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Abstract
Several approaches to quantum gravity lead to nonlocal modifications of
fields’ dynamics. This, in turn, can give rise to nonlocal modifications of
quantum mechanics at non-relativistic energies. Here, we analyze the nonlocal
Schrödinger evolution of a quantum harmonic oscillator in one such scenario,
where the problem can be addressed without the use of perturbation theory.
We demonstrate that although deviations from standard quantum predictions
occur at low occupation numbers, where they could potentially be detected
or constrained by high-precision experiments, the classical limits of quantum
probability densities and free energy remain unaffected up to energies compar-
able with the nonlocality scale. These results provide an example of nonlocal
quantum dynamics compatible with classical predictions, suggesting massive
quantum objects as a promising avenue for testing some phenomenological
aspects of quantum gravity.
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1. Introduction

Theories preserving Lorentz invariance while accounting for the emergence of the continuum
spacetime frommore fundamental constituents typically involve nonlocal equations of motion.
Relevant examples in the quantum gravity (QG) literature include causal set theory, where
the interplay between Lorentz invariance and discreteness results in nonlocal dynamics for
fields residing on the causal set [1, 2], string theory and string field theory, where the string
and its interactions inherently exhibit nonlocality [3, 4], and noncommutative geometry [5].
Similar forms of nonlocality are expected to arise in loop quantum gravity in order to avoid
significant violations of Lorentz invariance, pointing to an interesting connection with string
theory physics [6].

Interestingly, imposing Lorentz invariance and requiring the avoidance of instability
according to the Ostrogradsky theorem [7] restricts the possible modifications of the dynam-
ics singling out the ones with infinitely many derivatives, i.e. nonlocal [8]. Furthermore, the
scale that characterizes the nonlocality does not necessarily correspond to the Planck scale,
as it is indeed the case in the QG examples mentioned. These observations have stimulated
experimental proposals aimed at constraining this mesoscopic scale [9–11].

Motivated by ongoing experiments involving quantum optomechanical oscillators, a non-
local Klein–Gordon field in the non-relativistic limit was derived and the corresponding non-
local Schrödinger equation was solved perturbatively [9]. This analysis, further developed in
[12, 13], suggests that table-top experiments with massive quantum objects have the potential
to improve the experimental constraints of non-local field theories currently based on LHC’s
data [10]. However, the results of [9, 12, 13] were based on a perturbative expansion of the
nonlocal Schrödinger equation, thus making the dynamics intrinsically local. To what extent
the first-order approximation is able to reproduce the key features of the non-local dynam-
ics is yet to be fully understood. For instance, when applied to the paradigmatic case of a
harmonic oscillator, nonlocality, at the lowest order in the perturbation parameter, introduces
additional Hamiltonian terms [13] which result in an energy spectrum that scales quadratic-
ally with the occupation number. A related important aspect concerns the form of the classical
limit corresponding to the modified quantum dynamics. On the one hand, there is a wide con-
sensus that these modifications should manifest themselves just on purely quantum systems.
We observe indeed that decoherence, which plays a major role in determining the emergence
of classical behavior as a limit of a quantum description is not usually included in phenomen-
ological quantum gravity models. Hence, it would not be surprising if some features predicted
by considering the intertwined influences of gravity and quantum physics were washed out,
for instance, for systems in a thermal state. On the other hand, if the modified dynamics apply
consistently to states of high purity, their validity should extend equally to both the quantum
ground state and high-order Fock states. Incompatibility with the classical predictions at occu-
pancy n→∞ would raise a number of conceptual issues, limiting de facto the reliability of
these models. The problem of reproducing sensible classical limits starting from deformed
quantum rules is common to many phenomenological approaches to quantum gravity. For
instance, in the framework of spacetime noncommutativity the nonlinear law of addition of
momenta, necessary to preserve Lorentz invariance, might inevitably produce a pathological
description of the total momentum of a macroscopic body [14].

In this work, we study the evolution of a quantum harmonic oscillator in the framework of a
string-inspired nonlocal model. While the dynamics is significantly affected at low occupancy,
we show analytically and verify numerically that the classical limit of the quantum probability
density is recovered. From the numerically calculated energy eigenvalues we also show that
the Helmholtz free energy tends to the standard classical value at high occupation numbers.
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These results provide an example of a nonlocal quantum dynamics preserving the classical
limit. While our analysis mainly focuses on a specific type of nonlocality, we argue for the
generalization of our results to other cases of physical relevance and, more importantly, the
applicability of our approach as a consistency check. Any model whose nonlocal function fails
to restore the classical limit should be promptly ruled out.

The paper is organized as follows. In section 2 we provide a brief overview of the theoret-
ical framework that forms the basis for the model under examination. For additional details,
we direct readers to [9, 12, 13]. In section 3, we provide a consistent definition of classical
limit in the presence of a nonlocality scale and we show that at high energies the nonlocal
quantum probabilities gradually tend towards this limit. In section 4 we calculate the quantum
Helmholtz free energy and show that even for this quantity the classical limit is preserved.
In section 5, we discuss the generality of the argument and argue for its validity beyond the
specific functional form considered. Our conclusions are given in section 6.

2. Nonlocal model of a quantum harmonic oscillator

The general idea is that the evolution equation of any relativistic field (ϕ), encoding a covari-
antly defined scale lk characteristic of the elementary spacetime constituents and preserving
Lorentz invariance, must necessarily take the form f(□+µ2)ϕ = 0, where□=−c−2∂2t +∇2

is the d’Alembert operator and 1/µ= ℏ/mc is the reduced Compton wavelength of the field
[9, 12]. Here, f is some non-polynomial function such that f(□+µ2)→□+µ2 in the limit
lk → 0. The generalized Klein–Gordon operator so defined is inherently nonlocal as it contains
an infinite number of both temporal and spatial derivatives. This feature is essential to avoid
the instabilities prescribed by the Ostrogradski’s theorem [7]. It is natural to expect the scale lk
to enter the low energy physics as a perturbative parameter of the local evolution. The function
f can therefore be interpreted as providing the UV completion of the standard local theory and
lk, which we refer to as the nonlocality length scale, as the scale at which corrections to the
standard evolution come into play. It is important to remark that this scale does not necessarily
have to be related to the spatiotemporal discreteness normally associated to the Planck scale,
a fact which is of particular relevance within the context of casting phenomenological con-
straints. In this framework, lk is considered as a free parameter of the theory, to be bound by
the experiments.

In this section, we outline how such non-local effective field theories lead to a modified
Schrödinger evolution in the nonrelativistic limit and then focus on the specific case of a
quantum harmonic oscillator in the framework of a string-inspired nonlocal dynamics.

2.1. Non-relativistic limit of nonlocal effective field theories

We consider a free complex massive scalar field, ϕ, of mass m defined by the Lagrangian
L= ϕ(x)∗f(□+µ2)ϕ(x)+ c.c.. Following standard treatments (see e.g. [15]) we decompose

the field as ϕ(x) = e−i mc
2

ℏ tψ(t,x). Substituting this into the Lagrangian L and taking the non
relativistic limit (c→∞), we find

LNR = ψ∗ (t,x) f(S)ψ (t,x)+ c.c., (1)

where S = iℏ∂t+ ℏ2

2m∇
2 is the usual Schrödinger operator. One can also include an external

potential, V(x), by adding the term V(x)ψ∗ψ in equation (1).
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The equations of motion can be derived by means of a nonlocal generalization of the Euler–
Lagrange equations [16] which gives

f(S)ψ (t,x) = V(x)ψ (t,x) . (2)

The nonrelativistic complex field ψ satisfies a nonlocal generalization of the Schrödinger
equation. In order to interpret ψ as the wavefunction of a quantum mechanical system one
should construct from the field operator ψ a wavefunction for a generic one particle state
and show that it satisfies the same Schrödinger equation as the field. While this is indeed the
case at the first-order of a perturbative expansion of f(S) [13], the generalization of this result
to the full theory would require the derivation of the nonlocal Hamiltonian, a result that is
technically challenging. Thus, from here on we will proceed with the caveat that our approach
is phenomenological, in the sense that a rigorous identification of ψ with the wavefunction of
a quantum mechanical system is yet to be established.

2.2. Non-local Schrödinger evolution in a harmonic potential

The functional form of f(S) depends on the specific quantum gravity model under considera-
tion. Here we focus on a nonlocal Klein–Gordon operator of the form

f
(
□+µ2

)
=
(
□+µ2

)
exp
[
l2k
(
□+µ2

)]
. (3)

Exponential functions of the d’Alembertian operator naturally arise in string field theory, see
e.g. [17, 18] and references therein.

Motivated by the development of optomechanical experiments aimed at constraining non-
local effects, we consider the paradigmatic case of the non-relativistic dynamics of a (1+1)-
dimensional quantum harmonic oscillator. Following the approach described so far, we derive
the nonlocal Schrödinger equation

SeϵSψ (t,x) =
1
2
mω2x2ψ (t,x) , (4)

where m is the oscillator mass, ω its resonant frequency and ϵ= 2ml2k/ℏ2. Notice that ϵ has
dimensions of the inverse of an energy. By introducing the nonlocality energy scale as Ek =
ℏc/lk, from the above definition of ϵ we see that ϵEk = 2mc2/Ek. The dimensionless quantity
ϵEk gives (up to a factor 2) the ratio between the mass energy of the harmonic oscillator and
the nonlocality energy scale. Thus 1/ϵ is an energy scale directly related to the nonlocality
energy scale when probed by an oscillator of mass m. For brevity, we will refer to 1/ϵ simply
as the nonlocality energy scale from now on.

In order to cast equation (4) in a dimensionless form amenable to theoretical and numer-
ical analysis, we rescale the physical time as t̂= ωt, where ω is the angular frequency of the
mechanical oscillator. The spatial coordinate x is rescaled to x̂= x/x0, where x0 =

√
ℏ/mω.

Using the dimensionless coordinates t̂= ωt and x̂= x/x0, equation (4) takes the form

Ŝeϵ̂Ŝψ
(̂
t, x̂
)
=

1
2
x̂2ψ

(̂
t, x̂
)
, (5)

where Ŝ = i ∂̂t+
1
2∂

2
x̂x̂ and ϵ̂= ϵℏω. Equation (5) reduces to the standard Schrödinger equation

in the local limit ϵ̂= 0. Note that
√
ϵ̂ corresponds to the ratio between lk and the amplitude of
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zero-point fluctuations xZPF = x0/
√
2=

√
ℏ/2mω or, equivalently, ϵ̂ gives the dimensionless

ratio between an energy quantum of the harmonic oscillator ℏω and the nonlocality energy
scale 1/ϵ. Such dependence (as well as the above physical interpretation of 1/ϵ) suggests
that massive quantum systems or, more precisely, systems with the smallest zero-point fluctu-
ations could be the ideal setting for detecting these deviations. For a nonlocality length ranging
between lk ∼ 10−19 m (higher values have been already excluded [10]) and the Planck scale
lk ∼ 10−35 m, a quantum oscillator with x0 = 10−18 m (see e.g. [19]) would experience devi-
ations from the ordinary Schrödinger evolution ranging from ϵ̂∼ 10−2 to ϵ̂∼ 10−34. From
now on, for simplicity, we shall omit hats in all quantities.

Assuming the usual factorization of the wavefunction ψ(t,x) = ϕ(x)exp(−iEt), where here
E is also rendered dimensionless dividing it by ℏω, and using the fact that the exponential can
be expanded as exp(ϵS) = (1+ ϵS + ϵ2S2/2! + . . .)we obtain the nonlocal time-independent
Schrödinger equation

eϵE
(
E+

1
2
∂2xx

)
e

1
2 ϵ∂

2
xxϕ(x) =

1
2
x2ϕ(x) . (6)

Equation (6) has a simpler interpretation in momentum space, where it takes the form

1
2
d2ϕ̃(k)
dk2

+(E−Vnl (E,k)) ϕ̃(k) = 0 , (7)

where k is the dimensionless wavenumber (k→ kx0), ϕ̃(k) is the Fourier transform of ϕ(x)

andVnl(E,k) = E+( 12k
2 −E)e−ϵ( k

2

2 −E). Hence, the nonlocal quantum evolution in a harmonic
potential in real space is mapped into a standard, local quantum dynamics in an energy-
dependent potential. The latter can be seen as encoding the residual backreaction of the
quantum field on the background space. Interestingly, in the case of a quantum harmonic oscil-
lator, the above correspondence holds for any analytic function f.

3. Nonlocal quantum probabilities and the classical limit

According to the correspondence principle, any model predicting deviations from ordinary
quantummechanics should consistently reproduce classical physics at high energies. In partic-
ular, for the case of the harmonic oscillator, the quantum mechanical probability density must
tend to the classical probability density in the limit of large occupation numbers n→∞. Before
starting our analysis it is appropriate to clarify the meaning of ‘classical limit’ of quantum
dynamics (i.e. the high-energy/short-wavelength limit) in the presence of a nonlocality scale
lying somewhere between the LHC TeV scale and the Planck scale. As discussed above, devi-
ations from standard quantummechanics are expected even at low energies, significantly below
that defined by the nonlocality scale. A conceptually sound classical limit is thus defined for
energies Ewithin the range 1/2≪ E≪ 1/ϵ. This means energies significantly greater than the
zero-point energy of the harmonic oscillator and yet notably lower than the nonlocality energy
scale. It is in this regime that the classical limit associated with nonlocal modified quantum
rules can be consistently compared with the standard one.

5
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3.1. Classical probability functions

For a classical periodic system with total energy E one can define the classical probability of
measuring at an arbitrary time t a wavenumber between k and k+ dk as

ρ(k)dk=
1
T

dk
v(k)

, (8)

where v(k) is the oscillator velocity and T is the half-period. By defining the turning points
k=±kT as the wavenumber values at which the kinetic energy of the oscillator is zero, i.e.
kT =

√
2E, we have

T=

ˆ kT

−kT

dk
v(k)

. (9)

The velocity v(k) can be derived from the total energy relation E= v2/2+Vnl giving

v(k) =
√(

k2T− k2
)
e−

ϵ
2 (k2−k2T). (10)

Substituting equation (10) in equation (9) and integrating we obtain

T= π exp
(
−k2Tϵ/8

)
I0
(
k2Tϵ/8

)
, (11)

where Ij(z) is the j-order modified Bessel function of the first kind. For ϵ= 0, equation (11)
reduces to the local harmonic oscillator period T= π (ω= 1 in our dimensionless units). Using
equations (10) and (11) we can derive the classical probability density associated to the non-
local harmonic oscillator as

ρ(k)dk=
e

ϵ
4 (k

2−k2T/2)

I0
(
k2Tϵ/8

) ρloc (k)dk, (12)

where ρloc = 1/(π
√
k2T− k2) is the probability density function for ϵ= 0. Similarly to the local

case, the probability density (12) goes to infinity at the turning points where the oscillator
velocity is zero. In the classical limit, k2T ≫ 1, the probability of measuring wavenumbers k∼
kT is then substantially higher. For energies much smaller than the nonlocality energy scale,
i.e. k2T ≪ 1/ϵ, ρ(k)∼ ρloc(k) thus reproducing the classical limit.

The expectation values of the wavenumber k in the local and nonlocal case are both zero
due to the symmetry of the density functions about k= 0. The expectation values of k2 are
instead finite and the following relation holds

⟨k2⟩= ⟨k2⟩local

(
1+

I1
(
k2Tϵ/8

)
I0
(
k2Tϵ/8

)) . (13)

For k2T ≪ 1/ϵ, we find ⟨k2⟩ ∼ ⟨k2⟩local. At energies comparable with the nonlocality scale, devi-
ations reach up to 12 %, indicating a gradual departure from classical predictions.
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Figure 1. (a) Energy eigenvalues En obtained from numerical integration of equation (7)
for ϵ= 10−7 (black stars), ϵ= 10−4 (red diamonds), ϵ= 3× 10−4 (blue circles), ϵ=
10−3 (magenta squares), ϵ= 3× 10−3 (green triangles) and the corresponding fitting
curves (solid lines) using equation (14) with a as free parameter. (b) Best-fit values of
the parameter a for different ϵ. (c) Collapse of the numerical data shown in (a) onto
the scaling function E ′ ln(1+ n ′) (solid black curve), where E ′ = ϵa(En− 1/2) and
n ′ = ϵan. Additional data corresponding to other ϵ (see panel (b)) are depicted in grey.

3.2. Energy spectrum and quantum probability densities

In order to calculate the quantum probability density functions both in the local and nonlocal
cases and evaluate their convergence towards the classical predictions, we numerically integ-
rate equation (7) implementing a Numerov integration scheme and one-parameter shooting
method based on bisection procedure to estimate the energy eigenvalues En. These are dis-
played in figure 1(a) for different values of ϵ. Contrary to the local case, the eigenvalues show

7
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a nonlinear dependence on n compatible with a logarithmic model. We apply a regression
analysis using the fitting function

En =
1

w(ϵ)
ln(1+w(ϵ)n)+ 1/2 , (14)

wherew(ϵ) = aϵ leaving a as free parameter. The values of a obtained from the fits are reported
in figure 1(b) where error bars are omitted as they are smaller than the symbol size. These
values show aweak dependence on ϵ reaching a plateau at approximately a∼ 0.75 for ϵ ranging
from 10−4 up to 10−8. Equation (14) suggests that the values of En for different ϵ can be made
to collapse on a single curve upon suitable rescaling of energies and quantum numbers as E ′ =
ϵa(En− 1/2) and n ′ = ϵan, for which equation (14) rewrites E ′ = ln(1+ n ′) (see figure 1(c)).
The rescaled numerical data show an excellent agreement with the curve E ′(n ′) over a range
of n′ of more than seven decades. For the ϵ values considered, the mean residuals vary from
approximately 8× 10−13 for ϵ= 10−7 to 6× 10−2 for ϵ= 0.3.

For ϵ= 0, equation (14) reduces to the local result Eloc(n) = n+ 1/2. At the first order in
ϵ, i.e. for n≪ 1/(aϵ), we find En = Eloc(n)− aϵn2/2+O(ϵ2). This result can be compared to
the one obtained in [13], where first-order corrections to the energy eigenvalues of the non-
local oscillator have been derived by means of time-independent perturbation theory giving
En = Eloc(n)− 3

16ϵ(1+ 2n+ 2n2). Using a≈ 0.75, we find a good agreement between the two
results with deviations (En−En)≈ 3

8ϵEloc(n), i.e. smaller than ϵ at the ground state (n= 0),
and of the order of the zero-point energy at high occupation numbers n≪ 1/(aϵ), where the
first-order approximation of (14) no longer holds.

An example of probability density for the n= 50 excited state of the nonlocal oscillator
with ϵ= 10−3 is shown in figure 2(a). The solid black and dashed green curves represent the
classical probability densities ρloc and ρ evaluated for the energy E50. For this energy, the two
curves are similar within a margin of 1%, i.e. of the order of the zero-point fluctuations (see
figure 2(b)).

To characterize the convergence of the nonlocal quantum probability toward the classical
limit, we define for each value of n the quantity ∆ as

∆(En) =
1

n+ 1

n+1∑
i=1

(
|ψ (ki) |2 − ρloc (ki)

)
, (15)

where the ki denotes the wavenumbers of relative maxima of |ψ(ki)|2 and ρloc(ki) is calculated
using kT =

√
2En. This quantity represents the averaged difference between the maxima of the

nonlocal quantum probability and the standard classical probability density ρloc. For compar-
ison we also define ∆loc calculated from (7) with ϵ= 0 and evaluated at similar energies En.
We observe indeed that due to the nonlinearity of the energy spectrum (14), similar energies En
in the local and nonlocal cases will correspond to different occupation numbers n. In figure 3
we plot∆ and∆loc for two different values of ϵ. For all energies considered in figures 3(a) and
(b), it holds that En ≪ 1/ϵ: the maximum energy is indeed approximately 103 times smaller of
the nonlocality energy scale while it remains significantly larger than the ground state energy,
thereby approaching a well-defined classical limit. The two curves in figure 3(a) exhibit the
expected power law scaling ∼ E−1/2

n (dashed blue line), suggesting that both quantum prob-
ability densities converge toward the classical probability function, with ∆≈∆loc over the

8
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Figure 2. (a) Probability density function (solid grey) of the n= 50 state of the non-
local quantum harmonic oscillator obtained by numerical integration of equation (7) for
ϵ= 10−3. The solid black (dashed green) line represents the local (nonlocal) classical
probability function. (b) Ratio of the classical probability densities ρ(k) and ρloc for the
energy E50.

entire energy range (see figure 3(b)). On the other hand, deviations become apparent as ener-
gies approach the scale of nonlocality, as illustrated in figures 3(c) and (d), primarily due to
the differing classical probability distributions ρ and ρloc.

9
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Figure 3. Averaged difference between the maxima of the quantum probability and the
classical probability densities ∆ (red curve) and ∆loc (black curve) defined in the text
and their ratio for ϵ= 5× 10−7 (a) and (b) and ϵ= 5× 10−4 (c) and (d). The power law
scaling ∼ E−1/2

n is plotted for reference using dashed blue lines.

4. Nonlocal Helmholtz free energy

The simple structure of the energy levels allows us to compute some of the thermodynamic
properties of the quantum harmonic oscillator, such as the partition function and the Helmholtz
free energy. Using equation (14) in the classical definition of the partition function we obtain

Z(β) =
∞∑
n=0

e−β[(aϵ)−1 ln(1+aϵn)+ 1
2 ]

= e−
β
2

∞∑
n=0

e−β[(aϵ)−1 ln(1+aϵn)]

= e−
β
2

∞∑
n=0

(1+ aϵn)−
β
aϵ

where β = ℏω/(kBTK), with TK the temperature and kB the Boltzmann constant. Then, the free
energy becomes

F=− 1
β
lnZ(β) =− 1

β

(
lne−

β
2 + ln

∞∑
n=0

(1+ aϵn)−
β
ϵa

)

=
1
2
− 1
β
ln

∞∑
n=0

(1+ aϵn)−
β
ϵa . (16)

The last sum in equation (16) converges for β/(ϵa)> 1. Since the parameter a is O(1) (see
figure 1(b)), mathematical convergence occurs whenever the thermal energy of the oscillator is
smaller than the nonlocality energy scale. This is consistent with the discussion in the previous
section, where we argued that a meaningful classical limit could be defined only when the
oscillator is not probing energy/length scales comparable with the nonlocality one.

We remind that for a local quantum harmonic oscillator, in the classical limit the difference
between the quantum and the classical free energy is given by Flocal −Fcl =

1
2 , where

Fcl =− 1
β
lnZcl (β) =

1
β
ln(β) . (17)

10
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If this were to be the case also in the nonlocal scenario, the following relation would hold

F−Fcl =
1
2
− 1
β
ln

∞∑
n=0

(1+ aϵn)−
β
ϵa − 1

β
ln(β) =

1
2

(18)

implying

∞∑
n=0

(1+ aϵn)−
β
ϵa =

1
β
. (19)

The integral test for convergence applied to the series on the left hand side of equation (19)
gives the lower and upper bounds (see appendix)

1
β− ϵa

⩽
∞∑
n=0

(1+ aϵn)−
β
ϵa ⩽ 1+

1
β− ϵa

. (20)

In the regime in which 1≪ 1/β≪ 1/ϵ, i.e. for thermal energies much larger than the zero-
point energy, but also much smaller that the nonlocality energy scale, equation (20) implies∑∞

n=0(1+ aϵn)−
β
ϵa = 1/β. Thus, we see that we retrieve the classical limit for the Helmholtz

free energy of a local quantum harmonic oscillator.

5. Quantum harmonic potential as a testbed for nonlocal theories

In the local case, the symmetry between position and momentum in the dynamics of the
quantum harmonic oscillator implies that the Schrödinger equation has exactly the same
form whether expressed in position or momentum space. For a non-local quantum oscillator,
this symmetry no longer holds. Yet, when the nonlocal function is analytic, the relationship
between the quadratic harmonic potential and the second derivative inmomentum space allows
the mapping of nonlocal quantum evolution in real space into a conventional local dynamics,
but governed by an energy-dependent potential, in momentum space.

Indeed, the stationary Schrödinger equation for a generic (1+1)-dimensional nonlocal
quantum oscillator

f

(
E+

1
2
∂2xx

)
ϕ(x) =

1
2
x2ϕ(x) (21)

for any f such that f(z) =
∑∞

j=1 bjz
j with b1 = 1, translates in momentum space into

1
2
d2ϕ̃(k)
dk2

+(E−Vnl (E,k)) ϕ̃(k) = 0. (22)

Equation (22) is a stationary Schrödinger equation in an energy-dependent potential
Vnl(E,k) = E− f(E− k2/2). The analyticity of the function f is crucial here. In its absence
nonlocality in real space would give rise to a nonlocal potential in momentum space involving
convolution terms.

In the dimensionless units above defined, the nonlocal potential can be expanded as

Vnl (E,k) =
k2

2
+

∞∑
j=2

anϵ
j−1

(
E− k2

2

)j

, (23)
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namely a harmonic potential plus O(ϵ)-corrections. These corrections are responsible for the
deviations from ordinary quantummechanics and for those expected at high-energies E∼ 1/ϵ.
On the other hand, using similar arguments as those in section 3—in particular that the energy
dependent potential can be well approximated by the standard harmonic form Vnl(E,k)∼ k2

2
for k∼ kT — we could infer that the classical limit should be safely recovered. While these
qualitative arguments cannot substitute a deeper analysis as the one conducted in this work,
they suggest that our results could be generic of any analytic f, pointing towards harmonic
oscillators as a valuable prototype model for investigating the classical limit of nonlocal field
theories at non-relativistic energies.

6. Conclusions

In this work we have considered the classical limit of a nonlocal quantum harmonic oscillator.
The nonlocal model is derived from the non-relativistic limit of a d’Alambert operator with
infinite many derivatives, inspired by string field theory. At the relativistic level, the nonlocal
dynamics preserves Lorentz invariance, evading the rich observational constraints on Lorentz
violations [20]. Furthermore, nonlocalities of different forms emerge in disparate quantum
gravity models where they are central exactly in preserving Lorentz symmetry.

The non-relativistic limit allows us to assess the effect of nonlocality at energies character-
istic of quantum mechanical systems amenable for investigation in the lab. Unlike previous
works [9, 12, 13], here we have tackled the problem at the non-perturbative level and focusing
on the classical limit of the model.

We have shown that, for the specific case considered, the classical limit is non-pathological.
We recover both the classical probability distribution for highly occupied states of the harmonic
oscillator and a sensible thermodynamic behavior looking at the Helmholtz free energy. At the
same time, deviations appear, as expected, both in the low and high-energy limits. The former
shows that quantum systems and experiments with massive objects are indeed a promising
avenue for testing nonlocal effects. The latter, on the other hand, indicates that as we approach
the energy scale associated with nonlocality, new physical effects are expected to arise.

Although we focused on the non-relativistic limit of a specific non-local field operator, we
believe that our results can be extended to other functional forms. For instance, this scenario
likely holds for any analytic function f where, as discussed before, the non-local quantum
evolution in a harmonic potential in real space results in local quantum dynamics within an
energy-dependent potential. On the other hand, even for operators for which the dynamics
remains nonlocal also in Fourier space, the approach presented in this study—based on the
prototype model of a quantum harmonic oscillator—may provide an useful tool for discerning
pathological cases.
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Appendix

Let us thus look at the convergence of the series

∞∑
n=0

G(n) =
∞∑
n=0

(1+ aϵn)−
β
ϵa =

1
β
.

The integral test for convergence applied to the infinite series gives the lower and upper bounds

ˆ ∞

N
G(y)dy⩽

∞∑
n=N

G(n)⩽ G(N)+
ˆ ∞

N
G(y)dy.

With the change of variable 1+ ϵay= z we have dy= dz
ϵa . Then, setting N= 0, the integral

becomes
ˆ ∞

0
G(y)dy=

ˆ ∞

0
(1+ ϵay)−

β
ϵa dy=

1
ϵa

ˆ ∞

1
z−

β
ϵa dz

from which we derive the lower bound

1
ϵa

ˆ ∞

1
z−

β
ϵa dz=

1
β− ϵa

.

Since G(y= 0) = 1 we finally obtain

1
β− ϵa

⩽
∞∑
n=0

G(n)⩽ 1+
1

β− ϵa
.
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