IR eyt P S r(‘ UER [IR :
ey L o L :

v i) N

i
! o

St .
. W . + |

. Jf S :

k ik y

F@ Mémﬂjikﬁ

g B L ” = A KRR
f

Consz_géto ’nazmnaee de Qee RLCQZChe

ISTITUTO DI ELABORAZIONE
" DELLA INFORMAZIONE

PISA

VLSI Designs for the Solution of Linear
Systems by Munt.carlo M.thodis

M.Bonanui , B.Codonosvi
Nota Interna Bé- 3?

Dic.mbr. 1987

VLSI DESIGNS FOR THE SOLUTION OF LINEAR SYSTEMS BY
MONTECARLO METHODS

M.BONANNI and B.CODENOTTI
Istituto di Elaborazione dell?’Informazione
Via §.Marias 46 — 9D6100~-PISA (Italy).

ABSTRACT

This paper presents VLS1T networks for the solution of linear
systems, which are based on the application of Monte Carlo
methods.

We obtain areax(times)® performances improving the results
attained by the best known VLSI linear system solvers, at the
price of introducing, in the result, a "probabilistic ervror";

which can be evaluated in terms of Chebychev’s inequality.

Key Words: Ares-Time Complexity: Layout, YLSI, Monte Carlo
Methodss Random Numbers, Markov.Chain.

1. Introduction

We here consider the praoblem of solving linear systems in

VLLBT by using Monte Carlo Methods, with the goal of speeding up

the computation, at the price of introducing a probabilistic error
in the result.
The VLSI solution to a computational problem consists of the

conception of a layout, and of an algorithm running on it. The

evaluation of the obtained design can be performed by exploring

the tradeoff between the agrea of the layout, and the computation

e of the algorithm.

A computational model for VLSI has been proposed by several
authors [see for example 2,3,6:s %1, with the goal of providing a
base for the evualuation of given designs.

In this paper we will show several VLSI networks for linear
systems solution by Monte Carlo Methods, either in the general
case, or in the case of linear systems with special coefficient
matrix.

More precisely, we will show an approach yielding the solution
of the problem by means of architectures ciosely related to the

mesh of trees, on which it seems guite natural to implement Monte

Carlo algorithms.

It is well known that the designer of a VLSl nxn linear system
solver has to face the lower bound AT®= (n*), which has been
estabilished by Savage in [3].

In [1] an optimal systolic design based on Givens’ algorithm
is presented, attaining the performance A=0(n®) and T=0(n).

Here we give a first look to the implementation of Monte Carlo

methods. oriented towards the solution of linear systems, the

inversion of a nonsingular matrix, the computation of only one
entry either of the solution of a system, or of the inverse of a
matrix.

The rest of this paper is organized as follows.

In section 2, we first present some algorithms — to be used
next - for the generation of random numbers (RNGs, from now)j; then
we describe some general features of Montecarlo methods (referred
to as MC methodss from nowl), and we finally show some algorithms
for the solution of linear systems.

Section 3 is dedicated to the description of VLSI circuilts
implementing Monte Carlo Methods for the solution of linear
systems.

In section 4, we finally show some tables concerning the area-
time performance of the designs proposed in the paper, and we
analyze relations with other work in the field.

The following notations will be used in the paper.

ELX] denotes the expected value of a random variable X;

I'IBl] denote the infinite norm of a matrix B.

2. Monte Carlo Methods for the Solution of Linear Systems and for

Matrix Inversion.

We first recall some results concerning the automatic
generation of seguences of random numbers.
We mentioned - and it will be clearer later - that such problem

is central when implementing Monte Carlo algorithms, since they

consist of random sampling of gquantities by means of independent
trials.
We assume the set of sampling to be the interval I=00 11, and
we will show later how to generalize this assumption.
We rneed an impartial procedure to produce a sequence of random
numbers on I. Hence the following guestions arise:

which i1is a concrete definition of impartiality?

how to treat and explain the concept of casuality?

Hystorically, the first RNGs were based on empirical
procedures, whose results were collected into tables.

Such generators had high costs in terms of gstorage
requirements, so that 1t became necessary to produce sequences
with the property of being not "exactly random", but easy to
compute and able to pass a given set of randomness tests. Such

sequences has been called pseudorandom numbers.

One of the main features of RNGs is their period,. i.e. the
lenght of the produced sequence without repetitions.

We present two algorithms, belonging to two different classes
of methods, namely the “"congruentisl"s and the ‘'“middle sqgquare"
approaches.

Congruential methods [(see 8] have the following general form:

Given Ag Uo: M’
compute:
Upazr = a U mod M
] k=0,1,...,n~1,
Xk+1 = Utt-o—l/”

where X,, i=1:25...5n: 15 the pseudorandom sequence.

Middle Sguare methods [(see Bl are constructed by means of the

following relations:

Xeewrs = { [X B M=2 71 /M2,
where <{a) and [al denote the fractionar and the integer part of a
real mgmber a, respectively.
We now show a congruential algorithm (RND1), and a middle

square algorithm (RND2), described in Pascal-like notation.

RMD 1

(init c:=1)

BEGIN
b:=663608741 * ¢ (mod 2%);
RETURN us=c/2%
c:=b

END.

The period of the sequence results to be Ra-®

RND2
(init U:=O~V.1. Vir wsew Vi)
BEGIN

a:=u®s (3=0.7y Tim «n. T aen)}

RETURN wu:= 0. ra.maa Tvsaaez » o x Vamm;oss
END.
From now, the assignment "u:=RND" means that u is given a

random number in I, by using either algorithm RNDI or RND2.

The generation of uniform random numbers on an interval [a bl
can be performed by using RND1 or RND2, according to algorithm
RNDG.

RNDR (bsa)
BEGIN
uwr=RNDj;

RETURN y:=u(b-a) + a;
END.

We now give a description of some algorithms for the solution
of linear systems (and for matrix inversion)s; based on the Maonte

Carlo approach.

It is first necessary to introduce the techniques to be used in

order to simulate paths on Markov chains.

The basic idea is the following:

let us consider the transition matrix of a given Markov chain,
P=(p.,); for any row of such matrix, the sum of the (nonnegative)
entries is equal to one; the value p., corresponds to the
probability of going, from the state "i" to the state "j".

Therefore, the entry p., can be associated to a segment of
lenght pu., in [0 11, and the transition "i to j" is allowed when a
RNG returns a random number corresponding to the segment.

It 1s self evident that a given segment 1is chosen with

probability increasing with its lenght.

Consider now the problem of sglving. linear systems, following

£L71.

Let A=(a,,) be an nxn nonsingular matrix, and let g=(qg,) be an
n-vector. Moreover, we denote with I the identity matrix.
Assume that
A=1-8B, where (I B || < 1.

Then the linear system

can be written as:
x = B x + g,

from which is easy to derive the iterative method:

x:‘a,-p:}. - B x:\, + q s i:].}Ea---

We have:
xi# = B q + Qs
5 L B hzq 4 B oo L, q 4 . e . 4 B q 4 q ’

The m—th entry of the solution x, can be written as:

Xem = Z— Z brn ﬁ.L b & K3 » o b & A, C] 4 -

{ -4 "y Ty
12185000 1y g s 2

Let us denote with %% the m—th entry of the vector x%, 1.e.

m Z Z b (23] .'v.1 b & 4 . . . b h A C] :‘x.Y

(R iy de wae

Following [71, we now choose
Bay = Tay Pag » with odpa,y,<l, 155=1425...21;
and Qs = Qs Pa s with O0<{p.<1l, 1=1 .20 wwaly
in order to satisfy

ZD.«.", P, T 1 5 1=14Ca ...
Tedq

Then x.° can be written as:

xrn Z Z frn ,’«.1 LI f’ Q D 10 2 LI D a A p a

1, . A 5 a "
-1 Y Y 4 ! LB Y
T / R }!

We nmow construct a Markov chain with (n+l)x(n+1) transition

matrix P defined as:

e A AT Sh ot 5 S e 3 5% P Hn a1

P P

P Prasn «aow Pane P

P 2 v P - D

The sequence

m —==> 1, =—==> igp =—=> ... —==2> 1, ——=> ntl,
with i,#n+1, j=1;85...57, is a path with initial state m.
From the Markov property, we have:

i « w . R L = 4 v o k -
Plmsi,, slpsm+l) [Dma.‘ D...‘ hy p.«‘M fy P.:.{

Let now define a random variable Y.,‘™' as:

Y"‘(l’-'-?:>(ms il) L girah“"'l) = —an.’l. f'l i LR ’F’l ."vrgﬁ»f’ r<R5‘

1 I I 8 “Y-4

Y $™20C my 11, .. sir) = f(r\!v.1 fn,‘ iy ... 'f.'.v_' .',,'Clzxvrﬁ r=R

It readily follows that

EE\(”‘CF”\‘) J = xfﬂ(l“‘:) .

In the following, an algorithm for the evaluation of x,¢™°

presented.

SOLVEL
BEGIN
<compute Ti4 s Payg » Pr » Qurs
{compute n paths w, » Wa s Wl
U:=03
FOR h:=1 TO N DO

BEGIN

<update visigsaansl-rs

V= fimsig)s

FOR j:=1 70 r—-1 DO
VeVl 51 40003

IF r<R THEN V:i=Uxg,
ELSE Vi=V*qg, 3

Ue=U+V3s

is

END;

U:=U/N
RETURN U;s
END.

A simple modification of SOLVELl leads to INV1, which can be
used to compute the inverse of a given matrix, and requiring the
same assumptions on A than SOLVEL.

Anaother approach has been presented in [71, where ergodic
Markov chains are used to compute random paths. The corresponding
algorithms algorithms for linear systems solution will be here
called SOLVEZ and SOLVE3s while the algorithms for matrix
inversion will be called INV2 and INV3. S0LVEE2 and SOLVE3 (as well
as INVR and INV3) differ for the choice of the starting point of
pach path, which is made “a priori” for SOLVERZ (INVZ2), and
"random” for SOLVE3 (INV3). Details of these algorithms will be

given in section 3, when necessary.

It is worth pointing out that all the asbove described methods
reguire a special matrix structure. In the following, we recall
the steps of anocther algorithm [see 731, which can be applied to
arbitrary nonsingular matrices.

In the algorithm, we will refer to a function V(x) which is

defined as:

Vix) = 2 (8, ,%, — qQ.0%.

)
RISGENT (computation of x.)
BEGIN
M:=03
FOR i:=1 TO N DO

BEGIN
<construct, at random, an n-vector Y(i)>;
IF V(Y(i))<=c THEN

BEGIN
:=M+1
<hold the vector Y(i)>»
END
END 3
<sort the m—-th entries of the vectors which have been held
and put them into the vector POS>;
RETURN U:=POSILM/2]
END.

A variant of RISGENl is shown in [7], where all the computed n-
vectors are used in order to evaluate the solution. The algorithm

corresponding to this approach is called RISGENZ.

——

————

> T

Fig.t

g

3. Monte Carlo Methods for the Solution of Linear Systems and for

Matrix Inversion.

In this section,; some VLSI architectures are presented, which
are derived from the algorithms presented in section 2.

In fig.l we describe some basic modules to be used here and
later. (In the figures, here and in the following, dotted lines
denote wires carrying one bit of information; continuous lines
denote wires carrying d bits of information, where d is the number
of digits of the arithmetic).

Some of them perform trivial arithmetic or logical
computations. A discussion is worth for what concerns modules
SWITCH, MERGE, and gates TRUE and FALSE.

Module SWITCH send its input only to one output wire, depending
on a logical value (dotted line) in input.

Module MERGE send to its output wire one of its two input,
depending on a logical value in input.

TRUE (FALSE) gates send their input to the output, if the
logical irnput is 1 (0.

For what concerns the logical modules OR, and NOT, we will use

for simplicity the same notation in the case of wires carrying one

bit, and d bits.

We now present circuits implementing uniform RNGs.
Fig.2 shows the trivial implementation of RND1, RNDZ2, and RNDG,
whose area—time cost id dominated by the multiplier.

Therefore the resulting performance is [see 21:

10

[P S [r""’, — o -
C ! g =
~y wi —y Y
=]
L= r— et
7 v ~ 7
—_—t || —
e 5 S
Lcy Ty
-1
ST g ey —
id
v v A7 v
e | S
ey
v =
laand ey
W D —_— e
[ween
L —=T7 L::7 Lery
; SSPAE SNSRI S O N
l [«——~ ! et I

()

Fig.a

| c

|~
T S

]

.ffj c

Fig.4

1

- B
i -L(/] 3]
L I]:@

Fig.5

AT?=0(d™) ,

e

for any Te€l logd, Vd 1.

Circuits corresponding to one of those illustrated in fig.?2
will bhe denoted by RND in the following.

We present some VLSI architectures, which are obtained by minor
modification of mesh-of-trees, on which 1t s easy to run the
Monte Carlo algorithms for the solution of linear systems
presented in section 2. Some of the results lead to an improved
area—time performance, with respect to solutions derived from
deterministic algorithms, at the price of introducing a
probabilistic error in the result. An analysis of the results
shown In this section, 1s given in the next section.

The basic architecture to be adopted is described by fig.3.

Such architecture has area A=D(N®log®n), where n™ is the number
of nodes.

The VLSID architecture proposed to implement SOLVER (see
section @) is described in fig.4a, and it consists of a minor
modification of a mesh-of-trees. Modules denoted by C send to

module &S the values and q. and to module H the information
concerning the row of the matvix. needed in order to simulate a
path on a Markov chain, according to the arguments of section 3.

Module S send
vecelived. before sending
compubes X..

Fig.ab shows details of

of type C.

Fig.5 illustrates the

its output to

structure of

module Z., which sums N guantities

the result to a multiplier. which

the communication network

among modules

modules

ST

O—O0——

ST

ST

ST

ST
ST'

ST &
l ST

Fig.é

£
-1

v
|
]

- --O--

'

T T

o e ew e o o

b1

Fig.7

I3
 ——

ey
i

!
TN
NS

Fig.g

'f

12

The network shown in fig.4 will be called Pl _mesh-of-trees. It

has area A=0(n"logn), as one can readily prove.
For what concerns the computation time, we have:
T=0(NR1ogn)
where M is number of paths on the Markov chain, and R is the
maximum lenght of the chains. In the next section, we will
summarize the area-time bounds obtained as functions of n. For
this purpose. we will bound N and R in terms of n.

The computation of altl the entries of the solution x can be

performed by using a

e (see fig.b&)s in which each one of
the n modules (8T in the figure) computes one entry.

The modifications to the structure of figg.4 and 5 are
illustrated in fig.7.

The performance of this solution depends on the chosen 1/0

conventions.,as well as on the VLS model of computation adopted.

In the following section, we will show that the qultilective madel

[see & for A rigorous definitionl allows improving the

performance obtained corvespondently to the semaelective model (see

for evample 6.87.
in fig.8, another YLST scheme for the implemsntation eilther of
SOLVES, or of INVA, INY3 (up to minor modifications) 1s presented.

Such scheme 15 called P2 mesh-of trees, and has area

A=0(n"logn) .

Modules denoted by X (see fig.%a for their description) perform
the computations of modules S, 2, and 8T (see figg.3 and &), in
order to evaluate simultanecusly several entries of the solution.

Module H has to be modified, according to fig.%b.

Lo

Fig.

13

A mesh-of-tree can be used in order to implement INV3, as shown
in fig.10. Modules CB substitute both C and G, and they will hold
the result at the end of the compubtation.

Detalls concerning the area-time performance of all these
schemes will be given in section 4.

For what concerns the implementation of algorithm RISGENI
(section 2), we use the network described in fig.11, which
essentially consists of a structure pervforming matrix-vector
product, which 1s the main step of the algorithm.

In fig.12, some details of the design are illustrated.

4, Conclusions.

Some networks for the VLS scolution of lingar systems have been
prasented, either in the semelective or in the multilective model.
In table I such results are shown, as a function of the size of
the problem, and of quantities (NL5) typical of Monte Carlo
methods. In some cases. such quantities can be upper bounded as
functions of the size of the problem. by means of extimates of the
variance of the opportune random variable. Table Il contains the
results,. given as functions only of the size of the problem.
Tt is now wmtth noting that the latter table presents
"pessimistic" complexity bounds, since the esvaluation of the

variance aoften results not to be sharp.

™

p—

|

-~

1

e

[

PP [E

p——

1

—RNDERACTH]

i !
Pl

R PA—

EE R

B

e

N %J - ﬁiz%

Wf.a b

- l\z,.-..iAw\- M L‘-flrt
e

R 7 o

= bt ﬁvfm

:+‘_,J

BE—

|
|
!

Tl

34y,

L_..ﬁ..q-‘._,.._,ff,,l.._.w__%f + L.,_,_

ﬁ, £k ﬁ i1
pa P 2= 2

R .fﬁ o

'
i

dal +

CTN

Fig.12

1%

Finally, table II1 presents a comparison bhetween the best
vesults due to the Monte Carlo methods presented in this paper,
and known results derived from deterministic algorithms.

When analyzing the tables, it is worth taking into account,
that the hehaviour of Monte Carlo sclvers has been studied (and
can be studied only! in fterms of the Chebychev’s inequality, i.e.

up tao an arbitrarily small probabilistic error.

References

11 Bojanczik, N.,Brent, R.P., and Kung,H.T., MNumerically Stable
Solution of Dense Systems of Linear Eqguations using Mesh-Connected
FProcessors. SI6M J. Scie, Stat. Compub. 9. 99104 (1984,

£23 Brent, R.P., and Kung,H.T., The Area-Time Complexity of Binarvy
Multiplication, J. fAss. Comput.Mach. Vol.f8, 5S21-534 (1981).

{31 Codenotti, B.y Lotti, 6., and Romani., F., VLSI Implementation
of ITterative Methods for the Solution of Linear Systems,
Integration 3, 211-221 (1983).

el Halton. J.H.. A Restrospective and Prospective Survey of the
Monte Carlo Method , 51AM Rev. 12, 1-63 (1970).

(531 Savages, J.E., Area-Time Tradeoffs for Matvix Multiplication
and Related Problems in VLSI, J. Comput,. and Sist. Sclence 22,

E230~242 (17281).

15

{61 Savage:, J.E., The Performance of Multilective VLSI Algorithms,
J. Comput. and Sist. Science 29, 243-273 (1284,

L71 Shreider, Y.A., The Monte Carlo Method, Pergamon Press (1966).
[B1 Thompsons C.D., Area-Time Complexity for VLSI, Proc. 11th ACM
Symp. Theory of Comput., B1-88 (1979).

L9l Vuillemin., J, A Combinatorial Limit to the Computing Power of
VLST Circuits. Proc 21th IEEE Symp. Found.of Comput. Sci.,2%94-300

(1980) .

circuit

SOLYET

SOLVET

SULVEZ

SO YEDR

ER

IRV 2

Tabie |

ATZ

anlgggn
H?ngiagﬁn
Hnglaggn

M n33ng3n
] E
n“1og’n

-
n*iﬂgin

function

o
i

circnif

SOLYET

SOLVETD

SOLYEZ

SOLVEZR

myv

Y2

Table {1

x"}
AT <

function

%

3

A"t

-
A

circnit

GIVENS

GAUSS-JORDAN

50LYEZ

SOLVEZ

IV 1

_.
p
£ x]

%57

)

Tabie 11

ATZ

La

ﬂzﬁﬁggﬂ

T, X
niag-

an
n=ingn

3, X
n2logn

fonction

