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Abstract

This study deals with model based dependability analysis of phased mission
systems. From a comprehensive review of the studies in the literature, it appears
that several aspects of multi phased systems still pose insurmountable problems for
the dependability evaluation methods and tools. To address the weak points of the
state-of-the-art we propose a modeling methodology that exploits the power of the
class of Markov regenerative stochastic Petri net models. Our approach considerably
enlarges the class of phased mission systems that can be analytically studied. It can
accommodate in a compact and neat modeling all those peculiar aspects of phased
mission sjfstems that could not be dealt with up to now. By taking advantage of
the special structure of phased mission systems, we develop an analytical solution
technique with a low computational complexity, basically dominated by the cost
of the separate analysis of the system inside each phase. Last, the existence of
analytical solutions allows us to derive the sensitivity functions of the dependability
measures, thus providing the dependability engineer with additional means for the

study of phased mission systems.

Index Terms: Phased Mission Systems, Markov Regenerative Stochastic Petri Nets,

Analytical modeling and evaluation, Sensitivity analysis

1 Introduction

In this paper we address the analytical dependability modeling of a class of systems that

series of tasks that must be accomplished in sequence. Their operational life thus consists

1

as Phased Mission Systems (PMS, hereafter). "PMS perform a
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of a sequence of non-overlapping periods, called "phases”. During a specific phase, a
PMS is devoted to the execution of a particular set of tasks, which may be completely
different from those performed within other phases. The performance and dependability
requirements of a PMS can be utterly different from one p.hase to another. Moreover,
during some phases the system may be subject to particularly stressing environments, thus
experiencing dramatic increases in the failure rate of its components. To accomplish its
mission, a PMS may need to change its configuration over time, to adopt the most suitable
one with respect to the performance and dependability requirements of the phase being
currently executed, or siinply to be more resilient to an hazardous external environment.

Examples of PMS can be found in various application domains. A typical class bf PMS
frequently found in the literature is represented by the on-board systems for the aided-
guide of aircraft, whose mission consists of take-off, ascent, cruise, approach, landing
phases. A”PMS analysis can be also applied to studying the dependability of & system
during its whole life-cycle to establish a proper schedule of maintenance operations. In this
comtext, we talk of the Scheduled Maintenance System (SMS) problem. Another typical
example of PMS is provided by the computing systems embarked on long-life spacecraft,
which must survive long periods of very low activity, and then are required to achieve the
scientific goals of the mission in a short period of intense solicitation.

Besides these classical exampies. of PMS, there are many other kinds of systems not
generally classified as such, that are conveniently reformulated as PMS, and then can be
modelled and studied by using the specific methodologies for PMS. More precisely, we are
considering systems having a phased mission, for which the phase ordering is dynamically
determined by the environment the system is embedded in, or by particular sequences of
faults. Real-time systems with ”multi-moded” behavior represent good examples of these
PMS-like systems.

Because of their deployment in critical applications, the dependability modeling and
analysis of PMS is an issue of primary relevance that has been widely investigated. How-

ever, due to their dynamic behavior, PMS offer challenges in dependability modeling and



evaluation. The methods proposed in the literature make several restrictive assumptions,
which may result in an excessively unrealistic modeling and thus may undermine the
confidence that can be put in the analysis resuit.

Tn this paper we propose a new methodology for the modeling and evaluation of PMS,
based on a Markov Regenerative Stochastic Petri Nets (MRSPN) approach. Our proposal
overcomes some of the applicability limits of the previous methods, greatly enlarging the
class of PMS that can be analytically studied. In particular, the MRSPN modeling allows
relaxing two kinds of assumptions that are typically made by the other approaches for the
sake of analytical tractability, and which may result in unreliable estimation of system
dependability attributes.

The first concerns the duration of phases, which are usually assumed to last for deter-
ministic periods of time. While this assumption may be realistic for certain PMS scenarios,
as for instance space applications where phases are typically pre-planned on ground, it
is certainly not appropriate for other classes of PMS, for-which-the starting and ending
of a phase are instead triggered by unpredictable events. On the other hand, consid-
ering a constant phase duration enables a comparatively simple solution of the models,
whereas dealing with random duration makes the analysis considerably more complicated.
The MRSPN methodology we are going to present here accommodates phases of random
duration, still providing exact and efficient analytical solutions.

The second kind of approximation is introduced to keep the intraphase model within
the boundaries of time-homogeneous Markov chains, thus exploiting the efficient and
well experienced solution techniques available for this class of stochastic processes. This
requires all the timed activities of the system to be modeled by negatively distributed

exponential random variables, no matter which kind of distribution they actually follow;

further approximations are thus introduced inside the models. The MRSPN approach

relaxes this assumption, allowing for more general intraphase processes.
All those scenarios of PMS previously accommodated by the various studies in the

literature are within the apf)licability limits of our MRSPN approach. Much more, in the



paper we show how well the MRSPN models can deal with those features of PMS3 that
could not be accommodated beforehand. Moreover, thanks to the existence of analytical
solutions, we are able to perform the analytical sensitivity study of PMS, a challenging
task entirely neglected in the literature.

Another relevant contribution of this paper is found in the specialization of the Markov
Regenerative Process (MRGP) theory for the solution of MRSPN models of PMS. We re-
duce the computational complexity of the analytical solution to the one needed for the
separate solution of the PMS inside the different phases, and develop an evaluation pro-
cedure that easily lends itself to automation. Hence, the issues introduced by the phased
behavior are solved without requiring additional computational costs, the applicability of
our approach being only limited by the size of the biggest Petri net model which can be
handled by the dependability evaluation tools.

This paper is organized as follows. Section 2 identifies the contribution offered by the

MRSPN approach with respect to the current state-of-the-art. In Section 3 we introduce - - R

the MRSPN modeling approach, and apply it to an example of PMS that serves as a case
study throughout the paper. The general analytical solution of the MRSPN models of
PMS is then discussed in Section 4, and several specializations of that solution technique
are given in Section 5 for special PMS instances. Section 6 addresses the task of analytical
sensitivity analysis of PMS. Section 7 provides guidelines for the practical utilization of the
modeling methodology and the theoretical results presented in the paper, and also reports
the pumerical evaluation of some dependability attributes for the congidered example of

PMS. Last, conclusions are given in Section 8.

2 Qur contribution to PMS dependability analysis

PMS have been widely investigated over the past decades. Many works have been pro-
posed, either based on combinatorial models, such as Fault Trees and Reliability Block

Diagrams e.g. [12, 20], or on stale space oriented models, such as Markov chains and



various classes of Petri nets [1, 2, 5, 10, 14, 18, 19, 15]. Because of their ability in rep-
resenting complex dependencies among system components, state space approaches offer
the potentialities needed to address the features of the most complex instances of PMS.
However, several aspects of PMS represent a source of formidable problems even for the
powerful state space based modeling and analysis techniques. To identify the limits of such
methods and to highlight the advantages offered by our new MRSPN approach, we present
in the following a series of system scenarios that progressively include more and more
features of realistic PMS. For each scenario of PMS, we discuss on which methodologies
are able to deal with the particular case.
Scenario 1. Consider first a PMS that has to perform a set of phases of constant duration-
in a given, fixed order, and for which the intraphase behavior is satisfactorily modeled by a
time-homogeneous Markov chain. This scenario of PMS represents in a sense the common

ground for the methods in the literature: all of them address this minimal instance of PMS

and are able to deal with it. Some of the methods provide more flexibility /reusability, .

others are more efficient at solution time; a comprehensive review and comparison can be
found in [15]. Our MRSPN approach easily accommodates this PMS scenario, as well.
More precisely, in this particﬁlar case our methodology simplifies to that presented in [15],
which is based on Deterministic and Stochastic Petri Nets (DSPN), and which was shown
to provide several advantages with respect to the other approaches, concerning both the
modeling and the evaluation aspects.

Seenario 2. Consider now a mission for which different goals are defined, some of primary
and others of secondary relevance. In this scenario it is natural to endow the PMS with the
ability of dynamically adapting the mission profile, by selecting which phase to perform
next at the time the preceding phase ends. For instance, phases performed.to reach
secondar}lr goals may be skipped in favor of the more important primary ones, depending
on particular events occurred during PMS life-time. The mission profile is in this case
represented by a tree of possible choices, rather than a chain as it is in the case of a

predefined sequence of phases. Even if the assumptions of constant phase duration and



Markov intraphase process are kept, this flexibility feature exceeds the modeling and
solution capabilities of most of the methods proposed, with the exception of [5]. The
MRSPN methodology is able to account for adaptive mission profiles, including those
in which phases already initiated can be shortened or even prematurely aborted. These
latter features were not taken into account by any of the methods in the literature.
Scenario 3. Consider now a PMS whose phase changes are triggered by unexpected
events, such as a fault leading to the removal of a system component, or the arising of an
emergency situation of operation. This turns out in phases of random duration, whose
initial and ending time instants may be unknown. When phases of random duration
are to be considered, an exact analysis becomes much more complicated [3], even if the
intraphase process is still a time-homogeneous Markov process. Just to give a clue of the
difficulties of the analysis, notice that in this scenario the actual phase completion times,
and thus the mission ending time, are unknown. If negative exponential distributions
adequately represent the phase duration, then they can be employed to build an overall
model of the PMS that still enjoys the Markov property at any point in time, for which
the Markov solution techniques apply. However, there are classes of distributions that are
not suitably modeled by exponential distributions, e.g. finite support distribution with
low variance. Among those studies that addressed the modeling of PMS with random
phase duration, some adopted an approximate solution approach (without any bound on
the error introduced), such as [1, 19], others resorted to the numerical solution of an
associated set of differential equations [18], others ended in a simulative solution [3]. Our
MRSPN approach supports the modeling and the exact analytical evaluation of PMS for
which the duration of the phases is drawn from the family of distributions that admit an
analytical Laplace transform, which encompasses the exponential, deterministic, uniform,
Coxian, phase-type distributions.

Scenario 4. Suppose now that modeling the intraphase behavior of a PMS through an
homogeneous Markov chain does not result in & realistic representation of system be-

havior. For instance, consider a PMS in which failed components are replaced, so that




they are only unavailable for a deterministic amount of time. Fixed-duration activities
are a good example of those finite support distributions with a low variance (the vari-
ance is null in the particular case) mentioned above, for which an approximation with
negatively exponentially distzibuted random variables may results in significant discrep-
ancies between the behavior of the real system and that of the modeled one. Among the
methods that appeared in the literature, only the one reported in (18] is concerned with
more general intraphase processes. The authors proposed building a non-homogeneous
Markov model of the PMS, in which time varying failure and repair behavior are eas.ily
modelled. However, the adopted solution approach requires a computational cost that
makes it practically feasible only for very simple PMS. The MRSPN approach allowé coI-
sidering general intraphase stochastic processes, where timed non-exponential activities
are exactly modeled. The intraphase time-homogeneous Markov chain just becomes a
particular case. The limit of practical applicability of our results is represented by the
possibility of computing the transient solution of the intraphase process. Under given as-
sumptions about the type of non-exponential activities included in the intraphase process,
we provide an exact analytical solution of the models. In case such assumptions are not
satisfied, an approximate solution technique is still applicable, which provides upper and
lower bounds on the exact results. The accuracy of the approximation can be improved
to reduce the gap between the bounds, accepting an increased computational cost.

To complete the matching between the set of possible PMS scenarios and the methods

that apply for their solution, consider the following assumptions:

assumption a) the duration of the phases is deterministic;
assumption b) the mission profile is static;

assumption ¢) each intraphase process is a time-homogeneous Markov chain.

Denote a PMS scenario with the corresponding letters of the assumptions it satisfies, so

that "abc” is the PMS corresponding to the first scenario among those listed above, ” ac”

to the second one, and ”-" is the most general scenario of PMS where ass’uinption a, b,

and ¢ have all been relaxed.
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Table 1: Applicability of the methods for PMS analysis
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Table 1 shows the applicabﬂity limits of the state-space based modeling methodolo-
gies appeared in the literature, and points out the generality of our MRSPN approach.
Besides greatly enlarging the class of PMS that are analytically tractable, the MRSPN
methodology also allows addressing the sensitivity analysis of PMS, a challenging task
that has been neglected in the literature. Indeed, thanks to the existence of explicit ana-
lytical solutions, we are able to analytically compute the derivatives of the dependability

measures with respect to the variations of the parameter of interest.

3 MRSPN modeling of PMS

Modeling the complex dynamic behavior of PMS requires employing highly representa-
tive and expressive tools. To attack the problem, we resort to the MRSPN models, and
couple their representative power with the a set of modeling features that significantly im-

prove their expressiveness and allow for a compact modeling of the PMS peculiar aspects.

MRSPN are defined as follows:

Definition 1 A Petri net is a MRSPN if its underlying marking process is a Markoy

regenerative process (MRGP) [8].

Definition 1 does not give an immediate description of the modeling features allowed for
the MRSPN, this will be clarified later in the paper when the exact definition of MRGP is
given. For the time being, it is enough to anticipate that Markov processes are special cases

of MRGP, and thus the SPN and GSPN classes of Petri nets belong in fact to the MRSPN
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class. Also, the set of DSPN for which an analytic solution method exists is included in
the MRSPN. Moreover, MRGP encompass the class of semi-Markov processes, too, for
which activities having generally distributed duration are allowed. Thus, MRSPN may
include exponential, instantaneous, deterministic, as well as general transitions. However,
to guarantee that the marking process is indeed a MRGP, some restrictions must be
imposed on the concurrent enabling of the non-memoryless transitions. We shall come
back to this issue later when dealing with the analytical solution.

The following modeling features have been recently added to the Petri net models to
increase the expressive power. The firing rates of timed transitions, as well as the.rewards
associated to the markings of the Petri net, may depend on the marking of the model,
which permits to model very complex behaviors in an extremely compact way. It is worth
observing that the possibility of defining marking dependent firing rates allows modeling
phases whose duration can be modified after they have already started. Another very
interesting possibility to enrich the capabilities of Petri nets is the introduction of logic
conditions, also called guards, which control the enabling of transitions. A guard can be
any function of the marking of the model, which is added to the specification of the transi-
tion without impairing the clearness of the modeling. Input arcs with variable cardinality
provide additional simplifications of the modeling. Besides a clearer and more concise
modeling, these capabilities avoid the introduction of many vanishing markings that need
to be subsequently eliminated from the reachability graph of the models. However, it is
worthwhile observing once again that these features do not increase the power and thus
the applicability of the models, but represent only convenient shorthand notations that
simplify the modeling and generation of the underlying marking process.

We present the guidelines for the MRSPN modeling of PMS through an example of
PMS application, which includes most of the typical features of the PMS that pose issues

to the modeling and evaluation methodologies.




3.1 A challenging PMS example

We consider a PMS that executes 4 phases whose duration is a random variable having
general distribution F(t), i = 1,2,...,4. The PMS is equipped with 4 redundant identical
processors, which can be used in various configurations. Within a given phase, the PMS
adopts the configuration that best fits the ideal one for the activities executed therein.
Unused processors act as cold spares.

The ideal and minimal configuration of the various phases are shown in Table 2, where
a denotes the number of active processors. Active processors are subject to faults, whereas
spare ones are not. Active processors fail independently from each other, and the time to
failure is exponentially distributed. The failure rate is constant within a phase, though the
same processor may have different failure rates in different phases, as shown in Table 2.
When a processor fails, a spare component is activated to recover the ideal configuration.

This activity, performed in a negligible amount of time, succeeds with probability ¢. In

case it fails, the spare processor that does not switch on is declared faulty, and the PMS

configuration further degrades. A faulty processor is replaced with a new one. This
replace takes a deterministic amount of time 7. Repaired processors become either spares

or active processors, depending on the requirements of the current phase.

Ideal Minimal | Failure | Next | Starting
Phase | configuration | requirement | rate | phase | criterion
1 a=3 a=2 2A 2 -
2 a =2 a=1 A {34} |-
3 a=23 =3 A\ 4 =0
4 a=3 a=3 2 -

Table 2: Phase-dependent parameters of the PMS

The goals of the mission are represented by the activities the PMS performs inside

phases 3 and phase 4. However, phase 4 is the primary objective that has to be necessarily

performed, whereas phase 3 is a secondary optional objective. Since during phase 3 the

PMS is subject to a high failure rate, the secondary objective is pursued if and only if it
does not jeopardize the reliable execution of the more important phase 4. The decision

on whether to perform phase 3 or not is taken at the time phase 2 ends, by evaluating
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Figure 1: PhN submodel for the example of PMS

the starting criterion given in Table 2, where f denotes the number of faulty processors.
Moreover, in case a processor fails after phase 3 has staited, the duration of the phase
is shortened to reduce the risks of further failures. Precisely, the expected duration 73 of
phase 3 is defined as a function of the number of faulty i)rocessors, 13 = 73(f) . Therefore,
both the sequence of phases performed by the PMS and the overall duration of the mission

itself may dynaimically change depending on processors availability.

3.2 MRSPN modeling of the example

At an high abstraction level, we build the model of a PMS as composed of two logmally
separate MRSPN. One part is called System Net (SN) and represents the system, that is
its components, their interactions, their failure/repair behavior. The other part is called
Phase Net (PhN}, and represents the control part, which describes the phase changes. The
adequacy of this scheme for the modeling of PMS is found in the possibility of expressing
even complex behaviors through the relations between the PhN and SN submodels.

The MRSPN model of the PhN is shown in Figure 1. A token in place F;, ¢ =
1,2,...,4,4', models the execution of the corresponding phase of the PMS. The sequence
of phases ends with a token in STOP place, which represents the end of the mission. Notice
that place Py is introduced because phase 4 can be executed along two possible dlfferent
paths of the mission. The general transition #;, ¢ = 1,2,... 4,4 g models the duration
of the correspondlng phases. To depict transitions, we adopted the usual cquention:
instantaneous transitions are depicted as thin bars, exponential ones as empty rectangles,

and non-memoryless transitions as black-filled rectangles.
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PhN element SN marking

tyes cnabled if | m(Down) = 0
tno enabled f | m(Down) >0
firing rate of 3 | Ts(m{Down))

Table 3: Parameters of the PhN dependent of the SN marking

Figure 2: SN submodel for the example of PMS

The dynamic features of the PMS mission profile are easily modeled by making the
evolution of the PhN dependent on the marking of the SN. For instance, place Penoice PlUs
the two instantaneous transitions tyes and t,, model the dynamic selection of the next
phase to be performed, which takes place at the end of phase 2. The two instantaneous
transitions are guarded by enabling conditions that relate to the marking of the SN
submodel. Similarly, transition t; has a firing rate that is a function of the SN sub model
marking. This particular dependency has been named marking-dependency by a scaling
factor [9], because the distribution of the firing time is affected by the marking changes
only in its expected value, and not in its genera) law. All the dependencies of the PhN
parameters on the SN markings are given in Table 3. The initial marking of the PhN
assigns 1 token to the place Pi, modeling the start of the first phase.

The SN submodel is shown in Figure 2. The state of the processors is modeled by the
three places Up, Down, and Spare. The marking of these places represents the number of
actively working, failed and cold spare processors, respectively. The exponential transition
t;, and the deterministic one t3 model the failure and repair process of the procéssors,
respectively, moving tokens back and forth between place Up and place- Down_. _’;‘he |
mission goes on unless a token reaches place Fail, which models the mission failure.

The SN evolution is conditioned to the marking of the PhN by proper marking de-
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SN element PhN marking

m(P)=1 m{Py)=1 m(P3)=1 m(Py) + m{Py)=
firing rate of #; 2am(Up) Am(Up) 5am(Up) 22m(Up)
Turn-off enabled if | m{Up) >3 m(Up) >2 m(Up) >3 m{Up) >3
Rec-ok enabled if | m(Up) <3 | m{Up) <2 [ m{Up) <3 m(Up) <3
Rec-nok enabled if | m{Up) <8 | m{Up) <2 | m{Up) <3 m({Up) <3

Sfaill enabled if | m{Down)=3 | m{Down)=4 | m{Down)=2 m{Down)= 2
Sfall? enabled if | m(Down)=3 | m(Down)=4 | m{Down)=2 | m{Down)=2

Table 4: Parameters of the PhN dependent of the SN marking

pendent predicates, which modify transition rates and enabling conditions. The phase-
dependent parameters of the SN are shown in Table 4. The rate of transition ¢; is made
dependent from the marking of the PhN, to model the different failure intensities of the
processors inside the various phases. The instantaneous transition Turn — of f models
the switching off of a processor that, according to the requirements of the phase being
currently executed, is not longer needed to be active. Similarly, the two instantaneous
transitions Rec — ok and Rec — nok model the spare reactivation, and the possible suc-
cessful or failed result of this operation. The three instantaneous transitions Turn — of f,
.Rec — ok, and Rec—nok, are controlled by enabling conditions depending oh i":hé ma.rki.hg
of the PhN subnet, as shown in Table 4. Finally, the instantaneous transitions S — faill
and S — fail2 are introduced to model the failure criteria of the different phases. They
are controlled by the guards shown in Table 4, and once enabled, flush all the tokens of
the corresponding input places to the Fail place. Notice that the input arcs of these two
transitions are variable cardinality arcs. The initial marking of the SN is shown in Figure
9, with 3 tokens in the Up place and 1 in Spare.

The resulting model of the PMS is extremely concise. The two submodels shown in
Figure 1 and 2 completely represent our example of PMS. Notice the close resemb.lance
of the conditions that relate the behavior of the two submodels as they are presented in

Table 3 and 4, and the form these same conditions are given in Table 2. Our high level

MRSPN modeling allows to define models of PMS in a way that is very similar to that of &

system specification language, easily understandable, unambiguous and easily modifiable.
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4 Analytical solution

In this section we present an analytical solution method to obtain the time-dependent
marking occupation probabilities of the MRSPN models of PMS. This method is based on
the general solution method for MRGP [7], which applies for the solution of any MRSPN
model. By taking into account the special structure of the PMS models, we derive a
solution strategy much more eficient than the general one in terms of computational
complexity. However, before moving our attention towards the solution technique, we
have to be sure that the models built according to t.he methodology explained above
are indeed MRSPN models, or, in other words, we have to show that a Markov renewal

sequence is definitely found, embedded in the underlying marking process.

4.1 MRGP structure of the marking process

Because of their generality, it is not easy to check whether a given timed Petri net modelis =~

a MRSPN or not. In general, the marking process must be inspected to verify the ekisteﬁﬁe
of a Markov regenerative sequence, but this can be a very costly check for complex models.
A possible way to build Petri nets that are MRSPN is to prescribe constraints on the
net, structure, in such a way that a Markov renewal sequence is definitely found in the
underlying marking processes. To this aim, a sufficient constraint to be imposed on the

net structure, is the following one:
Constraint 1 Af most 1 general transition is enabled in each marking of the Petri net.

In this case, the Markov property holds (at least) each time a general transition fires
or it is disabled. This constraint is the one usually adopted [8], for it provides an easy-to-
check condition to test for the existence of the MRGP structure in the underlying marking
process. However, the Petri net model we built in the previous section does not coniply
with this constraint. Indeed, two general transitions, namely the one representing the
phase in the PhN, and that modeling the repair in the SN, are allowed to be simultane-

‘ously enabled. Notice that the condition expressed by Constraint 1 would be obviously

o A




fulfilled by the PMS model sketched above if the sole general trangitions of the model
were those included in the PhN subnet. This would mean to keep the SN as a simple
GSPN model, or, equivalently, to maintain the intraphase process within the boundaries
of time-homogeneous Markov chains. In fact, in the special case of the models of PMS,
o much less restrictive constraint is sufficient to ensure that the Petri net model is a

MRSPN:

Constraint 2 Whenever a timed transition fires in the PhN, each non-memoryless en-

abled transition resamples o new firing time, which can only depend on the net marking.

Owing to the structure of the PhN submodel, this constraint ensures that the firing
times of the timed transitions in the PhN (the phase completion times) are regeneration
points of the MRSPN model. Thus, & specific Markov renewal sequence is identified

embedded in the marking process, and the underlying marking process is therefore a

MRGP. It is worthwhile observing that this condition is much less restrictive than theone - - .

prescribed by Constraint 1. Between two phase completion instants, the marking process
of the model can be a completely general stochastic process. This allows including general
‘transitions in the SN submodel, which can be concurrently enabled with the general
transitions of the PhN, as long as no transition fires in the PhN.

Still, the Petri net model we defined in the previous section does not respeét this weaker
constraint, neither. Indeed, suppose transition 2o, which models the repair éctivities in
the SN, is enabled at the time a phase completes. Resampling a new firing time for to
implies that the memory of the work already done has to be lost. We can model the loss
of memory either with a premature completion of the repair at the phase ending time,
or with its restart at the beginning of the nexf phase. In both cases an approximation is
introduced in the model, in that such a behavior is not in the semantic of the repair.

Anyway, even if for some special cases of PMS it might be possible to further weaken
the constraint on the net structure and otill obtain a MRSPN model, we will assurﬁe

Constraint 2 as the condition to be met for the analytical tractability of the models.
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Also, the loss of memory at phase boundaries does not imply any approximation for some
classes of PMS, when maintenance activities are performed between consecutive phases.
In this case, keeping track of the repair work already performed but not yet completed
have no use at all. This sceﬁario is common in tﬁe context of SMS [6], which has been
modeled through the PMS methodologies. In other cases the loss of memory does result in
an approximate modeling, still it is possible to decidein a sensible way, for each transition,
whether the resampling is modeled as a restart or a premature completion, so that upper
and lover bound models can be obtained. Consider our example of PMS, and suppose
that, at the phase ending times, we force the premature completion of the repairs that are
currently being executed. It is easy to realize that such a model provides an optimistic
estimation of the dependability measures of the original PMS. Conversely, we can obtain &
pessimistic estimation of the dependability measures if the repairs that are not completed
when a phase ends simply start again from the beginning as the next phase starts. These
two alternatives provide an upper and lower bounds on the exact dependability measures,
thus allowing for the estimation of the error introduced with the loss of memory. If one
desires to improve the tightness of the bounds, some modifications can be made to the
upper and lower bound models, to improve their accuracy, and consequently limit thé gap
between the pair of results they provide. Each non-memoryless transition of the SN for
which the loss of memory results in an approximate behavior can be split in a sequence
of shorter activities, for which the influence of the approximation will be less relevant.
For instance, in our example of PMS we could model transition t», whose duration is 7,
with two consecutive deterministic transitions, each one having constant delay 7 /2. In
this way, the restart or the premature completion of a repair activity will affect only one

out of the two stages, resulting in a better approximation of the original PMS.

4.2 The transient marking occupation probabilities.

We present now a specialization of the general solution method for MRGP to the ana-

Iytical study of the MRSPN models of PMS. Denote with S the set of markings of the
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MRSPN reachability graph. Consider the time-dependent marking occupation probabil-
ity of marking m’ at time ¢, conditioned to the initial marking m, and denote it v (t),
m,m' € S, t > 0. Moreover, denote with V{t) = [|tmm{t)] the transient probability
matrix that collects these conditional probabilities. According to the MRGP theory [7],

matrix V(£) is the solution to the following generalized Markov renewal equation:
V()= E(t) + K » V(1) (1)

where matrix K (t) = ||kmm (t){| and E(t) = [lemqm (t)]] are the global and the local kernel
of the MRGP, and K =V (£) is the matrix whose generic element is obtained with the row
by column convolution of K(t} and V/(¢).

Let 1,2,...,n be the set of phases performed through the mission, and denote with
s(i) the set of phases which can be performed after phase i, ¢ = 1,2,...,n. For the

sake of simplicity, we assume that the ordering of phases is such that 7 > 4, for each

7 € s(¢). Note that such an ordering can always be found because of the acyclic struc- -

ture of the PhN. Let ¢; be the transition of the PhN that models the time the PMS
spends in phase ¢, ¢ =1,2,...,n, respectively. The firing time of transition ¢; is a gen-
eral] random variable with probability density function fi(t), and cumulative distribution
function Fi{t) = JE flu)du, i = 1,2,...,n. In the case general transition ¢; has & marking
dependent firing rate, we can easily reduce it to a marking-independent one [9}. Suppose
the expected firing rate of transition #; is a function g(m) of the current marking m. A
marking-independent definition of the firing time of transition ; is provided by the nor-
malized firing time distribution, defined as Fy(t) = Fi(t/g(m}), which has average 1 and
is not marking-dependent. This normalization is extended to the intraphase stochastic
process representing the evolution of the PMS within phase %, by multiplying the rate of
the outgoing transitions of marking m by the expected firing delay g(m) of t;. An intuitive
interpretation of this scaling of the intraphase process lies in modifying the relativg speed,

of the transitions of the SN that are concurrently enabled with ;, rather than changing

the speed of transition #; itself.
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Denote with {m(t),t > 0} the stochastic process representing the evolution of the
marking of the MRSPN. Define Ty = 0, and let 7; be the time instant at which transition
t; completes, 7 = 1,2,...,n. By construction, the phase ending times 1; represent regen-
eration points for the marking process {m(t),t > 0}. Indeed, Constraint 2 guarantees
that the memoryless Markov property holds of the marking process of the MRSPN at
the phase completion times. Thus, the sequence of bivariate random variables {(¥;, T3)},
where Y; denotes the marking of the MRSPN model at the time immediately after T;,
is a Markov renewal sequence, and consequently the marking process {m(t),t > 0} is
2 MRGP. To obtain the transient probability matrix V() we proceed by studying the
marking process {m(t),t > 0} over the different phases.

Consider the stochastic process {m/(t},# > 0} during the time interval [T;-1,T;], when
transition #; is enabled, and denote with II;(¢) its transient probability matrix, and with
S. its state space, i = 1,2,...,n. The set Spy1 = S\ U S contains those absorbing
markings reached by the model at the end of the mission, when a token is in place STOP.
Because of the structure of the MRSPN model of a PMS, the sets S, 1=12,...,n+1,
form a partition of S . Let C; be the cardinality of set S;,4=1,2,...,n+1 The global
kernel K (t) and the local kernel E(t) can be reordered according to the partition defined
by sets S;, i = 1,2,...,n + 1, and thus partitioned in blocks K;;(t) and E;;(t) having
dimensions C; x Cj, respectively. Due to the PMS structure, K(t) is such that the block
matrices K ;(t) take non-zero values if and only if 7 > i+ 1, whereas E; ;(t) is non-zero
if and only if j = 4. Let A5, 4,7 =1,2,...,n+ 1 be the C; x C; branching-probability
matrix defined as follows:

Aij =165 |l = ProblYs = m|m(Ti—) = m],m € S, m’ € 5;
where T;— denotes the time instant immediately before 7;. The elements of K(t) are as
follows:
it (£) = ProblYs =/, Ty S tfYo = m] = [ " Prob[Y = m', T, = ulYo = mldu =

t
= / ProblY; = m'|T; = u, Yy = m| f(u)du, m, mes t>0 (2)
0 .
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According to Equation (2}, the non-zero blocks matrix () can be obtained as follows:
/H Aufilu)du, i=1,2,...,n, jCs(i)t>0
Similarly, the entries ey, m{t) of the local kernel matrix are given by:
emm (t) = Problm{t) = m',T; > t|Yy = m] =

= Prob{m{t) = m'|T; > t,Yo = m]Prob{T; > t], m,m €5, t20

and consequently, the non-zero blocks E; ;(t) of the local kernel matrix E(t) are as follows:

]

Consider the block partition of matrix V(t) induced by the sets S;, 1=1,2,...,n+1.
Owing to block structure of matrices X (¢) and E(¢), all the blocks V;;(t) are null if ¢ > j
 that is matrix V() exhibits an upper triangular block form. The generalized Markov
renewal Equation (1) can be rewritten according to the block partitioning of the matrices:

Vi;(t) = Ei(t) + Zde WVt —v), 45=1,2,...,n+1, t=0 (3)
O hes(i
and a backward substitution procedure can be applied to obtain all the non-zero blocks
of V(t) in the j-th column, starting from the diagonal block V; ;(t) = E;;(t).

From the transient marking occupation probability matrix V() we can compute the
dependability measures of interest. For instance, we dbtain the probability R of success-
fully completing the mission. If mq is the initial probability vector over the markings of
the reduced reachability graph of the PMS model, then moVy n41(t) is the time-dependent
marking occupation probability vector at time i, ¢ > 0, over the markings of Sn41, which
represent the state of the PMS at the end of the mission. Since these markings are all

absorbing, we can compute R as the product mpV) p41(00)©, where © is the vector that

selects those markings that represent successful states of the system, according to the

success criterion defined for the mission of the PMS. The computation of R is thus for-

mulated as the problem of evaluating the limiting probability distribution of the transient
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MRGP process. Once the block matrix V) ,;1(t) has been computed, the following limit
needs to be obtained:

R = tglglo meVl,nH(t)e (4)

Directly attacking the solution of the system of integrals in Equation (3) to compute
blocks V; ;(t) can be a computationally expensive procedure. Indeed, each of the sub-
stitution steps requires the solution of the convolution'integral in (3) for the associated
submatrices, which is costly and may introduce numerical approximationé. A}ternatively,
we can resort to the analysis in the Laplace-Stieltjes transform (LST) domain. If we take
the LST of both sides of Equation (3) we obtain:

Vii(s) $)+ Y. Kiu(s)Vis(s), i,i=12,...,n+1 (5)
hes(i)

where V3(s), E;(s), and K}y (s) are the LST of Vi;(2), E; ;(t), and K;p(t), respectively.

The backward substitution can be completed by exploiting the PhN acyclic structure.

Equation (5) is remarkable for its generality. It allows to derive the LST of the time ™™~~~

dependent marking occupation probabilities for the MRSPN model of a PMS with general
duration of the phases, and general intraphase marking process. Of course, a numerical
antitransformation is needed to obtain the final result in the time domain. However, we
only need to antitransform a single block V;%(s), rather than performing a sequence of
numerical solutions of integral equation systems, as required by the analysis in the time-
domain with Equation (3). Furthermore, it is also possible to take advantage of the LST
theory to directly compute the limit in Equation (4) without obtaining the time-domain
expression of Vint1(t), but rather dealing with its transform. Precisely, because of the

time-invariance of mg and ©, and from the final-velue theorem of Laplace transforms, the

reliability R is obtained as:
R = lim moVi s (90 = mo  im Vs (8)) © = mo (im Vina(9) ©  (6)

To avoid a cumbersome notation, let us consider the case when the PhN submodel is a

chain rather than a tree, that is phases 1,2,...,n are performed in a fixed order. In this
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case, the transform V7, ,,(s) takes the following form:

(8]
1n.+1 HKz 'L+1 n+1 n+1 H I 1z+1

where the last equivalence comes from the fact that all the markings of S, are absorbing
markings, and thus ES ., . (s) is the identity matrix. Let K7;,, denote the limit for s —
0% of matrix K7;.,(s), which surely exists for the properties of the transient probability

matrices. Then, we can rewrite Equation {(6) as follows:

R=mg hm H iis1(s)0 = mOHK:a+1 (7)

i=1

Thus, an explicit formula can be obtained for probability K, without any need to
evaluate the transient state probability matrix of the MRGP underlying the PMS model.
It is worthwhile observing that the approach followed to compute the reliability of the
PMS at the tlme the mission ends can be also applied to obtain the rehablhty at the
system at each phase completion instant. Indeed, each phase of the system can be seen
as being the last one the system has to perform, and thus the probablhty d1str1but1onmgw -
the end of phase 4, i = 1,2,...,n, is computed as an absorption probability through the
limit of the global kernel submatrices transforms.

Other dependability attributes of interest, such as the pointwise reliability and avail-
ability, can be evaluated once the transient marking occupation probability matrix V'(t)
has been obtained. Cumulative measures are computed from V{(t) by integration. For

instance, by superimposing a reward structure over the markings of the MRSPN, it is

possible to compute the performability of the PMS as the total reward cumulated during

the mission.

5 Specializations for particular classes of PMS

In this section we present a specialization of the general results provided by Equations (3}
and (5) for the transient marking occupation probabilities, and by Equation (4) for the

reliability at mission completion time. We consider three particular scenarios. First, we
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consider the case when phases have a deterministic duration, denoted by in Section

9, for which we derive a simpler form for V{¢). Then, we explore the case when the
subordinate process is a homogeneous continuous-time Markov chain, that is scenario e
of Section 2. For this scenario we can derive very compact formulae for the reliability
of the system at phase completion times. Last, we discuss the applicability 1imilts of our

o

approach, dealing with the most general scenario, denoted as

5.1 Constant phase duration

Let 7; be the deterministic firing time of transition ¢;, ¢ = 1,2,...,n. In this special
case, the probability density function f; (t) of the phase duration is the Dirac impulse
function at 7;, and the cumulative distribution function is the delayed unit step function

F(t) = u(t — 7;). The blocks of the global kernel matrix K (t) take the following form:
f IL(wAy filw)du = ()0 Fi(t), i=12,...,n, €85, t20
and thus the transient matrix blocks Vi ;(f) can be rewritten as follows:

Vii(t) = Ei (t) +f S A7) A Fo(u) Vi i — ) =

hes(i}

ﬁE” + Z H T',\, 1h_/ f1 th(t._ )du—— ” + Z H Ta thh,j(t—Ti)-

hes(i) hes(i)

Notice that the integral are sotved due to the fact that the Dirac impulse function
allows reducing the convolution integral to just a time shift. We can complete the analysis
in the time domain without resorting to the LST, completing the backward substitution in
Equation (3). For instance, in the case of a linear mission profile, we obtain the following

expression for the transient probability matrix blocks V; ;(t):

i-1 j-1 .
£) = [[ Talmn)BnBsg(t =Y m), i=12,..,m J 24 £2 0 (8)
h=i h=1 .
where the product over an empty set is to be intended the identity matrix. 1t is worthwhile

remarking that Equation (8) is applicable to whichever MRSPN model of a PMS with

constant phase duration that satisfies Constraint 2, regardless of the structure of the SN.
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5.2 Markov chain subordinate processes

In this case, the transient probability matrix II;(2) of the subordinate process can be
expressed via the matrix exponential e9 where (; is the infinitesimal generator of the
subordinate Markov process, 4 = 1,2,...,n. The expressions given for the global and

Jocal kernel matrix blocks can be rewritten as follows:

4

£
K;,(t) = /(; eQi“Ai,jfi(u)du, E’i,i(t) = EQit(l - E(t)), = 1, 2, B 1 t> 0
The LST of the preceding expressions can be computed as follows:
Kg(s) = LEe¥ i) Dy, Epils) = sLie® (1 = B@)), 1=1,2,...,n (9)

where L[] denotes the Laplace transform operator. Quite interestingly, these expressions
can be completely worked out and the integration solved in many interesting special cases.
For instance, consider the case of a finite support distribution, namely the distribution
obtained by truncating at time 7 > 0 the negative exponential distribution of parameter
), and then normalizing with respect to the probability e™*". The LST of the kernel

blocks are obtained from Equation 9 as follows:

Ae” M{s+ M~ Q)™ o
o _ —st o Qit _ (s I-Q)r .
Ky (e) = [ et 2y = ML (1 - ) B

Similarly, we compute the blocks of the local kernel, obtaining the following expression:

E?,j('s) = -1-——"%_'1'; [((S + )\)I - Qi)"l (I _ 6((5+)«)I—Q~i)‘r) _ e—.\fr (SI . Qi)_-l (I _ B{SI_Q‘)T)]

Owing to the fact that the explicit expressions for the LST of the global kernel matrix
blocks are available, we can compute the reliability R by applying Equation (4). For
instance, consider a periodic PMS alternating the execution of a phase whose duration is
a random variable exponentially distributed with parameter A, and a constant duration
phase that lasts for 7 units of time. The PMS cyclically executes the two phases over

time. The reliability Rg, at the time the 2n-th phase ends is obtained as follows:

Rg = My hm H ( s+ A)I - Q@)_lAle_(s‘r—Qz)Tﬁg) Q= Mo (A()\I — Qi)_1A18Q2)TA2)-n (")

s—0+

Notice that deterministic and random phase duration can be freely mixed and the relia-

bility of the PMS is still easily obtained according to Equation (7).
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5.3 General instances of PMS

The general results stated by Equations (3), (5), and (4) are valid under any scenario
of PMS among those considered in this paper. Random phase duration, flexible mission
profile, and general intraphase stochastic process are all accommodated in our modeling
and solution scheme. The limit of practical applicability of the theoretic results derived
in this paper for the MRSPN models of PMS is represented by the possibility of evalu-
ating the time-dependent marking occupation probabilities of the subordinate process ¢
during the enabling period of tramsition ¢;, 1 =1,2,...,n. This information is absolutely
necessary to complete the analytical derivation of the expressions for the time-dependent
marking occupation probabilities and the reliability of the models.

Besides the particular éase of homogeneous Markov chains we dealt with above, there
are other types of subordinate process that are amenable to analytical solution in terms of

their time-dependent marking occupation probabilities. For instance, exact methods exist

for the transient analysis of non-homogeneous Markov chain [17]. Another interesting case =~

is when the subordinate process is a semi-Markov process [11], as in the case when some
general transitions are included in the SN submode! and they restart their firing each
time a marking change occurs. Last, the subordinate process could be a MRGP itself.
In this case the SN is allowed to contain general transitions, which must however fulfil
Constraint 1, that is a single general transition can be enabled in each marking of the
nested MRGP. The transient marking occupation probabilities of the subordinate process

can be computed according to Equation (1).

6 Sensitivity analysis

Suppose now that we are interested in studying the effects that the variations in the value
of some parameters have on the dependability measures of the PMS, either because such
parameters are only known with uncertainty, or because different scenarios of the sys-

tem are to be analyzed. Obviously, whenever the dependence of the measure of interest
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from the parameters only involves simple functions that can be computed at a limited
computational cost, the sensitivity analysis can be conveniently conducted through mul-
tiple evaluations, to plot the dependability measures for the whole range of parameter
values. Conversely, when the dependability measure object of the evaluation is a complex
function, or when more parameters can be varied simultaneously, performing multiple
evaluations becomes an expensive task.

In our MRSPN scenario, an effective alternative to this multiple evaluation scheme is
offered by the possibility of conducting an analytical time-dependent sensitivity analysis,
The existence of an analytic expression for the marking dependent occupation probabilities
allows to evaluate the derivatives of the dependability measures of interest with respect to
the variations of some parameters. These derivatives, also called sensitivity functions [13],
complement the means available for the study of PMS, providing guidelines for the system
optimization [4], and in some cases avoid or limit the need of performing long batches of
evaluations for a number of different values of the parameters. These functions can be
conveniently employed to perform an analytical study of the effects that the parameter
variations have on the dependability. The absolute value of the derivative indicates the
magnitude of the variations of the measure for a small perturbations of the parameter,

and its sign reveals whether an increase of the parameter value would cause an increase

or instead a decrease of the measure. When more parameters may simultaneously vary,

by comparing the partial derivatives with respect to various parameters it is possible to
identify those to which the dependability measures are sensitive the most.

In the following, we analytically derive the sensitivity functions that represent the ef-
fects that parameter variations may have on the transient marking occupation probability

matrix V(t), and on the probability £ of successfully completing the mission.

6.1 Sensitivity analysis of V(%)

To carry on the sensitivity analysis of the transient marking occupation probability matrix,

we consider the matrix V(¢) as being a function of some independent parameter §, that
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is V(t) = V(6;t). We denote with S(6;1) the derivative of V(8;1) with respect to .
Matrix §(0;¢) can be partitioned into its blocks S; ;(6;t) according to the same parti-
tion as that defined for V(#;t). Since the expression for the transient marking occupation
probabilities is given in terms of the LT of the kernel matrices in Equation (6), we obtain
the sensitivity function matrix in the transform domain. Let us denote with V;%(#; s) and
S;;(6;s) the Laplace Stieltjes transform of block matrix V;;(#;t) and S;;(8;t) , respec-

tively. The sensitivity function transform is obtained as follows:

o o 0 g e _, ove.(8;
00 = [esalvyon = 2 [7 e tavigom = T

where the second equality comes from the fact that ¢ is independent from both s and ¢.

The differentiation of V;%(#; s) according to Equation {5) gives the following expressions:

0 3

Sz-,j(f?;S) = %V;,j(g; s) = 89 (9 )+
+ Z ) Vhoj(e,S)"‘K:h(g,S) th (6 3) 3,‘7: 1,2,...,'n+1 (10)
hesti) 59 ; : 06 "

Thus, the evaluation of the sensitivity function S(#;t) is reduced to the computation e
of the derivatives with respect to @ of the LST of the blocks of the kernel matrices. When
more specific assumption on the structure of the MRSPN model of the PMS are made, the
géneral Equation (10) can be further simplified. For instance, in the case the subordinate
processes are homogeneous Markov chains, the derivatives of the LST of the kernel matrix

blocks can be obtained as follows:

KL (05 8) B o Qun ool _
= 251 [e Aiyfilt)] =1

OE;,(0;5) _ i
oo T o6

Qat . :
a—e'_Ai,jfi (t)] +L [EQit ”a%fz (t)jl +L [eQ”AiJ —W"'—algét) :l

5
eQit - F
sL [e%4(1 - Fi(t))] = sL {839 (1—Fi(t))} ~sL [eQit____a(l a(f (t))]

6.2 Sensitivity analysis of R

Consider now the probability R of successfully completing the mission as being a function
of some independent parameter 6, that is B = R(#). Let r(#) denote the derivative of

R(6) with respect to parameter 6. From Equation (4), we evaluate 7(f) as follows:
G, N d 0 (p
r(0) = 2 = = (1o limy Vonsa(8:5)0) = mo lim ( 5Vinsi(6:5) ) ©
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If we consider a particular distribution of the phase duration and a specific type of sub-

ordinate process, the general expression given above for function 7(#) can be further

specialized. For instance, consider a MRSPN model for a PMS that sequentially performs

n phases having an exponentizﬂ duration, and whose subordinate process that in each

phase is a homogeneous Markov chain. In this case, we obtain the following expression:
n

;f;[ (I — Qn/M) 1A (%(I—Qj/Aj)*Aj) [T (I—Qu/2) 28

h=j+1

7 Putting the MRSPN approach at work

The MRSPN approach offers several contributions with respect to the previous method-
ologies that appeared in the literature, concerning both the modeling and the solution
aspects. In this section we first discuss the practical relevance of the methodology we
have devised in the preceding sections, presenting the main guidelines for its effective
exploitation. Then, we present the results of a numerical evaluation of the dependability-i%léd—-?!%wrw— )
attributes of the example of PMS we considered throughout this paper, to show the deep

understanding that can be gained on the system behavior with adopting our approach.

7.1 Guidelines for the practitioner .

First of all, let us focus on the modeling alone. The MRSPN approach represents a rel-
evant improvement of the current PMS modeling practice. From the review presented in
[15], it appears that several limits of the state-of-the-art are due to the low-level mod-
eling tools employed, typically Markov chain models. Moving from a direct state-based
representation to a more abstract and concise one allows the dependability engineer, on -
one side to maintain a more comprehensible view of the correspondence between the real
system and the modeled one, and on the other side to easily represent PMS features that
could not be accommodated beforehand.

These ameliorated modeling capabilities are coupled with a very efficient solution

technique. Notice that, in principle, to solve the MRSPN model of a PMS one could
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employ a general purpose transient solver for MRGP processes. The algorithms that
implement the general solution Equation (1) for the time-dependent marking occupation
probabilities are nowadays being included in the automated tools for the dependability
evaluation. Of course, in this case no advantage is obtained from the particular structure
of the MRSPN models of PMS. Rather, to exploit the results we have obtained in this
paper, specific algorithms can be developed and implemented, to take advantage of the
separability of the analytical solution over the various phases. For instance, suppose we
are interested in computing the probability that the mission has successfully completed
at time ¢, for any ¢ > 0, for a given initial probability vector mq. This requires to _evaluate
the expression mpVin+1(t)0. To compute the matrix block Vint1(t) according to the

results we derived above, a solution algorithm would perform the following steps:

1. build the i-th subordinate intraphase process, from the analysis of the reachability
graph of the model during the enabling period of transition ¢;, i = 1,2,...,7;

2. build the branching probability matrix 4;;, frdm phase i to phase 7, j € s(i),
1=1,2,...,m,

3. obtain the transient state occupation probability matrix I1;(t) of the subordina,te
intraphase process ¢, ¢ = 1,2,...,%;

4. if phases have deterministic duration, then complete the analysis in the time domain
according to Equation (3), or else compute the LST of the kernel matrix blocks,

apply Equation (5), and then antitransform to get the final result in the time domain.

All of the steps described above only require well-known algorithms; in fact they have
been implemented in many of the tools for the antomated evaluation of dependability.
Therefore, implementing the algorithm steps is not a challenging task. Notice that the
actual computational cost of the algorithm is dependent on the properties of the sub-
ordinate processes and of the phase duration distributions. However, the state space of
the MRGP process ever needs to be generated and handled as a whole, but rather the
various subordinate intraphase processes are separately generated and solved. Therefore,

the solution scheme classifies as a computationally eficient one. Just to give a more
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Complexity | O0CL, CTgim) | OBCL, Ciaim) [ 01, CF) | OOk, CF)

Table 5: Computational costs for evaluating R under various PMS scenarios

precise idea about the computational cost, suppose we are interested in evaluating the
reliability at mission completion time, for a MRSPN model of a PMS whose intraphase
process is a Markov chain. More precisely, suppose phase ¢ has an underlying Markov
chain whose state space has C; states, ¢ = 1,2,...,n. Table 5 shows the computational
cost required to execute the steps of the algorithm in the various possible scenarios: where
g; is the maximum module entry of the Markov chain generator matrix of phase ¢, and 7;
the deterministic duration of phase 7. In those scenarios where constant phase duration .
is assumed, the computational complexity is Basica,lly dominated by the cost needed for
the evaluation of the time-dependent state occupation probability distribution at phase
ending times {Equation 9), whereas when a random phase duration is assumed, the dom-
inating cost is that to compute the limiting absorption probability distribution "l';hrough
the inverse of the fundamental matrix (Equation 7). Observe that the computational
complexity always grows linearly with the number of phases. When restricted to the
particular PMS scenario 'ab¢’, the MRSPN approach tﬁrns out to perform as efficiently
as the best solution approaches listed in [15]. Notice that all the computational cost
reported here are to be intended as upper-bounds. In fact, the matrices obtained are
quite often sparse, thus allowing cheaper solution techniques [L6]. Last, notice that, with
respect to the evaluation of the PMS time-dependent marking occupation probabilities,
the evaluation of the sensitivity functions only requires an additional small computation
effort. Indeed, mostly the same matrices are required in both the two tasks, and solely

the way they are arranged by the analytical expressions is different.

7.2 Numerical evaluation

We present now the result of a numerical evaluation we conducted on the ex_amp1e of PMS

considered throughout the paper. The unreliability of the system at mission completion
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Phase | Distribution Average duration
1 Deterministic with delay & b = 100h
2 | Negative exponential with rate Ay Ayt = 200h
3 2-stage Erlang with rate As AT =40hif f=0,20"=4hif f >0
4| Uniform within the time window [a,b] | (b + a)/2 = 7.5k, (a = 5h,b = 10h)

Table 6: Stochastic characterization of phase duration

Parameter Meaning Value
A Active processor failure rate M= 107%/h
T Faulty processor repair delay - r=1h
c Probability of successful spare insertion | ¢ = 0.95

Table 7: Values for SN parameters

time has been selected as the measure of interest for the evaluation. As the loss of memory
imposed to transition ¢, changes the semantics of the repair activities, the result we obtain
are approximate. However, we exploit the approach explained in Section 4.1 {page 16),
to obtain upper bounds and lower bounds on the measures of interest, thus providing

sccurate estimates of the error introduced.

The duration of the 4 phases of the mission are characterized by the random variables

listed in Table 6. Notice that the unit all the time measure are expressed is the hour (h).

Both distributions with finite and infinite support are considered. The expected duration
of phase 3, which is dependent of the state of the PMS, is reduced to a tenth of the original
one in case the system enters a vulnerable state. The values of the parameters necessary
to fully define the SN submodel are given in Table 7. Those values are given without any
pretension of realism, just to experience the analyses that can be carried out within the
modeling framework presented here. A few evaluations will be performed by considering a
number of possible system scenarios, which are OBtained by varying the parameter values
in a range around their nominal values given by Table 7. To compute the block matrices
required for the evaluation, we have implemented the algorithmic steps described above,

by using the general purpose tool M, athematica.

We conduct a first evaluation session to estimate the effect that a more or less accurate

modeling of the repair activity may have on the final dependability results. More precisely,

we plot in Figure 3 a) the unreliability of the PMS at mission completion time, as obtained

30



from three different models. The first model is the one we developed in this paper, in
which the repair is modeled by a deterministic transition, and for which a pair of bounds
on the exact unreliability result are provided by our analytical solution method. The
gecond model approxima,tes the deterministic transition with an exponential transition
of expected firing time 7 = 1. Since the subordinate processes are in this case simple
Markov chains, we are able to compute the exact unreliability of such model. The last
model approximates the repair with a transition having a firing time drawn from the
Erlang(4,4) distribution, whose expected values is again 7 = 1. By splitting the Erlang
repair into the 4 exponential stages it is composed of, we can analytically obtain the exact

unreliability for this model as well.

Unreliability Relative error
.900 918 936 954 972 990 900 918 936 954 972 .990
10 c| .12 - - ; - I
e —— 40
= deterministic | i
== .08
LEZ S )‘ one stzzlge\A

= 2 .06
erla‘n}{i& 04 /
EXp . two stages

.01 .00

Figure 3: Estimation of the reliability of the PMS

Parameters other than the successful spare insertion c are fixed to their respective.
nominal value, whereas ¢ ranges within [0.9,0.99]. From Figure 3.a we appreciate the
accuracy achieved with the modeling of the deterministic repair. The results obtained
with the exponential repair would lead indeed to a excessively optimistic assessment of
system dependability for high values of ¢. The Erlang distribution better approximates
the deterministic Tepair than the exponential one, due to its lower coefficient of vaﬂation.
However, modeling the 4 exponential stages of the Erlang distribution significantly in-
creases the computation time required for the solution. Notice the tightness of the pair

of bounds our method returns for the deterministic repair, which permits to achieve a
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very good quality of the approximation of the exact unreliability results. Moreover, by
splitting the deterministic repair transition into two shorter deterministic transition, each
of length 7/2, we are able to further reduce the gap between the two bounds. Figure 3.b
showé the relative error incurred by our bounded sclution in c.ase 1 single stage or 2 stages
are used to model the repair activity. Subsequent decompositions of the repair process
lead to further improvements of the bound tightness. Obviously, this also results in an
increase of the state space of the intraphase processes, and requires devising adequate

trade-offs between the computational cost and the accuracy of the estimation.
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Figure 4: Interpolation error by exploiting the sensitivity functions

We consider now the unreliability of the PMS for values of the failure rate A ranging
within the interval [107*/h, 1072/h], while the other parameters are fixed to their nominal
values. The plot in Figure 4.a shows how the unreliability increases with A and remain
quite close to each other. The two bounding functions were evaluated at 100 points within
the range [10~%/h,1072/h]. Figure 4.b shows the approximations obtained by exploiting
the sensitivity functions. More precisely, we have computed three different approximate
curves for the unreliability lower bound, by interpolating the function and its derivative in
2, 3, and 4 interpolation points (the so-called interpolation nodes), respectively. Figure4.b
shows the relative error introduced by the various interpolations over the whole interval
of values considered for A. As it can be observed, increasing the number of interpolating

nodes allows obtaining more and more accurate results, and 4 interpolation nodes appear
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sufficient to obtain a very tight approximation of the original unreliability figures.

8 Conclusions

In this paper we addressed the analytical dependability modeling of PMS by proposing a
new methodology for their modeling and evaluation based on a MRSPN approach. Our
proposal allows several extensions wrt. methods proposed in the literature and greatly
enlarges the class of PMS that can be analytically studied. In particular, besides being

able to deal with all the scenarios proposed by previous studies, the MRSPN modeling

allows:

1) accommodating phases of random duration still providing exact analytical solution;

2) intraphase model other than time-homogeneous Markov chains.

A very general example of PMS has been used throughout the paper, to exercise our

MRSPN approach in modeling and evaluation of PMS. It includes most of the typi“dé:l’i“j;";":“ e

features of PMS, and has been intentionally defined to include those aspects previous

methods do not deal with.

Our solution for PMS models is based on the specialization of the Markov Regenerative
Process {MRGP) theory for the solution of MRSPN models of PMS. The computational
complexity of the analytical solution is reduced to the one needed for the separate so-
Jution of the different phases. The issues introduced by the phased behavior are solved
without requiring additional computational costs. The applicability of our approach is
only limited by the size of the biggest, Petri net model which can be handled by the
dependability -evaluation tools and by the possibility of evaluating the time-dependent
matrix of marking occupation probabilities of the subordinate processes, should not be
homogeneous Markov chains. Moreover, thanks to the existence of an analytical solution
procedure, by computing the partial derivatives with respect to the varying parameters
we have shown how to perform an analytical time-dependent sensitivity analysis of PMS,

a task that has been entirely neglected in the literature.
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