
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 

 
 
 
 
 

Designing and implementation of a Model 
Driven Smart Contracts platform for 

Collaborative Processes 
 
 

F. Donini, M. Martinelli 
 
 
 
 

TECHNICAL REPORT 
IIT TR-05/2021 



 
 
 
 
 
 
Designing and implementation of a Model 
Driven Smart Contracts platform for 
Collaborative Processes 
Francesco Donini, Maurizio Martinelli 

Digital Innovation Technological Unit 

Institute of Informatics and Telematics 

National Research Council - Pisa 

   



 

 2 

Table of Contents 

1 ABSTRACT ............................................................................................................................................. 3 

2 INTRODUCTION ..................................................................................................................................... 4 

3 BACKGROUND ....................................................................................................................................... 6 

3.1 MODEL DRIVEN DEVELOPMENT ................................................................................................................. 6 

3.2 BUSINESS PROCESSES MANAGEMENT AND NOTATION ................................................................................... 6 

3.3 BLOCKCHAIN TECHNOLOGIES ..................................................................................................................... 7 

3.4 ETHEREUM ............................................................................................................................................ 8 

3.5 SOLIDITY ............................................................................................................................................... 9 

4 RELATED WORKS ................................................................................................................................. 11 

5 TECHNOLOGIES ................................................................................................................................... 14 

5.1 FULL STACK ARCHITECTURE .................................................................................................................... 14 

5.2 FRONT-END (REACTJS) .......................................................................................................................... 14 

5.2.1 CHOR-JS AND BPMN-JS ....................................................................................................................... 16 

5.3 DATABASE (MYSQL) .............................................................................................................................. 17 

5.4 BACK END – SPRING BOOT ..................................................................................................................... 18 

5.5 REST ................................................................................................................................................. 19 

5.6 GANACHE-CLI....................................................................................................................................... 20 

5.7 METAMASK ........................................................................................................................................ 20 

6 METHODOLOGY .................................................................................................................................. 21 

6.1 PLATFORM OVERVIEW ........................................................................................................................... 21 

6.2 CHOREOGRAPHY DESIGN........................................................................................................................ 22 

6.3 CHOREOGRAPHY TRANSLATION ............................................................................................................... 22 

6.4 CHOREOGRAPHY DEPLOY ....................................................................................................................... 23 

6.4.1 TEMPLATE METHOD DESIGN PATTERN APPROACH ..................................................................................... 23 

6.5 CHOREOGRAPHY INTERACTION ................................................................................................................ 25 

7 PLATFORM IMPLEMENTATION ............................................................................................................ 26 

7.1 UNDERSTANDING THE ARCHITECTURE ....................................................................................................... 26 

7.2 FRONT-END ......................................................................................................................................... 28 



 

 3 

7.2.1 TECHNICAL OVERVIEW ......................................................................................................................... 28 

7.2.2 AUTHENTICATION ............................................................................................................................... 29 

7.2.3 METAMASK ...................................................................................................................................... 30 

7.2.4 CHOREOGRAPHY DESIGN EDITOR ............................................................................................................ 31 

7.2.5 CHOREOGRAPHY DEPLOY PAGE .............................................................................................................. 42 

7.2.6 CHOREOGRAPHY INTERACTION .............................................................................................................. 45 

7.3 BACK-END – CHORCHAIN API ................................................................................................................. 48 

7.3.1 CHOREOGRAPHY ................................................................................................................................ 50 

7.3.2 INSTANCE ......................................................................................................................................... 51 

7.3.3 SMART CONTRACT .............................................................................................................................. 51 

7.3.4 INTERNAL API DETAIL .......................................................................................................................... 52 

7.4 SMART CONTRACT INTERNAL .................................................................................................................. 56 

7.5 BLOCKCHAIN ENVIRONMENT ................................................................................................................... 61 

8 CONCLUSION ....................................................................................................................................... 62 

8.1 FUTURE WORKS ................................................................................................................................... 63 

9 REFERENCES ........................................................................................................................................ 65 

 

1 Abstract 
Model-Driven ChoreChain 2.0 platform responds to the need of distributed systems by offering a 
tool capable of building blockchain applications to enforce the correct execution of collaborative 
business processes, starting from a BPMN process model.  Blockchain is a technology that offers 
basic building blocks to support the execution of collaborative business processes involving mutually 
untrusted parties in a decentralized environment. Several studies demonstrated the feasibility of 
designing blockchain-based collaborative business processes by means of a high-level notation. For 
example, the Business Process Model and Notation (BPMN) can be used to automatically generate 
the code artefacts required to execute these processes on a blockchain platform. In this technical 
report, we describe the principles and rationale of the model-driven approach to collaborative 
process automation deployed on the blockchain. To achieve these principles, we have created a 
platform capable of translating a BPMN process model into a set of smart contracts that can enforce 
the business process by triggering blockchain transactions on these contracts. We allow code 
artefacts to be deployed on the blockchain by encoding all the execution logic captured in the 
process model through ad-hoc tools. Business processes are modelled in BPMN 2.0 through a 
modeller UI component presented as a web application, which offers mechanisms to inject business 
logic inside. The whole platform is deployed as multi-container Docker applications and includes 
Ganache as local blockchain, while providing a REST API back-end within a microservice-based 
architecture. 



 

 4 

2 Introduction 
Model-Driven software development (MDD) consists of a model-based approach [1] [2]. Instead of 
requiring developers to spell out every detail of a system implementation using a programming 
language, it allows them to model only the functionality and the overall architecture that the system 
should have. This approach allows the developer to break away from the specific programming 
language and focus on the more important, often neglected aspects, such as design and interaction, 
further increasing the levels of abstraction. 

Indeed, MDD aims at automating many of the complex (but routinely) programming tasks - such as 
providing support for systems persistence, interoperability, and distribution - which still need to be 
done manually today. Model-driven techniques involved in software development and testing 
methodologies are now quite widespread. Nowadays, they are applied successfully in different 
fields of software engineering, being very promising in terms of development time, cost reduction 
and quality of software product maintainability. 

Blockchain technology adoption has grown in the last years because some of its features are very 
innovative, compared with the previous technologies [3]. In fact, blockchains are registries that can 
operate in untrusted environments - where there are not trusted parties - providing transparent, 
permanent and immutable transactions. Technically the blockchain technology is a growing list of 
records, which are called blocks. Each block is linked to the other using cryptography and contains 
a cryptographic hash of the previous block, a timestamp, and transaction data. The sequence of 
hashes linking each block to its parent, creates a chain going back all the way to the first block ever 
created.  Blockchain technology has several features: it is consensus based, that is, a new block is 
appended to the chain only when a consensus is reached (according to the chosen consensus 
algorithm). It is decentralized, because replicated by a huge number of users and offers availability 
and protection from data loss. Taking advantage of cryptography, used to preserve block integrity 
and to link blocks in the chain, it guarantees immutability and tamper detection. Because users 
control their own data, the blockchain does not need a central authority and since all blocks are 
always visible, it guarantees transparency. 

Taking advantages of both technologies, MDD [4] and blockchain, we addressed a study applied to 
distributed collaborative systems. Distributed systems are characterized by the complexity of 
coordinating the interaction between multiple components, possibly controlled by different 
organizations. 

The Business Process Model and Notation (BPMN) [5] is what interested us most, among the tools 
used to model collaborative processes. BPMN is a graphical notation introduced to describe 
business processes but also widely used in the design of distributed system models nowadays. It is 
based on a flow-charting technique very similar to activity diagrams in Unified Modelling Language 
(UML). BPMN supports three main categories of processes: Simple Process, Process Collaboration, 
and Choreography Process.  A Simple Process typically models a single coordinating point of view, 
while the Collaboration Process shows the participants and their interactions. Choreography 
Process [6] instead is a new model type (in BPMN 2.0). Its purpose is to show the interaction 
between participants in a different format focusing on the message flow instead of the individual 
detailed tasks of a process. For our purposes, the latter allows us to better describe system 
interactions in terms of message exchange from a global perspective. In fact, widely used standards 
like Business Process Model and Notation (BPMN) 2.0 collaboration diagrams are not well equipped 
to express choreographies succinctly. A more promising solution is provided by BPMN 2.0 
choreography diagrams [7]. Indeed, the choice is justified because the scenario here considered 
refers to the possible integration and interaction of different organizations willing to cooperate in 



 

 5 

order to fulfil a shared goal. In such a scenario it is not relevant how a given organization behaves 
internally in order to enable the cooperation, instead the focus should just refer to the external 
observable interacting behaviour  [8]. 

This work aims at modelling successful collaborative processes in distributed environments using a 
tool such as BPMN choreography model. According to the model driven approach, these models will 
be used for the generation of smart contracts [9] namely, an agreement between parties written in 
a particular language and executable on the blockchain. Leveraging the blockchain technology aims 
at offering a trusted environment between the parties [10]. In this way, thanks to Smart Contracts, 
it is possible to offer to participants a mechanism which should guarantee decentralised and reliable 
communications between them, while respecting data integrity without relying on a central 
authority. This work is the result of a collaboration carried out with the University of Camerino1 in 
order to improve and continue the findings of this research [11]. 

The basic idea was to develop a solid product, easy to extend over time and which could be the 
starting point for future experiments. It would also be desirable for it to be a prototype easy-to-use 
and portable. 
This document is organized in 8 chapters, each one is further divided into sections and sub-sections 
with the purpose of better illustrate the topics covered. 

The document begins with an introduction showing an overview of the topics addressed and the 
motivations. The following chapters (Chapter 3,4) deal with the background of the main topics by 
providing a brief update of Model Driven Development, Blockchain Technology, BPMN and then an 
in-depth analysis with related works. Chapter 5 delves into the involved technologies trying to give 
an exhaustive overview. Chapter 6 explains to the reader the methodology applied, focusing in 
particular on the life cycle of the BPMN choreography used within the platform presented. Chapter 
7  deals with technical aspects related to the prototype in order to explain the adopted solutions. 
Starting from the overview of the architecture and then moving on the details of the front-end, 
back-end, databases and generation of smart contract, explaining mechanisms and reasons related 
to the solutions found. In the final chapter (8), conclusions are presented by analysing the results 
obtained and describing the problems that are still open. 

  

                                                        
1 http://computerscience.unicam.it/ 



 

 6 

3 Background 
The purpose of this chapter is to provide an overview of the main topics covered in order to give 
the necessary context. In the first section the Model Driven Development approach is discussed, 
then, the BPMN world and the blockchain technology details described with attention to the 
Ethereum blockchain.  

3.1 Model Driven Development 

Model-driven development (MDD) is an approach used to write and implement software quickly, 
effectively and at minimum cost. MDD aims at the construction of a software model which must 
represent how the software system should work before the code is generated. Once the software 
is created, it should be tested using model-based testing (MBT) and then deployed. 

The MDD methodology also groups other software development design approach such as model-
driven architecture (MDA), model-driven software development (MDSD) and model-driven 
engineering (MDE). 

MDD provides advantages in productivity compared to other development methodologies due to 
the simplifications introduced through the model during the engineering process. The model, in fact,  
represents the intended behaviours or actions of a software product before coding begins. The 
model is created by individuals and teams who collaborate in software development. 
Communication between product managers and developers, for example, provides clear definitions 
of what software is and how it works. Software management and test can be faster with MDD than 
with traditional development when developing more applications. In the Model-driven 
development there are two key concepts, abstraction and automation. The meaning of abstraction 
is the capacity of organising complex software systems. MDD is technically different from model-
based development. The first is more in-depth than just having a model of the software in 
development. In MDD, complex software gets abstracted, which then extracts easy-to-define code. 
Once developers transform the abstraction, a working version of the software model gets 
automated. 

3.2 Business Processes Management and Notation 

For business processes we consider a set of tasks to be carried out in a certain sequential order and 
which aim at a business goal. Therefore, a business process can be represented by a model that 
coordinates its various activities according to the sequence of the workflow. To formally express 
this process, we will use the Business Process Model Notation (BPMN). BPMM is a graphic modelling 
language used for business analysis applications and specific workflows of business processes. It 
represents an open standard notation for graphical flowcharts usually applied to define business 
process workflows. It is based on popular and intuitive graphics in order to be easily understood by 
all interested parties, business users, business analysts, software developers and data architects. 

BPMN supports three main categories of processes: simple process, choreography and 
collaboration. 

• Simple process. It is a standard process, we most commonly come across in BPMN. It typically 
models a single coordinating point of view. A Simple Process describes a process within a single 
business entity that is contained in a Pool and normally has a well-formed context. 

• Collaboration process. It shows the participants and their interactions. In BPMN, a 
collaboration only shows Pools and the message flow among them. To be more specific, a 
collaboration is any BPMN diagram that contains two or more participants, as shown by Pools 
which have a message flow among them. 



 

 7 

• Choreography process. It is a new model diagram type in BPMN 2.0. Its purpose is to show the 
interaction between participants in a different format by focusing on the flow of messages 
rather than the individual tasks of a process. There are new object types, which include Sender 
and Receiver (instead of linking roles to a task or using pools) and connect sent/received 
messages. A choreography is a definition of expected behaviour, a contract between 
interacting participants. It shows the messages exchanged and their logical relationships. This 
allows business partners to plan their business processes for interaction without introducing 
conflicts. 

3.3 Blockchain technologies 

The blockchain is a distributed data structure replicated and shared between members of a 
network. It acts as a distributed ledger to keep track of the communications that exist between the 
participants of that network for the exchange of resources. Each communication is recorded in 
transactions, grouped in blocks with connected timestamps and constitutes the so-called chain of 
blocks. 

The block chain is built assuming that each block follows this requirement: 

1. It is identified by its hash value (value returned by a cryptography function applied on the 
contents of the block); 

2. It contains the hash value of the block that precedes it in the chain. 

Blockchain transactions are placed into the block, in bulk, if they are considered valid. They are 
defined valid when, through a distributed consent protocol, the entities constituting the network 
consider the occurred exchange to be secure since most of the participants in the network are 
“honest”. 

There are several distributed consent protocols. Thanks to Bitcoin, the most famous is Proof of Work 
(PoW), in which the network nodes must solve a computationally intensive activity to be selected 
for the insertion of a new block in the chain. 

Another important protocol, thanks to the diffusion of Ethereum, is Proof of Stake (PoS). Here the 
selection of the new block creator is based on the principle that each user is required to 
demonstrate possession of a certain amount of cryptocurrency. 

Other distributed consensus protocols have also been studied, the best known being that of the 
Byzantine Full Tolerance (BFT) algorithm. 

In general, transactions must be validated according to previously defined rules; these rules are 
contained within what is called Smart Contract (SC). 

SC is a predefined program written in some language (in our case Solidity) which codes the 
computation of transaction validation. 

Blockchains using SC can be considered general purpose application platforms and the most popular 
and supported of them, at the time of writing, is Ethereum. Furthermore, it must be taken into 
account the domain of the application for which we can have different blockchain implementations: 

• Public blockchains anyone can join the network anonymously. According to the constraints 
introduced in the consensus algorithm, this type of blockchain can be further classified into 
two groups: 

– Permissionless blockchain, as Bitcoin blockchain, any node on the network can 
participate in the consensus algorithm by validating transactions; 



 

 8 

– Permissioned blockchain, as Ripple4 or Stellar5 blockchain implementations, where 
only the nodes that respect certain rules can participate in the transaction validation 
algorithm and therefore be part of the consensus. 

• Private blockchains only a selection of network nodes is enabled to join the network. As in 
public blockchains, they can be classified in permissionless, where any of the nodes can 
participate in the consensus algorithm (for example Ethereum), and blockchain permissioned, 
where only a set of the nodes are authorised to validate the transactions. In this case, the 
exploitation of the Proof of Authority by the distributed consensus protocol gives the 
authorisation to the nodes to create new blocks. 

Executing a Smart Contract in the blockchain guarantees: 

• atomicity, each operation is performed entirely or fails without ever affecting the status of the 
contract; 

• synchronicity, the  transaction code is executed synchronously; 

• origin, the code can only be executed by tracing external calls; 

• availability, the code and associated data are always available because the contract is always 
reachable; 

• immutability, the code cannot be changed and cannot be tampered with once it has been 
deployed; 

• persistence, the code and data can only be removed through commits of self-destruct 
operation. 

3.4 Ethereum 

It is a project born and developed as a public Blockchain. It is an open source distributed computing 
platform conceived to make available creating, publishing and managing SC in a peer-to-peer mode. 
In a nutshell and perhaps with excessive simplification, it can be said that while the Blockchain is a 
platform for ”Distributed Databases”, Ethereum is a platform for ”Distributed Computing”, which 
has one of its main components in the Ethereum Virtual Machine (EVM). Ethereum is a 
computational platform remunerated through exchanges on a cryptocurrency calculated in Ether. 
It is a platform that can be adopted by all those who wish to join the Network and who, in this way, 
have a solution allowing all the participants to have an immutable and shared archive of all the 
operations implemented during his life. At the same time, it is designed not to be stopped, blocked 
or censored. Ethereum is a programmable Blockchain allowing users to create their “own 
operations” or different types of decentralised Blockchain applications (Dapps). The Ethereum 
engine is represented by the EVM, which actually represents the runtime environment for the 
development and management of Smart Contracts in Ethereum. EVM operates in a protected way, 
being completely separate from the Network. The code managed by the Virtual Machine does not 
have access to the Network and the same Smart Contracts generated are independent and separate 
from other Smart Contracts. Smart Contracts are therefore available on the Blockchain in EVM 
bytecode (an Ethereum-specific binary format), are written in Ethereum high level language, 
transformed into byte codes with an EVM compiler and uploaded to the Blockchain with an 
Ethereum client. Ethereum is a Turing complete system, that allows developers to create 
applications running on the EVM using programming languages that, in turn, refer to traditional 
platforms such as JavaScript and Python. Ethereum was the first blockchain with Smart Contract 
functionality, making it free for everyone to program them using the Solidity language. The 
implementation and execution of each transaction have a GAS cost, which can vary depending on 



 

 9 

the overload of the network. GAS is a virtual fuel used to execute SC. The EVM uses an accounting 
mechanism to measure the consumption of GAS and limit the consumption of computing resources. 

Below, some definitions of elements making up the blockchain Ethereum environment are reported 
and used into the rest of the document. Definitions are taken from [12]. 

Account: 

An object containing an address, balance, nonce, and optional storage and code. An account can be 
a contract account or an externally owned account (EOA). 

Address: 

Most generally, this represents an EOA or contract that can receive (destination address) or send 
(source address) transactions on the blockchain. More specifically, it is the rightmost 160 bits of a 
Keccak hash of an ECDSA public key. 

DApp: 

Decentralized application. At a minimum, it is a smart contract and a web user interface. More 
broadly, a DApp is a web application that is built on top of open, decentralized, peer-to-peer 
infrastructure services. In addition, many DApps include decentralized storage and/or a message 
protocol and platform. 

GAS: 

A virtual fuel used in Ethereum to execute smart contracts. The EVM uses an accounting mechanism 
to measure the consumption of GAS and limit the consumption of computing resources. 

EOA: 

Externally Owned Account. An account created by or for human users of the Ethereum network. 

Ether: 

The native cryptocurrency used by the Ethereum ecosystem, which covers gas costs when executing 
smart contracts. Its symbol is the Greek uppercase Xi character. 

Event 

Allows the use of EVM logging facilities. DApps can listen for events and use them to trigger 
JavaScript callbacks in the user interface. 

Receipt: 

Data returned by an Ethereum client to represent the result of a particular transaction, including a 
hash of the transaction, its block number, the amount of gas used, and, in case of deployment of a 
smart contract, the address of the contract. 

Transaction: 

Data committed to the Ethereum Blockchain signed by an originating account, targeting a specific 
address. The transaction contains metadata such as the GAS limit for that transaction. 

Wei: 

The smallest denomination of ether. 1018 Wei = 1 ether. 

3.5 Solidity 

Solidity is a programming language created for writing the SCs. It is an object-oriented and high-
level language compiled in bytecode and executed on EVM. With Solidity, self-enforcing business 



 

 10 

logic embodied in smart contracts is implemented, thus leaving a non-repudiable and authoritative 
record of transactions on permisionless blockchain. Using Solidity is easy enough, from a developer 
point of view (apparently for those who already have programming skills). In Solidity a smart 
contract is formed by a collection of codes (functions) and data (its internal status) which has its 
specific address on the Ethereum blockchain. It has been designed to maintain the ECMAScript 
syntax and to make it familiar for Web developers, but unlike ECMAScript, it has variable static and 
return character types. Indeed, complex member variables are supported for contracts that include 
arbitrarily hierarchical mappings and structures. Inheritance, including multiple inheritances, is also 
supported. An Application Binary Interface (ABI) has also been introduced, in order to facilitate 
multiple secure functions within a single contract and to better describe the functions signatures. 
This is the standard way to interact with contracts in the Ethereum ecosystem, both from outside 
the blockchain and for contract-to-contract interaction. Data are encoded according to its type, as 
described in this specification. Since data encoding is not self-describing a decoding scheme is 
required. 

We assume the interface functions of a contract are strongly typed, known at compilation time, and 
static. 

  



 

 11 

4 Related works 
Nowadays the adoption of blockchain technology has grown due to some of its features which are 
very innovative [3]. Consequently, the experimentation of the BPMN model applied to blockchain 
technology is also spreading a lot. In fact, this is perceptible by the growing interest found in 
literature where scientific articles increasingly concern these topics. 

The topic of Model-driven engineering methodologies, if applied to distributed systems, shows the 
same trend when connected with the blockchain environment.  In fact, as reported by the authors 
[8] “In the context of blockchain-based applications, model-driven development is of particular 
relevance”; they introduced two different approaches used for model-based code generation. The 
first approach uses collaborative process models that cross organisational boundaries, while the 
second one is aimed at asset registers, such as title deeds, cars or digital assets. Interesting aspects 
can also be found in [4], where the goal is to introduce automation to software development 
processes on a large scale, or in [1] [2] where authors illustrate techniques and concepts related to 
the model-driven engineering. Thanks to the work done by the authors [8], the choreography 
diagrams are compared with those of collaboration in favour of the BPMN representation taken 
from different perspectives.  

Moving a little bit more towards the topic of the blockchain, a relevant book [8] offers an 
architectural view of software systems that make beneficial use of blockchains and describing 
everything that software architects and developers need to know in order to build applications 
based on blockchain technology.  The book focuses on the bigger picture for blockchain, covering 
the concepts and technical considerations in the design of blockchain-based applications.   
Furthermore, of particular interest are also the studies illustrated in [13] where the authors explain 
the possibility of developing blockchain-oriented software (BOS) that implements part of the 
business logic in the blockchain by using smart contracts.  In this article they show three 
complementary modelling approaches (Entity Relationship Model, Unified Modelling Language and 
the Business Process Model and Notation) to realize a particular use case.  In this proposal [21], 
instead, the authors describe a method based on model-driven engineering (MDE) of collaborative 
business processes over blockchain technology.  They propose that the collaborative business 
process is modelled using a BPMN choreographic diagram.   A choreographic diagram is a model of 
a collaborative process that offers a series of activities for the exchange of messages (choreographic 
activities) and routing constructs of the control flow (in particular XOR gateway and AND called 
parallel).  In the approach of Weber et al.  the parts in a choreography interact through message 
exchanges, which are sent as transactions on the blockchain. Prybila et al. [14] describe a different 
approach to monitor business processes compiled on the Bitcoin blockchain  through specialized 
tokens.  Similar to the previous proposal, they demonstrate that collaborative process can be 
modelled as a choreography.  Both approaches assume that the parties in a collaborative business 
process interact via message exchanges and through the blockchain, to record message interactions 
and to verify or apply those exchanges in a given order.  This effectively means that the blockchain 
platform acts as an execution component of a collaborative process.  Relevant also this paper 
regarding security issues in inter-organisational processed over blockchain [19]. The authors discuss 
how blockchain can be used in support of secure inter-organizational processes pointing out which 
additional security issues the use of blockchain can bring such as data integrity and data 
confidentiality.  Moreover it is underline how blockchain relies on the presence of a “trustable” 
mediator, called Oracle, that retrieves data from an external source and directly delivers them to 
smart contracts.  Meddling et al.  in [17] underline that the choreography diagrams of BPMN 2.0 
have not found widespread adoption in the sector but  are  still  consider  them  one  of  the  
promising  approaches  for  the  design  of inter-organizational business processes.  They state that 



 

 12 

the “whole area of choreographies may be revitalized by blockchain technology”.  However, the 
point out that for collaboration diagrams the expressive limitations in ownership and observability 
still represent a major obstacle while choreography fits better with the concept of smart contract. 
In their discussion the smart contract may store and manipulate data, own decisions and their logic 
and keep track of the overall execution state. Interactions within the choreography become 
transactions. Observability broadens considerably as each participant has access to the whole 
distributed ledger of transactions attached to the choreography. 

Even more complex tools and similar to ours proposal, have already been released and presented. 
Starting from [22] it is introduced Caterpillar [15, 18], an open-source Business Process 
Management System (BPMS) that runs on top of the Ethereum blockchain. The main feature is that 
”the state of each process instance is maintained on the Ethereum blockchain, and the workflow 
routing is performed by smart contracts generated by a BPMN-to-Solidity compiler”. Caterpillar has 
an engine exposed via a REST API and all core modules are implemented in Node.js. Its aim is to 
enable its users to build native blockchain applications to enforce the correct execution of 
collaborative business processes starting from a BPMN process model. In this context, the meaning 
of “native” is that code artefacts deployed on the blockchain encode all the execution logic captured 
in the process model. Specifically, Caterpillar aims at fulfilling the following three design principles. 
First, the collaborative process is modelled as if all the parties shared the same process execution 
infrastructure (the blockchain). Second, the full state of the process instance and of its subprocess 
instances is recorded on the blockchain. Third, the execution of a process instance proceed. To 
achieve these principles, Caterpillar translates a BPMN process model into a set of smart contracts. 

Lorikeet [9] is another model-driven engineering (MDE) tool for the development of blockchain 
applications in the space of business processes. This tool consists of a modeler user interface and 
back-end components including the BPMN translator, Registry generator and Blockchain trigger. It 
can automatically produce blockchain smart contracts from business process models and asset data 
schemata. Lorikeet is a well-evaluated tool that is used for creating blockchain smart contracts in 
industry and academia and in commercial use by Data61 and has been applied in numerous industry 
projects. For further implementation regarding both platforms’ details, it recommends reading the 
relative papers or this interesting article [8] which provides a comparison between the two tools. 

Several products related to Collaborations processes are already easy to find in internet such as 
Camunda2, Activiti3, Bonitasoft4 or others. 

As already pointed out in the introduction this work is inspired by [1], in order to enrich and improve 
the sketched prototype and their findings. The authors propose an interesting methodology to 
perform a Bpmn-to-Solidity translation and the whole life-cycle of choreographies approach. 

We summarise that there are several existing works proposing approaches for the execution of 
collaborative business processes on blockchain technology used to record message exchanges or 
transactions. All the solutions, by means of smart contracts, control and (or) impose that messages 
are exchanged in a compatible way, with a collaborative process model, BPMN based. In practice, 

                                                        
2 https://camunda.com 

3 https://www.activti.org 

4 https://www.bonitasoft.com 



 

 13 

the blockchain is used to record, monitor, and occasionally control the interactions among the 
processes performed by each party. 

  



 

 14 

5 Technologies 
This Chapter presents a brief summary of concepts and technologies involved in the project. It starts 
with Section 5.1 where it is introduced the "full stack" concept, then, in Section 5.2 it is presented 
the ReactJS technology used to realise the front end together with chor-js,  and bpmn-js described 
in the Sub-section 5.2.1. Next Section 5.3 and Section 5.4  describe the back-end side and indicate 
the database chosen and the SpringBoot framework. In conclusion sections 5.6 and 5.7 introduce 
the blockchain world. 

5.1 Full Stack Architecture 

Nowadays it is very common to hear about Full Stack applications. Actually, it is a modern way of 
referring to an entire computer system or application. From the front end (customer or end user) 
to the back end ("behind the scenes" technology such as database and internal architecture) to the 
software code that connects the two. 

Front end, is where the full stack web developer uses a combination of web-oriented technologies 
such as HTML, CSS and JavaScript to create everything a user sees or uses to interact on a website. 

Back end, is where the developer design in which way provides and retrieves data from the database 
server, how to process information and in which format provides results. 

The necessary skills needed to set up a similar system are focused on stack of solutions such as a 
LAMP (Linux, Apache, MySQL, PHP) or MEAN (MongoDB, Express.js, AngularJS, Node.js) or other 
mixed technologies as our case Java, ReactJs and Mysql. 

Developing both, front end and back end parts of an application, involves three levels. The 
Presentation Layer (the front-end part that deals with the user interface) the Business Logic Level 
(the ack end part that deals with the user interface) and the Database Layer. This architecture is 
also called the three-tier web architecture (TTWA).  

This system allows the business logic separation from the UI, from data storage and from the 
database. 

TTWA is designed to provide a high degree of flexibility and greater security that can be applied in 
different ways for each service at each level. TTWA also ensures improved performance because 
the activity is shared between servers. There are however also some significant downside of the 
TTWA. The complexity compared to having only 1 and 2 levels, the cost of maintenance and 
distribution of the network, which is greater than 1 and 2 levels and the absolute need to find a 
small team of trained developers or developers with extensive know-how. 

5.2 Front-end (ReactJS) 

ReactJS5 is a free JavaScript library used for creating user interfaces, at the time of writing the 
current ReactJS release is 17. Created by Facebook6, React was initially released in 2013, first with 
the BSD+Patents. In September 2017 the license had change with the MIT license, more acceptable 
due to potential problems regarding intellectual property for developers. 

React is a declarative language that makes the creation of interactive UIs painless. By designing 
simple views for each state in the application, ReactJs will efficiently update and render just the 
right components when the data changes. It has some unique core concepts such as, virtual DOM, 
                                                        
5 https://reactjs.org 
6 https://www.facebook.com 



 

 15 

JSX components, input properties, props and the peculiarity the each React component has a proper 
state and a life cycle. 

The virtual DOM is a node tree, just like the DOM. "The virtual DOM (VDOM) is a programming 
concept where an ideal, or “virtual”, representation of a UI is kept in memory and synced with the 
“real” DOM by a library such as ReactDOM. This process is called reconciliation. This approach 
enables the declarative API of React: You tell React what state you want the UI to be in, and it makes 
sure the DOM matches that state. This abstracts out the attribute manipulation, event handling, and 
manual DOM updating that you would otherwise have to use to build your app. " [16] 

JSX is officially an XML-like syntax, similar to HTML but actually JavaScript. Is an extension of 
JavaScript to use with React to describe what the User Interface should look like. JSX may remember 
a model language, but it uses all the power of JavaScript. Below some examples: 
react.createElement(component, props, ...children) 

const element = <h1>Hello, world!</h1>; 

All starts from the react.createElement. Instead of having to create an element by hand, we define 
a component. This component has several different attributes that we pass in to it. Then, it no more 
necessary to create the element, define the tag, and then pass in all the attributes etc. 

Components are like JavaScript functions. The positive aspect of React, is that it splits the User 
Interface into independent reusable pieces. These pieces have an input of arbitrary size, a set of 
props, and then they return a React element. Each component is always returning a rendering 
function, composed by the elements that we want it to display. The rendering is a key point of this 
implementation. 

Props are the overall attributes and properties of the component, in practice, the way in which the 
components pass the data. Below, it is shown how we deal with different attributes. As we see in 
the following example we can assign, as an attribute, the name of the author that built MyClock 
component. We just pass a name here and we will be able to use this.props.name when rendering 
this particular component. This is an easy way to pass data in and out. 

class MyClock extends React.Component { 
  render() { 
    return ( 
      <div> 
        <h1>Hello, world I am {this.props.authorName}!</h1> 
      </div> 
    ); 
  } 
} 

Each component has a state, and it actually manages its own state. The state can be extracted and 
used or set in our code like a prop. It is the internal state of the component and, as developers, 
we’re actually responsible for updating and dealing with state. In the example below, we see  that 
when we create this clock component in the constructor, we have this.state. We pass in a new 
date, and then we can actually output that, in the render function. We can use easily states to 
perform common tasks like setting  and extracting the state. 

class MyClock extends React.Component { 
  constructor(props) { 
    super(props); 
    this.state = {date: new Date()}; 
  } 



 

 16 

  
  render() { 
    return ( 
      <div> 
        <h1>Hello, world I am {this.props.authorName}!</h1> 
        <h2>It is {this.state.date.toLocaleTimeString()}.</h2> 
      </div> 
    ); 
  } 
} 

Each component has a specific lifecycle that we can control. We have mounting, updating, and 
unmounting functions. The constructor, for example, can help us to set up the initial state. From the 
initial state  we have other events that we can hook into. 

Comparing ReactJs with Angular or other MVC frameworks makes no sense since React is just a 
representation. React is a template-based language combined with several functions that support 
output to HTML, e.g. the result of React’s operation is HTML code. 

5.2.1 Chor-Js and Bpmn-Js 

Chor-js is a JavaScript based library born as support tool for BPMN Choreography diagrams that 
provide a web-based, open-source choreography modelling framework [6, 10] based on bpmn-js. 

chor-js7 it is a full editor aims to be an extensible, intuitive and easy to integrate choreography 
diagram modeler, compliant with the BPMN 2.0 standard addressed at researchers and users alike. 

bpmn-js8 is a BPMN 2.0 huge library oriented to rendering toolkit and web modeler. 

It is entirely written in JavaScript and embeds BPMN 2.0 diagrams. Is completely independently and 
it’s required only a modern browser to be used with no needs of server backends. This is an 
important key point demonstrating that makes it easy to embed it into any web application. The 
library offers both a BPMN Choreography diagrams viewer and web modeler. 

chor-js is a web-based framework adapted to recent web browsers. Figure 1 shows the graphical 
user interface of the chor-js application taken from the prototype. There are four principal 
components provided by the core chor-js library: (i) a left-hand side palette containing modeling 
tools and elements; (ii) a top palette implements several extensions (e.g. exposing features like 
importing, saving, exporting, etc.); (iii) another palette providing a switching and renaming 
mechanism for managing multiple diagrams in one model; (iv) a context menu providing actions on 
the currently selected elements. 

 

                                                        
7 https://github.com/bpmn-io/chor-js 
8 https://github.com/bpmn-io/bpmn-js 



 

 17 

 
Figure 1 - chor-js web-based application 

 

5.3 Database (Mysql) 

Rather than talking about the chosen technology, which however concerns the adoption of Mysql9 

(or SQLite)10, we would make a small digression regarding the type of database chosen. In fact, it 
was not difficult to choose which product to use but rather to understand which technology best 
suited the project between SQL and NoSQL. 

We will motivate the decision thanks to a comparison between relational and non-relational 
databases proposed below.  

Deciding whether to use SQL vs. NoSQL only depends on the type of information we are storing and 
the which is the best way to store it. Both technologies store data, but do it in a different way. So, 
the real answer is that it depends on what you are building, on the constraints dictated by who you 
are building and on the final state you are trying to achieve. 

It must be said that while NoSQL is trending, and the adoption rate is increasing, it is not a substitute 
for SQL. It’s just another option. Today it happens that you have to choose one over the other, but 
perhaps the best approach is to use them both. 

Going back to us, the best option is probably to adopt SQL technology for some of these reasons: 

                                                        
9 https://www.mysql.com/it/ 
10 https://www.sqlite.org/index.html 



 

 18 

• we may find ourselves working in the future with rather complex queries and NoSQL does not 
support relationships between data types. NoSQL queries exist but are much slower; 

• SQL databases are better suited to heavy or complex transactions because they are more 
stable and guarantee data integrity; 

• ACID compliance (Atomicity, Consistency, Insulation, Durability) must be guaranteed; 

• if drastic changes due to the growth of the project are not foreseen and if we do not work 
with large volumes of data or many types of data that are probably unrelated to each other, 
NoSQL would be excessive; 

• MySQL but I would say SQL technologies works perfectly with JPA via Spring Boot Framework; 

5.4 Back end – Spring Boot 

Spring Boot, built on top of the Spring framework, introduce a completely new development model 
that makes Java development very simple, avoiding some tedious development steps, code and 
boilerplate configuration that significantly increase the speed of development. 

At the time of writing the document, Spring Boot is in the stable release version 2.0. For the first 
time Released in mid 2014 in its history Spring Boot has had many developments and improvements. 

It provides an easier and faster way to set up, configure and run both simple and web-based 
applications (the latter is not used in this project). 

In the main Spring framework, you can configure everything yourself. Hence, it is possible to have 
many configuration files, such as XML descriptors. This is one of the main problems that Spring Boot 
solves for you. 

Intelligently select dependencies, automatically configure all the features we would like to use and 
we can start our application with a click or simply launch an execution script. In addition, it also 
simplifies the distribution process of our application. In fact it has an integrate Tomcat server in 
which automatically it deploys the applications. 

It can be a little scary, because there seem to be a lot of "magical" things going on in the background, 
but it really makes our life easier. 

It has several features that help developers: 

• Dependency management. Through starters and some package manager additions. For 
instance, combining Spring Boot with Spring Data and Spring Security we can have something 
up and running in no time. And it is not just "something", it is a solid base to build upon. 

• Automatic configuration. Reduction of configuration times by trying to decrease the amount 
of configurations that a complex Spring application requires. 

• Production-ready features. For example, some are Actuator, logging tool, monitoring, metrics 
or various PAAS integrations, etc. 

• Improved development experience. Many test suites built on top, well integrated and 
available, or a better feedback loop using spring-boot-devtools package. 

In a nutshell, the main goal of the Spring Boot Framework is to reduce development, unit test and 
integration times and facilitate the development of production-ready Web applications compared 
to the existing Spring Framework, which really takes longer. 



 

 19 

5.5 REST 

REST stands for Representational State Transfer. There is a set of protocols and standards that 
describe how communication between computers and other applications should take place, 
through the network, for the exchange of resources. 

"The key abstraction of information in REST is a resource. Any information that can be named can 
be a resource: a document or image, a temporal service (e.g. “today’s weather in Los Angeles”), a 
collection of other resources, a non-virtual object (e.g., a person), and so on. In other words, any 
concept that might be the target of an author’s hypertext reference must fit within the definition of 
a resource. A resource is a conceptual mapping to a set of entities, not the entity that corresponds 
to the mapping at any particular point in time." [20] 

Actually, REST is an architectural model and design for server network applications. Uses simple 
HTTP methods (verbs) to communicate between client and server. In fact, the main feature is that 
REST API uses the GET, POST, PUT, DELETE methods to communicate. 

It should be noted though that HTTP and REST are not the same thing. REST API, as is known is a set 
of rules that developers follow when creating their API. 

One of these rules states that we should be able to get a resource when we link to a specific URL. 
This URL represent a resource locator and the browser it is the means to retrieve it. 

Now a list of some important REST properties: 

• a REST service exposes resources, not methods, as occurs in a SOAP-based service; 

• JSON is the format used. With JSON usually the content of the resource is presented, but 
nothing prevents the use of other types of media such as XML; 

• the REST model is generally implemented through the HTTP protocol; HTTP methods / verbs 
are assigned to define actions to be used on resources; 

• a REST web service is intrinsically stateless, so forget the concept of session; the server has 
run out of memory and each request will be handled independently. 

A resource can be a singleton or a collection. 

For example, “employers” is a collection resource and “employer” is a singleton resource. We can 
identify “employers” collection resource using the URI “/employers”. We can identify a single 
“employ” resource using the URI 
“/employer/{employerId}”. 

A resource may contain sub-collection resources also. For example, sub-collection resource 
“accounts” of a particular “employer” can be identified using the URI 

/employer/{employerId}/accounts. 

Similarly, a singleton resource “account” inside the sub-collection resource “accounts” can be 
identified as follows: 

“/employers/{employerId}/accounts/{accountId}”. 



 

 20 

5.6 Ganache-cli 

Ganache11 is a virtual blockchain, previously known as TestRPC. Ganache CLI, part of the Truffle12 
suite of Ethereum development tools, is the command line version of Ganache, your personal 
blockchain for Ethereum development. It uses to make developing Ethereum applications faster, 
easier, and safer. It also includes all popular RPC functions and features (like events) and can be run 
deterministically to make development a good experience. 

ganache-cli13 is written in JavaScript and distributed as a Node.js package via npm or yarn. It is a 
blockchain emulator, fast to use and very versatile for the developer because it can be configured 
in many ways using several options. It mainly allows working in a blockchain environment, however 
without the need to face the overhead of running a real Ethereum node. 

There is no "mining" operation by default with Ganache, in fact every transaction is immediately 
confirmed and is making its way at no transaction costs. This is very useful feature because make it 
possible iterative development: writing unit tests for the code that are performed on a simulated 
block, distributing smart contracts, calling functions and then reducing everything for further 
simulation or new tests, shutting down and resetting with the possibility of losing all the stored data. 

It provides by default 10 predefined Etheruem addresses, with all private keys and preloads wallets 
with 100 simulated Ether each. 

Ganache is available in two versions: CLI and UI. The recommendation is to use the ganache-cli 
version for its simplicity, speed and reliability. When it is turn it on, it will automatically be set to a 
specific port and IP address. The default address for the UI version it is localhost:7545 or 
127.0.0.1:7545, while the CLI version tends to go with port 8545. The GUI version gives a different 
overview of the testchain events. 

5.7 MetaMask 

MetaMask14  is a free extension for web browsers that allows easy communication between web 
applications and the Ethereum blockchain. MetaMask acts like a wallet simplifying interaction hence 
token exchange with the Ethereum blockchain. In other words, MetaMask is a wallet for your 
browser. 

MetaMask can be used: 

• as a common wallet to send and receive Ether, the native currency of Ethereum; 

• to manage ERC20 tokens; 

• to connect directly to decentralized exchanges (DEX) without having to create new addresses; 

• to interact with Ethereum dApps 

	 	

                                                        
11 https://www.trufflesuite.com/ganache 
12 https://www.trufflesuite.com/ 
13 https://github.com/trufflesuite/ganache-cli 
14 https://metamask.io/ 



 

 21 

6 Methodology  
This chapter begins with an overview of the application and subsequent sections explain in depth 
the methodology developed and adopted. 

6.1 Platform Overview 

The Model Driven ChorChain 2.0 platform responds to the need to offer a tool capable of creating 
BPMN choreographic models (3.2) describing collaborative processes - more simply, the interactions 
among the participants involved in the model. The goal is to translate the model in Smart Contracts 
using Solidity as language. The Smart Contract’s code is the result of the BPMN translation 
performed on a collection data which are collected by an approach Model Driven Development 
based (3.1). The translation takes place by means of the BPMN elements that make up the models. 
During the translation process Elements are used as vectors in order to carry important meta data. 
The Smart Contracts, deployed on the blockchain, guarantee immutability of the data involved in 
the message exchanges among the choreography participants, certifying the complete history of all 
the occurred operations connected to each transaction. 

Through a dedicated UI the interaction mechanisms between all the actors are allowed, according 
to the rules described in the SCS created by the BPMN choreography model. 

The MDD approach helps users to design collaborative process choreographies in an expressive way 
in order to make them operate on blockchain technology (3.3) as a Smart Contract and relieving the 
user from having to write code. 

The platform intrinsically defines each choreographies life cycle. A life cycle of a choreography can 
be described according to this modelling. It is first designed as a BMPN model then created and 
stored. Secondly, the BPMN model is translated into a SC (via Solidity code) (3.5) constituting a 
model instance. Thirdly, the model instance generated is deployed as a "skeleton" smart contract 
on the blockchain - it is called skeleton Smart Contract because it contains a structure of stub 
functions inside defining something similar to a class interface – making a distributed model 
instance. Then, starting from the distributed model instance are generated one or more model 
instance implementations used as Collaborative Process among participants. In conclusion, after all 
the model instance implementations have been created, they become consumable between 
Participant through SC interactions governed by means of the dApp Interface. 

The process described can be summarised in the four phases listed below which also represent the 
study addressed and the methodology adopted: 

• Choreography Design 

• Choreography Translation 

• Choreography Deploy 

• Choreography Interaction 



 

 22 

 
Figure 2 - Choreography phases and life-cycle 

We point out that the MDD approach is horizontally permeated in the first three phases as we 
discuss later. 

6.2 Choreography Design 

The first phase involves the collection of user data. It gives the opportunity to design and model 
business processes at will, indicating the interaction with users, through ad hoc BPMN choreography 
editor. Here it will be possible to define which other participants interact with the model, defining 
their specific roles in the Choreography. 

Choreographies are stored within the platform with associated information such as name, author, 
description, creation date etc. Basically, the idea is to store models - collaborative processes - to 
make them still available and reusable over time. Archiving is however only possible if the BPMN 
(XML based) document produced is successful validated by formal test. 

In the second phase, as we will see shortly, each designed and saved choreography will be 
subsequently transformed into a real and proper Smart Contract. 

The ad hoc editor has various features in addition to those necessary for BPM design (5.2.1). It is 
actually equipped with several custom functions aimed at extending the generated BPMN model. 
Practically speaking, the already present BPMN elements model are enriched with further 
information which are then processed in the following step. Hence, at the end of the Choreography 
Design phase, a choreography model is generated and stored. 

6.3 Choreography Translation 

The second phase concerns the translation of the BPMN choreography model into a programming 
language - Solidity in our specific case. The choreography, written essentially in XML, is sent to a 
platform tool - actually an API - which analyses, validate and interprets it. Once the choreography 
has been parsed the tool takes care of carrying out the translation process and generating the 
equivalent Solidity code. The methodology adopted granting that every XML block - corresponding 
to a specific BPMN element - is translated into Solidity according to (previously) predefined 
constructs [11]. 

Given that the BPMN consists of a Sequence Flow of elements, following the connections of the 
elements between them is enough to reconstruct the logic dependency tree of the whole elements. 
Subsequently, by coding each element of the tree encountered with the corresponding Solidity 
(predetermined) construct, it becomes relatively easy generating code. 



 

 23 

During code generation, additional information, previously "injected" by the designer is considered. 
Thanks to the coding of the standard BPMN elements plus the additional information supplied with 
the BPMN elements, it is possible to proceed with the skeleton smart contract generation. 

6.4 Choreography Deploy 

The third phase is incapsulating the latter. Here we deal with collecting the operational data of the 
choreography in terms of who is interacting with whom and with which roles are involved in the 
collaborative process. Indeed, before proceeding to the code generation it is required specifying the 
association between all the actor’s roles with real participants. For each choreography, there are 
two role types, mandatory roles, where the role association is mandatory in order to proceed with 
the contract’s compilation, and optional roles, where the role association is not strictly required at 
this stage. Once the required role associations are completed, it will be possible to proceed with 
what we have called deploy. 

In this context deploy means translating (6.3) the BPMN choreography model into Solidity language, 
compiling the Solidity code translated into Smart Contract and then, if all the step succeeds, 
generating a new Choreography model instance. 

Therefore, Smart Contracts contains the business logic of our collaborative process described by the 
BPMN choreography model. SCs can be summarised as the protocol that defines how transactions 
of that collaborative process take place over the blockchain. The general objective of the SC is to 
satisfy common contractual conditions. For instance, if we want to design an auctioning system on 
Ethereum, we need to develop specific smart contracts according to the rules of the auctioning 
system chosen. 

Thus, each model instance describes the "starting" business logic of the Choreography model 
associated. We said "starting business logic" because, with this specific Smart Contract, we want to 
represent the initial point where to build, later on, the Business Logic. We call it skeleton Smart 
Contract which is composed of three contracts (Figure 3) which follow the Template Method design 
pattern approach (6.4.1): 

1. contract containing the business workflow of the BPMN choreography model invoking stub 
methods (a) which corresponds with the real user operation; 

2. contract containing the interface (actually a solidity abstract contract) of the 
implementation contract (b), stub methods interface. 

3. contract containing the implementation of the stubs method (c). 

 

6.4.1 Template Method Design Pattern approach 

Used to define the behaviour of a "superclass" by delegating some detail steps to subclasses. This 
pattern satisfies the need to specify the order of operations to be performed, delegating the 
implementation of certain operations to the subclasses. Therefore, the method that defines the 
algorithm, is implemented in the superclass while, the methods that define the detailed behaviours 
are declared abstract in the superclass and implemented in the subclasses. 



 

 24 

 
Figure 3 – Generated smart contract architecture 

 

 
Figure 4 - Template method class and sequence diagram 

The components included in the Template Method pattern are as follows: 

• Client: It’s the component which triggers the execution of the template (Figure 4 a)  

• AbstractTemplate: It’s an abstract class including a series of operations which define the 
necessary steps for carrying out the execution of the algorithm. This class has a 
templateMethod method for executing step1, step2 and step3 in order (Figure 4 b)  

• Implementation: This class represents a concrete template which inherits from 
AbstractTemplate and implements its methods (Figure 4 c)  

Then the interactions between components: 

1. The client creates and gets an instance of the template implementation. 
2. The client executes the templateMethod. 
3. The default implementation of templateMethod executes the implementation returns a 

result. 

In software development a stub method or simply stub is a piece of code used to stand in for some 
other programming functionality. A stub may simulate the behaviour of existing code (such as a 



 

 25 

procedure on a remote machine, such methods are often called mocks) or be a temporary substitute 
for "yet-to-be-developed" code as in our case. 

We are trying to exploit some important functionalities of Solidity. One of these is extensibility, it is 
key when it comes to building larger, more complex distributed applications (Dapps). Solidity offers 
two ways to solve this problem within dapps: abstract contracts and interfaces. 

Abstract Contract in Solidity are similar to classes in object-oriented languages. They include state 
variables that contain persistent data as well as functions that can manipulate the data in the state 
variables. Contracts are identified as abstract contracts when at least one of their functions lacks an 
implementation. As a result, they cannot be compiled. They can however be used as base contracts 
from which other contracts can inherit from. 

On the other hand, there are Interfaces. Interfaces are similar to abstract contracts, but they are 
limited to what the contract’s ABI can represent. In other words, you could convert an ABI into an 
interface, or vice-versa, and no information would be lost. According to the Solidity docs they have 
a few additional restrictions. 

Along with improved extensibility, abstract contracts provide better self-documentation, instil 
patterns (like the Template method), and eliminate code duplication, so for our purpose we opted 
for abstract contract. 

6.5 Choreography Interaction 

The fourth and final phase deals with the self-generation of a JavaScript-based web interface. The 
web interface is modelled according to the public methods offered by the Smart Contracts and 
included on the first contract (Figure 4 a). The User Interface follows the progress of the flow 
expressed by the BPMN Sequence Flow presenting for each participant (respecting the played role) 
the right (the assignee one) method at the right time. 

Each public method of the Smart Contract is invoked by means of the Web3.js library through the 
web app considering the flow described by Smart Contracts (Figure 4 a). The SC, depending on the 
active BPMN component, in turn, will invoke one of the methods of the Smart Contract 
Implementation side (Figure 4 b) which is described by its interface (Figure 4 c). Obviously, the web 
interface takes into account the participant who is about to consume the service enabling the proper 
methods according to the rules dictated by the Smart Contract. 

  



 

 26 

7 Platform Implementation 
This Chapter explains what Model Driven ChorChain 2.0 platform is and what is hidden underneath. 
The explanation is focused on the implementation side. In the first section, the platform architecture 
is introduced, while in the following sections, all the parts making up the architecture are discussed 
in detail. 

7.1 Understanding the architecture 

As previously introduced (5.1), the presented platform is a full stack-based type. This means, as 
shown in the Figure 5, that the platform is composed by three architectural layers: the presentation 
layer called front-end, the business logic layer called back-end and the storage layer called 
database. Furthermore, the architecture also provides another additional layer represented by the 
blockchain layer, namely blockchain. This layer has been added because the idea was to have a 
standalone application, as independent as possible, from an existing blockchain implementation (at 
least in the development phase). 

 
Figure 5 - Platform Full Stack Architecture 

Based on the need to create a project easy to use, test and develop, a Docker15 architecture has 
been adopted. The platform architecture is made up of containers following the logic "a container 
for each layer". In this way, each container can be easily configured or customized for its own 
purpose avoiding the need to tune the entire environment each time it is used or developed (which 
is a considerable effort). Hence, for convenience, a Docker image has been built providing a 
preconfigured version of ChorChain 2.0 Model Driven ready to be used. 

Figure 6 shows the platform architecture, while Figure 5 shows the logical architecture implemented 
through Docker. 

                                                        
15 https://www.docker.com 



 

 27 

 
Figure 6 - Model Driven ChorChain Architecture 

In Figure 6 the dashed rectangle encloses the core services, which are implemented as REST APIs, 
and represents the whole back end. The main platform services are respectively represented by the 
BPMN Model service, the BPMN2Solidity service, the Smart Contract service and one repository 
containing several entities such as models, metadata, users, smart contracts and runtime data. All 
those services are illustrated by means of API endpoints, indicated with empty dots in the above 
figure. 

The BPMN Models service provides all CRUD operations and allows to manage the designed models. 
The BPMN model can be designed thanks to the BPMN Design user interface, which provides all the 
necessary tools. Once that the model is created, it can be stored into the database (in the current 
platform version the model is also stored on the file system for debugging and development 
reasons). 

The BPMN2Solidity service is the key tool. It represents the mechanism responsible for the 
comprehensive mapping from BPMN to Solidity. In fact, given as input a BPMN model (XML format 
based), it generates a smart contract as output (Solidity based), which encapsulates the whole 
workflow related to the BPMN Sequence Flow logic of the processed model.  

The BPMN2Solidty service also include (internally) a compiler tool, which is connected with an 
external compiler (solc), and a deploy tool, which is responsible for compiling the generated 
artefact. All of these actions, compilation and deploy, are made possible by the RPC protocol 
sublayer, that is implemented by means of the web3.js library. This library literally represents the 
bridge towards the blockchain. The compilation service is responsible for compiling the generated 
Smart Contract, while the deploy service is responsible for storing the successfully compiled Smart 
Contract and its metadata into the database. 

The last module is the Smart Contract service. It is directly connected with the repository (database) 
and provides all the necessary operations to manage, control, and execute a processed model. 



 

 28 

The model execution process, namely the Interaction, has its own dedicated user interface called 
Dapp Interaction UI. This UI provides all the features to allow users to interact among them by 
means of Smart Contracts. Actually, it is a JavaScript client connected to the blockchain via the web3 
library. As highlighted, the blockchain instance is implemented by ganache, but it can be changed at 
will with other types, such as a public one based on Ethereum. 

7.2 Front-end 

The front-end (5.2) is the component that provides a user-friendly interface. It is mainly constituted 
of a JavaScript web application that runs on the client side and permits to deal with the platform 
services (API) after a prior authentication. 

Together with the back-end, the front-end is the most complex component of the platform. 

It is composed by many parts and provides several services. For instance, it allows users to access, 
design, deploy, and interact via Dapp in an authenticated way.  

Let’s introduce now the user workflow. After the authentication, the user is redirected to the 
platform Home Page (Figure 7), where all the important links to the respective sections are grouped 
(Choreography design, Choreography deploy and Choreography Dapp interaction). 

 
Figure 7 - Platform Home Page 

7.2.1 Technical overview 

The front-end it is entirely developed with ReactJs technology that works sending HTTP requests to 
RESTful endpoint exposed through the back-end API (5.4). The user interface is entirely designed 
using antd16,  namely a React UI library containing a set of high-quality components building rich, 
interactive user interfaces. 

The front-end is a standard ReactJs application, made by the create-react-app tool including the 
following libraries: 

                                                        
16 https://ant.design 



 

 29 

• react-router: popular library, is a collection of navigational components that compose 
declaratively with the application. Very useful whether the need is to have bookmarkable 
URLs for the web app; 

• axios: a promise based HTTP client for the browser, used to make API endpoints calls; 

• react-refetch: library that in simple, declarative, and composable way fetches data for React 
components; 

• chor-js, bpmn-js, diagram-js: a complete suite library to enter into the BPMN world; 

• antd: UI library, it allows to create rich, interactive user interfaces without having to write a 
lot of CSS; 

• web3.js: used for communicating with the Ethereum blockchain. It effectively turns a React 
application into a blockchain-enabled application. In our case, we use Web3 to interact with 
the Smart Contracts. 

7.2.2 Authentication 

Unauthenticated users are not allowed in the platform prototype. In fact, unauthenticated users 
attempting to access the web application are redirected to a standard login form (Figure 
8)requesting the user’s credentials. 

 

 
Figure 8 - Platform user login 

 



 

 30 

Actually, during this first release, not much importance was given to security aspects, but they will 
be addressed later. However, there are two user categories: 

• local users: registered users (stored in the database). This kind of users can only interact with 
choreographies in their entire lifecycles (4.1), except when a blockchain wallet interaction is 
required. They will be able for instance to design, create, store, search and deploy BPMN 
model, but not to make transactions with the blockchain. 

• blockchain users: related to wallet blockchain users. These are the users that have tokens in 
the wallet and that can interact with the Dapp UI once the implemented smart contracts are 
released.  

Normally blockchain users and local users should coincide, but currently this occurs only if they both 
register with the same username, otherwise they are actually two different users. 

The platform development road map plans to unify these two user profiles and create a single user 
with both behaviours. In the actual release the front-end permits to deal with "local user" type only, 
exploiting the Spring Boot security integration module through the back-end API. Thanks to this 
module it should be easier profiling users and providing grained permission controls in the future, 
focusing on the user’s authorizations. Instead, with regards to "blockchain users", access and 
platform interactions are granted by MetaMask extension (5.7, 7.2.3). 

In addition to these security aspects, the platform provides other common operations, such as 
signup which, for instance, allows a new user to be registered in the system and to make logout. 

7.2.3 MetaMask 

MetaMask (5.7) is a necessary browser extension. All users using this platform, must install the 
Chrome plugin, or the recommended one, in order to have their secure blockchain accounts directly 
on their browsers. 

MetaMask allows the user to create a new wallet or restore it to an old one just from a seed phrase 
when it is opened for the first time. Both MetaMask and ganache-cli use the bip44 standard for 
the wallet generation. Because of it, it is possible to restore Existing Vault by entering the mnemonic 
phrase that ganache-cli outputs when it starts it or if users have decided it in advance. Mnemonic 
phrase has to be 12 words long. For instance, our development mnemonic phrase used is the 
following: 

include poem goose genuine baby flat mom token drama harsh sadness fit 

To use MetaMask with the prototype ganache-cli accounts, it is first necessary to configure it. The 
ganache-cli address must be specified as that of the RPC provider, which by default is localhost: 
8545. MetaMask provides a menu item to quickly switch to this local port. After setting up 
MetaMask as indicated above, it is possible to access the Dapps platform via MetaMask. After that, 
it is possible to see the MetaCoin balance of the first configured user account (Figure 9). 



 

 31 

 
Figure 9 - MetaMask account login example 

7.2.4 Choreography design editor 

This is where users can design and transform a collaborative process into a BPMN model. Designing 
is made possible by a modeller, an editor included in the chor-js library (5.2.1). The chor-js library 
is like a big suite which makes easy the addition of (some) basic functionalities such as: 

• new: creation of an empty diagram; 

• import: importation of an existent diagram; 

• export: exportation of the current diagram; 

• save svg: saving in .svg format the current diagram; 

In addition, we foresaw the addition of other important actions such as: 

• XML preview: visualisation of the current XML generated by a modal window; 

• upload: storage of the current BPMN model on the platform. 

A strong work has been done to build an enriched editor which integrates the library functionalities 
with the custom features (Figure 10). 

After a deep study of the Camunda chor-js and bpmn-js libraries, we experimented some solutions 
aiming at extending the XML based BPMN model and making it more detailed. 



 

 32 

 
Figure 10 - BPMN model editor 

 

It’s worth to remember that the platform’s main goal is to design a BPMN choreography model able 
to be transformed in Smart Contracts based on Solidity. Each BPMN component, during the 
translation step, must be translated into a predefined Solidity sequence of code. Given that, it is 
very important transferring as much information as possible, collected from the design phase, into 
the XML document17 before that the real translation take place. The information collection aims to 
better describe the collaborative process. 

Therefore, in order to be as clear as possible, a dedicated panel has been created18.  

The panel allows the editing of the BPMN components properties. 

To enrich all BPMN model components with meta-information, we exploited the Camunda BPMN 
Extension Elements properties19,which is one of the many features offered by the library.  

Thanks to this functionality we operated using two different approaches: 

3. Prototype approach: the approach currently in use in the prototype. It considers as 
information vector only the message envelopes directly connected to the choreography task 
by mapping them as smart contract functions. 

4. Experimental approach: it considers as information vector the whole BPMN model which 
carries information used during the generation of the smart contract business logic. 

In addition to these functionalities, related to the design phase, we also added other important 
functions such as the model upload. Uploading the model means (Figure 11) storing the model in 
the platform (into the database) and starting its life-cycle (6.1). This is done only by specifying its 

                                                        
17 Camunda BPMN is expressed by XML document  

18 https://github.com/bpmn-io/bpmn-js-example-react-properties-panel 

19 https://github.com/bpmn-io/bpmn-js-examples/tree/master/custom-elements 



 

 33 

name and description and then uploading the model through the dedicated back-end API call. 
During the upload process the BPMN model is formally validated showing a success or failure 
feedback message to the user. 

 
Figure 11 - Uploading a model 

7.2.4.1 Prototype approach 

This approach takes into account only the information related to the choreography task messages 
objects. Thanks to the creating custom elements feature provided by bpmn-js we are able to define 
custom elements into the BPMN (XML) model. Custom elements are ordinary BPMN 2.0 elements 
with domain-specific data, look, and feel. As described on bpmn-js documentation [10], the use 
cases for such elements includes: 

• show certain elements in a distinct way 

• restrict rules where a user can place elements on the diagram 

• add data related to performance analytics such as KPI targets 

• attach technical information related to model execution. 

At the moment of writing, we have only defined a new single element descriptor (namely 
ChorChain) using the attached “technical information related to model execution” technique, as 
shown below.  

Creating a new element descriptor means defining a new XLS specification and adding it to the 
definition of the object's XML namespaces. The new added objects declared in the descriptor can 
be recognized by the model itself. 

 
{ 
  "name": "ChorChain", 
  "prefix": "cc", 
  "uri": "http://chorchain.com/schema/bpmn/cc", 
  "associations": [], 
  "types": [ 
    { 
      "name": "signature", 
      "superClass": [ 
        "Element" 
      ], 
      "properties": [ 
        { 
          "name": "paramsType", 



 

 34 

          "isAttr": true, 
          "type": "String" 
        }, 
        { 
          "name": "paramsName", 
          "isAttr": true, 
          "type": "String" 
        }, 
        { 
          "name": "returnsType", 
          "isAttr": true, 
          "type": "String" 
        }, 
        { 
          "name": "returnsName", 
          "isAttr": true, 
          "type": "String" 
        }, 
        { 
          "name": "interfaceMethod", 
          "isAttr": true, 
          "type": "Boolean" 
        } 
      ] 
    } 
  ] 
} 

Listing 1 – Definition of a new Element Descriptor 

In this case, the new descriptor cc describes all the properties and attributes of the (new) object 
type signature. The cc shows how this new element is represented and translated in a XML 
document. Thanks to the properties panel (Figure 12) and the descriptor itself, during the design 
process, it is possible generating BPMN models containing additional meta-data, as shown in the 
following Listing 2. 

... 
<bpmn2:message id="Message_037dl3h" name="offer1 (bytes32 oDomP1, 
uint256 oAmountP1,address msg.sender) returns (string memory 
oMsgP1,bool oFailP1,uint256 oCodeP1)"> 
    <bpmn2:extensionElements> 
      <cc:signature  
          paramsType="bytes32,uint256,address" 
          paramsName="oDomP1,oAmountP1,msg.sender"  
          returnsType="string memory,bool,uint256"  
          returnsName="oMsgP1,oFailP1,oCodeP1" 
          interfaceMethod="true"  
          name="offer1"  
          interfaceName="IRegistry"/> 
    </bpmn2:extensionElements> 
  </bpmn2:message> 
...  

Listing 2 - Partial XML view representing the Signature tag properties contained in a BPMN model l 

In short, the cc:signature tag, child of the bpmn2:extensionElements, is used as vector of metadata 
aiming at enriching the Choreography Task with external information not strictly related to the 
BPMN model. 



 

 35 

Hence the Signature tag in Listing 2 has been previously declared in the descriptor, the needed 
parameters useful to define a (future) solidity signature method are: 

• method name: signature method name 

• parameter types: array list containing the parameter types 

• parameter names: array list containing the name of the previous parameter types 

• return types: array list containing the return types 

• return names: array list containing the name of the previous return types 

• (possible) interface name: possible interface name (true value). 

Obviously, the above property list can be easily extended at any time just adding new properties in 
in advance to the proper descriptor.  

The translation of the Signature element into Solidity will result as follow: 

offer1 (bytes32 oDomP1,uint256 oAmountP1,address msg.sender) 
  returns (string memory oMsgP1,bool oFailP1,uint256 oCodeP1)} 

Listing 3 - Transformation of the Signature element offer1 into Signature Solidity element offer1  

 

 

 
Figure 12 - Custom properties panel used on the prototype approach 



 

 36 

In the right lower part of the property panel in Figure 12, the “interface” identifier is visible. At this 
point, a brief introduction on the interface (concept) property is necessary. Inside the properties 
panel and the descriptor, the option to consider the current method as an interface or not is given: 
the offer1 function, previously defined, corresponds to the message envelope name linked to 
designed choreography task. This means that if the offer1 method is considered as an interface (if 
interface method == true), then it is tagged and treated as stub method (4.4.1). Otherwise (if 
interface method == false), it is managed as a simple function[11]. 

To make this mechanism even more smarter we have also introduced additional smart conditions, 
such as the interpretation of the msg.sender parameter. 

<bpmn2:message  
  id="Message_0cmtbuo"  
  name="offer2(uint256 oP2Amount, bytes32 oP2Dom, address msg.sender) 
returns (string memory oP2Msg, bool oP2Fail, uint256 oP2Code)"> 
  <bpmn2:extensionElements> 
  <cc:signature  
  paramsType="uint256,bytes32,address" 
  paramsName="oP2Amount,oP2Dom,msg.sender"  
  returnsType="string memory, bool, uint256" 
  returnsName="oP2Msg,oP2Fail, oP2Code" 
  interfaceMethod="true"  
  name="offer2"  
  interfaceName="IRegistry"/> 
 </bpmn2:extensionElements> 
</bpmn2:message> 

Listing 4 - The msg.sender parameter 

In fact, we defined an additional parameter, called "msg.sender", of type address. If a parameter 
called "msg.sender" is defined in the properties panel, the translator is going to treat it as a reserved 
word, by transforming (later) the parameter as follows: 

//Task(Bid): ChoreographyTask_06649j1 - TYPE: ONEWAY - offer2 
function Message_0cmtbuo(uint256 oP2Amount, bytes32 oP2Dom) public  
    checkOpt(optionalList[1])  { 
  require(elements[position["Message_0cmtbuo"]].status == State.ENABLED); 
  done("Message_0cmtbuo"); 
  currentMemory.oP2Amount = oP2Amount; 
  currentMemory.oP2Dom = oP2Dom; 
  (currentMemory.oP2Code,currentMemory.oP2Fail,currentMemory.oP2Msg) =  
  iregistry.offer2(msg.sender,oP2Amount,oP2Dom); 
  enable("ExclusiveGateway_0cw6nha"); 
  ExclusiveGateway_0cw6nha(); 
 } 

Listing 5 - msg.sender parameter behaviour during the Solidity transformation 

At the beginning, the msg.sender parameter is ignored by the translator which will not include it 
between the Solidity function parameters (line 2), but later it will associate it in the body function 
among the parameters of the stub method (line 9). 

7.2.4.2 Experimental approach 

During the platform development we also tried out other solutions aiming at enriching as much as 
possible the XML based BPMN model. The experimental one, discussed in this chapter, is focused 



 

 37 

on adding business logic through the editor directly into the model. The strategy used is similar to 
the previous one, focused on the extension of the BPMN elements, though more complex. Because 
of this complexity we are going to take advantage and inspiration of the Camunda Form 
mechanism20 already supported by the library, but actually used for other purposes.  

The basic idea is creating a dedicated set of tags and properties useful for injecting technical 
information and parts of business logic into each BPMN elements in the whole choreography. 

Given that we are able to inject global variables, structures and others constructs through the 
Choreography Element, we want to leverage the same mechanism to add business logic events (to 
emit) and other generic elements to represent Solidity constructs. To achieve this, a possible 
solution could be the adoption of "predefined code snippets". These code snippets, previously 
written and uploaded on the client side, should be then selectable by users via the editor during the 
model design process and transported within the BPMN model. 

Below some real use cases are reported. 

Structs definition through Choreography Element: through the model editor and the properties 
panel, after selecting the Choreography element by clicking on the model background, it is possible 
to choose between three tabs - General, Types and Behaviours (Figure 13). Choosing the second 
tab, Type, the user can proceed with the generation of global declarations such as struct, global, 
mappings, custom type into the future smart contract that is going to be created. 

 
Figure 13 - Type definition by Choreography Element 

A concrete example is shown below. It is about the definition of a new struct. In order to do it, the 
user must only choose the struct option in the Typology selector. Afterwards, the user must give 
some additional information such as the structure name, the description and parameters 
(Properties) by adding them through the + (Add property) button. The result is presented in the XML 
                                                        
20 https://github.com/camunda-consulting/code/tree/master/snippets/camunda-modeler-
plugins/camunda-modeler-plugin-usertask-generatedform-preview 



 

 38 

Preview box (Figure 14). It shows how the injected information via the properties panel is added 
into the model thanks to the Camunda Form mechanism. 

 

 
Figure 14 - Struct definition by Choreography Element, XML preview 

The final mapping in Solidity will be: 

//Example struct 
struct Type_3rebgio { 
    uint   field1, 
    string field2 
} 

Listing 6 - Solidity transformation of the struct 

 

Behaviour definition through Choreography Element: similar as before, after selecting the 
Choreography element by clicking on the model background, the user can choose the Behaviour 
tab. As shown in Figure 15, the user can add a new behaviour by clicking on the + button close to 
the "selected functions" row. Afterwards, the user can proceed with the definition of the 
parameters such as name, description and body.  

For instance, in the following examples, the body definition is: 

emit ShowMyName(name); 
return 0; 

This Solidity code snippet will be included roughly in the SC instance resulting from the 
transformation. In Figure 16, it is shown how all the metadata injected to the BPMN model are 
expressed into the XML document. 



 

 39 

      
Figure 15 - Behaviour definition by Choreography Element 

 

Figure 16 - Behaviour definition by Choreography Element XML preview  



 

 40 

The final complete mapping in Solidity is: 

//Example struct 
function MyFirstMethod(string memory name) return (uint){ 
    emit ShowMyName(name); 
    return 0; 
} 

Defining behaviour with a predefined function via Choreography Element: this is another good 
example showing the use of predefined behaviours. 

In this case, the basic idea is providing a set of predefined functions via panel properties to the users. 
These functions should guide and simplify the user construction of the BPMN model from a Smart 
Contract perspective. In fact, the user can decide which business logic to include in the future SC for 
a specific method only choosing from a set of atomic functions related to a particular domain. To 
achieve this, the administrator must declare in the first instance a function descriptor containing all 
the necessary specifications. Then, after having uploaded these files containing the descriptors on 
the server,and the (pre-defined) functions will magically appear on the property panel. In the 
example below (Figure 17) a panel showing all the behaviour possibilities already loaded in the 
server is shown. As we can see, the user has different options, such as constructor, functions or 
custom functions (in this case it is possible inject code into a specific function through the “Define 
new behaviour” voice. In the figure, two different constructors are already defined (right side of the 
figure) corresponding to auctions constructors. One constructor represents the English type auction 
and the other one can is for a Custom auction. The "englishAuction" constructor (right side of the 
figure) was previously added, as shown, on the method list in figure (left side of the figure).  

In the right side of the Figure 17, all the details of the chosen function, called Add Participant, are 
shown.  

     
Figure 17 - Preloaded functions example 



 

 41 

 

The XML result of the Add Participant function added using the editor is: 

<?xml version="1.0" encoding="UTF-8"?> 
<bpmn2:definitions xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  
xmlns:bpmn2="http://www.omg.org/spec/BPMN/20100524/MODEL"  
xmlns:bpmndi="http://www.omg.org/spec/BPMN/20100524/DI"  
xmlns:dc="http://www.omg.org/spec/DD/20100524/DC"  
xmlns:camunda="http://camunda.org/schema/1.0/bpmn" x 
mlns:xs="http://www.w3.org/2001/XMLSchema"  
id="_tTv5YOycEeiHGOQ2NkJZNQ" targetNamespace="http://www.signavio.com"> 
  <bpmn2:choreography id="Choreography"> 
    <bpmn2:extensionElements> 
      <camunda:formData> 
        <camunda:formField id="function_134df" defaultValue="false"  
        body="addresd p =msg.sender;participants.push(p);return 0;" 
name="addParticipant"  
        returnType="uint"> 
        Add participant function 
      </camunda:formField> 
      </camunda:formData> 
    </bpmn2:extensionElements> 
  </bpmn2:choreography> 
  <bpmndi:BPMNDiagram id="BPMNDiagram_1"> 
    <bpmndi:BPMNPlane id="BPMNPlane_Choreography_1" bpmnElement="Choreography" /> 
    <bpmndi:BPMNLabelStyle id="BPMNLabelStyle_1"> 
      <dc:Font name="arial" size="9" /> 
    </bpmndi:BPMNLabelStyle> 
  </bpmndi:BPMNDiagram> 
</bpmn2:definitions> 

Listing 7 - Example of using Camunda Form to transport predefined functions 

The final result in Solidity is: 

//Add participant function 
function addParticipant(){ 
 address p = msg.sender; 
 participants.push(p); 
 return 0; 
} 

Listing 8 - Transformation in Solidity of a predefined function - AddParticipant 

Now let’s give a brief look at the example descriptor of the predefined function Add Participant 
uploaded to the server. 

[ 
  { 
    "name": "addParticipant", 
    "value": "addParticipant", 
    "description": "Add a participant function", 
    "returns": [ 
      { 
        "name": "", 
        "type": "uint", 
        "extra": "" 
      } 



 

 42 

    ], 
    "dependencies": { 
      "vars": [ 
        "participants" 
      ], 
      "functions": [ 
        "createLotAuction" 
      ] 
    }, 
    "body": "address p = msg.sender();participants.push(p);return 0;"   
  
  }, 
] 

Listing 9 - Experimental descriptor of a predefined function - AddParticipant 

It is important to point out that this is an experimental descriptor. These aspects are still under study 
and therefore the examples are incomplete experimental drafts: they are only used to test and 
understand if the way chosen is the right one.  

The descriptor above is part of the predefined functions set and specifically defines how the 
AddParticipant function is composed. On line 12 of the Listing 9, there is an important property 
called “dependencies". The purpose of this property is to create a dependency list for each function, 
and it is useful both for validating the model and understanding which functions, types, structs, etc. 
are necessary. The dependency list can have many uses, for instance can help in case of validation 
check before storing the model. The tool can, infact, calculate if all the dependencies are satisfied 
or not and, in case, can warn the user. 

 

7.2.5 Choreography deploy page  

In this section all the actions possible with stored BPMN models are presented. Thanks to a 
dedicated web page, called “Choreography Deploy”, users can handle all the stored BPMN models. 
Users can view paginated list of models, add a new model instance, clone models or preview their 
XML content and, finally, delete BPMN models. There are still other features, such as models 
searching using search criteria, which are not yet implemented but planned for the next future. 

 
Figure 18 - Choreography deploy page 

The Choreography deploy the UI, which shows, as a default view, a list of stored models. Each row 
in the list links some actions related to the corresponding model, besides summarising important 
model information (Figure 18) such as:  



 

 43 

• name: the choreography model name; 	
• description: the choreography model description; 	
• model	id: the entity id provided by the database; 	
• creation	user: the user who created and stored the model identified by his blockchain user 

address; 	
• creation	date: date of creation; 	
• instances	number: number of model instances created by users; 	
• participants	number: number of defined choreography participants; 	
• model	thumbnail: a small box showing the model thumbnail. By clicking on that will be open 

a modal window displaying a bigger model preview. 	

 

7.2.5.1 Model Instance creation 

After a BMPN model has been created (6.1), it is possible to generate a new Model Instance 
representing the related Smart Contract. This means that each Model Instance has its own linked 
Smart Contract. To proceed with the Instance creation the user must click on the choreography 
model name and access to the section of the model detail. Clicking on the “create instance” button, 
a modal window is opened and the user can then associate roles (mandatory/optional) and 
participants by guiding users interaction. These roles will be a future requirement for the model 
instance deployment. 

 

   
Figure 19 - Model Instance creation detail 

The “new instance” button triggers the next stage of the choreography life-cycle (6.3). In fact, if all 
requirements are ok, a new Model Instance is created, otherwise an error message will appear 
reporting the cause of the denial. Once the creation is successfully, the Model Instance is added to 
the empty list displayed in Figure 15. For each new choreography instance, a row is shown (Figure 
20) providing the following features:  

• instance id: the instance id provided by the database; 
• total participants: the total numbers of choreography participants; 
• creation user: the user who has created the choreography instance; 
• contract blockchain address: the contract blockchain address resulted from the  

contract compilation;  
• deploy button action: the button enabling the deploy of the contract on the blockchain;  
• delete button action: the button deleting the current choreography instance;  



 

 44 

• association roles/participants form: the form aiming at permitting the association between 
participants and roles. The association considers only logged users, and this means that each 
chosen role will be associated with the current user.  
 

  
Figure 20 - Instance row detail 

7.2.5.2 Model instance deploy 

At this point, the user must decide which are the roles he wants to subscribe to; for each associated 
role a green tag is shown. To proceed with the deploy process all the mandatory roles must first be 
subscribed by the participants (even by different users). When all mandatory roles have been 
associated, the “deploy” button will be automatically enabled (right side of the Figure 20). Once the 
deploy button has been clicked, the back-end API is invoked, and the deploy process starts. If the 
deploy operation is successful, a confirmation message is displayed, while the button turns green 
displaying the contract address (left side Figure 21). Otherwise, if the deploy is not successful, an 
error notification appears summarising the causes given by the compiler (right side Figure 21).  

  

 
Figure 21 - Examples of deploy result, successful and failure 

A successful deployed instance, corresponding to skeleton Smart Contract (6.4), will be the 
starting point for the creation of next Implementations. Users can edit the generated skeleton 
Instance and submit their customization aiming at distributing a personal “model instance 
implementation” through the blockchain. Each new implementation is added to the 



 

 45 

implementation list (Implementations) contained in the instance row details. Thanks to the editor, 
users can directly edit the skeleton SC (Figure 22). All the customisations made by adding the 
business logic to the stub methods early generated are then stored by clicking the Save button.	 

 

 
Figure 22 – Example of creating Model instance implementation 

 

7.2.6 Choreography interaction 

Coreography interaction represents the last UI section dedicated to choreography lifecycle. From 
here users can access the list of model instance implementations previously generated and already 
deployed on the blockchain. Access to this page is allowed only to a blockchain user (7.2.2, 7.2.3), 
hence the installation of MetaMask is mandatory. At the time of writing, the development of this 
section is not very advanced and therefore it lacks a bit in graphical details and functionalities (Figure 
23 and Figure 24). The goal of the Interaction page was to offer a UI allowing a simplified interaction 
to participants through a collaborative process described by a graphical choreography model where 
users have their assigned role. 

Once a participant selects the address corresponding to the SC of the Model Implementation chosen 
(Figure 23), the interaction page is opened. The interaction page shown in Figure 24 is composed 
of: 

• User account: the blockchain user address; 
• Optional Role: the free optional roles to be associated with; 
• Contract: the contract information name and address (extendible with much more 

information, for instance the model name, the author, the instance name, etc.); 
• Viewer: a BPMN viewer showing the progress of the process; 
• Current operation panel: the current user interaction that is performed;  
• Current state: the smart contract state by displaying the global variables values;  
• Smart contract viewer code: the formatted Solidity code representing the smart contract.  

 



 

 46 

 
Figure 23 - Model Instance implementations list in the Choreography interaction page 

 

 
Figure 24 - Choreography Interaction page 

The BPMN viewer is a custom version (at a very early stage) of the BPMN viewer present in the 
chor-js library (5.2.1). It shows the entire BPMN model involved in the Choreography. The 
behaviour of this component is to indicate the progress of the collaborative process by 
differentiating the states of the BPMN model components through different colours. Allowed 
component states of the BPMN model are ENABLED, DONE, DISABLED. For each of these states, a 
specific colour has been adopted, respectively light blue, green and red. By colouring the model in 
this way, users have immediately the perception of what is happening, what still can happen and 
where they are positioned within the collaborative process.  



 

 47 

Each Choreography Task message corresponds to a smart contract stub function and its name is 
extracted from the function signature. 

Two important concepts appear below the box: 

1. current operations value: identified by a box containing all the Message elements, actually 
the function parameters mapped as form inputs and corresponding to the selected green 
Message in the Choreography Task; 

2. current state: identified by a box displaying all the states of the SC global variables at that 
time. The box updates the modified values only at the next SC execution, which therefore 
corresponds to the next change of state. 

Current operations (Choreography Task Message) are represented by a form built dynamically. The 
form displays the function name and its parameters at each SC change of state. After filling all the 
required function parameters, the user must submit the operation by clicking the “send” button. 
This event will trigger a blockchain transaction that needs to be confirmed via a transaction 
confirmation pop-up message from MetaMask. 

 
Figure 25 - Interaction example during a transaction confirmation 

A dedicated ReactJS component has been created to auto-generate forms dynamically. The 
component leverages the JSON ABI contract interface (via the json Interface Web3.js property) to 
recognize every single element present in the related SC operation signature. Therefore, for each 
scenario a proper form box is built according to the information retrieved by the jsonInterface. For 
each SC function parameter found, hence for each input form, a value validation, according to its 
data type and participant associated, is performed before the submission. Following the model 
progress, according to the model sequence flow, the UI automatically proposes the operations 



 

 48 

allowed to that particular user at that particular time. The internal change of state of the Smart 
Contract marks the flow progress. Changes are driven by the event notifications stateChanged, 
called following the execution of each SC operation. The notified event will report the value of all 
the global variables defined in the Smart Contract showing its current state. 

7.3 Back-end – Chorchain API 

The backend hides the processing of the user requests. Furthermore, one of the reasons why we 
chose a back-end solution was to rely on a central processing point, saving users to install any 
additional application aside from the browser and MetaMask (as in our case). 

The backend is entirely based on Spring Boot technology (5.4), which uses a Maven approach to 
handle the dependencies. The main libraries used have been: 

• springdoc-openapi-ui: library that helps to automate the generation of the API 
documentation using Spring Boot projects (Figure 27). It works by examining an application 
at runtime to infer API semantics based on Spring configurations, class structure and various 
annotations. The library automatically generates documentation in JSON/YAML and HTML 
formatted pages. The generated documentation can be complemented using swagger-api 
annotations; 

• org.hibernate: an object-relational mapping library for the Java programming language. It 
provides a framework for mapping an object-oriented domain model to a relational 
database. Hibernate handles object-relational impedance mismatch problems by replacing 
direct, persistent database accesses with high-level object handling functions; 

• spring-boot-starter-data-jpa: makes it easy implement JPA based repositories. This 
module deals with enhanced support for JPA based data access layers. It simplifies building 
Spring-powered applications that use data access technologies; 

• org.web3: lightweight, highly modular, reactive, type safe Java and Android library for 
working with Smart Contracts and integrating with clients (nodes) on the Ethereum network; 

• org.camunda.bpm.model: a BPMN model API that enables easy extraction of information 
from an existing process definition, editing an existing process definition or creating a 
complete new one without any manual XML parsing. 

 

The platform is a web service based on RESTful (5.5). In REST web services, resources are identified 
by URI. Spring Boot allows to manage requests sent to the application server through Controller 
objects. In fact, Spring Boot provides and uses many annotations to simplify as much as possible the 
developer work in handling resource requests. 

Let’s discover and explain the main Spring Boot annotations. 

Everything starts from an @Entity. The @Entity annotation specifies that the annotated class is an 
entity and for this reason is mapped in the database as table. Then a @Repository component 
comes. @Repository is a Spring annotation indicating that the decorated class is a repository. 

 



 

 49 

•  
• Figure 26 - ChorChain database schema 

A repository is a mechanism for encapsulating storage, retrieval, and search behaviour, emulating a 
collection of objects. It is a subclass specialisation of the @Component annotation allowing for 
implementation classes to be autodetected through classpath scanning. Next two important 
annotations are @Service and @Controller. Service it uses to hold the business logic of a certain 
domain. Developers use @Service as bean to put all methods related to the Entity domain. To make 
these services and their public methods available through endpoints a @Controller or 
@RestController annotations are used.  @RestController annotation marks classes as controllers 
and this means that every method returned from that class contains a domain object retrieved 
directly from the Service method linked. In short @RestController is the annotation including both 
@Controller and @ResponseBody. 

We introduce now the main Model Driven ChorChain architecture components, explaining what 
they do and what is their domain.  

In Errore. L'origine riferimento non è stata trovata. all the Entity components translated as 
database tables by Spring Boot are represented.  

The figure shows the database tables keys, the attributes and the relationships. While Figure 27 
shows all the real API endpoints exposed by the Controllers within the application. 

 



 

 50 

 
Figure 27 - ChorChain endpoints by OpenAPI definitions 

 

7.3.1 Choreography 

The Choreography entity is representing the BPMN choreography model.  

Entity attributes are: 

• created: creation date; 
• description: choreography description entered by the user;  
• filename: the uploaded filename; 
• name: the identified choreography name; 
• uploadedByID: the user id who uploaded; 
• svg: svg content representing the model graphically; 

As we know from the frontend description, users can design their own BPMN model and store it in 
the platform. Actually, the designed BPMN model, purely XML content, is uploaded on the 
filesystem server and then all the related information memorised in the database (filename, name, 
description, svg content, etc.). Specific endpoints are provided to handle these operations such as: 

• GET /model/: retrieves a model list 
• GET /model/{id}: retrieves a specific model by id 
• DELETE /model/{id}: delete a specific model by the id 
• POST /model/{id}: creates a new model in the database after it has been uploaded by 

clicking the upload button on the front-end Choreography Deploy page. 



 

 51 

• GET /model/xml/{id}: provides the model XML content (XML preview functionality) 

 

 

7.3.2 Instance 

The Instance entity is representing the BPMN choreography model translation triggered by the user. 
The entity attributes are: 

• created: creation date; 
• choreographyId: the parent Choreography; 
• createdById: the user providing the instance creation; 
• smartContractId: the related skeleton smart contract eventually produced; 
• participants:  a OneToMany relationship; the choreography participants list related to the user 

table realised by the instance_participant_user table; 

An instance is created from a BPMN model (its parent). After the definition of all the possibly 
participant roles it is possible to create the instance. Specific endpoints are provided to handle these 
operations such as: 

• GET /instance/: retrieves an instance list 
• GET /instance/{id}: retrieves a specific instance by id 
• DELETE /instance/{id}: deletes a specific instance by the id 
• POST /instance/subscribe: allows users to subscribe to the instance as participant 
• POST /instance/deploy: provides the skeleton smart contract generation related to this 

instance, the translation phase. 

 

7.3.3 Smart Contract 

The Smart Contract entity contains all the information associated to the Smart Contract deployed 
on the Blockchain. The information is useful mainly for the front-end Smart Contract interaction.  
The Smart Contract attributes list is: 

• created: creation date; 
• name: Smart Contract name; 
• bin: solidity binary file containing the hex-encoded binary to provide the transaction request; 
• abi: solidity Application Binary Interface file which details all of the publicly accessible 

contract methods and their associated parameters. These details along with the contract 
address are crucial for interacting with smart contracts; 

• solidity: the entire generated Solidity file; 
• address: Ethureum address of the deployed Smart Contract; 
• stubInstanceId: ManyToOne relationship with itself. Identifies the Implementation Smart 

contract derived from the parent skeleton Smart Contract; 

Now we take a look the endpoints provided by the API to manage and interact with Smart Contracts. 

• GET /contract/{id}: retrieves a specific contract by id 
• GET /contract/listImpl: retrieves a contract list of Instance Implementations 
• POST /contract/createSCImplementation: creates a Smart Contract implementation 



 

 52 

7.3.4 Internal API detail 

In this section a detail overview of internal API mechanism is given. A schematic view of the API 
operations is shown in Figure 28. Through a simplified working scheme, we try to summarise the 
API, leaving out the user management mechanism. Conceptually, each blue block represents a set 
of logic components constituted by the three Entity, Service and RestController components. The 
green block is showing an artefact while the orange block indicating procedures. All internal 
platform actions or user invoked are represented by labels.  

 

 
Figure 28 - Internal API schema 

7.3.4.1 Translation or code generation 

This feature accepts as input an XML based BPMN model and provides as result the translation into 
Solidity code (.sol). Technically this is a complex business logic part leveraging the Factory Method 
design pattern to perform a proper translation. 

Factory Method: A normal factory produces goods while a software factory produces objects. This 
is done without specifying the exact class of the objects to be created. To accomplish this, objects 
are created by calling a factory method instead of calling a constructor. 

Usually, object creation in Java occurs in the following way: 
    SomeClass someClassObject = new SomeClass(); 

The problem with the above approach is that the code using the SomeClass’s object becomes 
dependent on the concrete implementation of SomeClass. There is nothing wrong with using new to 
create objects but it tightly couples our code to the concrete implementation class, which can 
occasionally be problematic. 

In order to adapt the BPMN Camunda elements into our platform and provide the Solidity 
transformation, we created a dedicated codeGeneretor package (Figure 29). The codeGeneretor 
creates an internal BPMN element from each Camunda BPMN element processed by applying the 
Factory Method Pattern. The result is a structure of BPMN elements loosely coupled with Camunda 
BPMN elements but with additional behaviours and data. Having BPMN elements loosely coupled 



 

 53 

with Camunda promotes future package extensibility. The relevant definitions of all BPMN elements 
(of interest) useful for the translation process have been placed in the adapter package (Figure 29). 

 
Figure 29 - CodeGenerator package 

An interface BpmnModelAdapter defines our base BPMN element, then the BpmnModelFactory 
recognise the Camunda BPMN element processed and creates a new custom BPMN element using 
the proper adapter. 

public interface BpmnModelAdapter extends Visitable { 
 String getId(); 
 String getOrigId(); 
 String getName(); 
 DomElement getDomElement(); 
 ModelInstance getModelInstance(); 
 String getClassSimpleName(); 
 List<BpmnModelAdapter> getIncoming(); 
 List<BpmnModelAdapter> getOutgoing(); 
} 

Listing 10 - BpmnModelAdapter interface declaration 

The prototype interface is now containing only the BPMN name, the BPMN id, the list of outgoing 
elements and of incoming elements, the original className, and the modelInstance pointer, a 
“magic” tool provided by Camunda library which allows to query BPMN elements. 

public class BpmnModelFactory { 
 
    public BpmnModelAdapter create(StartEvent value) { 
        return new StartEventAdapter(value);  
    } 
 
    //ModelElementInstance {Start,End, Task , ..}  
    public BpmnModelAdapter create(ModelElementInstance value) { 
        /* Add here more instance type if needed */ 
        if (EndEventImpl.class.equals(value.getClass())) { 
            return new EndEventAdapter((EndEvent) value);  



 

 54 

        } else if (ParallelGatewayImpl.class.equals(value.getClass())) { 
            return new ParallelGatewayAdapter((ParallelGateway) value);  
        } else if (EventBasedGatewayImpl.class.equals(value.getClass())) { 
            return new EventBasedGatewayAdapter((EventBasedGateway) value);  
        } else if (ExclusiveGatewayImpl.class.equals(value.getClass())) { 
            return new ExclusiveGatewayAdapter((ExclusiveGateway) value);  
        } else { 
            if (((ModelElementInstanceImpl) value).getElementType() 
            .getTypeName() 
            .equals("subChoreography")) { 
                return new SubChoreographyTaskAdapter(value);  
            } 
            return new ChoreographyTaskAdapter(value);  
        } 
    } 
 
    //SequenceFLow element - used only to build the follow the tree 
    public BpmnModelAdapter create(FlowElement value) { 
        return new SequenceFlowAdapter(value);  
    } 
} 

Listing 11 - BpmnModelFactory implementation 

To simplify the code generation, we also leverage the Visitor design pattern applied to the data 
structure used to identify our BPMN sequenceFlow. 

Visitor: The Visitor pattern suggests putting new behaviours into a separate class called visitor, 
rather than trying to integrate it into existing classes. The original object to which a behaviour is to 
be applied is now passed to one of the visitor's methods as an argument, giving the method access 
to all necessary data contained within the object. 

To implement the Visitor pattern, we defined a Visitable interface applied to BpmnModelAdapter. 

public interface Visitable { 
   void accept(Visitor visitor);  
} 
public interface Visitor { 
   void visit(BpmnModelAdapter node);  
   void visitStartEvent(StartEventAdapter node);  
   void visitEndEvent(EndEventAdapter node);  
   void visitParallelGateway(ParallelGatewayAdapter node);  
   void visitExclusiveGateway(ExclusiveGatewayAdapter node);  
   void visitEventBasedGateway(EventBasedGatewayAdapter node);  
   void visitChoreographyTask(ChoreographyTaskAdapter node);  
   void visitSubChoreographyTask(SubChoreographyTaskAdapter  
                                       subChoreographyTaskAdapter); 
} 

Listing 12 - Visitor and Visitable interface applied to BpmnModelAdapter 

Therefore, taken a BPMN model and parsed all its structure by the recursive traverse method - 
following nodes of the SequenceFlow - we populate the bmpnTree list of BpmnModelAdapter type. 
Then, looping over this list we execute the accept method by forcing each processed element to be 
interpreted by the CodeGenVistor class.  This class contains all the specific translation business logic 
for each element processed. 



 

 55 

public void traverse(BpmnModelAdapter node) {  
    if (!visited.contains(node.getId())) { 
       bpmnTree.add(node);  
       visited.add(node.getId()); 
    } 
     
     node.getOutgoing().forEach(this::traverse);  
} 

Listing 13 - Method to traverse the BMPN SequenceFlow 

The specific translation, carried out by the CodeGenVistor class, makes use of particular Solidity 
builders created ad hoc and inserted in the Solidity package. Once that the CodeGenVistor class 
runs, a Solidity Instance class it is built. SolidityInstance is the class containing the entire instance 
structures used to generate the .sol file using the solidity builders. 

7.3.4.2 Compiler 

This is an internal function included in /instance/deploy and /contract/createSCImplementation 
endpoints. It is used to compile the Solidity code generated by the platform during the 
transformation process. It makes use of solc compiler, an external tool namely Solidity Compiler21. 
Its role somehow validates the generated code, thus telling us if it is correct or not, compiling it. 
Furthermore, it is also responsible for generating Smart Contracts together with its accompanying 
information such as ABI, BIN and address. 

We are running the complier with these options: 

• bin: generates the Smart Contract binary content 
• abi: generates the Smart Contract ABI interface 
• overwrite: overwrites existent .sol found on the directory • optimize: optimize the solidity 

bytecode 
• o: the output directory 

7.3.4.3 Deploy 

If the compiling operation is successful then it is possible to move on to the next operation, the 
Smart Contract deploying. This is also a platform internal operation. The deploy operation is 
responsible of distributing the Smart Contract to the blockchain. To complete this job, it is needed 
a blockchain connector and some of the Smart Contract information. Below you can find our 
implementation. 

We have used the Web3.js library, which allows communicating with the blockchain, as blockchain 
connector. 

//Unlocking administration account 
adm.personalUnlockAccount(adminAccount, passAdminAccount).send(); 

 
EthGetTransactionCount ethGetTransactionCount = 
                    web3j.ethGetTransactionCount( 
                  adminAccount,  
                  DefaultBlockParameterName.LATEST).sendAsync().get(); 
BigInteger nonce = ethGetTransactionCount.getTransactionCount(); 

                                                        
21 https://docs.soliditylang.org/en/v0.4.24/using-the-compiler.html 



 

 56 

BigInteger GAS_PRICE = BigInteger.valueOf(gasPrice);  
BigInteger GAS_LIMIT = BigInteger.valueOf(gasLimit);  
 
//compiled smart contract code 
String compiledSCCode = new String(Files.readAllBytes(Paths.get(projectPath + 
File.separator + parseName(name, ".bin")))); 
 
Transaction transaction = Transaction.createContractTransaction(adminAccount,  
               nonce, GAS_PRICE, GAS_LIMIT, BigInteger.ZERO, "0x" + compiledSCCode);  
//send sync 
EthSendTransaction transactionResponse = web3j.ethSendTransaction(transaction).send(); 
 

Listing 14 - Part of the deploy operation 

As shown in Listing 14, we need to unlock the admin account, create a blockchain transaction and 
setting a nonce, gas price, gas limit and the .bin file of the compiled Smart Contract.              
Furthermore, the transaction will be submitted to the Blockchain waiting for response. 

7.4 Smart Contract internal 

As we have learned so far, the Smart Contract generation is an automatic operation made by the 
back-end and addressed by the user – the user chooses and designs what the SC should contain 
internally. 

Regarding the internal structure of the SC, we took inspiration from the solution proposed in [11]. 
According to the proposed study, a contract is made up of two parts: 

1. static, it is practically unchanged for all the contracts and it is used to manage the internal 
state of the contract; 

2. dynamic, it is the result of the Bpmn-To-Solidity translation. 

As we already know, our smart contract is composed by three contracts (6.1) One of this part is a 
static one (Listing 15) belonging to the first contract of the three. To better proceed with a more 
complete explanation, the auto-generated code is now partially shown. 

pragma solidity ˆ0.5.3;  
pragma experimental ABIEncoderV2;  
 

contract ChoreographySmartContract{ 
   /* constructor */ 
   constructor () public { 
     for (uint i = 0; i < elementsID.length; i ++) { 
        elements.push(Element(elementsID[i], State.DISABLED));  
        position[elementsID[i]]=i; 
     } 

     //roles definition 
     //mettere address utenti in base ai ruoli 
     roles["Participant1"] = 0x535CCa8697F29DaC037a734D6984eeD7EA943A85;  
     roles["Participant2"] = 0x535CCa8697F29DaC037a734D6984eeD7EA943A85;  
     optionalRoles["Participant3"] = 0x000000000000000000000000000000000000000; 
     optionalRoles["Participant4"] = 0x000000000000000000000000000000000000000;  
     //enable the start process 
     _init(); 
   } 
 



 

 57 

   /* Mappings */ 
   mapping(string => uint) position; 

   mapping(string => address) roles; 
   mapping(string => address) optionalRoles; 
    

   /* Structs */ 
   struct Element { 
      string ID;  
      State status; 
   } 
    
   struct StateMemory { 
      … 
   } 
 
   /* Enums */ 
   enum State {DISABLED, ENABLED, DONE} State s;  
 
   /* Variables */ 
   address payable public owner; 
   string [] elementsID = ["ExclusiveGateway_0cw6nha", "ParallelGateway_1b8idm5", .. ]; 
   IRegistryImpl iregistry= new IRegistryImpl(); 
   Element[] elements; 
   StateMemory currentMemory; 

   string [] roleList = ["Participant1","Participant2"]; 
   string [] optionalList = ["Participant3","Participant4"]; 
    uint counter; 

   /* Events */ 
   event stateChanged(uint); 
   event functionDone(string);  
 
   /* Modifiers */ 
   modifier checkMand(string storage role){ 
      require(msg.sender == roles[role]);  
      _; 
   } 
    
   modifier checkOpt(string storage role){  
      require(msg.sender == optionalRoles[role]);  
      _;  
   } 
    
   modifier Owner(string memory task){  
      require(elements[position[task]].status == State.ENABLED);  
      _; 
   } 
 
   /* Functions */ 
 
    .....  removed for length reason.......  
 
   /* Custom */ 
   function subscribe_as_participant(string memory _role) public { 
      if (optionalRoles[_role] == 0x0000000000000000000000000000000000000000) {         



 

 58 

          optionalRoles[_role] = msg.sender; }  
      } 
 
   function() external payable {} 
   function enable(string memory _taskID) internal { 
      elements[position[_taskID]].status = State.ENABLED;  
      emit stateChanged(counter++); 
   } 

   function disable(string memory _taskID) internal { 
      elements[position[_taskID]].status = State.DISABLED;  
   } 
 
   function done(string memory _taskID) internal {  
       elements[position[_taskID]].status = State.DONE;  
       emit functionDone(_taskID); 
   } 
 
 
   function getCurrentState() public view  
     returns (Element[] memory, StateMemory memory){ 
        // emit stateChanged(elements, currentMemory);  
        return (elements, currentMemory); 
   } 
 
   function compareStrings(string memory a, string memory b) internal pure  
     returns (bool) { 
      return keccak256(abi.encode(a)) == keccak256(abi.encode(b)); 
   } 
 
   function _init() internal { 
     bool result = true;  
     for (uint i = 0; i < roleList.length; i++) { 
         if (roles[roleList[i]] == 0x0000000000000000000000000000000000000) {  
             result = false;  
             break;  
         } 
      } 
      if (result) {  
        //This is the start point  
        enable("StartEvent_0l50fnp"); StartEvent_0l50fnp(); 
        emit functionDone("Contract creation"); 
      } 
   } 
}//Contract end 

Listing 15 -Static, unchanged Smart Contract part 

Internal state and Sequence Flow crossing 

The Smart Contract here proposed offers two data structures to provide its internal state to users. 
These are: 

• Element: is composed by the element id and the status of the actual element (ENABLED, 
DISABLED, DONE). DISABLED means that the current BPMN element is waiting to be activated, 
the flow is still not arrived there, ENABLED means that the flow has reached the current 
element, DONE means that the current element will never be reached by the flow; 



 

 59 

• StateMemory: memory area containing all the global variables. Here, all parameters and 
return variables included in the signature method produced by the translation Bpmn-To-
Solidity process are declared. 

Hence, by means of the array of elements and currentMemory it is possible through the emission of 
the event stateChange - which reports these two values - to know the current choreography internal 
state. This event is emitted every time there is a SC change of state which should correspond at each 
(tick) flow progress within the BPMN model. The ID of the traversed elements are gradually stored 
in the elementsID  array. Whenever there is an external interaction - i.e. a SC method is invoked in 
some way by the Participant interaction through an external call - the BPMN flow makes a 
movement from one element to another, namely makes a tick. Flow navigation is allowed by means 
of the three functions enable, disable , done . Each of these functions perform an internal change 
of state of the elements enabling the next step and disabling the current one just performed. The 
SC constructor initialised all the elements with the DISABLE state. 

Role and participant management 

Participants roles are stored in two different arrays roleList, optionalList. During the translation 
process mandatory roles are mapped into the roles mapping with their known associated user 
addresses, while the optionalRoles are mapped with the default address 0 by the constructor. The 
last mapping will be populated if needed at runtime through the “subscribe as participant” (line 83) 
function invoked by Participants who desire to subscribe to the choreography process. Their 
addresses are automatically retrieved via the use of msg.sender which enables to get the address of 
the caller. 

A security control is also expected and performed over the operation that each Participant during 
their interactions process invoke. This security control is done by two modifiers checkMand and 
checkOpt and they are used to enforce, from the contract side, the right identity of the ”sender”. 
They both check if the Participant role at that time corresponds to the role associated with the 
operation to invoke and if the participant account is in one of the two mappings roles and 
optionalRole.  

Coding BPMN Elements 

Because of its length, this part referred as “…….”  is not reported in the listing. However, it represents 
the core of the Smart Contract generation. The generated code is the result of the Bpmn-To-Solidity 
translation process actuated for all the elements discovered in BPMN Sequence Flow. 

The authors of [11] proposed a nice solution for BPMN-To-Solidty transformation but in that 
proposal not all the BPMN elements have been defined, so we provided some extra 
transformations. 

In this section we will only deal with a single case of transformation. We will take the transformation 
of a One-Way Coreography Task Element as an example by explaining it. For this transformation we 
also have proposed a different translation solution while for all the other transformations, you can 
refer to the article [11]. 

In the BPMN model a One-Way Choreography Task is represented by a choreography task with an 
associated message to the upper Participant, while similarly, the Two-Way choreography task is 
represented by two messages respectively associated one to the superior participant and the other 
to the lower one. Thus, the choreography elements appearing in the contract can be divided in two 
main categories: messages - representing the interaction functions between participants - and 
control flow elements. During the translation process each task message (graphically the envelope 
message associated with a participant) is transformed in a public function. All parts of the object are 



 

 60 

broken down hence the message name and all the information injected during the design stage are 
now considered. Any metadata previously added to the BPMN model is used to properly regenerate 
the function signature.  

In the proposed example the function associated with the Task Message (Message_0l2eq5d) it is 
defined like this during the design stage: 

start (uint256 duration) returns (uint256 endTime) 

We point out that our prototype solution allows to define functions with both input and output 
parameters. During the transformation process parameters are automatically added to the 
stateMemory global variable struct which is instantiated as currentMemory mapping. At the same 
time the function signature is calculated by the system and its call is filled in the Message function 
body (line 6). In the meantime, the SC contract containing the methods implementation (Listing 15) 
is also instantiated if not already present in the main SC. In the example the reference to SC 
implementation corresponds with the variable iregistry (Listing 15). This variable represents the 
link to another (external) contract dedicated to containing the business logic and also storing the 
one for the start function (Listing 16 line 6). The translator phase also provides other two 
definitions of the function. One to the IRegisty smart contract that acts as Interface (Listing 17 line 
4) and the other to the IRegistryImpl (Listing 18 line 6) contract that extends the IRegistry 
interface providing the real implementation. 

Two other important definitions relating to the function are also provided during the translation 
phase. One is related to the IRegistry SC that acts as an interface (Listing 17 line 4) and the other 
is related to the IRegistryImpl SC (Listing 18 line 6) used to extend the IRegistry interface 
providing the actual implementation. 

/Task(Start): ChoreographyTask_0n0f3pe - TYPE: ONEWAY 
function Message_0l2eq5d(uint256 duration) public checkMand(roleList[1]) { 
   require(elements[position["Message_0l2eq5d"]].status == State.ENABLED);  
   done("Message_0l2eq5d"); 
   currentMemory.duration = duration;  
   (currentMemory.endTime) = iregistry.start(duration);  
   enable("ParallelGateway_02fwm56"); 
} 
 

Listing 16 - Translation detail of a One-Way Choreography Task Message 

/*Interface generation*/ 
contract IRegistry{ 
    ...  
    function start( uint256 duration ) public returns (uint256 endTime);  
    ...  
}//Interface End 

Listing 17 - Interface of the ”Implementation contract functions” 

/*InterfaceImpl generation, provides function stubs*/ 
contract IRegistryImpl is IRegistry{ 
   ...  
   function start( uint256 duration ) public returns (uint256 endTime){  
      //stub generated -- insert here your code 
   } 
   ...  
}//InterfaceImplementation End 



 

 61 

Listing 18 - Contract of the Implementation functions containing the business logic 

 

7.5 Blockchain environment 

The prototype goal is to allow the interaction of participants through the blockchain. As previously 
discussed we have chosen Ganache as a blockchain solution to make the whole application 
autonomous and easy to be  developed at least at an early stage. Ganache-cli (3.6) comes with the 
Truffle suite of Ethereum development tools. Ganache cli is a personal blockchain for Ethereum 
development, uses ethereumjs to simulate full client behaviour and make developing Ethereum 
applications faster, easier, and safer. It also includes all popular RPC functions and features (like 
events) and can be run deterministically to make development easy. We have created a blockchain 
start-up script (list shown below) that has used some interesting features enriching this tool. 

#!/usr/bin/env bash 
 
ganache-cli -d --db ganache-db --port 8545 -l 9000000000 -g 20000000000 
--accounts 10 --mnemonic ’include poem goose genuine baby flat mom token drama harsh 
sadness fit’ --networkId 5777 --verbose 
--allowUnlimitedContractSize 

Listing 19 -Ganache-cli startup script 

Below you can find  the options: 

• nmemonic: uses a bip39 mnemonic phrase for generating a PRNG seed, which is in turn used 
for hierarchical deterministic (HD) account generation 

• d: generates deterministic addresses based on a pre-defined mnemonic. 
• db: specifies a path to a directory to save the chain database. If a database already 
• exists, ganache-cli will initialize that chain instead of creating a new one 
• ganache-db: enables the database creation useful to store data for history purpose  
• port: port number to listen on 
• l: the block gas limit 
• g: the price of gas in wei 
• network: specifies the network id ganache-cli will use to identify itself 
• verbose: logs all requests and responses to stdout 
• allowUnlimitedContractSize: allows unlimited contract sizes while debug-ging. By enabling 

this flag, the check within the EVM for contract size limit of 24KB (see EIP-170) is bypassed. 
Enabling this flag will cause ganache-cli to behave differently than production environments 

Using this configuration, we have unlimited contract size and also a huge amount of gas and limited 
block of gas limits. Many of these options are very useful for actual purpose due to the big dimension 
of our Smart Contract. Other additional benefits are given by the mnemonic options, which allow 
using all the time the same environment with the same user accounts. Moreover, there is the db 
option which continuity is guaranteed over time so it is possible to refer to addresses of contracts 
already distributed even after closing and opening the blockchain again. Obviously, the greatest 
advantage of our implementation is that we do not need a blockchain instance to configure, 
considering all the effort that required it, both in creation and in maintenance. 



 

 62 

8 Conclusion 
In this Technical Report a prototype named Model Driven ChorChain 2.0 platform has been pro- 
posed. The platform by means of a model driven approach generates smart contracts aimed at 
certifying the interaction between participants in collaborative processes previously designed by an  
editor of the platform. The applied methodology foresees the use of BPMN standards through the 
use of BPMN choreographic models which, thanks to the techniques proposed previously in the 
document, are transformed into Solidity code and distributed as smart contracts over the 
blockchain. 

Mainly, the study proposed in this TR is still at an experimental stage. The experiments conducted 
were aimed more at a study of feasibility rather than at a formalisation of the method. The hope is 
that future investigations aim  to formalise the method so that future work can continue. 

This work is already part of the continuation of the research conducted by the authors [11] which 
previously had defined a useful methodology for transforming the BPMN sequence flow in Solidity 
code. In our investigation, we focused more on making the BPMN choreographic model more 
exploitable through the model-driven approach. In fact, it has been demonstrated that through the 
use of the template method design pattern applied to the generation of smart contracts, a skeleton 
contract can be easily built. Taking advantage of loose coupling with the skeleton contract, 
introduced by the template method design pattern, it is possible to extend the model and 
subsequently adding business logic in any form.  

An application scenario of the proposed platform could be, for example, the one where an architect 
designs its collaborative process through the choreography model and, a developer or an 
experienced Solidity programmer, implements just the business logic part knowing only the auto 
generated interface. An interesting future work, and probably the next step, would be to 
demonstrate the validity of the tool through a real example. For example, to provide a real case 
study in which to define SC and add business logic taken from an already existing contract in order 
to certify and guide interactions between participants through the platform and blockchain. 

Another interesting but challenging task could be leveraging the skeleton contract to invoke rest 
stub methods to some REST service. The web service could be written in any other language and 
therefore use the collaboration process over the blockchain only to “certify” the communications 
that occurred between the parties. This scenario is still to be explored but a hypothetical interesting 
tool to test could be that one proposed by Provable22 through oracles. 

However, the addressed studies to understand how to enrich the BPMN model was very important. 
It has been noted that through Camunda Form it is very easy to transport additional metadata into  
the BPMN model and the idea of defining dedicated operation behaviours as data container in the 
UI properties. panel can be a winning strategy. Also the inclusion in the UI of libraries ”packages” 
containing predefined business logic and mechanisms the let define structs, events, functions and 
other more smart contracts constructs, have been convincing.  

Other important aspects were on the development side. An attempt was made to develop a solid 
and real product with structured APIs rather than a single prototype. The idea, in fact, was to go in 
the direction of defining software that it is easy to release, expand and extend. Therefore, the 
architectural choices were made following this idea 

                                                        
22 https://provable.xyz 



 

 63 

Blockchain technologies represent a fundamentally new way to transact business. They represent a 
robust and smart next generation of applications for the registry and exchange of physical and 
virtual resources. Thanks to the key features such as cryptographic security, decentralized 
consensus, and a shared public ledger, blockchain, and a shared public ledger, blockchain 
technologies can profoundly change the way to interconnect distributed systems. 

8.1 Future Works 

Increase the BPMN translator engine capacity: it is essential to focus on the working of the BPMN 
translator. It represents the real heart of the project and its reliability and the ability to be developed 
further are very important. Nevertheless, during the platform development an attempt was made 
to define a fairly robust API that offers the basis for creating a structured translation engine with 
the hope of being able to easily expand its possibilities. Therefore, this can be a good starting point 

Smart Contracts optimizations and best practices: plenty of optimization techniques or design 
patterns can be applied to our smart contracts. In the proposed study not much attention has been 
paid to this aspect. In fact, we also encountered some difficulties with regards to the costs incurred 
for compiling contracts and for transactions. However, this aspect it is always a big concern for 
developers. Focusing on reducing implementation and interaction costs could be another future 
work. At the same time, attention must be paid to the security aspects of the contract, avoiding bad 
programming techniques that can open security holes and make it unsafe. 

Formalisation and validation: it would be interesting to carry out a study in the methodologies 
suitable for formalising the operations performed during the generation of the code for smart 
contracts. Both for the transformation of BPMN elements into solidity code and for the methods 
used to insert Solidity information with UI into (via XML) to the BPMN model. Inevitable functionality 
should be the ability to test the generated code and thus avoid incorrect code production for 
instance using model-based testing (2.1) approaches. 

Connect smart contracts with external APIs: Another interesting feature already discussed should 
be exchanging information between smart contract and external environments by API connection 
such as REST endpoints. Data authenticity is the key to protecting the decentralised logic. This 
feature is integrated with most public blockchains and can work on any private one too. In this case 
the blockchain relies on the presence of a “trustable” mediator, called Oracle, that retrieves data 
from an external source and directly delivers them to smart contracts. A fairly widespread solution 
on the internet regarding this aspect is that provided by Provable23 which offers a product called 
ProvableÔ oracle service. Oracles allows these kinds of communications thanks to their mediation 
system between contracts and the network. Thus, deepening the study concerning the aspect of 
the oracles aimed at increasing the versatility of the proposed platform it is a very interesting thing. 

User interface enhancement and improvement: certainly, one of the most important components 
of the platform is the UI. It handles all the user requests helping interaction with the API and with 
the blockchain. For this reason, taking care of all the details needs a lot of effort, hence the 
development of the UI has been very demanding so far. Ensuring a good user experience though is 
mandatory for a platform where model driven development is the main aspect, therefore the part 
concerning the editor of the BPMN model must still be taken care of. Not less important is the 
development of the UI side relating to interaction with the blockchain. This is a very young area 
where there are useful and emerging technologies. Last but not least, we would recommend 
considering the adoption of tools belonging to the Truffle suite (the one from which the ganache-cli 
                                                        
23 https://github.com/provable-things/ethereum-api 



 

 64 

comes from), a collection of tools that make the dapp management easier, Truffle, Drizzle and 
Ganache. Truffle24 takes care of managing the contract artefacts so we do not have to. It includes 
support for custom deployments, testing, library linking and complex Ethereum applications aiming 
at making life as a developer easier. Drizzle25 is a collection of front-end libraries that make writing 
dapp front-ends easier and more predictable, especially with ReactJs. 

  

                                                        
24 https://www.trufflesuite.com/truffle 

25 https://www.trufflesuite.com/drizzle 



 

 65 

9 References 
 

[1]  D. C. Schmidt, «Guest Editor's Introduction: Model-Driven Engineering,» Conmputer, vol. 39, 
n. 2, pp. 25-31, 2006.  

[2]  M. M. Daniel F., “Model-Driven Software Development,” in Mashups. Data-Centric Systems 
and Applications., Berlin, Heidelberg: Springer, 2014, pp. 71-93. 

[3]  P. M. Damiano Di Francesco Maesa, «Blockchain 3.0 applications survey,» Journal of Parallel 
and Distributed Computing, vol. 138, pp. 99-114, 2020.  

[4]  T. B. F. N. A. S. C. H. a. T. R. Aitor Aldazabal, «Automated Model Driven Development 
Processes,» in Tools & Process Integration Workshop, Berlin, 2008.  

[5]  OMG, «Business Process Model and Notation (BPMN), Version 2.0.2,» 2013. [Online]. 
Available: https://www.omg.org/spec/BPMN/2.0.2/PDF. 

[6]  A. v. W. e. M. W. Jan Ladleif, «chor-js: A Modeling Framework for BPMN 2.0 Choreography 
Diagrams,» in Proceedings of the ER Forum and Poster & Demos Session 2019 on Publishing 
Papers with CEUR- WS co-located with 38th International Conference on Conceptual Modeling, 
Salvador, Brazil, 2019.  

[7]  F. &. M. A. &. P. A. &. R. B. &. T. F. Corradini, «Collaboration vs. Choreography Conformance in 
BPMN 2.0: From Theory to Practice,» in IEEE 22nd International Enterprise Distributed Object 
Computing Conference (EDOC), 2018.  

[8]  I. W. e. M. S. Xiwei Xu, «Model-Driven Engineering for Block- chain Applications,» in 
Architecture for Blockchain Applications, Springer, 2019, pp. 149-172. 

[9]  Q. L. e. I. W. An Binh Tran, «Lorikeet: A Model-Driven Engineering Tool for Blockchain-Based 
Business Process Execution and Asset Management,» in BPM, 2018.  

[10]  «Bpmn-js documentation,» [Online]. Available: https://github.com/bpmn-io/bpmn-js-
examples/blob/master/custom-elements/README.md. 

[11]  A. M. A. M. A. P. B. R. a. F. T. F. Corradini, «Engineering Trustable Choreography-based Systems 
using Blockchain,» in SAC 35th ACM/SIGAPP Symposium On Applied Computing, Brno, 2020.  

[12]  D. G. W. A. M. Antonopouls, Mastering Ethereum, O’Reilly, 2019.  

[13]  S. D. Henrique Rocha, «Preliminary steps towards modeling blockchain oriented software,» in 
WETSEB '18: Proceedings of the 1st International Workshop on Emerging Trends in Software 
Engineering for Blockchain, 2018.  

[14]  S. S. C. H. I. W. Christoph Prybila, «Runtime verification for business processes utilizing the 
Bitcoin blockchain,» Future Generation Computer Systems, vol. 107, pp. 816-831, 2020.  

[15]  O. &. G.-B. L. &. D. M. &. W. I. &. P. A. Pintado, «CATERPILLAR: A Business Process Execution 
Engine on the Ethereum Blockchain,» 2018.  

[16]  Facebook, «Virtual DOM and Internals,» [Online]. Available: https://reactjs.org/docs/faq-
internals.html. 



 

 66 

[17]  I. W. W. V. d. A. o. Jan Mendling, «Blockchains for Business Process Management - Challenges 
and Opportunities,» ACM Transactions on Management Information Systems, vol. 9, n. 1, pp. 
1-16, 02 2018.  

[18]  M. D. L. G.-B. I. W. Orlenys López-Pintado, «Dynamic Role Binding in Blockchain-Based 
Collaborative Business Processes,» in Advanced Information Systems Engineering, 2019.  

[19]  E. F. e. C. R. Barbara Carminati, «Blockchain as a Platform for Secure InterOrganizational 
Business Processes,» in IEEE 4th International Conference on Collaboration and Internet 
Computing (CIC), 2018.  

[20]  R. T. Fielding., «Architectural Styles and the Design of Network-based Software Architectures,» 
[Online]. Available: https://www.ics.uci.edu/ ̃fielding/ 
pubs/dissertation/rest_arch_style.htm#sec_5_2_1_1. 

[21]  X. X. R. G. A. P. J. M. Ingo Weber, «Untrusted Business Process Monitoring and Execution Using 
Blockchain,» in International Conference on Business Process Management, 2016.  

[22]  O. Pintado, «Caterpillar: A Blockchain-Based Business Process Management System,» in 
Proceedings of the Demo Track and Dissertation Award of the 15th International Conference 
on Business Process Modeling (BPM 2017), 2017.  

[23]  J. R. V. J. G. E. H. Richard, Design Patterns, Addison-Wesley, 2002.  

 

 

 


