc=15×15
f = 50 mc=15×15
f = 100 mc=15×15
f = 10 mc=20×20
f = 10 mc=1×1
f = 1 mc=1×1
MD

Figure 2: The rescaled correlation function C⊥(τ) (see Eq. 2.9) as function of the rescaled time,
obtained from DSMC simulations with different f factors and cell numbers mc, and from MD
simulations, in the case of N = 1000, α = 0.8 and nσ2 = 0.01.

0 10 20 30
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th(0)/λ0
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C⊥ (τ)____
C⊥ (0)

MD
f = 10 mc=20×20
f = 10 mc=14×14
f = 10 mc=28×28
f = 10 mc=35×35

N=3000

N=2000

N=1000

N=500

Figure 3: The rescaled correlation function C⊥(τ) as function of the rescaled time, from DSMC
simulations with different total particle numbers N and same average number of particles per cell
Ñc. Data from MD simulations are shown for comparison. The parameters are the same as in Fig.
1.
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N , the properties of the fluctuations of W⊥ between DSMC and MD simulations. Guided by this
preliminary analysis, in the following section we have studied the role of the parameters f and Ñc

in the DSMC scheme.

4. Hydrodynamic noise from numerical simulations
The aim of this section is to measure ν̃ and c by means of Equations (2.10) and (2.11) in DSMC
and MD simulations, obtaining a comparison. We start using optimal parameters found in the
previous section, to guarantee the validity of the HCS assumptions to measure of W⊥(τ) also
in the DSMC. Eq. (2.9) is expected to be valid in the large N limit: for this reason we have

0.0005 0.0010
1/N

0.18

0.19

0.20

ν~

DSMC
MD

0.0005 0.0010
1/N

0.18

0.19

0.20

0.0005 0.0010
1/N

0.18

0.19

0.20

ν~

0.0005 0.0010
1/N

0.18

0.19

0.20

α = 0.8 α = 0.85

α = 0.9 α = 0.95

Figure 4: The dimensionless kinematic viscosity ν̃, obtained from Eq. (2.10) and from the expo-
nential decay of the correlation function in Eq. (2.9), as function of the inverse of the number of
particles N for different values of α. The circles and squares correspond to data obtained from
DSMC an MD simulations, respectively. The solid and dashed lines are the best linear fit. The
density is the same as in Fig. 1, f = 10 and Ñc = 25.

performed simulations for different values of N (1000, 1500, 2000, 2500 and 3000), fixing the
particle density n of the system and the parameters f and Ñc, and measuring the time decay τ0. The
data obtained using (2.10) and (2.12) in DSMC and MD, are shown in Fig. 4. The dimensionless
viscosity ν̃ appears to be a linear function of N−1, therefore a best linear fit allows to extrapolate
the asymptotic value for N → ∞. The agreement between MD and DSMC data is good in all
cases, even at not too high values of N . Our second question is if the inhomogeneous DSMC can
reproduce the MD results for the noise term in the Langevin equation (2.3) or (2.8), in particular
the quantity ν̃ ′ ≡ cν̃ that is the viscosity term appearing in the noise. Analogously to Fig. 4, we
have analyzed its dependence versus N−1. Also in this case we have found a linear law, shown
in Fig. 5: a small discrepancy is observed, for this quantity, between DSMC and MD data, when
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N is increased. The disagreement results more evident if the collisions are more inelastic. Our
interpretation of this small difference is that the DSMC dynamics at small time-scales is slightly
different from MD: indeed, this disagreement is less evident at large time-scales, for instance in
the measure of ν̃. If we consider also that the DSMC and MD results about the correlation of the
energy fluctuations are very similar [37], we tend to conclude that this small discrepancy could
be due to the use of small cells (large mc or equivalently small Ñc), which is necessary in the
measures of C⊥(0). A more general discussion of the cause of this discrepancy is given at the end
of this section.

0.0005 0.0010
1/N

0.20

0.22

0.24

0.26

ν~′

DSMC
MD

0.0005 0.0010
1/N

0.20
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0.24

0.0005 0.0010
1/N

0.18

0.20

0.22

ν~′

0.0005 0.0010
1/N

0.18

0.20

0.22

α = 0.8 α = 0.85

α = 0.9 α = 0.95

Figure 5: The dimensionless viscosity ν̃ ′ = c ν̃ obtained from Eq. (2.11) and (2.10) (see text), as
function of the inverse of the number of particles N for the following values of α: 0.8, 0.85, 0.9
and 0.95. The circles and squares correspond to data obtained from DSMC an MD simulations,
respectively. The solid and dashed lines are the best linear fit. The density is the same as in Fig. 1,
f = 10 and Ñc = 25.

4.1. Violation of FDR
Notwithstanding this slight discrepancy, the value of c = ν̃ ′/ν̃ results significantly larger than
1 in both DSMC and MD. The inhomogeneous DSMC is then able to reproduce the breakdown
of the FDR as already found with the MD approach [3]. This is evident from Fig. 6 where the
ratio c is shown (focus for the moment on black full circles, DSMC, and red full squares, MD): it
clearly displays strong deviations from 1 (violations of FDR), which reach 12% at α = 0.8 also
in DSMC. The dot-dashed curve represents the result for c from the theoretical analysis of [5]
with the additional assumption of white noise. We note a close comparison with the data from
DSMC, suggesting that the effect of this protocol is an effective time-decorrelation of noise. Such
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a conclusion should be taken with care, in view of other simulations, performed with different
choices of f and mc, discussed in the next section. The presence of time-correlation in the noise,

0.80 0.85 0.90 0.95
α

1.0

1.1

1.2

1.3

c

MD 
DSMC f=10, Nc~2.5
DSMC f=15, Nc~1.7
DSMC f=15, Nc~2.5

Figure 6: The ratio c = ν̃ ′/ν̃ as function of the coefficient of restitution α for N → ∞. The
squares correspond to MD data while the DSMC data are shown for three different cases: a)
f = 10, Nc = 2.5 and Ñc = 25 (circles); b) f = 15, Nc = 1.7 and Ñc = 25 (diamonds);
c)f = 15, Nc = 2.5 and Ñc = 37.5 (triangles). The solid line is the theoretical prediction while
the dot-dashed line is the theoretical prediction with the assumption of white noise [5]. The value
of reference c = 1 (dashed line) is obtained if FDR are satisfied.

even in DSMC, is in agreement with the results for C⊥(τ) shown in Fig. 2 and 3, which are
not straight exponentials, but some bending can be observed at small τ . Apart from these small
discrepancies, the main fact is that the inhomogeneous DSMC is able to reproduce the violation
of FDR, which was not obvious. In fact, it is reasonable and well verified that average values
(e.g. transport coefficients) obtained in DSMC agree with dilute MD simulations; anyway it is less
trivial to observe good agreement for fluctuations, which - in non-equilibrium situations - can be
much more sensitive to the detailed mechanisms of the dynamics.

4.2. Improvement of Molecular Chaos
We have also performed other DSMC simulations with different choices of the parameters mc

and f : we remind that an increase of mc improves the spatial resolution of measurements but
negatively affects molecular chaos, while an increase of f usually improves Molecular Chaos by
reducing the number of fake recollisions. Indeed our results are consistent with this interpretation
and with the underlying idea that DSMC, in the good limit, reproduces MD fluctuations at all time-
scales. These results are presented in Fig. 6. First we have tried to increase the spatial resolution,
decreasing Nc = N/mc, but keeping fixed the number of fictive particles per cell Ñc = fNc, by
increasing simultaneously f , see empty blue diamonds in the figure. Remarkably this choice of
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parameters fairly agrees with the results discussed in the previous section: discrepancies from MD
and kinetic theory are still visible at small inelasticity. Second, we have increased Ñc keeping fixed
N/mc, which is obtained by increasing only f (see green full triangles). In this case we expect to
reduce the (already small) incidence of fake recollisions. This procedure increases the agreement
between DSMC and MD for two choices of inelasticity (α = 0.8 and α = 0.95), and leaves mainly
unaltered the other cases. The strongest indication concerns the most inelastic case, where the
gap between MD and DSMC was larger and where the increase of f gives a neat improvement.
These results suggest that the critical quantity to be adjusted in DSMC with the aim of reproducing
hydrodynamic fluctuations at small and large time-scales (amplitude and asymptotic decay) is Ñc,
controlled by the parameter f .

5. Conclusions
In this work we have compared MD and DSMC results for some main properties of the hydrody-
namic noise, focusing on the transverse velocity field at its largest (minimum wave number) mode.
To obtain a proper comparison, we have revised the basic ingredients - in a Direct Simulation
Monte Carlo algorithm - to correctly measure the time-decay of the autocorrelation function of
fluctuations of a hydrodynamic field, keeping valid the assumption of Molecular Chaos [11]: the
volume must be divided in small cells for the purpose of good spatial resolution in computation
of collisions, even if the system is assumed to be spatially homogeneous. The good resolution to
appreciate the correct time-decay of C⊥(τ) is achieved only when Nc ∼ 2 which is too small to
avoid fake recollisions: for this reason, a number (order ∼ 10) of “virtual” copies of the system
is necessary to restore Molecular Chaos. This procedure is similar to that adopted in [6]. Notice
that the study of the transverse velocity field could also be done by dividing the system in slides,
as in [10, 17]. Such a procedure can be used to analyze U⊥(τ), while we have no knowledge
of its adaptation to other space-dependent fields. The reader should also keep into account that -
when DSMC is used to study the homogeneous cooling state, i.e. when the system size is below
the critical one for instability, L < Lc - one usually does not divide the system in cells, and still
obtains excellent agreement for one-point observables. Previous study of cooling granular gases
with inhomogeneous DSMC [7, 6] where in fact proposed to analyze the departure from the HCS.
Here we do not investigate states different from the HCS, nevertheless fine spatial resolution (in-
homogeneous DSMC) is still necessary. The general message coming out from this numerical
comparison is that observables such as the viscosity, which dictates the large time decay of the
transverse velocity autocorrelation, are well reproduced both in MD and DSMC, caring only about
the spatial resolution in the latter scheme. The amplitude of fluctuations, on the other side, which
is related to two-particles statistics, shows discrepancies with respect to MD results, which become
more evident as α is reduced and N increases. These discrepancies depend on the choice of the
DSMC parameter Ñc which measures the average number of fictive particles in a DSMC cell: an
increase of this number, keeping constant the cell size, reduces the probability of recollisions and
improves the agreement. In DSMC simulations, deviations from a perfect exponential decay of
C⊥(τ) are also visible, at small times, qualitatively similar to those observed and predicted in [5]:
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again the increase of Ñc seems to improve this fine feature. Our interpretation of these results is
that the hydrodynamic noise in DSMC does not reproduce exactly the kinetic theory predictions,
which are instead well fulfilled by MD simulations, but neither reproduces exactly the predictions
of the theory with white noise (dot-dashed curve in Figure. 6). The noise amplitude indeed falls
in between the two predictions and depends on some DSMC parameters, such as f or Ñc which
are usually considered only numerical parameters. It can be useful to resume how the main DSMC
parameters influence the different observables, to get an idea of the required power of resolution
necessary to get finer and finer details:

• homogeneous DSMC (f = 1, mc = 1): it well reproduces the average kinetic energy
predicted by HCS kinetic theory; it completely fails to reproduce the decay of velocity modes
autocorrelations;

• inhomogeneous DSMC with no fictive particles (f = 1) and large number of cells (mc ∼
15× 15): it fails in comparing with the average kinetic energy predicted by HCS (inaccurate
Molecular Chaos due to too many fake recollisions);

• inhomogeneous DSMC with fictive particles f ∼ 10 and large number of cells (mc ∼
15 × 15), corresponding to a number of fictive particles per cell Ñc ∼ 25: it well repro-
duces the autocorrelation large-times decay; it shows discrepancies in the small-times fea-
tures (amplitude and colour) of the noise;

• increase of Ñc by keeping constant mc (i.e. increase of f ): improvement in small-times
features of the hydrodynamic noise (amplitude and colour).

Hydrodynamic noise is always important in granular systems, which - in terms of number of el-
ementary constituents - are much smaller than molecular fluids (104 instead of 1020 particles).
Future research is needed to understand the properties of granular hydrodynamic noise in steady
state models: even if we have shown that these properties do not depend on the detailed collisional
mechanism, it seems that they depend on the choice of energy driving protocol [27].
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