Supporting information:

Design and functional studies of xylene-based cyclic mimetics of SOCS1 protein

Alessia Cugudda^{a, γ}, Sara La Manna^{a, γ}, Marilisa Leone^b, Marian Vincenzi^b, and Daniela Marasco^{a,b,*}

^aDepartment of Pharmacy - University of Naples Federico II, 80131, Naples, Italy

^bInstitute of Biostructures and Bioimaging - CNR, 80131, Naples, Italy

 γ co-first authors

*Corresponding Author Email: <u>daniela.marasco@unina.it</u> Phone: (+39)081-2534512

Table of contents:

Figure S1: MST assay of curcumin toward JAK2

Figure S2: LC-MS analysis of the phosphorylation inhibition assay at increasing thio-monocycle concentrations.

Figure S3: NMR spectra of thio-monocycle PS5(Nal1) in NaP and in TFE/NaP.

Figure S4: Regions of TOCSY and ROESY spectra of thio-monocycle PS5(Nal1) in NaP/TFE showing correlations from the two cysteines linked by xylene and those from Nal1.

Figure S5: LC-MS analysis to follow the cyclization of the thio-monocycle PS5(Nal1).

Figure S6: LC-MS analysis to follow the cyclization of the thio-bicycle PS5(Nal1).

Table S1: Name and sequence of SOCS1 peptidomimetics.

Table S2: Deconvolution of CD spectra of thio-PS5(Nal1) analogues.

Table S3: Chemical shifts (ppm) of thio-monocycle PS5(Nal1) in NaP/TFE.

Figure S1. MST assay of curcumin toward JAK2: (right) thermophoretic traces of MST for the binding to JAK2. (left) binding isotherms for MST signals versus curcumin concentrations (250 - 0.0153 μ M) 50 mM Tris-HCl, 150 mM NaCl, 0.05 %, Triton X-100, 1 mM dithiothreitol (DTT), 10 % glycerol, at pH 7.5, 15% (v/v) TFE.

Figure S2. LC-MS of the inhibition of phosphorylation. The peak at retention time (RT): 8.43 min belongs to Srctide and the peak at RT: 8.69 min corresponds to p-Srctide. (**A**) Spectrum in the absence of thio-monocycle PS5(Nal1) with $6.4x10^{-3}$ eq of JAK2, 64 eq of ATP and 1 eq of Srctide. (**B**) Spectrum in the presence of $4x10^{-2}$ eq of thio-monocycle PS5(Nal1), $6.4x10^{-3}$ eq of JAK2, 64 eq of

ATP and 1 eq of Srctide. (C) Spectrum in the presence of $4x10^{-1}$ eq of thio-monocycle PS5(Nal1), 6.4x10⁻³ eq of JAK2, 64 eq of ATP and 1 eq of Srctide. (D) Spectrum in the presence of 1 eq of thio-monocycle PS5(Nal1), 6.4x10⁻³ eq of JAK2, 64 eq of ATP and 1 eq of Srctide. (E) Spectrum in the presence of 2 eq of thio-monocycle PS5(Nal1), 6.4x10⁻³ eq of JAK2, 64 eq of JAK2, 64 eq of ATP and 1 eq of Srctide. ESI-MS spectrum of (F) Srctide and (G) p- Srctide. *= peak of JAK2 protein.

Figure S3. (**A**) Comparison of 1D [¹H] spectra of thio-monocycle PS5(Nal1) (329 μ M concentration) in 10 mM NaP pH 7.39 (green) and in a mixture TFE/NaP (50/50 v/v) (black) pH 7.51. (**B**, **C**) Comparison of 2D [¹H, ¹H] TOCSY (left panels), NOESY 300 (middle panels) and ROESY (right panels) spectra of thio-monocycle PS5(Nal1) acquired in 10 mM NaP (**B**) and in NaP/TFE (50/50

v/v) (C). Peaks of opposite sign with respect to the diagonal are colored blue. Spectral regions containing correlations from H_N and aromatic protons are shown.

Figure S4. 2D [¹H, ¹H] TOCSY (left panel) and ROESY (right panel) spectra of thio-monocycle PS5(Nal1) in NaP/TFE (50/50 v/v): spin systems from the two cysteines linked by xylene are enclosed in green rectangles, those from Nal1 are highlighted by the magenta box. Through-space correlations between _sCH2 β and γ protons of the two cysteines (Cys1 and 9) and xylene aromatic protons are evident in the ROESY spectrum (right panel). Intra-residue correlations involving the backbone H_N of Cys (1, 9), H α and H β protons can be instead seen in the TOCSY spectrum (left panel).

Figure S5. LC-MS profiles of (**A**) linear (**B**) thio-monocycle PS5(Nal1). MS spectra of the main peaks in linear (**C**) thio-monocycle PS5(Nal1) (**D**) chromatograms. * = impurity.

Figure S6. LC-MS profiles of (**A**) linear (**B**) thio-bicycle PS5(Nal1). MS spectra of the main peaks in linear (**C**) thio-bicycle PS5(Nal1) (**D**) chromatograms. * = impurity.

Table S1. Name and sequence of SOCS1 peptidomimetics. The substitution Phe⁵⁸/Nal1 is reported in magenta, lactam or xylene linkages, in blue.

Protein	Name	Sequence
SOCS1	PS5	D ¹ TC(Acm)RQ ⁵ TFRK ⁹ H
	icPS5(Nal1)	D ¹ TC(Acm)RQ ⁵ TNalRK ⁹ H
	thio-monocycle PS5(Nal1)	C ¹ TC(Acm)RQ ⁵ TNalRC ⁹ H
	thio-bicycle PS5(Nal1)	C ¹ TC(Acm)RC ⁵ TNalRC ⁹ H

Table S2.	Deconvolution	of CD s	spectra of	thio-PS5(Nall) analogues.
	2	01 02 0			

peptide	TFE	helix	beta	turn	others
	0%	0.0	24.4	15.9	59.7
thio-monocycle PS5(Nal1)					
	50%	5.4	33.0	13.1	48.5
	0%	0.0	36.9	15.2	47.9
thio-bicycle PS5(Nal1)					
	50%	5.3	34.8	11.8	48.2

Residue	H _N	Ηα	Нβ	Нγ	Others
1,9 C	7.94 7.86	4.66 4.45	2.83-2.92 2.86-2.93	3.74-3.67	xylene: 7.23
2, 6 T		4.18 4.33	4.27 4.46	1.14 1.28	
3 C(Acm)				4.31	Ηζ 8.21 Q1 CH ₃ 2.02
4, 8 R		4.11 4.20	1.77-1.84 1.74-1.83	1.63 1.49	Нδ 3.14
5 Q		4.22	1.97-2.07	2.37	Нε 7.33-6.67
7 Nal1	7.93	4.67	3.62-3.67		Aromatic protons: 8.10 7.83 7.61-7.55 7.93
10 H		4.60	3.04-3.18		

Table S3. Proton chemical shift assignments (ppm) of thio-monocycle PS5(Nal1) in NaP/TFE (50/50v/v).