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Abstract. In this paper we produce projections of seasonalments of computational power are producing global simu-
precipitation for four Mediterranean areas: Apulia region lation with progressively higher resolution, for most of the
(Italy), Ebro river basin (Spain), Po valley (Italy) and An- available simulations the resolution is of some degrees of
talya province (Turkey). We performed the statistical down- latitude and longitudeRandall et al. 2007. To check the
scaling using Canonical Correlation Analysis (CCA) in two validity of these models, one performs a control run simu-
versions: in one case Principal Component Analysis (PCA)lation (CTR) obtained with the parameters corresponding to
filter is applied only to predictor and in the other to both pre- the atmospheric composition measured in the 20th century.
dictor and predictand. After performing a validation test, If the obtained results are statistically similar to the histori-
CCA after PCA filter on both predictor and predictand has cal records of pressure, temperature, humidity, precipitation,
been chosen. Sea level pressure (SLP) is used as predictdhen the model dynamics is a reliable approximation of the
Downscaling has been carried out for the scenarios A2 andeal climate dynamics.
B2 on the basis of three GCM's: the CCCma-GCM2, the The future climate is computed by the same GCM using
Csiro-MK2 and HadCM3. Three consecutive 30-year pe-the atmospheric composition predicted in the different sce-
riods have been considered. For Summer precipitation imarios defined by the IPCC in the Special Report Emission
Apulia region we also use the 500 hPa temperature (T500Bcenarios (SRES)RCC, 2001). The climatic projection ob-
as predictor, obtaining comparable results. Results show diftained in this way has the spatial resolution given by the grid
ferent climate change signals in the four areas and confirnpf the GCM. Though the amount of computational resources
the need of an analysis that is capable of resolving internahvailable for the simulation is increasing, the grid spacing in
differences within the Mediterranean region. The most ro-mid-latitude regions is still some hundreds of kilometers. In
bust signal is the reduction of Summer precipitation in theany case, even the finest available resolution is sufficient for
Ebro river basin. Other significative results are the increaseajescribing the pressure and temperature fields, but it is not
of precipitation over Apulia in Summer, the reduction over suitable for precipitatiorMon Storch et a).1993 von Storch
the Po-valley in Spring and Autumn and the increase overand Zwiers 1999 Zorita and von Storghl999.
the Antalya province in Summer and Autumn. For this reason, regional downscaling is crucial for de-
scribing the precipitation climate of the Mediterranean re-
gion, which is characterized by very large space variability.
1 Introduction This is produced by steep morphological and complicated
land-sea patterns (sé@nello et al, 2006for a review), and

In the last few years the use of very powerful computersby its location in a transitional region from the mid-latitude
has permitted the development of more and more sophistimild and wet climate in the north to the tropical hot and
cated climatic models. These models, including the dynamdry climate in the south. Therefore, Mediterranean Winter
ics of both atmosphere and oceans, are generally referred ferecipitation is affected by mid-latitude regimes, such as the

as Global Climate Models (GCM). Though recent improve- North Atlantic Oscillation (NAO) and the East Atlantic (EA)
pattern {rigo et al, 2006, and by tropical phenomena like

El Nifio Southern Oscillation (ENSO). Mediterranean Sum-
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anomalies over central Europglpert et al, 200§. Pro- ture climate projections. Statistical downscaling has been
cesses active at a wide range of spatial and temporal scalesiccessfully applied to precipitation climate change in the
result in many climate types and great spatial variability. Mediterranean region already in the 90’s (evpn Storch et
These processes are induced by the complex morphologgl., 1993 Corte-Real et a].1995. The STARDEX project
(e.g. the effect of the Alpine chains on the air-flow, the pres-(Goodess2005 included a large set of statistical downscal-
ence of the Mediterranean Sea itself) and by the effect of aning studies. A recent example of statistical downscaling for
thropogenic and natural aerosadlsqnello et al, 2006. Sta-  the wet season precipitation is provided Hegrtig and Ja-
tistical downscaling methods, as those applied in this studycobeit(2008 that reports a contrasting behavior for the pe-
are useful tools for the simulation of the effects of these localriod 2071-2100 compared to 1990-2019. The wet season
processes and features. is projected to become shorter but wetter in the western and
In the Mediterranean region the trend in precipitation in- northern Mediterranean regions, while precipitation changes
tensity is generally negative but rarely significaBrynetti are mainly negative in the eastern and southern parts of the
et al, 2004 2006, and with high spatial and monthly vari- basin.
ability even in a limited region Gonzales-Hidalgo et al. In this study we adopt the sea level pressure (SLP) or the
2009. Other authorsJacobeit et al.2007 Xoplaki, 2002 500 hPa temperature (T500) as large scale predictor, and pre-
Xoplaki et al, 2009 reported a decrease in precipitation in cipitation as predictand and we compare the performance of
the Mediterranean area during the second half of the 20thhe Canonical Correlation Analysis (CCA) after applying the
century, specifically a decrease of Winter precipitation. ThisPrincipal Component Analysis (PCA) filter to the predictor
decrease is prevalently attributed to the positive phase on thand the CCA after PCA filtering applied to both predictor
NAO in the last decadediirrell, 1995. However, the de- and predictand.
crease of precipitation during Winter of the last decades is The datasets used in this study are the SLP EMULATE
not reproduced by the global climate models. project, the ERA-40 reanalysis of ECMWEF for T500 and
GCM'’s generally agree on a substantial future drying of the Climate Research Unit (CRU) of East Anglia University
the Mediterranean region in all the different scenarios, espemonthly precipitation dataset. We downscale the predictions
cially in the warm season, with a precipitation decrease ex+elative to the SRES A2 and B2 of three different GCM’s: a)
ceeding 25-30%Giorgi and Lionellg 2008. The projected the CSIRO-Mk2 model from the Commonwealth Scientific
reduction of precipitation is, however, not uniform in the and Industrial Research Organization (briefly Csiro), b) the
whole region. Some models predict an increase of precipitaHADCM3 model developed at the Hadley Centre for Cli-
tion during Winter over some areas of the northern Mediter-mate Prediction and Research UK (briefly Hadley), c) the
ranean basin, particularly the Alps, and during Summer in theGCM2 model developed at the Canadian Center for Climate
Middle East. Therefore, it is important to further investigate Modeling and Analysis, CCCma (hereafter Canadian).
the detailed spatial distribution of the precipitation change The focus in the present study is on the estimation of pre-
and its actual evolution by suitable downscaling techniquescipitation trends in climate change scenarios. This analysis
Note that decrease and irregularity of precipitation are impor-is particularly relevant for the economy of the Mediterranean
tant factors that critically contribute to the large sensitivity of region, as rainfall variability represents a major source of risk
the Mediterranean region to climate chan@éofgi, 2006. for crop systems and changes in the pluviometric regimes can
There are two main categories of downscaling techniquessignificantly affect the agriculture of entire regiongasili-
dynamical and statistical downscaling. Dynamical down-ades et aJ.2009.
scaling is performed using climate models over a limited do- In this study we followed the STARDEX3oodess2005
main with high resolution (nowadays 20-50 km) and usingsuggestion of applying CCA methods locally with the fol-
the results of a GCM as initial and boundary conditions. lowing peculiarities: that the analysis is extended to the
Several authors developed statistical downscaling techwhole year, considering independently changes in single sea-
niques for climatic predictions in order to provide scenar-sons (Dec-Jan-Feb, Mar-Apr-May, Jun-Jul-Aug, Sep-Oct-
ios for selected small regions or complement the resultaNov); that we use a set of relatively small targets, which are
of dynamical models. Statistical downscaling represents adentified as major agricultural areas; and that we analyze
computer-wise cheap method that is very suitable for de-each of them separately with the same procedure.
scribing seasonal climate variability at regional and local The paper outline is the following. In Se@we describe
scale. It can contribute to reach an higher confidence orthe datasets and the GCM’s used. In S8awe briefly in-
future projections, and can be adapted for a wide range ofroduce the statistical techniques used and we compare each
applications. Statistical downscaling is based on statisticabther. In Sect4 we show the results of the downscaling of
relationships linking regional climate variables (predictand) precipitation relative to four different Mediterranean areas
to large-scale atmospheric variables (predictor). Such linkdor different scenarios. Finally, in Sed. conclusions are
are determined during an observational period and are verisummarized.
fied using independent data outside this period. The identi-
fied statistical relationships are then used for computing fu-
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2 Data 0 —%r . . . . . .
s
Data include predictor and predictand. “’f’?\
. sl N <
2.1 Predictor: SLP from EMULATE dataset ot e [,P&\iauéy\
A S R
The Sea Level Pressure (SLP) EMULATE datagetdell et Ebm{w; basin ;ig \@L .
al,, 2009 is based on daily average sea level pressure values® [ [ I B
for the period from January 1850 to December 2003. The e , i
data cover the region from 7070 N (top left corner) to - L e - \':)
50° E-25 N (bottom right corner). The grid i°55° in lat- a5 |-+~ R
itude and longitude. This means that at each time step the Q‘, 7
dataset consists of 250 SLP values. The dataset covers the ™
region involved in the North Atlantic Oscillation (NAO) and 1 1 1
in the dynamical features responsible for precipitation in Eu- -5 0 5 10
rope.

Fig. 1. Points of CRU dataset used for downscaling. The four areas
2.2 Predictor: T500 from ECMWF considered are indicated.

The ERA-40 monthly averaged 500 hPa temperature reanal-

ysis QJppaIa_et al.2003 is retrieved from the European Cen- to the A2 and B2 scenarios of the Third Assessment Re-
ter for Medium-Range Weather Forecasts (ECMWF) dataport (TAR) for the following GCM'’s models: a) the Com-

servde_r f(')t; thz period from_ 1958.50 2001. Thhe globall data;onwealth Scientific and Industrial Research Organization,
are distributed on a Gaussian grid 324.60" with a resolu- — cg R0 ‘model CSIRO-Mk2 (briefly Csiro), b) the Hadley

tion of approximately 1.125<1.125°. To obtain a resolution Centre for Climate Prediction and Research UK. HCCPR
comparable with that of SLP, we upscale the T500 dataonthe’ ~ 1 iADCM3 (Hadley), c) the Canadian Center for

same grid points of the EMULATE dataset. The upscaling iSCIimate Modeling and Analysis, CCCma, model CGCM2

recommended because in this way the resolution of both pre(Canadian) The CSIRO-Mk2 model is a spectral model
dictors is comparable with that of the GCM data available for,, ... ' R21 horizontal resolution (approximately 3.2 lati-

future scenarios. tude x 5.6° in longitude) and 9 verticat -levels in the atmo-
sphere\\Vatterson et al1999 (top level air=0.021), includ-
ing a slab ocean sub-model with 21 levels. HadCN&®I-
don et al, 2000 is a coupled model, with the atmospheric

The predictand is obtained from the monthly averaged pre_component having 19 levels (top at 10 hPa) with a horizon-

cipitation dataset called CRU TS 2.Mifchell and Jones Eﬁ! re'solutllonloftf.S n I?“tUde ar|1dt.3.7“5f Z‘lggg"ge'
2005 for the period from January 1901 to December 2002 t Itshls GI:EqUIVE;\ en oda sur a;:e r;;s;?%fn ° t 45 of | tm
for a total of 102years. From this dataset we extract the?!t (N€ Equalor, reducing to m a o' al-

data corresponding approximatively to four areas of agri—tude (pomparable tt?] a ZSgFCtrTI rgtsholurt]lor? of tTI42). I'I;he
cultural interest in the Mediterranean region: Apulia region oceanic component has UIevels with a norizontal resoiution

(Italy, 22 points), Ebro river basin (Spain, 24 points), Po- o;llt.25°txl|.225(;c.) The qtr:]os][:)herlc ctorr:pondenlt O.];hCGCMZ
valley (Italy, 30 points), Antalya province (Turkey, 6 points). (Flato e &, 9 cONsISts of a spectral model with a spec-
Data represent average values on a square grid 0%0.5°. tral resolution T32 (horizontal resolution of approximately

The location of the points is shown in Fig. However, it 3.78x3.75°). It includes 10 vertical levels (top level at

should be considered that the data coverage is scarse in SO[ﬁéO.OlZ, McFarlane et a).1992. The oceanic compo-

periods (e.g. during the second world war), thus the high res! 1Nt Presents a horizontal resolution of 1.875.875" with

olution of the dataset is only nominal in those years, espe-29 vertical .Ievels. . .

cially in the smallest regions. The choice of the models is motivated by the _fact that for
all of them the Control Run from 1961 to 1990 is available

24 Global Climate Model data together with the A2 and B2 scenarios from 1991 to 2100.

The data are available on a %86 grid for Csiro, 9673

We retrieve from the International Panel on Climate Changefor Hadley and 9% 48 for Canadian. In all cases the GCM

IPCC-Data servérthe SLP and T500 projections relative Predictions are interpolated on the same grid of the EMU-
LATE data in order to project them on the canonical patterns

Twww.cru.uea.ac.uk obtained from the statistical model (see Appendix A for the
2http://www.mad.zmaw.de/IPCODC/html/ddcgecmdata.html  interpolation technique).

2.3 Predictand: precipitation from Climate Research
Unit (CRU) of East Anglia University*
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3 The statistical techniques months, so that the large scale patterns responsible for vari-
ability at such long scale are likely to be reproduced by
In this study we compare the performance of Canonical Cor-GCM’s.
relation Analysis (CCA) applied in two variants, after per-  The data have been analyzed with two different versions
forming Principal Component Analysis (PCA) filtering on of Canonical Correlation Analysis: a) CCA after a PCA fil-
predictor and on both predictor and predictand. These techtering on the predictors (CCA-PCAX) and on both predictors
niques are well known, see for examplen Storch and and predictands (CCA-PCAXY). In the case CCA-PCAX the
Zwiers (1999, and we briefly describe them in Appendix A, PCA filtering retains 15 eigenvectors describing more than
where we refer the reader for the notation used in the res§5% of the variance. The same happens for the predictors
of this paper. CCA after PCA prefiltering remains a con- in the case CCA-PCAXY while the predictands were filtered
solidated and well established method for downscaling, curretaining only 3 eigenvectors (describing more than 95% of
rently used for climate change studies (e.g. Hertig and Javariance). As explained imon Storch and Zwier§1999
cobeit, 2008). The CCA methods relies on the presence of g. 304) there are several criteria for the choice of the num-
linear link between regional precipitation and the large scaleber of PCA eigenvectors to be retained. A different approach,
predictor field (in this study SLP and 500 hPa temperature}hatvon Storch and Zwier§1999 however do not suggest,
and of the invariance of such link in the projected climate, is to consider the “knee” in the eigenvalues spectrum and to
which is assumed to be a small perturbation of the presentetain only eigenvalues considerably greater than the asymp-
condition. This technique is consolidated and the purposeaotic spectrum. We perform the calculation using also this
of this study is not methodological, but it aims to provide a criterium obtaining comparable or worse results. All the
focalized information on target areas of agricultural interest,predictions by means of CCA are calculated using the first
with seasonal resolution, in order to investigate the depentwo canonical conjugates that result as the only ones with

dence of the climate change signal in space and time. eigenvalues larger than the others. Using a larger number of
canonical conjugates does not improve the results.
3.1 Testing the techniques The model has been validated splitting the historical time

series in two periods of the same length. As the whole series

Several studies on the applications of these techniques in C||[5 102 years |0ng, we have two 51 years |0ng periods, respec-
matology are available in the literature (see for example  tively 1901-1951, 1952—2002. In a first time we use the first
Storch et al.1993 von Storch and Zwiersl999 Zorita and  period as the training series, in order to build the statistical
von Storch1999 Lionello et al, 2003. Here we briefly ex-  model, and the second one as the validation one. After that
plain the logical scheme of the downscaling procedure. Fromye change the roles of the two periods performing training on
an observed time series of predictors (in our case the meathe second half of the years and validation on the first one.
seasonal SLP field or, just in one case, the T500 field) andrhe agreement between the original data and the predicted
predictand (the accumulated seasonal precipitation) we esones during the validation period is used to assess the quality
tablish, by means ofaining procedure, a statistical model, of the methods. The results of the test performed over the
which provides a tool for the computation of the predictand four selected areas is shown in Table 1. The mean relative
from the predictors. We make the hypothesis that this statiserror in the prediction during the validation period is defined
tical model remains valid also in the SRES climate scenariosasg/p, with
and compute the predictands using the predictors extracted
from the GCM climate projections. T

The choice of the time resolution in statistical downscal- “

l

N - 2 T N
> (V) -3;0)) IPINIG!

1j=1 C._i=1j=1
TN L PE TN

ing is a crucial point. If we would perform the CCA with a o?= ) (2)

time intervalAr=1 day, we would obtain Canonical Patterns

for the predictor with horizontal scale that can be as smallwhere N denotes the number of points in each aredhe

as few tens of kilometers, because on such time scale theumber of time steps, and;(i) and );(i) represent the
precipitation is mainly due to low pressure systems close taCRU and downscaled precipitation (at pojrand timer), re-

the region affected with the rainfall. In this case, the spa-spectively ¢2 is the mean squared error as discussegbim

tial scale of the predictorF,, would be finer than the res- Storch and Zwier¢1999, p. 396. In this paper we divide
olution of GCM simulations and it would be impossible to it by the mean observed valyg thus obtaining a relative
adequately identify the predictor structure in the GCM out- error).

puts. As we decrease time resolution, CP’s with progres- Columns labelled with “rev” stand for the training period
sively larger spatial scales are likely to result from the anal-on the second half and validation on the first 51 years. Bold
ysis. In this study we perform the downscaling proceduresnumbers indicate the best value among the techniques. No-
on average seasonal precipitation grouping together Wintetice that the best score for “reverse” experiments are con-
(DJF, Dec-Jan-Feb), Spring (MAM, Mar-Apr-May), Sum- sidered separately from direct validation tests. There are
mer (JJA, Jun-Jul-Aug) and Autumn (SON, Sep-Oct-Nov) 18 cases where CCA-PCAXY is the best choice and 14
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Table 1. Values of mean relative error fqr the d_ifferent techniques TRAINING ' ' ' ] VALIDATION
and for the four areas under consideration during the 51 year long o
validation period. Columns labelled with “rev” refer to trainingon 6o | A
the second half of the period and validation on the first one. Bold £
numbers indicate best scores. 2
€ 50+ 1
Season CCA-PCAX  CCA-PCAXY ‘;’ /)
rev rev B 40 ¥ i
a
Apulia 8
DJF 0.352 0.351 0.309 0.362 & 30t i
MAM  0.367 0.345 0.321 0.307 CRfLi:tggg —
JJA 0.613 0.540 0.575 0.624 2 predicted ~~+ ‘ ‘ ‘ ‘ ‘ ‘
SON 0.361 0352 0.360 0.301 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000
Ebro river basin Year
DJF 0.355 0.374 0.335 0.316 120 T T T T T
MAM  0.287 0.307 0.301 0.289
JIA 0.405 0.374 0.402 0.397 100 1
SON 0.435 0.331 0.383 0.329 fE; O
Po valley E o} °9 PG 1
DJF 0.428 0.449 0.401 0.393 E ) 'Og e, e
MAM 0443 0.444 0.468 0.476 z 60 o.Oﬂ.""%@g . 1
JJA 0299 0.292 0.285 0.279 g & o ¢ .
SON 0.489 0.413 0.521 0.440 § 40 %@5 ¢
Antalya S ol & . ]
DJF 0.425 0.313 0.402 0.308 Pad ° fitered O
MAM  0.492 0.353 0.513 0.382 0 ) ) ) predicted @
JJA 0.562 0.934 0.749 0.961 0 20 40 60 80 100 120
SON 0.465 0.448 0.472 0.452 CRU Precipitation (mm/month)

Fig. 2. Ebro river basin: comparison between downscaled and CRU
precipitation in Winter (DJF). The top panel shows the 5-year run-

. . L ning mean of the spatial average for the CRU dataset and down-
where CCA-PCAX is better. Even if a PCA filtering on pre- scaled precipitation during both training (first 51 years) and valida-

dictands eliminates the small scale precipitation fluctuationsjon period (last 51 years). The bottom panel shows the scatter plot
which are probably not correlated with the large scale circu-of CRU versus downscaled spatially averaged precipitation. Empty
lations, the two methods produce similar results apart fromcircles refer to the training period, filled circles to the validation
two cases, both in JJA (thus the specific results should bene.
taken with care)?

With the exception of Summer precipitation, the best re-
sults refer to Ebro river basin, then Apulia; the worst resultsto low values of the correlation coefficient even if the larger
are obtained in the Po Valley and in the Antalya province.time behavior of the real and predicted signal are correlated.
In Summer all techniques lead to worse results with the ex+or this reason we decided to use the average error to evalu-
ception of Po Valley, where the error becomes considerablyate the performance of the different downscaling techniques.
smaller. For any case in Tabl2 we report the value of the Pearson

In the literature several methods are used to assess theorrelationr in the CCA-PCAXY case. Values of greater
validity of the statistical downscaling (se@n Storch and than 0.36 are statistically significant with 49 degrees of free-
Zwiers 1999for a review). One approach is the use of the dom (51 time step — 2) fop<0.01. The values reported for
Pearson correlation. Nevertheless, this approach in some Apulia and Ebro river basin are significant for DJF, MAM
cases may lead to misleading results because the short tinnd SON. For Po Valley only DJF and JJA reverse are signif-
oscillations of the predictand may be not correlated to theicant while for Antalya region only DJF reverse is significant.
large scale dynamics of the predictor, so this fact will lead Figure2 (obtained with the CCA-PCAXY method) shows
the average value of precipitation over the whole Ebro river

3The low impact of Principal Component Analysis filter on final basin during the Winter season (the upper panel shows the
results may be partially due to the change of coverage of stationsfime series of the 5-year running average of precipitation,
used to produce the CRU analysis, during the analyzed period.

www.nat-hazards-earth-syst-sci.net/10/1647/2010/ Nat. Hazards Earth Syst. Sci., 1068347610
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| | 10 mm/month

1 . . . . .
60 B P K - 25 2 15 -1 05 0 05 1 15

Fig. 3. First CP’s obtained using CCA-PCAXY on Ebro river basin precipitation. The left figure represents the SLP CP measured in Pa (blue
contours refer to negative values, red ones to positive). The two figures in the center represent the average winter SLP (hPa) plus (the top
and minus (bottom) the SLP CP (blue contours refer to values lower than 1013 hPa, red ones to higher values). These figures show the actue
pattern of SLP when the coefficient of the CP is positive or negative. On the right we have the CP of precipitation measured in mm/month.

Table 2. Pearson correlation for predicted and observed precipi- Figure 3 shows the first CP for predictors and predic-

tation in the validation period for the CCA-PCAXY technique. Pa- {2nds obtained on Ebro river basin DJF precipitation using
rameters are the same as in Table 1; “rev” refer to training on thethe CCA-PCAXY method (the results with CCA-PCAX, not

second half and validation on the first one. shown, are very similar). Note that using CCA-PCAXY
method the correlation,, between the time coefficients

Season Pearson Bx (1), By(t) is much more stable than using CCA-PCAX,

rev meaning that its computation during the validation confirms

the value obtained during the training. Nevertheless, CP’s

Apulia L . . . .
DIF g 549 0.400 and predictions obtained by the two techniques are quite sim-
MAM 0_"184 0.;123 ilar and reliable results could be obtained using both meth-
JIA 0.327 0.103 ods. Incidentally, we notice that the pattern of SLP associ-

SON 0.416 0.462 ated with positive precipitation anomaly (top small panel in
the center of the figures) presents for both the techniques a

Ebro river basin wide trough over the central Mediterranean Sea east of the

DJF 0.606 0.675 Iberian peninsula, suggesting that this configuration is re-
MAM 0.471 0.435 . . = . .
JIA 0338 0351 sponsible for Winter precipitation on the Ebro river basin.
SON 0.452 0.492 In general precipitation is more difficult to pr_edi_ct in JJA
than in DJF. In order to get an independent qualitative evalua-
Po Valley tion and provide an interpretation in terms of synoptic fea-
DJF 0.628 0.613 tures, the downscaling using the 500 hPa temperature (T500)
MAM 0.080  0.019 as predictor has been attempted over Apulia region. In fact,
JIA 0.326 0.420 we expect that in southern Mediterranean areas Summer pre-
SON —0.150 —0.036 L .
cipitation are strongly correlated to small scale convective
Antalya events Gaaroni and Ziy2000 due to diurnal heating and to
DJF 0.343 0.364 the presence of cold air in the middle troposphere. The T500
MAM -0.016 0.068 data from the ERA-40 archive were upscaled to the same grid
JIA 0.203 0.048 used in the EMULATE project. Unfortunately these data
SON 0.270 0.276 cover only the period from 1958 to 2001, so that the value

of the correlation is not directly comparable to that obtained
using SLP as predictor. Figureshows that the first CP for
T500 presents a cold air mass over southern Italy. This confi-

the lower pane| shows a scatter p|0t of CRU versus dOWn_gUration is consistent with the SLP first CP resulting from
scaled precipitation for individual years). The overall agree-the previous CCA-PCAXY analysis, which presents a posi-
ment between the CRU data and the downscaled precipitaive SLP anomaly over northern Europe and a negative SLP

tion during the validation period (1952—2002) demonstratestnomaly over southern Italy. This configuration strenghtens
the effectiveness of the technique. subsidence in northern Europe while favors ascending mo-

tion over the Mediterranean Sea.
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70 ,‘ T %\‘% ‘/:j \\\\ T p =0.8080
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Fig. 4. Comparison between the first CP’s for JJA Apulia precipitation ugiret 500 hPa (top) and SLP (bottom) as predictors. On the
left the CP T500 (K) and SLP (Pa) are shown (blue contours refer to negative CP values, red ones to positive). The right figures show the
corresponding precipitation CP in mm/month.

4 Downscaling of Global Climatic Models (GCM) reverse-triangles to Hadley Centre GCM. Filled and larger
projections symbols denote statistically significant differences with re-
spect to the CTR.

The CCA-PCAXY technique has been used for downscal-
ing precipitation over the four different areas for the whole 4.1 GCM validation and SLP field problem
1961-2100 period and for both A2 and B2 SRES. Besides
the CTR period (1961-1990) three 30 year long sub-period©ur analysis is potentially affected by the so-calBidP field
are considered: 2011-2040 (1), 2041-2070 (ll) and 2071-problem(e.g.,Trigo and Palutikaf2001), that is the inability
2100 (lll). For each subperiod the average precipitation isof models to reproduce the correct average value of SLP in
computed over the four areas and the statistical significancéhe CTR, especially the tendency to overestimate the differ-
of differences with respect to the CTR is evaluated using theence between the Azores’ high and the low over Iceland. If
Mann-Whitney test on ranksipllander and Wolfe1973. In the GCM fails to predict the correct mean value in the CTR,
this test the individual ranks calculated on two series of datathis leads to serious doubts about the capacity of the same
are summed within each series, then the difference betwee@CM to simulate precipitation. From the statistical down-
the two totals are compared under the null hypothesis that thecaling perspective this is a very serious problem, because
two series were obtained from the same distribution. If theprecipitation over Europe is strongly correlated to the differ-
difference is larger than the threshold value (the 95% confi-ence between Azores’ high and Iceland low (linked to the
dence level has been adopted in this study), the null hypotheNAO index). A wrong SLP mean field would prevent the
sis is rejected and the two series are considered significantlgtatistical downscaling from computing the correct mean pre-
different. cipitation. However, in literature, it is reported that, despite
Figuress, 6, 7, and8 show for each season (DJF, MAM, this serious bias, the GCM's are able to capture the correct
JJA, SON from top to bottom) and for Apulia, Ebro river variability of SLP.
basin, Po valley and Antalya province, respectively, the mean With particular regard to the three GCM's used in this pa-
value of precipitation over the 30years of CTR, I, II, [l pe- per in literature one finds several papers dealing with the val-
riods. The average CRU value for the CTR period (on theidation of the SLP predicted in the CTR.
left side of each panel) and the one standard deviation error It is known that the CCCma (Canadian GCMjldto et
bar for each value are also shown. Points connected witlal., 2000 Flato and Boer2001) simulates the mean sea
solid red line refer to A2 SRES, while those connected withlevel pressure quite realistically, with the climatological fea-
dashed blue lines refer to B2 SRES. In each figure the cirtures faithfully capturedMicFarlane et a).1992. However,
cles refer to Canadian GCM, the triangles to Csiro and thesome deficiencies are documented: for example, SLP in high
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Fig. 5. Mean and standard deviation of the downscaled precipi-Fig. 6. The same as in Fid for the Ebro river basin.
tation for the A2 (solid red lines) and B2 (dashed blue) scenario

for Apulia. Circles refer to Canadian GCM, triangles to Csiro and

reverse-triangles to Hadley Centre GCM. Filled symbols indicate

precipitation significantly different from the CTR. The isolated tri-

angle on the left of each plot refers to CRU data.
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northern latitudes is lower than the observed values, in parthe Azores anticyclone, and of their shift respectively to the

ticular during DJF, when simulated cyclones in the Aleu- south-east and over northern Africa, the model overestimates
tinian and Icelandic region are too intense. As a consequencthe pressure gradient over western Europshorn 2002).

of the stronger intensity of the Iceland depression and ofHowever, the daily variance of SLP in DJF and JJA agrees

www.nat-hazards-earth-syst-sci.net/10/1647/2010/
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remarkably well with the observations, indicating a success- Another approach to validate the different GCM’s is to
ful simulation of the surface synoptic variabilitylcFarlane  consider the downscaled precipitation observed during the
etal, 1992. CTR and compare its average value and standard deviation
McGregor et al.(1993; Smith (1994; Watterson et al. with the actual values reported in the CRU data for the pe-
(1999; Gordon and O’Farre{1997 report that the CSIRO-  fiod 1961-1990.
Mk2 (Csiro) reproduces well the major large scale SLP fea- In Figures5, 6, 7, and8 also the mean and standard devia-
tures. The model has taken part in the international intercomtion of CRU precipitation together with the downscaled pro-
parisons of models — PCMDI (Program for Climate Model jections obtained from the GCM SLP is reported. For some
Diagnosis and Intercomparistn performing well in differ-  runs the difference is significant (especially for the Canadian
ent regions llambert and Boer2001% Gordon et al.2002). GCM) while the model HadCM3 (Hadley) model seems to
For what concerns the western Europe climate, the locatiorgapture in most cases both the average precipitation and the
of the Azores anticyclone and of the Iceland depression irvariance. Intermediate results are obtained by means of Csiro

DJF are well reproduced, although the depth of the cyclonenodel.

is slightly overestimated, while a pressure trough, missing in

the observations, is simulated over the central Mediterranea#t.2 Climate projections

(Osborn 2002.

Mean sea level pressure is generally well modeled by thel he reSl_JIts of downscaling using SLP as predictor can be
HadCM3 (Hadley) in comparison with the observations, asSUmmarized as follows:

reported inStratton(1999; Gordon et al.(2000; Pope et

al. (2000: the positioning and shape of the major equatorial
low-pressure belts, subtropical highs and mid-latitude low-
pressure systems is quite accurately reprodudeldns et aJ.
1997 in both DJF and JJA seasons. The main systematic er-
ror is high pressure at high latitudes for most of the year, that
affects both the Poles and the Icelandic low in the Northern
Hemisphere. Associated with these biases, easterly biases
are present in the surface windope et al.2000. The rel-
atively weak Icelandic low and Azores high are responsible
for weak SLP gradient over western and northern Europe in
DJF Osborn 2002, indicating insufficient propagation of
storms into this regionJohns et a).1997. Although there

is good agreement between the model and observed areas of
maximum high frequency variability or storm tracks in the
North Pacific and Atlantic, the model variability is, however,
too weak in the Northern Hemisphere in DJF and the storm
tracks are displaced south and west of their observed posi-
tion (Johns et a).1997). The northward displacement of the
storm track in JJA is realistically simulated in the Pacific but
is too small in the Atlantic and the variability remains slightly
lower than suggested by the analysis.

In conclusion, with respect to the DJF sea level pressure
(SLP) climatology over EuropeBasnett and Parkel997,
Jones et a].1999, the large scale features are reasonably
simulated by all these models, although their absolute values
are sometimes in erroOsborn 2002. The leading mode
of the Atlantic-sector interannual variability, defined by the
leading empirical orthogonal function (EOF) of SLP from
each model, is the NAO in all cases. Projecting the ob-
served SLP onto the simulated EOF’s results in time series
that closely match those of the observed leading EOF's, indi-
cating that biases in the simulated SLP patterns are relatively
unimportant.

4hittp://www-pemdi.linl.gov
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Apulia: a progressive increase in Summer precipitation
is observed for both SRES (note that no model is able
to reproduce the large standard deviation of CRU data
in Summer); the change is significant for all models
in period Ill. No change occurs in Winter for both A2
and B2 SRES; the projections are substantially constant
in Spring (only Canadian GCM for A2 SRES suggests
a decrease); in Autumn Hadley Center and Canadian
models indicate a significant increase of precipitation,
while Csiro suggests a constant value.

— Ebro river basin: a large and significant reduction of

Summer precipitation (up to 50%) is projected by all
models and for all SRES; this change is already signif-
icant in period | for all the models with the B2 SRES.
In Autumn only Csiro model suggests a decrease with
both scenarios. Winter precipitation generally remains
constant. In Spring the Hadley center model suggests
an increase in period Il and a decrease in lll, which is
partially confirmed by Canadian model.

Po valley: Autumn and Spring precipitation decrease
for practically all SRES and models already in period I.
In Winter the precipitation remains constant while Sum-
mer precipitation behaves differently depending on the
model and scenario that are considered. However, the
Canadian model, which better reproduces the CRU data
in this area, suggests a constant value.

Antalya province: We observe for Summer and Autumn
precipitation an increase for all models and SRES. Dur-
ing Winter and Spring the precipitation remains con-
stant for most of the SRES. However, in this area the
computed Summer precipitation change is not convinc-
ing, because the validation of the downscaling tech-
nique gives unsatisfactory results (see Table 1).

www.nat-hazards-earth-syst-sci.net/10/1647/2010/
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A quite common feature of all results is that B2 projections HadCM3 SRES A2, JJA Apulia
are qualitatively similar to A2 ones except that, comparing %0 R —/— T
the control run with the last of the 30-year periods, they gen- 45| uaining 1200 $ ale ]
erally present a lower change, that is particularly clearin JJA, . 40 Prediction: SLP  « 9 s ;d’i‘?‘j@é}
while the differences are smaller in DJF. This is not surpris- § i ) °\
ing considering that in B2 SRES emissions are lower than in§ > & ©

A2.

As previously stated, for Apulia region we also used T500
as predictor for JJA precipitation. Figugeshows the com-
parison between the projections obtained using the SLP an 0l |
the T500 fields of the Hadley Centre GCM for the A2 SRES. 5| TRAINING PREDICTION
The quantitative comparison between the two predictors is ‘ ‘ L ‘ L ‘ ‘
affected by the different length of the time series: the T500 Q900 1020 1940 1960 1980 2000 2020 2040 2060 2080 2100
time series is only 44 years long while SLP is 102 years long, Year
and it covers the period 1901-2002. Anyway we perform the
same validation procedure using T500 as predictor dividingFig' 9. Plot_cons_iders both training an_d projection perio_d, separated
the 44 year long series in two halves. For comparison we perpy the vertlgal line at year 2002. Training: the bIaF:k Ilng refers .to
form the validation using SLP as predictor only for the period Syear running average of CRU JJA data for Apulia region, while

. . . ._the red line is the filtered (reconstructed signal) of the same CRU
covered by T500 series (notice that this time also SLP S€TCRata performed using the first two canonical patterns of the CCA-

is only 44 years long). We obtain an average error of 88%pcaxy technique. Projection: comparison between the 5 year run-
with T500 and 98% with SLP. It must be noted that thesening average of Hadley A2 SRES downscaled projection obtained

high values are due to the shortness of the series; however ilsing SLP (violet) and T500 (blue) as predictor.
is relevant that T500 leads to results comparable with SLP.
From a qualitative point of view the two predictors lead to

similar increasing trends and in phase oscillations, although

the changes predicted using T500 as predictor are larger.

A similar agreement between the results obtained with the The strong reduction of Summer precipitation over the

SLP and 7500 is not present in other areas. However, th(;Ebe river basin appears clear. This is related to the stabil-

results obtained for JJA Apulia Summer precipitation with ity of the downscaling procedure (mainly due to geographi-

T500 are reasonable, because the computed canonical paal and large scale circulation features) and to the agreement

terns are easily interpretable from a meteorological point ofwith the results of dynamical downscaling techniquem(gi

view (i.e. cold air advection from the north-east associatecet al, 2004ab).

with an higher pressure over northern Europe), as shown in We obtain a significant increase for Apulia Summer pre-

Fig. 4. cipitation. This increase is confirmed changing the predictor

Finally, it is possible that the scenario circulation changesfrom SLP to T500, but it partially contrasts with the results

in such a way that the Summer precipitation will be deter-0f dynamical downscaling.

mined more extensively by synoptic systems than by local The factthatin large part of the Mediterranean basin Sum-

convective events (of which T500 anomaly is an indicator). mer precipitation is very small, and the presence of strong

For these reasons, the results obtained using T500 as predighcertainties in the statistical relationship as well as in the

tor should be considered cautiously. models suggest to consider the predicted increase in Summer
precipitation cautiously. Other results should be confirmed
by further investigations. The decrease of precipitation in the

5 Conclusions Po valley both in Spring and Autumn contrasts with dynam-
ical downscaling results. The increase of precipitation in the

In this paper we have compared two slightly different ver- Antalya province both in Summer and especially in Autumn

sion of CCA for the statistical downscaling of regional pre- is very strong and common to all considered GCM’s, but the

cipitation. Between these methods, we have selected CCAarge error of the method for this area, especially in Summer,

after PCA filtering on both predictor (SLP) and predictand reduces the confidence on these results.

(seasonal precipitation). We have shown that this method is In general, this study suggests smaller projected climate

generally reliable for downscaling of seasonal precipitationchanges, or even sometimes with opposite sign, with re-

in four areas of agricultural interest in the Mediterranean re-spect to most dynamical models, both glob@iqrgi and

gion: Apulia region, Ebro river basin, Po valley and Antalya Lionello, 2008 and regional. In fact, as shown by the re-

province. The main exception is Summer precipitation for sults of the PRUDENCE projecDgqLeé et al, 2005, also

Antalya province, where results are unsatisfactory (the relaregional models agree on the Summer drying in Mediter-

tive error is 72%). ranean sub-regions. However, the small increase of Winter

ﬁ'ecipitation (m
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precipitation over the Iberian Peninsula in PRUDENCE coordinates (CCC's)y, (¢) andg, (), as

(which is in contrast with most global simulations) is in

substantial agreement with the results of this statistical down#x (1) = ZXk(l)fx,k =(X(), fx), (A1)
scaling. Eastern Mediterranean and Middle East are outside k

the common area of the PRUDENCE project. Considering O =Y O), f)

global projections, the southern coast of Turkey in Summeris ™"~ — Iy

c_Iose to qtra}nsitional area bet_ween contrast_ing future_ Condi\'/vhereo denotes the (spatial) scalar product between two
tions, which in the central Mediterranean region are drier and oo s andX (1), Y (¢) are the vectors of predictor and pre-
in the Mi.ddle Ea§t are wetter than the pre;ent ones. There iaictand at timer, respectively. It is important to note that
no surprise that in presence of such complicated morphologCCA must be applied to the difference between real observa-

ical features a regional downscaling may produce differenttionS and their time averaged validand) , thusX (1) and

resglts with respect to the g_lobal models. Y (t) are connected to the observed values of predigt@)
Finally, the results of this study are based on SLP and

500 hPa temperatureRowell and Jone$2006 suggested, and predictand(+) according to
in the projected climate scenarios, that dry Summer in the
Mediterranean are mainly due to low Spring soil moisture
conditions leading to reduced Summer convection and to 1<
large land-sea contrast in warming leading to reduced relY () = y(’)_?tgy(’)zy(t)_y'
ative humidity and precipitation over the continent. These -
factors are not accounted for by the downscaling technique§CA looks for £, and f) that maximize the correlation
used in our approach and this may explain the differences .
with respect to the results of the dynamical models. Py = (ﬁx (t),,BV(t)) = E Zﬂx (t)By (1) (A3)
This study confirms the potential effectiveness of statisti- i T
cal downscaling methods. It also shows that climate change )
projections of precipitation differ among the considered ar-Under the constraint that
eas confirming the need for downscaling techniques capabl
to resolve intgrnal differences in the Mgditerrar?ean region.%ar(ﬂx () =Var(f, () =1 (A4)
According to this paper the widespread reduction of precipi-with Var denoting the time variance andthe total number
tation in the Mediterranean region needs further investigatiorof measurements in time. It can be provenr( Storch and
to be confirmed. Projecting drier conditions for the whole Zwiers, 1999 that the CP’s are the solution of an eigenva|ue
Mediterranean area is likely correct at broad basin scale, buproblem with the eigenvalue equal to the square of the corre-
should not be generalized for small areas, especially closgtion pxy betweeng, (1) and g, (1).
to its border, where the downscaling exercise of this study The CCA technique is apphed in several statistical prob-
shows the potential for different climate change signals andems. To perform statistical downscaling we use this tech-
where specific studies are needed. nique to derive from a large scale field (e.g. SLP) — the pre-
The present research is the first step in order to better undictor — a regional scale field (e.g. precipitation) — the pre-
derstand the impact of climate change on agricultural sysdictand — which is not adequately described in climatic pro-
tems typical of Mediterranean region. A forthcoming paper jections of GCM'’s. To obtain the downscaled value of the
will cover more directly the impact of these changes on croppredictand we first calculate the difference between the cli-
growth. matic projection of the predictor (r) and the time averaged
value of observed predictor, according to

X=X@1)-1 i XH=X1)—-X
i (A2)

Xt)=X(@)—-X. (A5)
Appendix A : .

Then we expand (¢) on a suitable numbér of CP’s,
The Canonical Correlation Analysis «

X~) BPWFY (A6)

In this section we briefly review the statistical technique used ]

in this paper. The notation is the samevas Storch and
Zwiers(1999. CCA searches couples of patterns, the canon-where
ical jugated patt , or briefl ical patt CP),~; P
ical conjugated patterns, or briefly canonical pa erns ( )ﬂ(’)(t)z(X,f(’)), (A7)
made up of a vector for the predictgy and another for the "« x

predictandf,. We defined the canonical conjugated F,Slg are the adjoint O,V‘x(f;' fulfilling

FO =50 (O FV =5, £, (A8)
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where

1 T
Sk ==Y Xe®)X () (A9)
T t=1

1 T
yykj = ;ZYk(l)Yj(l)-
=1

F,ﬁ” (F}(,i)) represents the value of variabtgr) (Y (1)) when

the CCCﬂff) =1 (ﬂ)(,i) =1). The downscaled variabl&#()
is obtained with the expansion

k
VD) =V+Y BL)plFy. (A10)
i=1
where, as before) is the time averaged value of observed
predictands. There is no strict criterium for choosing the
suitable number of patterrisin the expansionsAB), (A10)
(von Storch and Zwierd 999. Here only those patterns with
eigenvalues significantly different from the lower ones have
been retained.

This statistical model is based on the hypothesis that linear

correlationp,(fy) between different CCC's, is valid also in the
scenario provided by the runs of the GCM.

Very often CCA technique is not applied directly but on a
previously filtered dataset. The filtering is performed using
the Principal Component Analysis in order to eliminate small
scale noise from predictors, predictands or both.

Another important technical detail in statistical downscal-
ing is the algorithm needed to project GCM projections on

agricultural areas 1659

References

Alpert, P., Baldi, M., llani, R., Krichak, S., Price, C., RmdX., Saa-
roni, H., Ziv, B., Kishcha, P., Barkan, J., Mariotti, A., and Xo-
plaki, E.: Relations between climate variability in the Mediter-
ranean region and the tropics: ENSO, South Asian and African
Monsoons, Hurricanes and Saharan Dust, in: Mediterranean Cli-
mate Variability, edited by: Lionello, P., Malanotte-Rizzoli, P.,
and Boscolo, R., Elsevier, Amsterdam, Netherlands, 149-177,
2006.

Ansell, T. J., Jones, P. D., Allan, R. J., Lister, D., Parker, D. E.,
Brunet, M., Moberg, A., Jacobeit, J., Brohan, P., Rayner, N.
A., Aguilar, E., Alexandersson, H., Barriendos, M., Brandsma,
T., Cox, N. J., Della-Marta, P. M., Drebs, A., Founda, D., Ger-
stengarbe, F., Hickey, K. 0dsson, T., Luterbacher, J., Nordli,
@., Oesterle, H., Petrakis, M., Philipp. A., Rodwell, M. J., Sal-
adie, O., Sigro, J., Slonosky, V., Srnec, L., Swail, V., Garc
Suarez, A. M., Toumenvirta, H., Wang, X., Wanner, H., Werner,
P., Wheeler, D., and Xoplaki, E.: Daily mean sea level pressure
reconstructions for the European — North Atlantic region for the
period 1850-2003, J. Climate, 19, 2717-2742, 2006.

Basnett, T. A. and Parker, D. E.: Development of the Global Mean

Sea Level Pressure data Set GMSLP2, CRTN 79, Hadley Centre

for Climate Prediction and Research, London, 1997.

unetti, M., Maugeri, M., Monti, F., and Nanni, T.: Changes

in daily precipitation frequency and distribution in Italy over

the last 120 years, J. Geophys. Res.-Atmos., 109, D05102,

doi:10.1029/2003JD004296, 2004.

Brunetti, M., Maugeri, M., Monti, F., and Nanni, T.: Temperature
and precipitation variability in Italy in the last two centuries from
homogenized instrumental time series, Int. J. Climatol., 26, 345—
381, 2006.

Br

Canonical Correlation Pattern. Indeed it is necessary td-°rte-Real, J., Zhang, X., and Wang, X.: Downscaling GCM infor-

interpolate the data from the GCM grid to the predictor one.
In our cases the two grids have comparable resolution so w

use a quite simple method. For each point of predictor grid

of coordinategxp, yp) we choose the 4 nearest points of the

mation to regional scales: a non-parametric multivariate regres-
sion approach, Clim. Dynam., 11, 413-424, 1995.

eque, M., Jones, R. G., Wild, M., Giorgi, F., Christensen, J. H.,
Hassell, D. C., Vidale, P. L., Rockel, B., Jacob, D., Kjelstr,

E., de Castro, M., Kucharski, F., and van den Hurk, B.: Global

GCM grid. These points are the vertices of a rectangle with  high resolution vs. regional climate model climate change sce-

coordinatesx;, y;) i=1, 2, 3, 4. We thus obtain the values of
afield £ (x,y) in (xp, yp) with a bilinear form given by

S (xpsyp) = f11+ i(le—f11)+ (fi2— f1v)

()

wheref;; = f(x;,y;).

Yp—Nn
y2—y1

Xp—X
X2—X

Yp—y1
y2—y1

Xp—X1
X2—X1

) (fo2— fi2— fo1+ f10)
(A11)

AcknowledgementsThis work has been funded by FISR —
CLIMESCO project:Evoluzione dei Sistemi Colturali a seguito dei
Cambiamenti Climaticicontract no. 285-20.02.2006.

Edited by: M.-C. Llasat
Reviewed by: two anonymous referees

www.nat-hazards-earth-syst-sci.net/10/1647/2010/

narios over Europe: Quantifying confidence level from PRU-
DENCE results, Clim. Dynam., 25, 653—670, 2005.

Flato, G. M., Boer, G. J., Lee, W. G., McFarlane, N. A., Ramsden,
D., Reader, M. C., and Weaver, J. A.. The Canadian Centre for
Climate Modelling and Analysis global coupled model and its
climate, Clim. Dynam., 16, 451-467, 2000.

Flato, G. M. and Boer, G. J.: Warming Asymmetry in Climate
Change Simulations, Geophys. Res. Lett., 28, 195-198, 2001.

Giorgi, F., Bi, X., and Pal, J. S.: Mean, interannual variability and
trends in a regional climate change experiment over Europe. .
Present-day climate (1961-1990), Clim. Dynam., 22, 733-756,
2004.

Giorgi, F., Bi, X., and Pal, J. S.: Mean, interannual variability and
trends in a regional climate change experiment over Europe. II:
climate change scenarios (2071-2100), Clim. Dynam., 23, 839—
858, 2004.

Giorgi, F.: Climate change Hot-spots, Geophys. Res. Lett., 33,
L08707, d0i:10.1029/2006GL025734, 2006.

Giorgi, F., and Lionello, P.: Climate Change Projections for the
Mediterranean Region, Global Planet. Change, 63, 90-104,
2008.

Nat. Hazards Earth Syst. Sci., 10683472610



1660

Gonzalez-Hidalgo, J. C., Lopez-Bustins, J.-A., Stepanek, P.,

L. Palatella et al.

: Statistical downscaling for Mediterranean agricultural areas

1992.

Martin-Videb, J., and de Luisa, M.: Monthly precipitation trends McGregor, J. L., Gordon, H. B., Watterson, I. G., Dix, M. R., and

on the Mediterranean fringe of the Iberian Peninsula during the
second-half of the twentieth century (1951-2000), Int. J. Clima-
tol., 29, 1415-1429, 2009.

Goodess, C.: STARDEX detailed report, availabletdtp://www.
cru.uea.ac.uk/projects/stardébdst acces: 19 July 2010), 2005.
Gordon, H. B. and O’Farrell, S. P.: Transient climate change in the

Rotstayn, L. D.: The CSIRO 9-level atmospheric general circu-
lation model, CSIRO Division of Atmospheric Res., Tech. Paper
n. 26, 1993.

Mitchell, T. D. and Jones, P. D.: An improved method of construct-

ing a database of monthly climate observations and associated
high-resolution grids, Int. J. Climatol., 25, 693-712, 2005.

CSIRO coupled model with dynamic sea ice, Mon. Weather Rev.,Osborn, T. J.: The winter North Atlantic Oscillation: roles of inter-

125, 875-907, 1997.
Gordon, C., Cooper, C., Senior, C., Banks, H., Gregory, J., Johns,

nal variability and greenhouse gas forcing, CLIVAR Exchanges,
25, 54-58, 2002.

T., Mitchell, J., and Wood, R.: The simulation of SST, sea ice Pope, V. D., Galloni, M. L., Rowntree, P. R., and Stratton, R. A.:
extents and ocean heat transports in a coupled model without flux The impact of new physical parametrizations in the Hadley Cen-

adjustments, Clim. Dynam., 16, 147-168, 2000.

tre climate model: HadAM3, Clim. Dynam., 16, 123-146, 2000.

Gordon, H. B., Rotstayn, L. D., McGregor, J. L., Dix, M. R., Kowal- Randall, D. A., Wood, R. A., Bony, S., Colman, R., Fichefet, T.,

czyk, E. A, O'Farrell, S. P., Waterman, L. J., Hirst, A. C., Wil-

son, S. G., Collier, M. A., Watterson, I. G., and Elliott, T. I.:

The CSIRO Mk3 Climate System Model, CSIRO Atmospheric
Research Technical Paper n. 60, 2002.

Hertig, E. and Jacobeit, J.: Assessments of Mediterranean precipi-

tation changes for the 21st century using statistical downscaling
techniques, Int. J. Climatol., 28, 1025-1045, 2008.

Hollander, M. and Wolfe, D. A.: Nonparametric Statistical Meth-
ods, John Wiley and Sons, New York, 1973.

Fyfe, J., Kattsov, V., Pitman, A., Shukla, J., Srinivasan, J., Stouf-
fer, R. F., Sumi, A., and Taylor, K. E.: Climate Models and Their
Evaluation, in Climate Change 2007: The Physical Science Ba-
sis, in: Contribution of Working Group | to the Fourth Assess-
ment Report of the Intergovernmental Panel on Climate Change,
edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Mar-
quis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge
University Press, Cambridge, United Kingdom and New York,
NY, USA, 2007.

Hurrell, J. W.: Decadal trends in the North Atlantic Oscillation: Rowell, D. P. and Jones, R. G.: Causes and uncertainty of future

Regional temperature and precipitation, Science, 269, 676-679,

1995.

IPCC: Climate Change: The Scientific Basis, edited by: Houghton,
J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J.,
and Xiaosu, D., Cambridge University Press, 2001.

Jacobeit, J., Dnkeloh, A., and Hertig E.,: Mediterranean rainfall

summer drying over Europe, Clim. Dynam., 27, 281-299, 2006.

Saaroni, H. and Ziv, B.: Summer rain episodes in a Mediterranean

climate, the case of Israel: Climatological-dynamical analysis,
Int. J. Climatol., 20, 191-209, 2000.

Smith, I. N.: A GCM simulation of global climatic trends: 1950—

1988, J. Climate, 7, 732—744, 1994.

changes and their causes, in: Enough Water for All?, edited byStratton, R. A.: A high resolution AMIP integration using the

Lozan, J. L., GraR, H., Hupfer, P., Menzel, L., and Suohiese,

Hadley Centre model HadAM2b, Clim. Dynam., 15, 9-28, 1999.

C. D., Wisseshaftliche Auswertungen, Hamburg, 195-199, 2007Trigo, R. M. and Palutikof, J. P.: Precipitation Scenarios over

Johns, T. C., Carnell, R. E., Crossley, J. F., Gregory, J. M., Mitchell,

J. F. B,, Senior, C. A,, Tett, S. F. B., and Wood, R. A.: The

Iberia: A Comparison between Direct GCM Output and Differ-
ent Downscaling Techniques, J. Climate, 14, 4422-4446, 2001.

second Hadley Centre coupled ocean-atmosphere GCM: modéelrigo, R., Xoplaki, E., Zorita, E., Lutherbacher, J., Krichak, O.,

description, spinup and validation, Clim. Dynam., 13, 103-134,
1997.

Jones, P. D., Davies, T. D., Lister, D. H., Slonosky, \dngson, T.,

Barring, L., dnsson, P., Maheras, P., Kolyva-Machera, F., Bar-
riendos, M., Martin-Vide , J., Rodriguez, R., Alcoforado, M. J.,
Wanner, H., Pfister, C., Luterbacher, J., Rickli, R., Schuepbach,
E., Kaas, E., Schmith, T., Jacobeit, J., and Beck, C.: Monthly
Mean Pressure Reconstructions for Europe for the 1870-1995

Alpert, P., Jacobeit, J., Saenz, J., Fernandez, J., @5z
Rouco, J., Gaia-Herrera, R., Rodo, X., Brunetti, M., Nanni,
T., Maugeri, M., Turkes, M., Gimeno, L., Ribera, P., Brunet, M.,
Trigo, I. F., Crepon, M., and Mariotti, A.: Relations between
variability in the Mediterranean region and mid-latitude variabil-
ity, in: Mediterranean Climate Variability, edited by: Lionello,
P., Malanotte-Rizzoli, P., and Boscolo, R., Elsevier, Amsterdam,
Netherlands, 179-226, 2006.

Period, Int. J. Climatol., 19, 347-364, 1999.

Lambert, S. J. and Boer, G. J.: CMIP1 evaluation and intercom-
parison of coupled climate models, Clim. Dynam., 17, 83-106,
2001.

Lionello, P., Elvini, E., and Nizzero, A.: Ocean waves and storm
surges in the Adriatic Sea: intercomparison between the present
and doubled CO2 climate scenarios, Clim. Res., 23, 217-231,
2003.

Lionello, P., Malanotte-Rizzoli, P., and Boscolo R.: Mediterranean
Climate Variability, Elsevier, Amsterdam, Netherlands, ISBN: 0-
444-52170-4, 2006.

McFarlane, N. A., Boer, G. J., Blanchet, J.-P. , and Lazare, M.:
The Canadian Climate Centre second-generation general circula-
tion model and its equilibrium climate, J. Climate, 5, 1013-1044,

Uppala, S. M., Kllberg, P. W., Simmons, A. J., Andrae, U., Da
Costa Bechtold, V., Fiorino, M., Gibson, J. K., Haseler, J., Her-
nandez, A., Kelly, G. A., Li, X., Onogi, K., Saarinen, S., Sokka,
N., Allan, R. P., Andersson, E., Arpe, K., Balmaseda, M. A.,
Beljaars, A. C. M., Van De Berg, L., Bidlot, J., Bormann, N.,
Caires, S., Chevallier, F., Dethof, A., Dragosavac, M., Fisher,
M., Fuentes, M., Hagemann, S.pkh, E., Hoskins, B. J., Isak-
sen, L., Janssen, P. A. E. M., Jenne, R., Mcnally, A. P., Mahfouf,
J.-F., Morcrette, J.-J., Rayner, N. A., Saunders, R. W., Simon,
P., Sterl, A., Trenberth, K. E., Untch, A., Vasiljevic, D., Viterbo,
P., and Woollen, J.: The ERA-40 re-analysis, Q. J. Roy. Meteor.
Soc., 131, 2961-3012, 2005.

Nat. Hazards Earth Syst. Sci., 10, 164861, 2010 www.hat-hazards-earth-syst-sci.net/10/1647/2010/


http://www.cru.uea.ac.uk/projects/stardex/
http://www.cru.uea.ac.uk/projects/stardex/

L. Palatella et al.: Statistical downscaling for Mediterranean agricultural areas 1661

Vasiliades, L., Loukas, A., and Patsonas, G.: Evaluation of a statisXoplaki, E., Gonalez-Rouco, F., Luterbacher, J., and Wanner, H.:
tical downscaling procedure for the estimation of climate change Wet season Mediterranean precipitation variability: influence
impacts on droughts, Nat. Hazards Earth Syst. Sci., 9, 879-894, of large-scale dynamics and trends, Clim. Dynam., 23, 63-78,
doi:10.5194/nhess-9-879-2009, 2009. 2004.

von Storch, H., Zorita, E., and Cubash, U.: Downscaling of global Watterson, I. G., Dix, M. R., Gordon, H. B., and McGregor, J. L.:
Change Estimates to Regional Scales: An application to Iberian The CSIRO 9-level atmospheric general circulation model and its
Rainfall in Wintertime, J. Climate, 6, 1161-1171, 1993. equilibrium present and doubled GQ@limates, Aust. Meteorol.

von Storch, H. and Zwiers, F. W.: Statistical Analysis in Climate = Mag., 44, 111-125, 1995.

Research, Cambridge University Press, Cambridge, UK, 1999. Zorita, E. and von Storch, H.: The analog method as a simple Sta-

Xoplaki, E.: Climate variability over the Mediterranean, Ph.D. the- tistical Downscaling Technique: Comparison with More Com-
sis, University of Bern, Switzerlantittp://sinus.unibe.ch/klimet/ plicated Methods, J. Climate, 12, 2474-2489, 1999.
docs/phdxoplaki.pdf(last access: 19 July 2010), 2002.

www.nat-hazards-earth-syst-sci.net/10/1647/2010/ Nat. Hazards Earth Syst. Sci., 1068347610


http://sinus.unibe.ch/klimet/docs/phd_xoplaki.pdf
http://sinus.unibe.ch/klimet/docs/phd_xoplaki.pdf

